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Scale and space localization in the Kuramoto—Sivashinsky equation
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We describe a wavelet-based approach to the investigation of spatiotemporally complex dynamics,
and show through extensive numerical studies that the dynamics of the Kuramoto—Sivashinsky
equation in the spatiotemporally chaotic regime may be understood in terms of localized dynamics
in both space and scalgvave number. A projection onto a spline wavelet basis enables good
separation of scales, each with characteristic dynamics. At the large scales, one observes essentially
slow Gaussian dynamics; at the active scales, structured “events” reminiscent of traveling waves
and heteroclinic cycles appear to dominate; while the strongly damped small scales display
intermittent behavior. The separation of scales and their dynamics is invariant as the length of the
system increases, providing additional support for the extensivity of the spatiotemporally complex
dynamics claimed in earlier works. We show also that the dynamics are spatially localized, discuss
various correlation lengths, and demonstrate the existence of a characteristic interaction length for
instantaneous influences. Our results motivate and advance the search for localized,
low-dimensional models that capture the full behavior of spatially extended chaotic partial
differential equations. ©1999 American Institute of Physids$51054-150(09)01902-3

There has been much recent interest in the complex spa- characteristic space and time scales and local dynamics. By
tiotemporal behavior of extended systems with many de- analogy with the fluid case, we seek a reduced set of equa-
grees of freedom, which appear widely in applications. tions for the dominant modes on a suitable subdomain of
An important goal is to account for the dynamics of those [0,L]. However, for such spatially homogeneous systems
energetically dominant modes in a spatiotemporally cha- with periodic boundary conditions, the POD modes are sim-
otic system, which occur at intermediate length and time  ply Fourier mode$,an observation which led to the proposal
scales, and to relate them to the dynamics observe@nd of localization via wavelet-based modé3The feasibility of
understood via dynamical systems methodsin low-  such models was corroborated by the results that, compared
dimensional systems. In this paper, taking the tothe POD(Fouriep basis, in a wavelet decomposition, little
Kuramoto —Sivashinsky equation as a model problem, we energy is lost on averadeand that suitably chosen low-
use wavelet decompositions to characterize spatiotempo- dimensional wavelet projections can reproduce the essential
ral chaos, with a view to understanding dynamical inter-  smallL bifurcation behavior of the KS equatién.

actions in space and scale and, thus equipped, to con- We study the partial differential equatigRDE),

structing low-dimensional local models.
Ui+ Uyyxxt Uyt UU=0, xe[0,L], (h)

|. INTRODUCTION where u,=du/dt, u,=du/dx, and after rescaling the only
control parameter is the system lendthUnless otherwise
This work is motivated by the desire to understand thestated, we will consider periodic boundary conditions, and
dynamics of coherent structures in fluid flows, whose inter-set the(conservedl spatial mean to zero. This equation has
actions are, in many cases, responsible for turbulence pra@wisen in the context of several physical systems driven far
duction. These structures may be detected via the proper offom equilibrium by intrinsic instabilities, including plasma
thogonal decomposition (POD), or Karhunen—Loee  ion mode instabilitied;? chemical phase turbulenéé? flame
decomposition, which is optimal in the sense of identifyingfront instabilities; and fluctuations in liquid films on
the most energetic modes, on average. The dynamics, bifuinclines’? Indeed, the KS equation may be generically de-
cations and attractors of the low-dimensional dynamical sysfived as an amplitude equation near long-wavelength pri-
tems obtained through Galerkin projection of the governingnary instabilities in the presence of appropriate
equations onto the POD modes then yield information on theymmetries: In this paper we focus on the “derivative,” or
localized interactions of coherent structuted. conservation, form of the KS equation. For sufficiently large
The Kuramoto—Sivashinsk¢{KS) dynamics, visualized L, the solutions on the KS attractor display spatiotemporal
in Fig. 1 below, suggest the presence of structures havinghaos(STC), or “weak turbulence,” with a positive density
of positive Liapunov exponentd; a typical evolution is
2 . . . _— . .shown in Fig. 1.
e S50 307 e e 32 oeaopi g, Out stuy of STC i the KS equatin bulds on nuer-
sota 55455. Electronic mail: ralf@ima.umn.edu ous earlier studies via pointwise and Fourier statistics, nota-
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FIG. 1. (a) A solution of the KS equatiofil) on the spatiotemporally chaotic attractor, Eor 100, and covering 256 time units separated\lvy- 1 (beginning
att~1.0x10°). (b) Gray-scale view of the evolution ifa), clearly showing the typical cellular structure, traveling cells, and creation and annihilation of
peaks.

bly those of Pumit® A review with many additional details structure'®?° Individual solutions(Fig. 1) break these sym-
and references appears in Ref. 16, particularly Chaps. 1 antetries, but in the STC regime, they are restored in a statis-
4, and here we merely indicate some key phenomena. tical sense.

In Fourier space, we may wrid) with periodic bound- We study spatiotemporally chaotic dynamics in this re-

ary conditions as gime by assuming the existence of a unique topologically

q transitive attractor, and invoking ergodicity to replace aver-
aUq=(q2—q4)0q+ E Q'O 0g_qr» ) ages on the attrgctor by time averages _along a single sp!upon

q' trajectory(checking that our results are independent of initial

L ) conditions, and that the integration time is sufficiently long
whereu(x,t) =i2q04(t)exp(gx), g=2mn/L, neZ (we will ¢4 1o statistics to converyeWe appeal to the thermody-
useq for the Fourier wave number throughout this paper 0 amic limi222 1. — o and the notions of extensive quantities
a_lvoid confusion with the indek in the wavelet decozmpcisi— (such as the eneryyvhose values ar@symptotically pro-
tion, Sec. |2| A. From the2 linear growth ratex(q) —9-q portional toL, and intensive quantitig$or instance densities
= (2mn/L)T 1= (27n/L)"], one sees that the uniform zero ¢ o oncive quantitiesvhose values are independent of the

_solutlon becomes unstable_ to the motiel atl = 2. AsL system size. A common interpretatfdsees the large system
increases, the number of linearly unstable modes grows pro-

) ) as composed of interacting subsystems; in this view, exten-
portionately toL, with the most unstable mode ai, : . ;
T ; ; sive (proportional to the number of subsystenasd inten-
=1A72, ornoe 7 nearL/2mva. The Uy, term is responsible sive (characteristic of a subsysteémuantities arise if inter-
for the instability at large scales; the dissipativg, term ysterm

provides damping at small scales; and the nonlinear tam actions are spatially localized, so that the subsystems may be

(which has the same form as that in the Burgers or One(_:'onsidered approximately uncorrelated for short enough

dimensional Navier—Stokes equatipssabilizes by transfer- times. L ) ) .
ring energy between large and small scales. For sintie However, this picture is not rigorously establisiéand

dynamics are quite well understob8-intricate bifurcation ~€Ven “simple” results on intensive properties, such as local
diagrams describe transitions between families of steadffontwise 45)50unds, remain unproven except for special
states, traveling waves and more complex solutions. In pa,s_olutlons? *>Such bounds would |meIy finiteness of the en-
ticular, the smalk dynamics are characterized by the pres-€rgy densitye(t)=E(t)/L= (1) gu*(x,t)dx in the limit
ence of modulated traveling waves and heteroclinick—, as numerical solutions suggest, but the best available
cyclest®2 For sufficiently largel (beyond about =50 or ~ bound$® give lim sup_.. e(t)<cL™ Similarly, while so-

60), the “simple” solutions all become unstable to &mp-  lutions are known to be analytié; **their decay rate has not
parently uniqug spatiotemporally chaotic attractd. been shown to be-independent.

It is readily confirmed that the KS equatidd) with The conjectured existence of a finite energy density and
periodic boundary conditions possesses the symmdtjiés  width of the analyticity domain in the largedimit is con-
—t+ 7 (temporal translation invariange(ii) x—x+1 (spa-  sistent with the calculated energgr powej spectrum(Fig.
tial translation invariande (iii) u(x,t)— —u(—x,t) (parity);  2), which is well known*°~32 The normalized spectral den-
and(iv) u(x,t)—u(x—ct,t) +c (Galilean invariance These  sity S(q)=L(0_40,) appears independent bfin the com-
symmetries are fundamental to the dynamics and bifurcatioplex regime(Fig. 2), indicating an invariant distribution of
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FIG. 3. Correlation times(q) for different Fourier modegiy(t).
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? of STC at the®(1) scale of the characteristic “cellular”

FIG. 2. Rescaled power spectrus(q), for L=100 andL =800. structures.

Concerning temporal behavior, ttispatially averaged
temporal autocorrelation functiar(t) yields an autocorrela-
tion time 7,~10 from the width at half-maximum of the

energy among the Fourier modes in the thermodynamipeak ofc(t). We find that this characteristic time between
limit. The power spectrum is basic to understanding the KS'events” 7, remains essentially constant with increasing
statistics and dynamics, and we shall frequently refer to it irin the STC regime, showing that it is an intensive property of
the following. Many of its properties have been accountedhe dynamics in the large-limit. The temporal behavior is
for,3! and its general shape modef&dwe summarize the strongly scale-dependent, however, as revealed by the auto-
main features: correlation timesr.(q) of the spatial Fourier modes,(t)

The exponential tail is due to the strong dissipation at(Fig. 3). The small-scale dynamics are rapid, with a charac-
small scales, corresponding to the exponential decay of théeristic time which appears to decrease as a power law, while
Fourier modes of an analytic function. Thetivescales con- the slow large-scale dynamics show divergence £f) as
tain most of the energy, with a pronounced pealqatq,, qg—0.
~(o=1N2, corresponding to a characteristic lengih Near the peak of the power spectrumm,~qg, there is a
=2m/qm; that is, it turns out that the most linearly unstable pronounced local maximum in;(q) for g nearq,,, with a
mode approximatelycoincides with the peak of the energy correlation timer.(q,,) =~ 18, somewhat larger than the char-
spectrum in the nonlinear systefaur calculations suggest acteristic timer, for the fieldu as a whole. In this active
that g, is slightly less tharg; the nonlinearity induces a region, a faster linear growth rate is correlated with slower
shift to larger scales Within the active region, it is remark- dynamics. We believe that the longer time scales for the
able that for 0.8 q=<1.25, there is a definite power law de- excited modes arise from the metastability of the cellular
cay with an exponent experimentally indistinguishable fromsolutions(which are stable for small) undergoing continu-
4.0; by analogy with the inertial range in fluid turbulence, itous creation and annihilation eventg“‘space—time
is tempting to think of this regio(q) ~q~*, where produc- defects”).%®
tion and dissipation are almost balanced4q*~1), as an Most of the long-time statistical computations presented
“inertial range.” 3! In thelarge scale region, there is a shoul- here were performed by integration ) with a Fourier
der which flattens ag— 0, reminiscent of a thermodynamic pseudospectral method, keeping modes up to at lgast
regime with equipartition of energy. =4, integrating the linear terms exactly and using an

The chaotic dynamics at the active and small scale®\dams—Bashforth time-stepping scheme for the nonlinear
simulate the effect of random forcing on the largest scales, sterms. ForN equations, this method requir€¥N logN) it-
that the scaling of solutions for logy is well described by a erations per time step. Results were also obtained and
forced Burgers, or Kardar—Parisi-Zhang(KPZ2) checked with arfO(N) combined Crank—Nicholson/Adams—
equationt>~® with a positive effective viscosity; in particu- Bashforth finite difference solver fal), second order i
lar, this asymptotic description predicts a flat spectrumandt, with a typical space stefx=100/256=0.39. Typical
S(q)—const asq—0. There has been considerable efforttime steps werét=0.0625 and 0.03125, and averaging was
towards making this more precise, both numericilignd  performed over samples separatedssy0.25. The quantita-
analytically3 a central result of this work is the existence of tive results were checked with smaller space and time steps,
a crossover to asymptotic KPZ scaling for lengths and more Fourier modes; the results presented are well-
~4000, beyond which the predicted scaling has been obeonverged.
served. Here we do not consider lengths approaching the The remainder of this paper is organized as follows: Af-
crossover to KPZ scaling, however; we focus on the STQer introducing the wavelet decomposition, in Sec. Il we
dynamics in the active regime, witlh=O(1). As weshow  show that this representation provides good scale separation
in Sec. Il below, the three regimes—large-scdlermody- leading to better understanding of the STC in terms of char-
namically equilibratel] active intermediate, and damped acteristic dynamics at different scales. In particular, the sta-
small-scale—are well separated, and may be characterizdistics of the intermediate energetic scales correspond to local
independently; and we do not believe that the crossover ievents observed for low-dimensional systems. This STC
the dynamic scaling at very large scales affects the propertiescale separation is qualitatively invariant under changes in
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the length of the domain. The existence of a characteristic 08
length scale of the dynamics is shown in Sec. lll, and further
studied and exploited in novel numerical experiments in
which interactions between separated spatial domains are
cut; this provides a basis for the hypothesis of the extensivity

of the KS dynamics—that the large system behaves essen-
tially as a union of smaller, spatially localized subsystems— 0 w w w
and motivates our continuing search for low-dimensional lo- ° ! ? ° ' ° ° !
cal models. Section IV contains a brief discussion. Wavelet level j

(a)

061
/E 04r

02r

Il. WAVELET DECOMPOSITION AND SCALE 10
LOCALIZATION

The Fourier spectral results presented in the previous 107
section enable us to study the behavior at different ranges of
scales. However, all Fourier-based propertiggch as the
energy spectrum and time correlatipmse continuous im;
there is no separation of scales. For some purposes we might q
prefer to group ranges of Fourier modes to separate and dis- (b)
tinguish properties local to these ranges. Also, each Fourier
basis function is uniformly supported on the entire spatialFiG. 4. (a) Fraction of time-averaged total enerdg;(-)/E(-)), as a func-
domain, so that this representation is unable to capture artipn of wavelet levelj, for L=100. (b) Power spectrun(q) (Fig. 2),
properties that arise from spatial localization. The phase reSompared to the energy per individual wavelet at each [gvBhe wavelet

. . . . . . . _distribution is plotted with the center and range of 99% of the support in
lationships between different Fourier modes, which give risg-qier space.
to spatially local features in the superposition, are lost in the
averaging which gives the power spectrum and statistics.
This motivates the use of a spatially localized basis, which. . ] .
may be able to detect dynamic features arising from concen_tlon’ J =0 refers to the largest scale; more generally, snall

trated events; wavelets appear well-suited for this purpose.'me’_IIeS Iargle, or coarse, scales, while lajgedicates small,
or fine, scales.

A. The wavelet decomposition The usefulness of the wavelet decomposition follows

both space and scale is based on the familiar multiresolutio=) in both real and Fourier spacef course, by the uncer-

39, 40. In highlighting the main features needed below, we?0th x andg). Following Refs. 4-6, 41 we have chosen to
largely follow Elezgarayet al! use an orthonormal, periodic spline wavelet b4$tsased on

The construction of the orthonormal wavelet basis beihe Battle—Lemarieconstruction ofmth order Sp””g wave-
gins with a suitably chosen functiohi(x), satisfying appro- lets (see Ref. 32 These wavelets are of clags" *, and
priate technical condition®, and normalized so that have the properties ah—1 vanishing moments, exponential
7. W%(y)dy=1. The set of functions{7(y).j=0k decay inx, and algebraic decay ig as|q|—0 and|q|

=0...2—1} built by dilation and translation o (y), and > Increasingnimproves the smoothness and localization
peri.(.).dization ’ in g, at the cost of increasing the spatial support of the wave-

let; we expect to need at least four derivatives goto cap-
5 ' . ture the behavior of thel,,, term in the KS equatioril)
Ui(y)= >, 212 (2)(y+n)—k), ye[0,1], (3)  satisfactorily. In this paper we have used-8, and checked
nez our results withm=6; see for instance Ref. 16, Fig. 3.1 and
ef. 6, Fig. 1(for m=6) for examples of these spline wave-

then forms an orthonormal basis for zero mean, finite energ
periodic functions of0, 1] (the scaling function at the coars-
est scalg =0 vanishes due to the zero mean conditioile
then obtain an orthonormal bagig;.} on[0,L ],e simply by

In the following we use the wavelet decomposition of
the solutionu(x,t) of the KS equation,

rescaling ;i (X) =L~ Y2 (x/L),xe[0L]. From the sym- J 21

metry of W(y) abouty=1/2, ;(x) is centered about;, u(x, =2 > aj(D ()= an(t)Pu(x) (4)
=L27)(k+1/2). We shall frequently use to denote the J=0 k=0 “

multi-index (j, k). (as in Fourier representations, a suitable cufof justified

It follows from the definition(3) that varyingj (which by the small-scale exponential decay of the solution; see for
we will refer to as changing the wavelet “level'allows one  instance Fig. # The quantities of interest to us are then the
to “zoom in” or “zoom out,” while changes ink corre- time-dependent wavelet coefficiergg(t), which reveal the
spond to horizontal translations. By our choice of conven-behavior ofu(x,t) at levelj and position given bk. In the
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remainder of this section, we study the statistics, including 0.4 : ‘ : ‘
temporal behavior and distributions, of these wavelet coeffi- aoo(f) o MM j=0

cients. By , ‘ ,
a11(t) 0 ANV A N =

-0.4 . : :

B. Wavelet analysis: Energy distribution and 0.4 ' ‘ -
temporal behavior a22(t) . ° WMWWMM/WM i=2

In this section, we will present results for the KS evolu- 0.6 - ‘ - )

tion for L= 100, a typical length well in the STC regime, but 4 OEMMWWW j=3

still short enough to allow sufficiently fast calculations and 1o : ‘ ,
well-converged statistics; we shall briefly discuss the depen- ass(®) oy YA ™ Wyfina M N\l N 5 =4

dence orL below. ForL =100, the peak of the Fourier spec- -1.0 ' ‘ :
trum is atq,~qe= 12, or atn,=q,L/27~10.7, and the as 16(%) 0'3 WMWWMW”\AWWWWNWW i=5

highest unstable mode is Bf27r~15.92. That is, there are 04 . ‘ .

16 complex, or 32 real linearly unstable or marginal modes, 0.02 - ‘ - )
and the energy is concentrated in the neighborhood of the ®¢32(%) OOEWWWWWMWNWWW\WWWWWWW j=6
22nd real mode. Hence the peak is located in wavelet level 4 6 x 10~

(levels 0—3 contain a total (ﬁf2021=15 modes ares(t) 0 WMMMWMM«%MMMW‘W i=7

As a guide to later calculations, we compute the energy —6x10°°
in each wavelet levelsince{y;} is an orthonormal basis, as123(2t)x b ' Y i
this is simply found frome;(t) == a%(t)]. Figure 4 shows 3 % 10-° . ‘ .
the time averaged energy per wavelet level, as well as the 0 256 812 68y 1024

energy for each individual wavelet at that level, given that . , -

h b wavelets at Ievej (by translational invariance FIG. 5. Sample time series for one wavelet coefficagp(t) at each levej,
there are A Yy ] - e '+ for k=2!/2, that is, centered near the middle of the domain of lerigth
all wavelets at a given level have identical statigti®®om-  =100.

parison of Fig. 4b) with the power spectrum in Fig. 2 shows

a similar distribution of energy per mode, confirming that the

wavelets are well-localized in Fourier space. In the dissipa-  For large scales, the distributions are Gaussian. At these
tive range, the wavelet energies decay more slowly thagcales, the support of each wavelet includes several charac-
S(q), however; this arises largely because each wavelet levgéristic wavelengths. Due to spatial decorrelation and inde-
overlaps a range of Fourier modes, and with exponentiallyyendence of sufficiently separated positig8sc. 111 B), the
decaying power spectrum, the wavelet energies are strongbteraging over several characteristic structures inherent in
weighted by the lowg end of the range. the large-scale wavelet coefficients may thus be expected to
From Fig. 4a), we can identify the levels with distinct |ead to the normal distribution. At the coarsest scales, there-
behaviors. Wavelet levels O, 1, and 2 correspond to larggore, the dynamics resemble slow noise. These results are
scales, containing a small fractidonder 5% of the total  motivated from a different perspective from the existence of
energy, due especially to the small numbers of wavelets & flyctuation-dissipation theorem for the one-dimensional
these scales—this corresponds to the nearly flat region of th®rced Burgers equatioft:*® which implies that the field
Fourier spectrum. Levels 3, 4, and 5 contain the active, enpheys a Gaussian distribution at large scales, in the KPZ
ergetic modes near the peak of the Fourier spectrum, anghnit. Note that the PDFs for the lowepvalues are less well
together account for over 95% of the energy distribution.converged; this is both due to the fact that there are fewer
Levels 6, 7, and any highésmaller scalglevels, with less  \avelets at thesg over which to average; and also because
than 0.1% of the energy, are strongly damped, with exponenhe dynamics at the large scales are slow, requiring more

tially decreasing energy in the dissipative range. time for statistical equilibratiortsee Figs. 5 and)6
Typical time series for wavelet coefficients at each level

(for wavelets at each scale centered neai./2, taken for
the same time intervplare shown in Fig. 5. From this, we
can clearly see the differences in time scales, distributions
and dynamics at the different scales. Characteristic times
for each levef are shown in Fig. Gcompare Fig. B

C. Probability distributions of wavelet coefficients

In Fig. 7 we show the probability distribution functions - j
(PDFs9 for the wavelet coefficients at each level, averaged
over time. and over thejZNaveIets at each Ievxjel(compare FIG. 6. Mean-square autocorrelation timggor the time series of wavelet

. o . . coefficients at different scalgsNote that the values fdr=400 are shifted
Ref. 41, Fig. 1. This figure is one of the main new results of by two wavelet levelswe plot, in fact,r, againstj —2). Compare Fig. 3,

this paper, and clearly ShOW_S how the_ WaV_elet representati%ting that the horizontal axes are logarithmically related to each ofher (
reveals both scale and spatially localized information. «log q).
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s =0 ‘ ‘ 1 *r =1 ‘ ] high pass filter, our observed small-scale behavior is closely

20 1 20f 1 related to turbulent dissipation-range intermittency, seen

ool / S R / \\\ ] when the velocity field is filtered at a frequency associated
e e ee 08 o0 os with a scale comparable to the Kolmogorov dissipation

4.0

scale®® Frisch and Mort® showed that infrequent bursts
leading to intermittency are associated with singularities at
complex times of time-analytic functions (such functions
include solutions of the KS equatith
:Z REPPRISSEARR or i—s ‘ ‘ ] An alternative view of the small-scale PDF derives from
osl I _/J\J\ 1 eof //\ . the properties of the wavelets; if at the scale of the analyzing
ol oo L ‘ 1 wavelet, the fieldu is locally linear, or more generally a
-08 -0.4 0.0 04 08 -0.5 0.0 05 .
low-order polynomial, then by the low-order moment cancel-
iz e ] :Zi A ] lation property of these smooth waveléishe correspond-
500 |- 1 ezl | ing wavelet coefficient vanishes. Thus the small-scale wave-
] L lets will have non-negligible coefficients only wheuéx, -)
fecte fente has large curvature, that is, where there is a peak or trough of
FIG. 7. Probability density functions for the wavelet coefficients at eachthe fieldu. That is, the small-scale dynamics track the posi-
level j=0,...,7, forL=100. Forj=0-3 and 6, a best-fit Gaussian distribu- tions of the “coherent structures.”
te'igo'sef]‘t"ig?:j’?;’tfﬁ'ﬂy:te the logarithmic axis for 7, denoting a near- We note that the scale separation afforded by the wave-
let decomposition depends on the interplay between wavelet
and intrinsic length scales, specifically, on the distariges
=L27! between the centers of adjacent wavelets at lgirel
the dyadic wavelet decomposition, and the characteristic

2.0

0.0

100.0

{ I I I L 16+00 I I
-0.01 0.00 0.01 0.02 -80-05 -4e-05

0.0 L
-0.02 0e+00

At the energetic scalgs=3, 4, and 5, the support of the
wavelets is comparable to the characteristic intrinsic wave )
length |, =2/q,,, and the PDFs are quite different, dis- lengthl ., of the dynamics. Consequently, we expect that as

playing features unlike any observed in the Fourier represen/@/€s, there is a shift in the distribution of energy among
tation. Thej =3 level, although still largely in the flat part of Wavelet modes, and in the coefficient PDFs at different lev-

the Fourier spectrum, shows a distinct steepening of the di!S- The statistics in this paper are presented ferl00, but
tribution relative to a Gaussian. Levels 4 and 5 show th&omputations for other lengthsee Ref. 1§ confirm that

most striking, nonequilibrium PDFs, comparable to the dis-theSe results, for instance those of Fig. 7, are not special; a
tributions for local values oir* A broad, triple-humped Ccomparison withL =80 andL =128 shows that while the

distribution, superposing a peak at 0 and a double-humpefétailed form of the PDFs may change, the characteristic
peak reminiscent of the cellulasinusoidal-like solutions. separation of scales and distinction between the distributions
This is most striking aj =4, which contains the most ener- for large, active, and small scales is retained throughout the
getic modes and the characteristic lenth but j=5 also STC regime. FUfthefr_norE, comparing distributions for
shows this behavior. Unlike the Fourier coefficient distribu- — 100 andL =400 verifies that a change Inby a power of
tions, the wavelet coefficients appear to capture on averagi'g‘/0 corresponds to an integral shift in the wavelet levels, the

the spatially local structures and events at the active scaled, PFS otherwise remaining invariant; this confirms that our
The PDF for levelj =6 is again well fitted by a Gauss- L =100 results are well-converged “large-statistics in the

ian; it is interesting that such an equilibrium distribution STC regime. It is plausible that there is a continuous distri-

should appear well within the dissipative range, possibly viution of density functions, interpolating between those
some balance between energy fed in from adjacent activehown, so that for each, a discrete subset is selected.
scales, and dissipation. Indeed, computation of the Fourier

global energy flux confirms that there is fairly significant
energy transfer over the range of scales coverefi=b§.

At the smaller scaleg,=7, the effects of strong dissipa- A projection of the solution onto a wavelet basis thus
tion are apparent. The amplitudes, decay exponentially clearly allows us to distinguish between average behavior of
with j in this regime, while the distributions have super-the dynamics at different wavelet levels; the major features
Gaussian tails. That is, the small scale coefficients remaiare large-scale randomness, small-scale intermittency, and
near zero most of the time, with occasionaitermitteny distributions reminiscent of characteristic events in interme-
excursions of relatively large amplitude driven by events adiate active scalegcreation and annihilation of peaks, and
larger scales; for instance, note the “event” beginning neatraveling waves with a typical intermediate wavelengive
t=256 at levelj =7, one of several visible in Fig. 5, which have attempted heuristic justifications for these PDFs, and
appears to be driven by activity in levelss5 and 6, and hope for a theoretical derivation of some of these results
entrains a similar, though smaller, excursion in an adjacenrom the underlying KS equation. We now show how wave-
j=8 wavelet. The near-exponential PDF is reminiscent oflets may be used as an experimental tool, explicitly probing
those observed for velocity increments and gradients, whicthe dynamical significance of wavelet levels to obtain a de-
signal intermittency in turbulenc®;good fits to such turbu- tailed picture of how different scales contribute to the overall
lent PDFs have been obtained in some motfetéin fact,  dynamics.
recalling that the wavelet transform at small scales acts as a We perform these experiments by overwriting modal co-

D. Scale-by-scale structure of the dynamics
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(c) (d)

FIG. 8. The scale-by-scale structure of the dynamics, elucidated by setting various wavelet levels to zero. Levels glanjraedb) j =0 and 1;(c) j =0,
1, and 2(note the change of time scaldéd) j=3.

efficients at each time step. Specifically, we integrate the fulenergy transfer and dissipation mechanism stabilizing the
KS equation for the wavelet modgs;.} using a wavelet larger scales.

pseudospectral solver. We then eliminate, say, wavelet level The most revealing results of these experiments occur at
j by setting all the modes at that level to zero after each timghe largest scales. Figure6aB-8(c) shows the effect of suc-
step; similarly, we can force at particular modes by replacingessively “turning off’ levels 0—2, demonstrating that they
them with values computed from independent runs or via &erve to maintain disorder without being essential to the en-
model of some kindsee Ref. 49 for a similar approach to the ergy balance. Eliminating level 0 has little effd&ig. 8(a)],

investigation of two-dimensional Navier—Stokes dynamics while in (b), we see that without levels=0 and 1, the dy-

By successively eliminating or driving different levels O hamics are slightly more rigid, and closer to a cellular state

contributions to the spatiotemporally chaotic dynamics. As‘ik3h an for the full KS equatiofFig. b)]. In the absence of all

before, we confine our discussionlte= 100, for which Fig. the large scales with Gaussian distributiéhfg. 7), j =0, 1,

7 summarizes the distinctions between levels. and 2, there is soméransient dynamical activity, but even-

From the results of numerous such experiments, getually the solution collapses to a stationary cellu(ga;l!;)o

scribed more fully in Ref. 16, Chap. 5, we find that the smalIState, reminiscent of the attractor for some srhalalues’
scale levelg§ =6 are essentially irrelevant to the dynamics, [Fi9- 8¢)]. Recalling Fig. 4a), observe that this drastic ef-
as they are slaved to the larger scales; their elimination haf§ct on the dynamics is the consequence of removing modes
little effect except on detailegbointwise tracking. The most ~containing less than 5% of the total energy. These experi-
energetic active scaleg=4 and 5, responsible for most of ments thus demonstrate explicitly the role of the large scales,
the characteristic spatial structure, are crucial; removal of <2 for L=100, in contributing the excitation which drives
either or both of these levels results in rapid finite-timethe active scaleg=3 and maintaining persistent disorder in
blowup of the simulation, showing that they are basic to thehe STC regime(Note that level 2 is not essential for this
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purpose; in the absence pf 2, levels 0 and 1 can maintain spatial localizationsee Ref. 21, pp. 945ff or Ref. R2The
disorder) existence of intrinsic correlation lengths is fundamental to

The picture of the large scales driving the dynamicsthe concept of “extensive chaos” and a thermodynamic
through a noisy “heat bath” is consistent with their Gauss-limit—if interactions are spatially localized, then in the in-
ian PDFs and with the forced Burgers equation description oferpretation of the “very large” system in terms of coupled,
the effective large-scale dynamics. On the other hand, the KSufficiently large subsystems, we do not expect “new” glo-
equation is completely deterministic, and we might conceiv-bal collective effects to emerge as the number of these
ably expect the characteristic KS dynamics to depend owcoupled subsystems increased.as «.
correlations between the large- and active-scale modes. We From the point of view ofinstantaneoysdynamics, we
have tested the hypothesis that the dynamical significance @fre interested in the role of spatial localization in determin-
the large scales is solely due to their Gaussian nature, withing the “typical events” of Fig. 1, such as local stretching
out regard to their deterministic origins, by forcing at levelsand compression of cells, and creation and annihilation of
j=<2 with an autonomously generated stochastic procesgeaks. Furthermore, to aid the search for low-dimensional
[Ref. 16, Sec. 5.5]2 Specifically, we have used a modified models representing the dynamics of a few localized modes
Ornstein—Uhlenbeck procegkangevin equation with col- in a short system, we would like to obtain a characteristic
ored noisg¢ with parameters obtained from the effective length as an indication of the size of small system required
forced Burgers description of the large-scale dynarffitbis  for successful modeling.
process reproduces the large-scale statistics extremely w
When the modes at wavelet levgls-0, 1, and 2 are each
driven independently by such a process, the remaining levels Throughout this paper we have considered the transla-
undergoing KS dynamics, the resulting evolution is visuallytionally invariant KS equatior(1) with periodic boundary
and statistically remarkably close to that of the full KS equa-conditions. This ensures that the dynamics observed are in-
tion. That is, purely stochastic large-scale evolutions appedrinsic to the KS equatiorthence expected to persist in the
to have the same effect as their deterministically derivedhermodynamic limit, and not driven or influenced by the
counterparts in the way they drive chaotic dynamics at théoundary. A measure of spatial localization is the indepen-
active scales; the dynamical contributions of the large scaledence of bulk dynamics of the boundary conditions, and the
in the KS equation are essentially random. width of the boundary layer gives an estimate of the interac-

In Fig. 8(d), we see an experiment in which leyet3 is  tion distance. Thus in this brief section only, we consider the
eliminated(recall its strongly peaked distribution, Fig. As  effects of fixed, nonperiodic boundary conditions; in which
seen in the figure, without this intermediate level, there ar€ase, the behavior at least near the walls is strongly con-
fewer typical creation and collision events; rather, the dy-strained by the boundary. However, as we see in Fig. 9
namics are dominated by the relative enhancement of celldcompare Fig. §, even for fixed(either rigid,u=u,=0 at
lar structures undergoingmodulated traveling-wave-type x=0, L, or Dirichlet, u=u,,=0 atx=0, L) boundaries, for
behavior. Level 3 thus appears to play a major role in drivingsufficiently largeL the characteristic spatiotemporally cha-
the distributions towards zero, and in maintaining theotic KS dynamics are observed in the bulk of the domain;
“events,” the dynamical interactions of coherent structures sufficiently far from the boundaries, the system “forgets” its
and defect generation and annihilation, characteristic of thdoundary conditions. In addition to visual inspection of
STC state. These conclusions are supported by experimergpace—time plotEFigs. 9a) and 9b)], the decay of boundary
in which both levelsj=2 and 3 are removed. Observe alsoinfluences is observed in the moments of the pointwise dis-
that these experiments, and similar ones, show that the largributions as a function of distance from the boundarin
est scales can drive the active scales even in the absencetbe mean profile for rigid boundary conditichgFigs. 9c)
intermediate levels; that is, nonlocal energy transfer in scaland 9d)], and in the lack of dependence of bulk correlation
occurs. times on boundary conditiond&Egolf and Greensidé have

We have summarized a series of experiments in whictargued that for rigid boundary conditions, correlation times
we actively intervene in the system, manipulating differentare x-dependent even far from the boundary, but it appears
wavelet levels, to discern the scale-by-scale structure of ththat this result is an artifact of the root-mean-square width
STC regime. Extensive experiments in which other modegnethod they use to calculate the correlation time; see Ref.
are eliminated, or forced from an external run or otherwise 16). In each case, the dynamics appear to settle down to their
are reported in Ref. 16, and confirm the above conclusiondiulk values beyond a boundary layer of widt~20-25.
The wavelet representation thus provides a detailed dynamiWe note however from Figs.(& and 9c) that rigid bound-
cal picture, enhancing the insights obtained from the averary conditions induce a slight overall tilt on the mean profile
aged distributions, of the spatiotemporally complex dynamm(x), and a preferred drift to the left; see Ref. bZhis
ics viewed as arising from the interactions of distinct andprovides further evidence of spatial localization of the dy-
complementary contributions of different scales. namics, and absence of significant interactions beyond some

characteristic interaction length.

eA.. Boundary conditions

Ill. SPACE LOCALIZATION B. Correlation lengths

In the attempt to characterize homogeneous STC, much Returning to periodic boundary conditions, there are
attention has been focused on finding relevant measures afany possible choices for an appropriate correlation length
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FIG. 9. Effect of boundary condition variation&) Rigid boundary conditionsi=u,=0; (b) Dirichlet boundary conditionsi=u,,=0. Time-averaged,
space-dependent mean profiteéx)=(u(x,-)) for (c) rigid, (d) Dirichlet boundary conditions.

for STC?*?2and it is not yet clear which are the most rel- The autocorrelation functiorC(x) depends only on
evant. In this section we discuss some of the candidate Iengm0q|2>, and as such is a linear measure of interactions; we
scales for our system, and then describe an experiment detight expect a quantity which depends nonlinearly on the
signed to elucidate dynamicinteraction length. Any corre- dynamics to capture additional featurég he independence
lation length shoulda priori, be constructed out of the two of two spatial locations in the KS equation, or of two time
lengths in our equation, the system lendgthtand the most seriess;(t) ands,(t) more generally, may be quantified by
excited Fourier wavelength,=2/q,; and we expect that the mutual informationl,>*°® which measures the average
extensivity implies that correlation lengths are asymptoti-

cally independent of.

Two of the simplest length scales which measure spatial ‘ ‘
disorder and localization are the two-point correlation length 051 ~ —C(=) 1
&, and the mutual information correlation length. We ) ~~ envelope
compute the spatial single-time autocorrelation function €(®) o
C(x)=(u(x'",t)u(x’ +x,t)) (independent ofx’ by spatial >
homogeneity from the inverse Fourier transform of the oo |
power spectrum of Fig. 2; its invariance underfollows o 5 {0 15 2 25 3 3% 40 45 50
from that of the power spectru®(q). As shown in Fig. 10,
the correlation function is well modeled by the functional : ‘
form C(x)~C(0)cosf(X))exp(—x/é,), where to lowest or- o5 __C(a)
der q(x)~Tx, with § near the peak of the power spectrum. \ - - best it
The correlation function thus captures both the underlying C(z)
oscillatory, cellular spatial structure of the KS dynamics, and
the rapid spatial decorrelation reflecting the spatial disorder
in the STC regime. An improved fit t&€(x) for reasonably O T 4 6 s 10 12 14 18 18 =20
small x, shown in Fig. 1(b), is given to quadratic order by £
q(x)~0.75—0.005?; the resulting two-point correlation (b)

length is¢;~7.4. As measured by the two-point correlations, FIG. 10. (a) Spatial autocorrelation functio@(x) for L=100, with expo-

spatial coupling becomes negligible beyond a few multiples,ential envelopeC(0)expx/c,). (b) Enlargement of(a), with best fit
of & C(0)cos(x))exp(—x/&,), taking q(x) to quadratic order.

ok
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10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ eral defining feature of STC.This suggests defining, for

. some measure of fractal dimension, a length by the inverse
1 dimension density, or density of positive Lyapunov expo-
i nents, &s=Ilim__.,L/Dg(L). From the results of
Mannevillé** on the Lyapunov dimension of the KS equation
(see Ref. 21, p. 991we find £ 5~4.35. Note however that a

%0 quantity such ag s defined on purely dimensional consider-

ations does not unambiguously imply a characteristic physi-
FIG. 11. The mutual informatiori(l); the dotted line is a fit to thé

) . _ cal interaction length. Moreover, the definition&f depends
=200 data, showing the exponential decay over a correlation lefigth L . .
~38. on extensivity and spatial localization, and thus does not pro-

vide independent support for these concepts.

Since a fractal dimension for a high-dimensional system
amount of information abous, contained ins,, or more is generally very difficult to compute, Zoldi and Greenside
specifically, the average reduction in the entropysg(f-), have proposed replacings by a Karhunen—Loee dimen-
given knowledge o8,(-). Given a discrete partitiofS;} of ~ sion Dy p(f ), defined by the number of eigenmodes in the
the state space fa (- ), with probabilitiesp; , and similarly,  proper orthogonal decomposition required to capture a given
probabilitiesq; for s,(-) and a joint probability distribution fraction f of the total energy; and have hence defined a
rij for s; ands,, the mutual information may be estimated Karhunen—Loee correlation lengthfy, . In the absence of
by an a priori choice forf, £ p is not quantitatively well-

defined, howevetwe find éx p~12.23 forf =0.5). Further-
1(s3(+),S2(-))=> rij Iogzi. (5  more, for a translationally invariant system such as the peri-
i Piq; odic KS equation1), the Karhunen—Loee eigenmodes are
Fourier mode$, so that & for any f can be computed
directly'® from the power spectrur(q), and thus contains
no more dynamical information thagy .

0.001

In the context of chaotic dynamics, a mutual information
correlation time was proposed by Fraser and Swirthay an

optimal estimate for the choice of delay time for the recon- ' - o
struction of attractors from time series. The correlation lengths discussed are all statistical aver-

For our application, to test the asymptotic independenc@9€S, and might not capture short-time or rare events. More-
of two spatial locations separated lbywe computel (1) over (with the possible exception df;), they are measures

=1(u(x,-),u(x+1,-)) (averaged ovex, by appeal to homo- only of spatial disorder, without capturing any information
geneity. In this case, the distributions of u(x,-) andg; of ~ ©" the temporally complex dynamics responsible for the dis-
u(x+1,-) are the same, and simple binning seemed adequaférder- In order to investigate the local nature of instanta-

to compute the joint distribution;; , so more sophisticated "€0US spatiotemporal dynamics, we now propose an experi-
procedure® 5 were not employed. Note that whep=s, ment to test the range of influences relevant to the short-time

the mutual information reduces to the single-point entropy/nteractions(with the hope of gaining understanding of the
1(0)=—3.,p; log, p;, while | vanishes ifs, ands, are inde- “microscopic” basis of STC, and to aid in the construction
™M1 1

pendent: that is, spatial localization implies thef) —0 asl ~ Of models. To do so, we need a means of manipulating
becomes large. instantaneous couplings, which can be achieved by solving
The computed mutual informatioindependent of) is the KS equation on a localized basis such as a wavelet basis.

shown in Fig. 11. Again, there is exponential dechl)

~I(0)exp(-1/£), where the mutual information correlation ¢ A dynamical interaction distance: An experiment

length §,~3.8. That is, the nonlinear correlations measured -

by the mutual information fall off more rapidly than the lin-  In Sec. Il, the wavelet decomposition ofx,t) was used

ear dependence captured by the autocorrelation functiofp Study scale and space localization through the temporal

C(x). The approximate relatiog,~ 2, has been previously dynamics and distributions of wavelet coefficieait), as

observed for the two-dimensional coupled map latticeWell as through a series of experiments elucidating the dy-

Miller—Huse modeP? namical contributions of different wavelet levels. Similarly,
As Greensid® has pointed out, botl, and& may be ~We may perform numerical experiments exploitipg the nar-

unsatisfactory measures of STC, as they measure only spatf@W Spatial support of wavelets to analyze spatial localiza-

disorder, and are not dependent on time correlations of thion of the KS dynamics more directly. To do this, we sub-

spatial fields; changing the temporal ordering of the snapSttute the Wav_elet C_iecqmpOSItlo(m) into (1)_ to find the

shots used to compute these correlation lengths would nd¥avelet Galerkin projection of the KS equation,

affect C(x) or I(1). On dimensional grounds, a dimension d

correlation length¢; has been proposédas a more direct &aa(t)=2 loarBart 20 Nygrgr@orBgn, (6)
measure of dynamical complexifgee Ref. 22 Here, the o' a'a"

motivation is the numerical observatignot yet supported where l o' = —fgwa(axxzpa,+axxxxwa,)dx, Nyo’ o
by rigorous estimates in generdhat the fractal dimension = —fb://az//a,ﬁxz,baudx, and a represents the multi-indej,
D¢ of the STC attractor is extensive for the KS equatitn; k).

that is, asymptoticallyp L. [In fact, Cross and Hohenberg Unlike the Fourier representatid@), the linear part of

(Ref. 21, p. 945 have proposed extensivity & as a gen- the wavelet Galerkin projection is not diagonal, as there is
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overlap of wavelets both within a scale and across scalesull KS equation. This large-scale excitation often results in a
However, due to the scale and space localization of theapid, spatially localized transfer of energy to the small
wavelet basis, this overlap is limited. For instantg, scales, leading to numerical blowup; with decreasinguch
=ljkjx couples wavelets at scalgsnd|’; but due to the blowup becomes more likely and typically occurs sooner. To
power law decrease af in Fourier space, this decays with counteract such rapid transfer across scales, we also per-
the scale separatidn—j’|. More importantly for the present formed some experiments in which we cut couplings across
purpose, we can define a distance between the centes6  more than 3 wavelet scales, that is, fptj’|>3; this mea-
wavelets i, d,. =|X,—X,|; for wavelets at the same sure seems to prevent or delay numerical blowup. The dis-
level, djyj- =L27/|k—k'[. The linear terml . thus mea- ruption does not decrease monotonically with increasing
sures the overlap between wavelééd their derivatives e also encountered some relatively large values,dbr
centered a distance,, apart, and falls off exponentially which there was an unusual likelihood of blowup, or capture
from the diagondi*" due to the spatial exponential decay of into a steady state; this is reminiscent of a “resonance” ef-

#(x); similarly for the nonlinear termm,,,,». That is, the  fect encountered when solving the KS equation on short sub-
evolution of a particular wavelet coefficient is affected pri- gomains in Fourier space projectiotis.

marily by those modes a, for which (. Some representative results for system length100
T2 yMNaararar)@, is appreciable, those centered near  ang different coupling lengthis are shown in Fig. 12. Note
In space. that 1.=L/2=50 is the maximum distance between two

We may use the above considerations to manipulate thgoints in anl = 100 periodic system, and thus corresponds to
KS dynamics and probe spatial localization. Since the coeftetaining all interactions; thus we have confirmed that our
ficientsl,, andn,q . in the Galerkin projection represent | — 50 wavelet calculatiorinot shown reproduces the full
coupling between wavelets localized a distadgg, ord, .~ KS dynamics. Figure 12) shows that for large enoudh,
apart, we can cut all interactions beyond a certain lehgth |\ o ratain the characteristic KS dynamisee Fig. 1 As we
by sgtting the corresponding coefficients to zero, leading to ﬂecreaséc, many typical features remain, but the dynamics
localized model become increasingly disrupted, with rigid peaks, traveling
pulses and excitation of the large scalésgs. 12Zb) and
2,= 2 Towr@y+ 2 Ty arer@yr 7 12(c)]. Numerical blowup becomes increasingly likely for
a’ a',a" sufficiently smalll . [Fig. 12d)].
~ _ The conclusions of visual inspections are supported by
wherel oo =1 4o if door<Ic, | or =0 otherwise, and simi- the energy distributions across wavelet lev@ig. 13, for
larly for the nonlinear term. This allows us to quantify the the same values of , compared to the spectrum for the full
instantaneousdynamical significance of the interaction KS equation(Fig. 4). As |, decreases, the energy goes in-
lengthl.. creasingly to larger scalegower j). In this light, we can
Such calculations are Computationally expensive: In CONgonsider dphenomenomgicaﬂmeasure of the extent of dis-
trast to rapid finite difference and pseudospectral schemegyption of the dynamics, the energy transfer to large scales.
the wavelet Galerkin method df7) on N modes requires Specifically, in Fig. 14a) we plote,/e,, wherej=4 is the
O(N®) steps(and the storage of th8l® terms ofn,./.r),  most active wavelet level for the full KS equation.
while an enhancement USing the fast wavelet transform still These and related considerations for a range of experi_
requiresO(N?logN) computations per time step. A conse- ments, including ones with varying discussed below, lead

guence of this is that long-time calculations, for a range ofus to estimate a typical interaction Ieng_tp, beyond which

v_alues ofl¢, are prohibitively EXPENSIVE, whereas fqr _short cutting interactions significantly disrupts the KS dynamics;

times, we cannot hope to obtain well-converged statistics foﬁom Fig. 14a). this is |.~25. We interpret this length so

many of the quantities discussed previously. 9. 29, oc Y pret i 9
We performed over 50 computations to time,., that forl.>1, we typically obtain characteristic KS dynam-

~1000 with a range of interaction lengths, for several ICS, improving ad. approache& /2, while the dynamics are
different initial conditions and systems lengthsSince the increasingly disrupted ab; decreases below.. To our
dynamics are so sensitive to initial conditions, we wouldknowledge, this is the first attempt to quantify ignamical
need to perform many runs with different initial data for eachsignificance of a coupling distance, in terms of its effect on
set of parameter values to obtain conclusive results; thus otihe temporal evolution.
experiments should be regarded as preliminary. We note that the effect of cutting interactions is strongly
In general, we find that if; is large enough, we recover dependent on the dyadic structure of the wavelet decompo-
the essential KS dynamics, while smhbllresults in signifi- ~ sition. That is, which modes interact for a givendepends
cant disruption; a departure from the typical events, andliscontinuously on,. For instance, fot. =100,1.=>25, ad-
changes in space and time scales, and in the form of thigcent wavelets at levgl=2 are coupled, while they cease to
coherent structures. Among the features we observe whenteract for [, <25. This experiment is therefore a rather
the interaction length is sufficiently reduced are break-upcrude measure of interaction length, which may depend on
into apparently independent subdomains, the presence of Ithe decomposition as well as the dynamics. To confirm that
calized peaks, and fast local traveling pulses colliding withl. is indeed a relevant interaction length, we performed some
the peaks. Frequently there is an energy buildup at largexperiments folL =200 (which effectively corresponds to a
scales, which are disproportionately excited relative to theshift by one wavelet levgl even though many more wavelet
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FIG. 12. Modified KS equatiolt7), coupling only wavelets nearer thap apart, forL =100, andN =127 wavelets; note the increasing disruption of KS
dynamics ad. decreasesa) |.=30; (b) |.=25; (c) I,=19; (d) |.=15, just before blowup. Note: vertical scales are expanded in comparison with Fig. 1.

interactions are cut, the results for a givgragree with those  ing over the dynamics. The resuﬁ§> &, for instance, may
for L=100. Similarly, we repeated the calculations for indicate that the dynamics are strongly influenced by rare
=80 andL =128, which have a different relationship of in- events which couple relatively distant spatial locati¢sepa-
trinsic length to the dyadic decomposition, and confirmedrated by more than one cgliThus, statistically averaged
that although the distribution of energy among the waveletengths such ag may be underestimates of the dynamically
levels influences the experimental results=25 still ap- relevant coupling distance; the asymptotic mutual statistical
pears to be a relevant interaction length; see Figé)lahd independence of two points is insufficient to imply their in-
14(c). stantaneous dynamical independence.

The interaction distance we have defined measures the Our results indicate that in a successful low-dimensional
distance between the centers of wavelets. Due to the finite
support ofiy(x), the value ofl . is only an approximation to
the spatial range of interactions: there may be appreciable
overlap between wavelets centered more thaapart. For 08f
this reason, the wavelet approach only yields a fairly rough e; ,,|
estimate of spatial localization. However, the wavelets we
use are exponentially localized ¥ so the effect of noncom-
pact wavelets is limited. 0===

The dynamical interaction distantg estimated by this
FeChmqu.e’ appears to be considerably larger than the mutu G. 13. Wavelet energy distributions, far=100 and coupling lengthis
information distance,~ 3.8, or the autocorrelation distance ,s in Fig. 12; the solid line is the distribution for the full KS equation, from
&,~7.4. These other lengths are obtained from time averagrig. 4.

0.2r
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ity. Spatial localization implies that the statistics are essen-
tially invariant for L=50, while for shorter lengths, the pe-
riodic boundary conditions constrain the dynamics, so that
chaos can typically not be maintained, and there are
“simple” attractors. A suitably chosen wavelet basis clearly
helps one extract interesting features of the dynamics, which
remain obscured in real and Fourier space representations.
In addition to clarifying the nature of STC in the KS
equation, our results aid the construction of low-dimensional
models of the spatiotemporal dynamics, by providing a range
of quantitative measures with which to assess the validity of
models by comparison with the full equation; for instance,
the statistics of time scales and distributions at different
scales provide more detailed diagnostics than the global

power spectrum. The spatial interaction lengittprovides a

limit on how much one may expect to restrict spatial inter-
actions without disrupting the dynamics excessively, and
hence how small a system one can use. Moreover, for
wavelet-based models in particufdt! Sec. Il reveals the

types of forcing needed to feed in to represent neglected
modes in a low-dimensional model; in particular, the distri-
butions and temporal correlations are strongly scale-

% ) 2 30 ) 20 as 5 dependent. This leads to construction of families of “short”
(©) le local models; wavelet Galerkin projections forced by colored
¢ Gaussian noise to reproduce excluded large scales, and peri-

FIG. 14. Energy ratio, a diagnostic for energy transfer as a function ofodized to replace the active scale dynamics of spatial neigh-
interaction length . (a) e, /e, for L=100: computations for two different bors. These models will be described elsewhere.
initial conditions; (b) e, /e, for L=80; (c) e;/e, for L=128. The ratios
appear to settle down to their asymptotic values lfge | ~25. These ACKNOWLEDGMENTS
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