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Scale and space localization in the Kuramoto–Sivashinsky equation
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We describe a wavelet-based approach to the investigation of spatiotemporally complex dynamics,
and show through extensive numerical studies that the dynamics of the Kuramoto–Sivashinsky
equation in the spatiotemporally chaotic regime may be understood in terms of localized dynamics
in both space and scale~wave number!. A projection onto a spline wavelet basis enables good
separation of scales, each with characteristic dynamics. At the large scales, one observes essentially
slow Gaussian dynamics; at the active scales, structured ‘‘events’’ reminiscent of traveling waves
and heteroclinic cycles appear to dominate; while the strongly damped small scales display
intermittent behavior. The separation of scales and their dynamics is invariant as the length of the
system increases, providing additional support for the extensivity of the spatiotemporally complex
dynamics claimed in earlier works. We show also that the dynamics are spatially localized, discuss
various correlation lengths, and demonstrate the existence of a characteristic interaction length for
instantaneous influences. Our results motivate and advance the search for localized,
low-dimensional models that capture the full behavior of spatially extended chaotic partial
differential equations. ©1999 American Institute of Physics.@S1054-1500~99!01902-3#
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There has been much recent interest in the complex spa
tiotemporal behavior of extended systems with many de-
grees of freedom, which appear widely in applications.
An important goal is to account for the dynamics of those
energetically dominant modes in a spatiotemporally cha-
otic system, which occur at intermediate length and time
scales, and to relate them to the dynamics observed„and
understood via dynamical systems methods… in low-
dimensional systems. In this paper, taking the
Kuramoto –Sivashinsky equation as a model problem, we
use wavelet decompositions to characterize spatiotempo
ral chaos, with a view to understanding dynamical inter-
actions in space and scale and, thus equipped, to con
structing low-dimensional local models.

I. INTRODUCTION

This work is motivated by the desire to understand
dynamics of coherent structures in fluid flows, whose int
actions are, in many cases, responsible for turbulence
duction. These structures may be detected via the prope
thogonal decomposition ~POD!, or Karhunen–Loe`ve
decomposition, which is optimal in the sense of identifyi
the most energetic modes, on average. The dynamics, b
cations and attractors of the low-dimensional dynamical s
tems obtained through Galerkin projection of the govern
equations onto the POD modes then yield information on
localized interactions of coherent structures.1–3

The Kuramoto–Sivashinsky~KS! dynamics, visualized
in Fig. 1 below, suggest the presence of structures ha
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characteristic space and time scales and local dynamics
analogy with the fluid case, we seek a reduced set of eq
tions for the dominant modes on a suitable subdomain
@0,L#. However, for such spatially homogeneous syste
with periodic boundary conditions, the POD modes are s
ply Fourier modes,2 an observation which led to the propos
of localization via wavelet-based models.4,5 The feasibility of
such models was corroborated by the results that, comp
to the POD~Fourier! basis, in a wavelet decomposition, littl
energy is lost on average,4 and that suitably chosen low
dimensional wavelet projections can reproduce the esse
small-L bifurcation behavior of the KS equation.6

We study the partial differential equation~PDE!,

ut1uxxxx1uxx1uux50, xP@0,L#, ~1!

where ut[]u/]t, ux[]u/]x, and after rescaling the only
control parameter is the system lengthL. Unless otherwise
stated, we will consider periodic boundary conditions, a
set the~conserved! spatial mean to zero. This equation h
arisen in the context of several physical systems driven
from equilibrium by intrinsic instabilities, including plasm
ion mode instabilities,7,8 chemical phase turbulence,9,10 flame
front instabilities,11 and fluctuations in liquid films on
inclines.12 Indeed, the KS equation may be generically d
rived as an amplitude equation near long-wavelength
mary instabilities in the presence of appropria
symmetries.13 In this paper we focus on the ‘‘derivative,’’ o
conservation, form of the KS equation. For sufficiently lar
L, the solutions on the KS attractor display spatiotempo
chaos~STC!, or ‘‘weak turbulence,’’ with a positive density
of positive Liapunov exponents;14 a typical evolution is
shown in Fig. 1.

Our study of STC in the KS equation builds on nume
ous earlier studies via pointwise and Fourier statistics, no
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FIG. 1. ~a! A solution of the KS equation~1! on the spatiotemporally chaotic attractor, forL5100, and covering 256 time units separated byDt51 ~beginning
at t'1.03105). ~b! Gray-scale view of the evolution in~a!, clearly showing the typical cellular structure, traveling cells, and creation and annihilatio
peaks.
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bly those of Pumir.15 A review with many additional details
and references appears in Ref. 16, particularly Chaps. 1
4, and here we merely indicate some key phenomena.

In Fourier space, we may write~1! with periodic bound-
ary conditions as

d

dt
ûq5~q22q4!ûq1(

q8
q8ûq8ûq2q8 , ~2!

whereu(x,t)5 i (qûq(t)exp(iqx), q52pn/L, nPZ ~we will
useq for the Fourier wave number throughout this paper
avoid confusion with the indexk in the wavelet decomposi
tion, Sec. II A!. From the linear growth ratev(q)5q22q4

5(2pn/L)2@12(2pn/L)2#, one sees that the uniform zer
solution becomes unstable to the moden51 atL52p. As L
increases, the number of linearly unstable modes grows
portionately to L, with the most unstable mode atq0

51/&, or n0PZ nearL/2p&. Theuxx term is responsible
for the instability at large scales; the dissipativeuxxxx term
provides damping at small scales; and the nonlinear termuux

~which has the same form as that in the Burgers or o
dimensional Navier–Stokes equations! stabilizes by transfer-
ring energy between large and small scales. For smallL the
dynamics are quite well understood;17–19intricate bifurcation
diagrams describe transitions between families of ste
states, traveling waves and more complex solutions. In
ticular, the small-L dynamics are characterized by the pre
ence of modulated traveling waves and heterocli
cycles.19,20 For sufficiently largeL ~beyond aboutL550 or
60!, the ‘‘simple’’ solutions all become unstable to an~ap-
parently unique! spatiotemporally chaotic attractor.18

It is readily confirmed that the KS equation~1! with
periodic boundary conditions possesses the symmetries~i! t
→t1t ~temporal translation invariance!; ~ii ! x→x1 l ~spa-
tial translation invariance!; ~iii ! u(x,t)→2u(2x,t) ~parity!;
and~iv! u(x,t)→u(x2ct,t)1c ~Galilean invariance!. These
symmetries are fundamental to the dynamics and bifurca
Downloaded 18 Oct 2002 to 199.60.17.8. Redistribution subject to AIP 
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structure.19,20 Individual solutions~Fig. 1! break these sym-
metries, but in the STC regime, they are restored in a sta
tical sense.

We study spatiotemporally chaotic dynamics in this
gime by assuming the existence of a unique topologica
transitive attractor, and invoking ergodicity to replace av
ages on the attractor by time averages along a single solu
trajectory~checking that our results are independent of init
conditions, and that the integration time is sufficiently lo
for the statistics to converge!. We appeal to the thermody
namic limit21,22L→` and the notions of extensive quantitie
~such as the energy! whose values are~asymptotically! pro-
portional toL, and intensive quantities~for instance densities
of extensive quantities! whose values are independent of t
system size. A common interpretation23 sees the large system
as composed of interacting subsystems; in this view, ex
sive ~proportional to the number of subsystems! and inten-
sive ~characteristic of a subsystem! quantities arise if inter-
actions are spatially localized, so that the subsystems ma
considered approximately uncorrelated for short enou
times.

However, this picture is not rigorously established,22 and
even ‘‘simple’’ results on intensive properties, such as lo
pointwise bounds, remain unproven except for spec
solutions.24,25Such bounds would imply finiteness of the e
ergy densitye(t)[E(t)/L[(1/L)*0

Lu2(x,t)dx in the limit
L→`, as numerical solutions suggest, but the best availa
bounds26 give lim supt→` e(t)<cL11/5. Similarly, while so-
lutions are known to be analytic,27–29their decay rate has no
been shown to beL-independent.

The conjectured existence of a finite energy density a
width of the analyticity domain in the large-L limit is con-
sistent with the calculated energy~or power! spectrum~Fig.
2!, which is well known.30–32 The normalized spectral den
sity S(q)[L^û2qûq& appears independent ofL in the com-
plex regime~Fig. 2!, indicating an invariant distribution o
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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energy among the Fourier modes in the thermodyna
limit. The power spectrum is basic to understanding the
statistics and dynamics, and we shall frequently refer to i
the following. Many of its properties have been accoun
for,31 and its general shape modeled;32 we summarize the
main features:

The exponential tail is due to the strong dissipation
small scales, corresponding to the exponential decay of
Fourier modes of an analytic function. Theactivescales con-
tain most of the energy, with a pronounced peak atq5qm

'q051/&, corresponding to a characteristic lengthl m

52p/qm ; that is, it turns out that the most linearly unstab
modeapproximatelycoincides with the peak of the energ
spectrum in the nonlinear system~our calculations sugges
that qm is slightly less thanq0 ; the nonlinearity induces a
shift to larger scales!. Within the active region, it is remark
able that for 0.8&q&1.25, there is a definite power law de
cay with an exponent experimentally indistinguishable fro
4.0; by analogy with the inertial range in fluid turbulence,
is tempting to think of this regionS(q);q24, where produc-
tion and dissipation are almost balanced (q2'q4'1), as an
‘‘inertial range.’’ 31 In the largescale region, there is a shou
der which flattens asq→0, reminiscent of a thermodynami
regime with equipartition of energy.

The chaotic dynamics at the active and small sca
simulate the effect of random forcing on the largest scales
that the scaling of solutions for lowq is well described by a
forced Burgers, or Kardar–Parisi–Zhang ~KPZ!
equation,33–35 with a positive effective viscosity; in particu
lar, this asymptotic description predicts a flat spectru
S(q)→const asq→0. There has been considerable effo
towards making this more precise, both numerically36 and
analytically;37 a central result of this work is the existence
a crossover to asymptotic KPZ scaling for lengthsL
;4000, beyond which the predicted scaling has been
served. Here we do not consider lengths approaching
crossover to KPZ scaling, however; we focus on the S
dynamics in the active regime, withq5O(1). As weshow
in Sec. II below, the three regimes—large-scale~thermody-
namically equilibrated!, active intermediate, and dampe
small-scale—are well separated, and may be character
independently; and we do not believe that the crossove
the dynamic scaling at very large scales affects the prope

FIG. 2. Rescaled power spectrumS(q), for L5100 andL5800.
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of STC at theO~1! scale of the characteristic ‘‘cellular’
structures.

Concerning temporal behavior, the~spatially averaged!
temporal autocorrelation functionc(t) yields an autocorrela-
tion time tc'10 from the width at half-maximum of the
peak ofc(t). We find that this characteristic time betwee
‘‘events’’ tc remains essentially constant with increasingL
in the STC regime, showing that it is an intensive property
the dynamics in the large-L limit. The temporal behavior is
strongly scale-dependent, however, as revealed by the a
correlation timestc(q) of the spatial Fourier modesûq(t)
~Fig. 3!. The small-scale dynamics are rapid, with a char
teristic time which appears to decrease as a power law, w
the slow large-scale dynamics show divergence oftc(q) as
q→0.

Near the peak of the power spectrum,qm'q0 , there is a
pronounced local maximum intc(q) for q nearqm , with a
correlation timetc(qm)'18, somewhat larger than the cha
acteristic timetc for the field u as a whole. In this active
region, a faster linear growth rate is correlated with slow
dynamics. We believe that the longer time scales for
excited modes arise from the metastability of the cellu
solutions~which are stable for smallL! undergoing continu-
ous creation and annihilation events~‘‘space–time
defects’’!.38

Most of the long-time statistical computations presen
here were performed by integration of~2! with a Fourier
pseudospectral method, keeping modes up to at leastqmax

>4, integrating the linear terms exactly and using
Adams–Bashforth time-stepping scheme for the nonlin
terms. ForN equations, this method requiresO(N logN) it-
erations per time step. Results were also obtained
checked with anO(N) combined Crank–Nicholson/Adams
Bashforth finite difference solver for~1!, second order inx
and t, with a typical space stepdx5100/256'0.39. Typical
time steps weredt50.0625 and 0.03125, and averaging w
performed over samples separated byt50.25. The quantita-
tive results were checked with smaller space and time st
and more Fourier modes; the results presented are w
converged.

The remainder of this paper is organized as follows: A
ter introducing the wavelet decomposition, in Sec. II w
show that this representation provides good scale separa
leading to better understanding of the STC in terms of ch
acteristic dynamics at different scales. In particular, the s
tistics of the intermediate energetic scales correspond to l
events observed for low-dimensional systems. This S
scale separation is qualitatively invariant under changes

FIG. 3. Correlation timestc(q) for different Fourier modesûq(t).
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the length of the domain. The existence of a characteri
length scale of the dynamics is shown in Sec. III, and furt
studied and exploited in novel numerical experiments
which interactions between separated spatial domains
cut; this provides a basis for the hypothesis of the extensi
of the KS dynamics—that the large system behaves es
tially as a union of smaller, spatially localized subsystems
and motivates our continuing search for low-dimensional
cal models. Section IV contains a brief discussion.

II. WAVELET DECOMPOSITION AND SCALE
LOCALIZATION

The Fourier spectral results presented in the previ
section enable us to study the behavior at different range
scales. However, all Fourier-based properties~such as the
energy spectrum and time correlations! are continuous inq;
there is no separation of scales. For some purposes we m
prefer to group ranges of Fourier modes to separate and
tinguish properties local to these ranges. Also, each Fou
basis function is uniformly supported on the entire spa
domain, so that this representation is unable to capture
properties that arise from spatial localization. The phase
lationships between different Fourier modes, which give r
to spatially local features in the superposition, are lost in
averaging which gives the power spectrum and statist
This motivates the use of a spatially localized basis, wh
may be able to detect dynamic features arising from conc
trated events; wavelets appear well-suited for this purpo

A. The wavelet decomposition

Our study of KS dynamics using a basis localized
both space and scale is based on the familiar multiresolu
analysis and orthogonal wavelet decomposition; see R
39, 40. In highlighting the main features needed below,
largely follow Elezgarayet al.41

The construction of the orthonormal wavelet basis
gins with a suitably chosen functionC(x), satisfying appro-
priate technical conditions,39 and normalized so tha
*2`

` C2(y)dy51. The set of functions$c̃ jk(y), j >0,k
50...2j21% built by dilation and translation ofC(y), and
periodization,

c̃ jk~y!5 (
nPZ

2 j /2C~2 j~y1n!2k!, yP@0,1#, ~3!

then forms an orthonormal basis for zero mean, finite ene
periodic functions on@0, 1# ~the scaling function at the coars
est scalej 50 vanishes due to the zero mean condition!. We
then obtain an orthonormal basis$c jk% on @0,L#per simply by
rescalingc jk(x)5L21/2c̃ jk(x/L),xP@0,L#. From the sym-
metry of C(y) about y51/2, c jk(x) is centered aboutxjk

5L22 j (k11/2). We shall frequently usea to denote the
multi-index ~j, k!.

It follows from the definition~3! that varyingj ~which
we will refer to as changing the wavelet ‘‘level’’! allows one
to ‘‘zoom in’’ or ‘‘zoom out,’’ while changes ink corre-
spond to horizontal translations. By our choice of conve
Downloaded 18 Oct 2002 to 199.60.17.8. Redistribution subject to AIP 
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tion, j 50 refers to the largest scale; more generally, smaj
implies large, or coarse, scales, while largej indicates small,
or fine, scales.

The usefulness of the wavelet decomposition follo
from the relatively localized support ofC ~and hence of the
ca) in both real and Fourier space~of course, by the uncer
tainty principle, one cannot achieve complete localization
both x and q!. Following Refs. 4–6, 41 we have chosen
use an orthonormal, periodic spline wavelet basis,42 based on
the Battle–Lemarie´ construction ofmth order spline wave-
lets ~see Ref. 39!. These wavelets are of classCm22, and
have the properties ofm21 vanishing moments, exponentia
decay in x, and algebraic decay inq as uqu→0 and uqu
→`. Increasingm improves the smoothness and localizati
in q, at the cost of increasing the spatial support of the wa
let; we expect to need at least four derivatives forc to cap-
ture the behavior of theuxxxx term in the KS equation~1!
satisfactorily. In this paper we have usedm58, and checked
our results withm56; see for instance Ref. 16, Fig. 3.1 an
Ref. 6, Fig. 1~for m56) for examples of these spline wave
lets.

In the following we use the wavelet decomposition
the solutionu(x,t) of the KS equation,

u~x,t !5(
j 50

J

(
k50

2 j 21

ajk~ t !c jk~x![(
a

aa~ t !ca~x! ~4!

~as in Fourier representations, a suitable cutoffJ is justified
by the small-scale exponential decay of the solution; see
instance Fig. 4!. The quantities of interest to us are then t
time-dependent wavelet coefficientsajk(t), which reveal the
behavior ofu(x,t) at level j and position given byk. In the

FIG. 4. ~a! Fraction of time-averaged total energy,^ej (•)/E(•)&, as a func-
tion of wavelet levelj, for L5100. ~b! Power spectrumS(q) ~Fig. 2!,
compared to the energy per individual wavelet at each levelj. The wavelet
distribution is plotted with the center and range of 99% of the suppor
Fourier space.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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remainder of this section, we study the statistics, includ
temporal behavior and distributions, of these wavelet coe
cients.

B. Wavelet analysis: Energy distribution and
temporal behavior

In this section, we will present results for the KS evol
tion for L5100, a typical length well in the STC regime, b
still short enough to allow sufficiently fast calculations a
well-converged statistics; we shall briefly discuss the dep
dence onL below. ForL5100, the peak of the Fourier spe
trum is atqm'q051/&, or at nm5qmL/2p'10.7, and the
highest unstable mode is atL/2p'15.92. That is, there are
16 complex, or 32 real linearly unstable or marginal mod
and the energy is concentrated in the neighborhood of
22nd real mode. Hence the peak is located in wavelet lev
~levels 0–3 contain a total of( j 50

3 2 j515 modes!.
As a guide to later calculations, we compute the ene

in each wavelet level@since $c jk% is an orthonormal basis
this is simply found fromej (t)5(kajk

2 (t)#. Figure 4 shows
the time averaged energy per wavelet level, as well as
energy for each individual wavelet at that level, given th
there are 2j wavelets at levelj ~by translational invariance
all wavelets at a given level have identical statistics!. Com-
parison of Fig. 4~b! with the power spectrum in Fig. 2 show
a similar distribution of energy per mode, confirming that t
wavelets are well-localized in Fourier space. In the dissi
tive range, the wavelet energies decay more slowly t
S(q), however; this arises largely because each wavelet l
overlaps a range of Fourier modes, and with exponenti
decaying power spectrum, the wavelet energies are stro
weighted by the low-q end of the range.

From Fig. 4~a!, we can identify the levels with distinc
behaviors. Wavelet levels 0, 1, and 2 correspond to la
scales, containing a small fraction~under 5%! of the total
energy, due especially to the small numbers of wavelet
these scales—this corresponds to the nearly flat region o
Fourier spectrum. Levels 3, 4, and 5 contain the active,
ergetic modes near the peak of the Fourier spectrum,
together account for over 95% of the energy distributio
Levels 6, 7, and any higher~smaller scale! levels, with less
than 0.1% of the energy, are strongly damped, with expon
tially decreasing energy in the dissipative range.

Typical time series for wavelet coefficients at each le
~for wavelets at each scale centered nearx5L/2, taken for
the same time interval! are shown in Fig. 5. From this, w
can clearly see the differences in time scales, distributio
and dynamics at the different scales. Characteristic timet j

for each levelj are shown in Fig. 6~compare Fig. 3!.

C. Probability distributions of wavelet coefficients

In Fig. 7 we show the probability distribution function
~PDFs! for the wavelet coefficients at each level, averag
over time, and over the 2j wavelets at each levelj ~compare
Ref. 41, Fig. 1!. This figure is one of the main new results
this paper, and clearly shows how the wavelet representa
reveals both scale and spatially localized information.
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For large scales, the distributions are Gaussian. At th
scales, the support of each wavelet includes several cha
teristic wavelengths. Due to spatial decorrelation and in
pendence of sufficiently separated positions~Sec. III B!, the
averaging over several characteristic structures inheren
the large-scale wavelet coefficients may thus be expecte
lead to the normal distribution. At the coarsest scales, th
fore, the dynamics resemble slow noise. These results
motivated from a different perspective from the existence
a fluctuation-dissipation theorem for the one-dimensio
forced Burgers equation,35,43 which implies that the fieldu
obeys a Gaussian distribution at large scales, in the K
limit. Note that the PDFs for the lowestj values are less wel
converged; this is both due to the fact that there are fe
wavelets at thesej, over which to average; and also becau
the dynamics at the large scales are slow, requiring m
time for statistical equilibration~see Figs. 5 and 6!.

FIG. 5. Sample time series for one wavelet coefficientajk(t) at each levelj,
for k52 j /2, that is, centered near the middle of the domain of lengthL
5100.

FIG. 6. Mean-square autocorrelation timest j for the time series of wavelet
coefficients at different scalesj. Note that the values forL5400 are shifted
by two wavelet levels~we plot, in fact,t j againstj 22). Compare Fig. 3,
noting that the horizontal axes are logarithmically related to each othej
} log q).
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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At the energetic scalesj 53, 4, and 5, the support of th
wavelets is comparable to the characteristic intrinsic wa
length l m52p/qm , and the PDFs are quite different, di
playing features unlike any observed in the Fourier repres
tation. Thej 53 level, although still largely in the flat part o
the Fourier spectrum, shows a distinct steepening of the
tribution relative to a Gaussian. Levels 4 and 5 show
most striking, nonequilibrium PDFs, comparable to the d
tributions for local values ofu:44 A broad, triple-humped
distribution, superposing a peak at 0 and a double-hum
peak reminiscent of the cellular~sinusoidal-like! solutions.
This is most striking atj 54, which contains the most ene
getic modes and the characteristic lengthl m , but j 55 also
shows this behavior. Unlike the Fourier coefficient distrib
tions, the wavelet coefficients appear to capture on ave
the spatially local structures and events at the active sca

The PDF for levelj 56 is again well fitted by a Gauss
ian; it is interesting that such an equilibrium distributio
should appear well within the dissipative range, possibly
some balance between energy fed in from adjacent ac
scales, and dissipation. Indeed, computation of the Fou
global energy flux confirms that there is fairly significa
energy transfer over the range of scales covered byj 56.

At the smaller scales,j >7, the effects of strong dissipa
tion are apparent. The amplitudesajk decay exponentially
with j in this regime, while the distributions have supe
Gaussian tails. That is, the small scale coefficients rem
near zero most of the time, with occasional~intermittent!
excursions of relatively large amplitude driven by events
larger scales; for instance, note the ‘‘event’’ beginning n
t5256 at levelj 57, one of several visible in Fig. 5, whic
appears to be driven by activity in levelsj 55 and 6, and
entrains a similar, though smaller, excursion in an adjac
j 58 wavelet. The near-exponential PDF is reminiscent
those observed for velocity increments and gradients, wh
signal intermittency in turbulence;45 good fits to such turbu-
lent PDFs have been obtained in some models.46,47 In fact,
recalling that the wavelet transform at small scales acts

FIG. 7. Probability density functions for the wavelet coefficients at e
level j 50,...,7, forL5100. Forj 50 – 3 and 6, a best-fit Gaussian distrib
tion is superposed. Note the logarithmic axis forj 57, denoting a near-
exponential distribution.
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high pass filter, our observed small-scale behavior is clos
related to turbulent dissipation-range intermittency, se
when the velocity field is filtered at a frequency associa
with a scale comparable to the Kolmogorov dissipati
scale;45 Frisch and Morf48 showed that infrequent burst
leading to intermittency are associated with singularities
complex times of time-analytic functionsu ~such functions
include solutions of the KS equation29!.

An alternative view of the small-scale PDF derives fro
the properties of the wavelets; if at the scale of the analyz
wavelet, the fieldu is locally linear, or more generally a
low-order polynomial, then by the low-order moment canc
lation property of these smooth wavelets,39 the correspond-
ing wavelet coefficient vanishes. Thus the small-scale wa
lets will have non-negligible coefficients only whereu(x,•)
has large curvature, that is, where there is a peak or troug
the fieldu. That is, the small-scale dynamics track the po
tions of the ‘‘coherent structures.’’

We note that the scale separation afforded by the wa
let decomposition depends on the interplay between wav
and intrinsic length scales, specifically, on the distancel j

5L22 j between the centers of adjacent wavelets at levelj in
the dyadic wavelet decomposition, and the characteri
lengthl m of the dynamics. Consequently, we expect that aL
varies, there is a shift in the distribution of energy amo
wavelet modes, and in the coefficient PDFs at different l
els. The statistics in this paper are presented forL5100, but
computations for other lengths~see Ref. 16! confirm that
these results, for instance those of Fig. 7, are not specia
comparison withL580 andL5128 shows that while the
detailed form of the PDFs may change, the characteri
separation of scales and distinction between the distribut
for large, active, and small scales is retained throughout
STC regime. Furthermore, comparing distributions forL
5100 andL5400 verifies that a change inL by a power of
two corresponds to an integral shift in the wavelet levels,
PDFs otherwise remaining invariant; this confirms that o
L5100 results are well-converged ‘‘large-L’’ statistics in the
STC regime. It is plausible that there is a continuous dis
bution of density functions, interpolating between tho
shown, so that for eachL, a discrete subset is selected.

D. Scale-by-scale structure of the dynamics

A projection of the solution onto a wavelet basis th
clearly allows us to distinguish between average behavio
the dynamics at different wavelet levels; the major featu
are large-scale randomness, small-scale intermittency,
distributions reminiscent of characteristic events in interm
diate active scales~creation and annihilation of peaks, an
traveling waves with a typical intermediate wavelength!. We
have attempted heuristic justifications for these PDFs,
hope for a theoretical derivation of some of these res
from the underlying KS equation. We now show how wav
lets may be used as an experimental tool, explicitly prob
the dynamical significance of wavelet levels to obtain a
tailed picture of how different scales contribute to the over
dynamics.

We perform these experiments by overwriting modal c

h
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FIG. 8. The scale-by-scale structure of the dynamics, elucidated by setting various wavelet levels to zero. Levels eliminated~a! j 50; ~b! j 50 and 1;~c! j 50,
1, and 2~note the change of time scale!; ~d! j 53.
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efficients at each time step. Specifically, we integrate the
KS equation for the wavelet modes$ajk% using a wavelet
pseudospectral solver. We then eliminate, say, wavelet l
j by setting all the modes at that level to zero after each t
step; similarly, we can force at particular modes by replac
them with values computed from independent runs or vi
model of some kind~see Ref. 49 for a similar approach to th
investigation of two-dimensional Navier–Stokes dynamic!.
By successively eliminating or driving different levels
combinations of levels, we may thus discern their respec
contributions to the spatiotemporally chaotic dynamics.
before, we confine our discussion toL5100, for which Fig.
7 summarizes the distinctions between levels.

From the results of numerous such experiments,
scribed more fully in Ref. 16, Chap. 5, we find that the sm
scale levelsj >6 are essentially irrelevant to the dynamic
as they are slaved to the larger scales; their elimination
little effect except on detailed~pointwise! tracking. The most
energetic active scales,j 54 and 5, responsible for most o
the characteristic spatial structure, are crucial; remova
either or both of these levels results in rapid finite-tim
blowup of the simulation, showing that they are basic to
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energy transfer and dissipation mechanism stabilizing
larger scales.

The most revealing results of these experiments occu
the largest scales. Figures 8~a!–8~c! shows the effect of suc
cessively ‘‘turning off’’ levels 0–2, demonstrating that the
serve to maintain disorder without being essential to the
ergy balance. Eliminating level 0 has little effect@Fig. 8~a!#,
while in ~b!, we see that without levelsj 50 and 1, the dy-
namics are slightly more rigid, and closer to a cellular st
than for the full KS equation@Fig. 1~b!#. In the absence of al
the large scales with Gaussian distributions~Fig. 7!, j 50, 1,
and2, there is some~transient! dynamical activity, but even-
tually the solution collapses to a stationary cellular~roll!
state, reminiscent of the attractor for some smallL values18,50

@Fig. 8~c!#. Recalling Fig. 4~a!, observe that this drastic ef
fect on the dynamics is the consequence of removing mo
containing less than 5% of the total energy. These exp
ments thus demonstrate explicitly the role of the large sca
j <2 for L5100, in contributing the excitation which drive
the active scalesj >3 and maintaining persistent disorder
the STC regime.~Note that level 2 is not essential for th
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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459Chaos, Vol. 9, No. 2, 1999 R. W. Wittenberg and P. Holmes
purpose; in the absence ofj 52, levels 0 and 1 can maintai
disorder.!

The picture of the large scales driving the dynam
through a noisy ‘‘heat bath’’ is consistent with their Gaus
ian PDFs and with the forced Burgers equation description
the effective large-scale dynamics. On the other hand, the
equation is completely deterministic, and we might conce
ably expect the characteristic KS dynamics to depend
correlations between the large- and active-scale modes.
have tested the hypothesis that the dynamical significanc
the large scales is solely due to their Gaussian nature, w
out regard to their deterministic origins, by forcing at leve
j <2 with an autonomously generated stochastic proc
@Ref. 16, Sec. 5.5.2#. Specifically, we have used a modifie
Ornstein–Uhlenbeck process~Langevin equation with col-
ored noise!, with parameters obtained from the effectiv
forced Burgers description of the large-scale dynamics;44 this
process reproduces the large-scale statistics extremely
When the modes at wavelet levelsj 50, 1, and 2 are each
driven independently by such a process, the remaining le
undergoing KS dynamics, the resulting evolution is visua
and statistically remarkably close to that of the full KS equ
tion. That is, purely stochastic large-scale evolutions app
to have the same effect as their deterministically deriv
counterparts in the way they drive chaotic dynamics at
active scales; the dynamical contributions of the large sc
in the KS equation are essentially random.

In Fig. 8~d!, we see an experiment in which levelj 53 is
eliminated~recall its strongly peaked distribution, Fig. 7!. As
seen in the figure, without this intermediate level, there
fewer typical creation and collision events; rather, the d
namics are dominated by the relative enhancement of ce
lar structures undergoing~modulated! traveling-wave-type
behavior. Level 3 thus appears to play a major role in driv
the distributions towards zero, and in maintaining t
‘‘events,’’ the dynamical interactions of coherent structur
and defect generation and annihilation, characteristic of
STC state. These conclusions are supported by experim
in which both levelsj 52 and 3 are removed. Observe al
that these experiments, and similar ones, show that the
est scales can drive the active scales even in the absen
intermediate levels; that is, nonlocal energy transfer in sc
occurs.

We have summarized a series of experiments in wh
we actively intervene in the system, manipulating differe
wavelet levels, to discern the scale-by-scale structure of
STC regime. Extensive experiments in which other mo
are eliminated, or forced from an external run or otherwi
are reported in Ref. 16, and confirm the above conclusio
The wavelet representation thus provides a detailed dyna
cal picture, enhancing the insights obtained from the av
aged distributions, of the spatiotemporally complex dyna
ics viewed as arising from the interactions of distinct a
complementary contributions of different scales.

III. SPACE LOCALIZATION

In the attempt to characterize homogeneous STC, m
attention has been focused on finding relevant measure
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spatial localization~see Ref. 21, pp. 945ff or Ref. 22!. The
existence of intrinsic correlation lengths is fundamental
the concept of ‘‘extensive chaos’’ and a thermodynam
limit—if interactions are spatially localized, then in the in
terpretation of the ‘‘very large’’ system in terms of couple
sufficiently large subsystems, we do not expect ‘‘new’’ gl
bal collective effects to emerge as the number of th
coupled subsystems increases asL→`.

From the point of view of~instantaneous! dynamics, we
are interested in the role of spatial localization in determ
ing the ‘‘typical events’’ of Fig. 1, such as local stretchin
and compression of cells, and creation and annihilation
peaks. Furthermore, to aid the search for low-dimensio
models representing the dynamics of a few localized mo
in a short system, we would like to obtain a characteris
length as an indication of the size of small system requi
for successful modeling.

A. Boundary conditions

Throughout this paper we have considered the tran
tionally invariant KS equation~1! with periodic boundary
conditions. This ensures that the dynamics observed are
trinsic to the KS equation~hence expected to persist in th
thermodynamic limit!, and not driven or influenced by th
boundary. A measure of spatial localization is the indep
dence of bulk dynamics of the boundary conditions, and
width of the boundary layer gives an estimate of the inter
tion distance. Thus in this brief section only, we consider
effects of fixed, nonperiodic boundary conditions; in whi
case, the behavior at least near the walls is strongly c
strained by the boundary. However, as we see in Fig
~compare Fig. 1!, even for fixed~either rigid, u5ux50 at
x50, L, or Dirichlet, u5uxx50 at x50, L! boundaries, for
sufficiently largeL the characteristic spatiotemporally ch
otic KS dynamics are observed in the bulk of the doma
sufficiently far from the boundaries, the system ‘‘forgets’’ i
boundary conditions. In addition to visual inspection
space–time plots@Figs. 9~a! and 9~b!#, the decay of boundary
influences is observed in the moments of the pointwise
tributions as a function of distance from the boundary,15 in
the mean profile for rigid boundary conditions51 @Figs. 9~c!
and 9~d!#, and in the lack of dependence of bulk correlati
times on boundary conditions~Egolf and Greenside51 have
argued that for rigid boundary conditions, correlation tim
are x-dependent even far from the boundary, but it appe
that this result is an artifact of the root-mean-square wi
method they use to calculate the correlation time; see R
16!. In each case, the dynamics appear to settle down to t
bulk values beyond a boundary layer of widthl b;20– 25.
@We note however from Figs. 9~a! and 9~c! that rigid bound-
ary conditions induce a slight overall tilt on the mean profi
m(x), and a preferred drift to the left; see Ref. 52.# This
provides further evidence of spatial localization of the d
namics, and absence of significant interactions beyond s
characteristic interaction length.

B. Correlation lengths

Returning to periodic boundary conditions, there a
many possible choices for an appropriate correlation len
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 9. Effect of boundary condition variations.~a! Rigid boundary conditionsu5ux50; ~b! Dirichlet boundary conditionsu5uxx50. Time-averaged,
space-dependent mean profilesm(x)[^u(x,•)& for ~c! rigid, ~d! Dirichlet boundary conditions.
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for STC,21,22 and it is not yet clear which are the most re
evant. In this section we discuss some of the candidate le
scales for our system, and then describe an experimen
signed to elucidate adynamicinteraction length. Any corre-
lation length should,a priori, be constructed out of the tw
lengths in our equation, the system lengthL and the most
excited Fourier wavelengthl 052p/q0 ; and we expect tha
extensivity implies that correlation lengths are asympto
cally independent ofL.

Two of the simplest length scales which measure spa
disorder and localization are the two-point correlation len
j2 and the mutual information correlation lengthj I . We
compute the spatial single-time autocorrelation funct
C(x)5^u(x8,t)u(x81x,t)& ~independent ofx8 by spatial
homogeneity! from the inverse Fourier transform of th
power spectrum of Fig. 2; its invariance underL follows
from that of the power spectrumS(q). As shown in Fig. 10,
the correlation function is well modeled by the function
form C(x)'C(0)cos(q(x))exp(2x/j2), where to lowest or-
der q(x)'q̃x, with q̃ near the peak of the power spectrum
The correlation function thus captures both the underly
oscillatory, cellular spatial structure of the KS dynamics, a
the rapid spatial decorrelation reflecting the spatial disor
in the STC regime. An improved fit toC(x) for reasonably
small x, shown in Fig. 10~b!, is given to quadratic order by
q(x)'0.75x20.005x2; the resulting two-point correlation
length isj2'7.4. As measured by the two-point correlation
spatial coupling becomes negligible beyond a few multip
of j2 .
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The autocorrelation functionC(x) depends only on
^uûqu2&, and as such is a linear measure of interactions;
might expect a quantity which depends nonlinearly on
dynamics to capture additional features.53 The independence
of two spatial locations in the KS equation, or of two tim
seriess1(t) ands2(t) more generally, may be quantified b
the mutual informationI,54,55 which measures the averag

FIG. 10. ~a! Spatial autocorrelation functionC(x) for L5100, with expo-
nential envelopeC(0)exp(2x/j2). ~b! Enlargement of~a!, with best fit
C(0)cos(q(x))exp(2x/j2), takingq(x) to quadratic order.
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amount of information abouts1 contained ins2 , or more
specifically, the average reduction in the entropy ofs1(•),
given knowledge ofs2(•). Given a discrete partition$Si% of
the state space fors1(•), with probabilitiespi , and similarly,
probabilitiesqi for s2(•) and a joint probability distribution
r i j for s1 ands2 , the mutual information may be estimate
by

I ~s1~• !,s2~• !!5(
i , j

r i j log2

r i j

piqj
. ~5!

In the context of chaotic dynamics, a mutual informati
correlation time was proposed by Fraser and Swinney56 as an
optimal estimate for the choice of delay time for the reco
struction of attractors from time series.

For our application, to test the asymptotic independe
of two spatial locations separated byl, we computeI ( l )
[I (u(x,•),u(x1 l ,•)) ~averaged overx, by appeal to homo-
geneity!. In this case, the distributionspi of u(x,•) andqi of
u(x1 l ,•) are the same, and simple binning seemed adeq
to compute the joint distributionr i j , so more sophisticated
procedures55,56 were not employed. Note that whens15s2 ,
the mutual information reduces to the single-point entro
I (0)52S i pi log2 pi , while I vanishes ifs1 ands2 are inde-
pendent; that is, spatial localization implies thatI ( l )→0 asl
becomes large.

The computed mutual information~independent ofL! is
shown in Fig. 11. Again, there is exponential decay,I ( l )
'I(0)exp(2l/jI), where the mutual information correlatio
length j I'3.8. That is, the nonlinear correlations measu
by the mutual information fall off more rapidly than the lin
ear dependence captured by the autocorrelation func
C(x). The approximate relationj2'2j I has been previously
observed for the two-dimensional coupled map latt
Miller–Huse model.53

As Greenside22 has pointed out, bothj2 andj I may be
unsatisfactory measures of STC, as they measure only sp
disorder, and are not dependent on time correlations of
spatial fields; changing the temporal ordering of the sn
shots used to compute these correlation lengths would
affect C(x) or I ( l ). On dimensional grounds, a dimensio
correlation lengthjd has been proposed21 as a more direct
measure of dynamical complexity~see Ref. 22!. Here, the
motivation is the numerical observation~not yet supported
by rigorous estimates in general! that the fractal dimension
DF of the STC attractor is extensive for the KS equation14

that is, asymptoticallyDF}L. @In fact, Cross and Hohenber
~Ref. 21, p. 945! have proposed extensivity ofDF as a gen-

FIG. 11. The mutual informationI ( l ); the dotted line is a fit to theL
5200 data, showing the exponential decay over a correlation lengtj I

'3.8.
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eral defining feature of STC.# This suggests defining, fo
some measure of fractal dimension, a length by the inve
dimension density, or density of positive Lyapunov exp
nents, jd5 limL→` L/DF(L). From the results of
Manneville14 on the Lyapunov dimension of the KS equatio
~see Ref. 21, p. 951! we find jd'4.35. Note however that a
quantity such asjd defined on purely dimensional conside
ations does not unambiguously imply a characteristic ph
cal interaction length. Moreover, the definition ofjd depends
on extensivity and spatial localization, and thus does not p
vide independent support for these concepts.

Since a fractal dimension for a high-dimensional syst
is generally very difficult to compute, Zoldi and Greenside57

have proposed replacingDF by a Karhunen–Loe`ve dimen-
sion DKLD( f ), defined by the number of eigenmodes in t
proper orthogonal decomposition required to capture a gi
fraction f of the total energy; and have hence defined
Karhunen–Loe`ve correlation lengthjKLD . In the absence of
an a priori choice for f, jKLD is not quantitatively well-
defined, however~we findjKLD'12.23 for f 50.5). Further-
more, for a translationally invariant system such as the p
odic KS equation~1!, the Karhunen–Loe`ve eigenmodes are
Fourier modes,2 so that jKLD for any f can be computed
directly16 from the power spectrumS(q), and thus contains
no more dynamical information thanj2 .

The correlation lengths discussed are all statistical av
ages, and might not capture short-time or rare events. M
over ~with the possible exception ofjd), they are measure
only of spatial disorder, without capturing any informatio
on the temporally complex dynamics responsible for the d
order. In order to investigate the local nature of instan
neous spatiotemporal dynamics, we now propose an exp
ment to test the range of influences relevant to the short-t
interactions~with the hope of gaining understanding of th
‘‘microscopic’’ basis of STC, and to aid in the constructio
of models!. To do so, we need a means of manipulati
instantaneous couplings, which can be achieved by solv
the KS equation on a localized basis such as a wavelet b

C. A dynamical interaction distance: An experiment

In Sec. II, the wavelet decomposition ofu(x,t) was used
to study scale and space localization through the temp
dynamics and distributions of wavelet coefficientsaa(t), as
well as through a series of experiments elucidating the
namical contributions of different wavelet levels. Similarl
we may perform numerical experiments exploiting the n
row spatial support of wavelets to analyze spatial locali
tion of the KS dynamics more directly. To do this, we su
stitute the wavelet decomposition~4! into ~1! to find the
wavelet Galerkin projection of the KS equation,

d

dt
aa~ t !5(

a8
l aa8aa81 (

a8,a9
naa8a9aa8aa9 , ~6!

where l aa852*0
Lca(]xxca81]xxxxca8)dx, naa8a9

52*0
Lcaca8]xca9dx, anda represents the multi-index~j,

k!.
Unlike the Fourier representation~2!, the linear part of

the wavelet Galerkin projection is not diagonal, as there
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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overlap of wavelets both within a scale and across sca
However, due to the scale and space localization of
wavelet basis, this overlap is limited. For instance,l aa8
5 l jk j 8k8 couples wavelets at scalesj and j 8; but due to the
power law decrease ofc in Fourier space, this decays wit
the scale separationu j 2 j 8u. More importantly for the presen
purpose, we can define a distance between the centersxa of
wavelets ca , daa85uxa2xa8u; for wavelets at the sam
level, djk jk85L22 j uk2k8u. The linear terml aa8 thus mea-
sures the overlap between wavelets~and their derivatives!
centered a distancedaa8 apart, and falls off exponentially
from the diagonal4,41 due to the spatial exponential decay
c(x); similarly for the nonlinear termnaa8a9 . That is, the
evolution of a particular wavelet coefficient is affected p
marily by those modes aa8 for which (l aa8
1Sa9naa8a9aa9)aa8 is appreciable, those centered nearaa

in space.
We may use the above considerations to manipulate

KS dynamics and probe spatial localization. Since the co
ficients l aa8 andnaa8a9 in the Galerkin projection represen
coupling between wavelets localized a distancedaa8 or daa9
apart, we can cut all interactions beyond a certain lengtl c

by setting the corresponding coefficients to zero, leading
localized model

ȧa5(
a8

l̃ aa8aa81 (
a8,a9

ñaa8a9aa8aa9 , ~7!

where l̃ aa85 l aa8 if daa8< l c , l̃ aa850 otherwise, and simi-
larly for the nonlinear term. This allows us to quantify th
instantaneousdynamical significance of the interactio
length l c .

Such calculations are computationally expensive: In c
trast to rapid finite difference and pseudospectral schem
the wavelet Galerkin method of~7! on N modes requires
O(N3) steps~and the storage of theN3 terms of naa8a9),
while an enhancement using the fast wavelet transform
requiresO(N2 logN) computations per time step. A cons
quence of this is that long-time calculations, for a range
values ofl c , are prohibitively expensive; whereas for sho
times, we cannot hope to obtain well-converged statistics
many of the quantities discussed previously.

We performed over 50 computations to timetmax

'1000 with a range of interaction lengthsl c , for several
different initial conditions and systems lengthsL. Since the
dynamics are so sensitive to initial conditions, we wou
need to perform many runs with different initial data for ea
set of parameter values to obtain conclusive results; thus
experiments should be regarded as preliminary.

In general, we find that ifl c is large enough, we recove
the essential KS dynamics, while smalll c results in signifi-
cant disruption; a departure from the typical events, a
changes in space and time scales, and in the form of
coherent structures. Among the features we observe w
the interaction length is sufficiently reduced are break
into apparently independent subdomains, the presence o
calized peaks, and fast local traveling pulses colliding w
the peaks. Frequently there is an energy buildup at la
scales, which are disproportionately excited relative to
Downloaded 18 Oct 2002 to 199.60.17.8. Redistribution subject to AIP 
s.
e

e
f-

a

-
s,

ill

f
t
r

ur

d
he
en
p
lo-
h
e
e

full KS equation. This large-scale excitation often results i
rapid, spatially localized transfer of energy to the sm
scales, leading to numerical blowup; with decreasingl c such
blowup becomes more likely and typically occurs sooner.
counteract such rapid transfer across scales, we also
formed some experiments in which we cut couplings acr
more than 3 wavelet scales, that is, foru j 2 j 8u.3; this mea-
sure seems to prevent or delay numerical blowup. The
ruption does not decrease monotonically with increasingl c :
we also encountered some relatively large values ofl c for
which there was an unusual likelihood of blowup, or captu
into a steady state; this is reminiscent of a ‘‘resonance’’
fect encountered when solving the KS equation on short s
domains in Fourier space projections.58

Some representative results for system lengthL5100
and different coupling lengthsl c are shown in Fig. 12. Note
that l c5L/2550 is the maximum distance between tw
points in anL5100 periodic system, and thus corresponds
retaining all interactions; thus we have confirmed that o
l c550 wavelet calculation~not shown! reproduces the full
KS dynamics. Figure 12~a! shows that for large enoughl c ,
we retain the characteristic KS dynamics~see Fig. 1!. As we
decreasel c , many typical features remain, but the dynam
become increasingly disrupted, with rigid peaks, travel
pulses and excitation of the large scales@Figs. 12~b! and
12~c!#. Numerical blowup becomes increasingly likely fo
sufficiently smalll c @Fig. 12~d!#.

The conclusions of visual inspections are supported
the energy distributions across wavelet levels~Fig. 13!, for
the same values ofl c , compared to the spectrum for the fu
KS equation~Fig. 4!. As l c decreases, the energy goes i
creasingly to larger scales~lower j!. In this light, we can
consider a~phenomenological! measure of the extent of dis
ruption of the dynamics, the energy transfer to large sca
Specifically, in Fig. 14~a! we plot e2 /e4 , where j 54 is the
most active wavelet level for the full KS equation.

These and related considerations for a range of exp
ments, including ones with varyingL discussed below, lead

us to estimate a typical interaction lengthl̄ c , beyond which
cutting interactions significantly disrupts the KS dynamic

from Fig. 14~a!, this is l̄ c'25. We interpret this length so

that for l c. l̄ c , we typically obtain characteristic KS dynam
ics, improving asl c approachesL/2, while the dynamics are

increasingly disrupted asl c decreases belowl̄ c . To our
knowledge, this is the first attempt to quantify thedynamical
significance of a coupling distance, in terms of its effect
the temporal evolution.

We note that the effect of cutting interactions is strong
dependent on the dyadic structure of the wavelet decom
sition. That is, which modes interact for a givenl c depends
discontinuously onl c . For instance, forL5100, l c>25, ad-
jacent wavelets at levelj 52 are coupled, while they cease
interact for l c,25. This experiment is therefore a rath
crude measure of interaction length, which may depend
the decomposition as well as the dynamics. To confirm t
l c is indeed a relevant interaction length, we performed so
experiments forL5200 ~which effectively corresponds to
shift by one wavelet level!; even though many more wavele
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 12. Modified KS equation~7!, coupling only wavelets nearer thanl c apart, forL5100, andN5127 wavelets; note the increasing disruption of K
dynamics asl c decreases:~a! l c530; ~b! l c525; ~c! l c519; ~d! l c515, just before blowup. Note: vertical scales are expanded in comparison with Fig
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interactions are cut, the results for a givenl c agree with those
for L5100. Similarly, we repeated the calculations forL
580 andL5128, which have a different relationship of in
trinsic length to the dyadic decomposition, and confirm
that although the distribution of energy among the wave
levels influences the experimental results,l̄ c'25 still ap-
pears to be a relevant interaction length; see Figs. 14~b! and
14~c!.

The interaction distance we have defined measures
distance between the centers of wavelets. Due to the fi
support ofc(x), the value ofl̄ c is only an approximation to
the spatial range of interactions: there may be appreci
overlap between wavelets centered more thanl c apart. For
this reason, the wavelet approach only yields a fairly rou
estimate of spatial localization. However, the wavelets
use are exponentially localized inx, so the effect of noncom
pact wavelets is limited.

The dynamical interaction distancel c estimated by this
technique, appears to be considerably larger than the mu
information distancej I'3.8, or the autocorrelation distanc
j2'7.4. These other lengths are obtained from time ave
Downloaded 18 Oct 2002 to 199.60.17.8. Redistribution subject to AIP 
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ing over the dynamics. The resultsl̄ c.j I , for instance, may
indicate that the dynamics are strongly influenced by r
events which couple relatively distant spatial locations~sepa-
rated by more than one cell!. Thus, statistically average
lengths such asj I may be underestimates of the dynamica
relevant coupling distance; the asymptotic mutual statist
independence of two points is insufficient to imply their i
stantaneous dynamical independence.

Our results indicate that in a successful low-dimensio

FIG. 13. Wavelet energy distributions, forL5100 and coupling lengthsl c

as in Fig. 12; the solid line is the distribution for the full KS equation, fro
Fig. 4.
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‘‘short’’ model for the KS dynamics, wavelets should b
coupled, either to other modes or to external forcing, up to
least a distance; l̄ c , to ensure sufficient interactions. W
shall report on the construction of such models elsewher59

This work also helps us to understand the transition
STC in the KS equation. ForL<2 l̄ c'50, spatial locations
are ‘‘doubly’’ coupled ~due to periodicity!; that is, for a
given x0 and interaction distancel< l̄ c , x0 is coupled tox0

1 l andx02 l (modL), which could be the same point. Sma
systems are thus excessively constrained through their in
actions, and consequently solutions frequently approac
‘‘simple’’ attractor. For systems of length greater than abo
50 or 60, on the other hand,x0 is asymptotically and dynami
cally independent ofx06L/2, there are fewer constraint
and the system can sustain STC behavior.

IV. DISCUSSION

We have confirmed the localization of KS dynamics
scale and space, not merely in terms of averaged distr
tions and asymptotic linear or nonlinear correlations, but a
in terms of the dynamic relevance of different modes. O
results provide strong evidence in addition to the exist
literature on the separation of scales and space localizatio
the dynamics in a spatiotemporally chaotic system. In p
ticular, for large lengthsL, the statistics can be understood
terms of local events; and the results are consistent with
picture of weakly interacting small subsystems and exten

FIG. 14. Energy ratio, a diagnostic for energy transfer as a function
interaction lengthl c . ~a! e2 /e4 for L5100: computations for two differen
initial conditions; ~b! e2 /e4 for L580; ~c! e3 /e4 for L5128. The ratios

appear to settle down to their asymptotic values forl c> l̄ c'25. These
curves exclude computations for which blowup occurred beforet5128.
Downloaded 18 Oct 2002 to 199.60.17.8. Redistribution subject to AIP 
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ity. Spatial localization implies that the statistics are ess
tially invariant for L>50, while for shorter lengths, the pe
riodic boundary conditions constrain the dynamics, so t
chaos can typically not be maintained, and there
‘‘simple’’ attractors. A suitably chosen wavelet basis clea
helps one extract interesting features of the dynamics, wh
remain obscured in real and Fourier space representatio

In addition to clarifying the nature of STC in the K
equation, our results aid the construction of low-dimensio
models of the spatiotemporal dynamics, by providing a ran
of quantitative measures with which to assess the validity
models by comparison with the full equation; for instanc
the statistics of time scales and distributions at differ
scales provide more detailed diagnostics than the glo
power spectrum. The spatial interaction lengthl̄ c provides a
limit on how much one may expect to restrict spatial inte
actions without disrupting the dynamics excessively, a
hence how small a system one can use. Moreover,
wavelet-based models in particular,4,41 Sec. II reveals the
types of forcing needed to feed in to represent neglec
modes in a low-dimensional model; in particular, the dist
butions and temporal correlations are strongly sca
dependent. This leads to construction of families of ‘‘shor
local models; wavelet Galerkin projections forced by color
Gaussian noise to reproduce excluded large scales, and
odized to replace the active scale dynamics of spatial ne
bors. These models will be described elsewhere.59
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25Z. Grujić, J. Dynam. Diff. Eq.~to be published!.
26P. Collet, J.-P. Eckmann, H. Epstein, and J. Stubbe, Commun. Math. P

152, 203 ~1993!.
27P. Collet, J.-P. Eckmann, H. Epstein, and J. Stubbe, Physica D67, 321

~1993!.
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