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Abstract. We investigate the construction of low-dimensional spatially localized models of extended systems.
Specifically, the Kuramoto–Sivashinsky (KS) equation on large one-dimensional domains displays spatiotempo-
rally complex dynamics that are remarkably well-localized in both real and Fourier space, as demonstrated by
a (spline) wavelet representation. We show how wavelet projections may be used to construct various localized,
relatively low-dimensional models of KS spatiotemporal chaos. There is persuasive evidence that short, periodized
systems, internally forced at their largest scales, form minimal models for chaotic dynamics in arbitrarily large
domains. Such models assist in the understanding of extended systems.
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1. Introduction

For the prediction, simulation, control and understanding of high-dimensional systems with
complex spatiotemporal dynamics, one frequently seeks low-dimensional models capturing
the essential features. One approach toward obtaining such models is to propose, on the basis
of considerations such as relevant symmetries and physical principles, relatively ‘simple’ a
priori governing equations to model the system. Alternatively, one can project known govern-
ing equations onto the ‘relevant’ modes, obtained for instance through the proper orthogonal
decomposition (POD), via Galerkin projection. Crucial aspects of this procedure are that the
most essential modes are isolated and retained, and that the effects of neglected modes are
modeled appropriately. The goal is to obtain a, hopefully tractable, system of the form

ȧ = f(a,b) (1)

for the retained ‘internal’ modes of the model a, where in the present procedure, the excluded,
or neglected modes b are externally specified, rather than being ‘slaved’ to the internal modes.
That is, while the internal modes a are analogous to the span of a ‘critical’ eigenspace, the
modes b will not be represented in the form b(a), as in a center, center-unstable or inertial
manifold reduction, since they derive from dynamics that are largely supported outside the
model domain, or that involve length scales exceeding those of the model.

The latter approach has been successfully implemented and extensively studied in the last
decade or so, particularly in the context of fluids [1, 10]. One identifies coherent structures

� Current address: Department of Mathematics, University of Michigan, 2072 East Hall, 525 East University
Avenue, Ann Arbor, MI 48109, U.S.A. (E-mail: ralf@math.lsa.umich.edu).



112 R. W. Wittenberg and P. Holmes

via the POD (or Karhunen–Loève decomposition), performs a Galerkin projection of the
governing Navier–Stokes equations onto the most energetic modes, and models the neglected
modes to obtain a closed model capturing the essential dynamics.

In this paper, we investigate the construction of low-dimensional spatially localized models
to understand spatiotemporally complex dynamics in a particular system. Our approach, while
motivated by and related to the above-mentioned fluid studies, is novel and involves the use
of wavelets for the study of PDEs and extended dynamical systems, exploiting them to extract
localized models in space and scale. Our model problem is the one-dimensional Kuramoto–
Sivashinsky (KS) equation,

ut + uxxxx + uxx + uux = 0, x ∈ [0, L], (2)

where ut = ∂u/∂t , ux = ∂u/∂x, and after rescaling the only control parameter is the system
length L; we assume periodic boundary conditions and set the (conserved) spatial mean to
zero. For future reference, we rewrite the KS equation in the symbolic form

ut = Lu + uDu, (3)

where L = −∂4
x − ∂2

x , and D = −∂x . For remarks on the derivation and applications of the
KS equation, see, for instance, [22].

In (2), the uxx term is responsible for energy production, destabilizing large scales, while
the uxxxx term strongly damps small scales, and the uux term stabilizes by nonlinear cou-
pling, transferring energy between large and small scales. From the evolution equation for the
Fourier modes ûq (where the Fourier representation is defined by u(x, t) = ∑

q ûq(t) exp(iqx),
q = 2πn/L, n ∈ Z), it is readily apparent that the number of linearly unstable Fourier modes
is proportional to the system length L. The effect of nonlinear coupling between excited and
damped modes is to yield complicated dynamics, with an intricate bifurcation sequence as
L increases, and for large enough L, extensive ‘spatiotemporal chaos’ (STC) with a positive
density of positive Lyapunov exponents. Consequently, this system is popularly studied as
a prototype of complex spatiotemporal dynamics in a partial differential equation (PDE),
as visualization of the solutions of this equation in the STC regime (see Figure 1) suggests
the presence of structures having characteristic space and time scales, and localized ‘events’
resembling short-L solutions. This motivates the search for localized models to represent the
evolution and interactions of the coherent structures.

Due to the periodic boundary conditions, the POD approach [10] does not yield local-
ized modes, as the POD eigenmodes for such a translationally invariant system are Fourier
modes. This observation led to the proposal of localization via wavelet-based models [3, 6].
In previous work [22], we showed how a projection onto wavelet modes captured the space
and scale localization of the dynamics remarkably well, and we obtained a characterization
of the dynamics in terms of these modes. In the present paper, after reviewing those results
in Section 2, we show how wavelets permit the extraction of relatively low-dimensional local
models which capture the essentials of the complex dynamics. We emphasize that in contrast
to the usual POD paradigm for extracting coherent structures, the wavelet modes are not
intended to reproduce the typical shapes of the structures; rather, we use them to isolate
features that are localized in both physical and Fourier space. This notion differs from that
of spatially localized modes (Anderson localization) discussed in other papers in this issue:
for us wavelets provide ‘windowing’ tools to examine local properties of solutions which are
statistically homogeneous and spatially distributed.
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Figure 1. Gray-scale representation of the evolution of a solution of the KS equation (2) on the spatiotemporally
chaotic attractor, showing typical local ‘events’, the interactions of coherent structures at a characteristic scale.
Lighter shading indicates local maxima, darker shows minima, and the shading interpolates between extreme
values of white at u = +3.5 and black at u = −3.5.

Figure 2. Power spectrum S(q), compared to the energy per individual wavelet at each level j (horizontal lines).
The wavelet distribution is plotted with the center and range of 99% of the support in Fourier space. From [22].

2. Characterization of Spatiotemporally Chaotic KS Dynamics

Spatiotemporal chaos (STC) in the KS equation has been extensively characterized and re-
ported in the literature; see, for instance, [11, 17, 22], and the review in [20] (particularly
chapters 1 and 4), which contains many additional details and references. Of particular impor-
tance in understanding the qualitative dynamics in the extensively chaotic regime is the power
spectrum S(q), or mean energy per Fourier mode, shown in Figure 2 [16, 19]. Here the power
spectrum is defined in terms of the Fourier modes ûq by S(q) = L〈û−q ûq〉, and by invoking
ergodicity, we replace ensemble averages 〈·〉 on the attractor by time averages along a single
solution trajectory.

The shape of the power spectrum reveals three characteristic regimes of the overall dynam-
ics at different scales. The spectrum is almost flat in the large scale (low-q) region, reminiscent
of a thermodynamically equilibrated regime with equipartition of energy. The active scales
contain most of the energy, and have a pronounced peak for q = qm near the most linearly
unstable mode, qm ≈ q0 = 1/

√
2; that is, the local interactions occur at length scales near

lm = 2π/qm ≈ 2π
√

2. There is exponential decay of energy due to strong dissipation at the
small scales.
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2.1. THE WAVELET DECOMPOSITION

Fourier-based properties such as the power spectrum are continuous in q, giving no separation
of scales; we may wish to group ranges of Fourier modes to separate and distinguish between
characteristic features of the dynamics at different scales. Furthermore, the Fourier represen-
tation is unable to capture any properties that arise from spatial localization, as each Fourier
basis function is uniformly supported on the entire domain. This motivates the use of a basis
localized in space and scale to detect dynamic features largely due to concentrated events
at characteristic length scales, and wavelets are well suited to this purpose [22]. Following
[3, 6, 7] we use a set of functions {ψj k}, symmetric about their centers xj k = L2−j (k + 1/2),
indexed by the scale, or wavelet level, j , with k denoting the horizontal position within the
level (by our choice of convention, j = 0 refers to the largest, or coarsest, scale, while
increasing j implies ‘zooming in’ to smaller, or finer, scales). It is frequently convenient to
visualize the set of wavelets in terms of a ‘wavelet pyramid’, with rows arranged in decreasing
order of scale (increasing j ), and horizontal location within each row representing the central
position xj k, as in the schematic cartoons of Figures 4, 5 and 8.

These wavelet functions {ψj k} form an orthonormal basis for zero mean, finite energy
periodic functions on [0, L] of periodized, m-th order spline wavelets [15], which are of
class Cm−2, have m − 1 vanishing moments, exponential decay in x, and algebraic decay
in q as |q| → 0 and |q| → ∞. In terms of this basis, in the following we use the wavelet
representation of the solution u(x, t) of the KS equation:

u(x, t) =
J∑

j=0

2j−1∑
k=0

aj k(t)ψj k(x) =
∑
α

aα(t)ψα(x). (4)

The KS equation in terms of the wavelet coefficients, obtained by Galerkin projection of the
governing equation (2) onto the decomposition (4), is then given by

d

dt
aα(t) =

∑
α′

lαα′aα′ +
∑
α′,α′′

nαα′α′′aα′aα′′, (5)

where

lαα′ = −
L∫

0

ψα (∂xxψα′ + ∂xxxxψα′) dx, nαα′α′′ = −
L∫

0

ψαψα′∂xψα′′ dx,

and α represents the multi-index (j, k). The time-dependent wavelet coefficients aj k(t) =
aα(t) satisfying (5) reveal the behavior of u(x, t) at scale or level j and position given by k.

The results in this paper on wavelet characterization and models for the KS equation are
all reported for L = 100, well within the STC regime. For other lengths, the results are
qualitatively similar, but the details depend on the interplay between wavelet and intrinsic
length scales, specifically, on the relation between the distance lj = L2−j between adjacent
wavelets at level j of the dyadic wavelet decomposition and the characteristic length of the
dynamics lm [20]. For L = 100, the peak of the energy spectrum is located in wavelet level
j = 4, as seen in Figure 2, which shows the energy per individual wavelet by comparison
with the Fourier power spectrum, and confirms that wavelets are well-localized in Fourier
space. On combining the energy distribution per wavelet with the number 2j of wavelets at
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Figure 3. Probability density functions for the wavelet coefficients at each level j = 0, . . . , 7, for L = 100. For
j = 0-3 and 6, a best-fit Gaussian distribution is superposed (dashed line); the logarithmic axis for j = 7 indicates
a near-exponential distribution. The figure for j = 0 also contains the PDF (dotted line) for a long-time simulation
of the stochastic model (7), which is nearly coincident with the PDF from the KS simulation.

level j , the fraction of energy per wavelet level may be computed, and allows us to clearly
distinguish between the levels with distinct behaviors. In fact, the active, energetic scales,
levels j = 3, 4 and 5, together account for over 95% of the total energy, with level 4 alone
containing about 71%. The large scales, levels 0, 1 and 2, contain under 5% of the total energy,
and the small scale levels j = 6, 7, . . . are strongly damped with less than 0.1% of the energy.
Inspection of time series and temporal correlations at the different levels indicates slow large-
scale dynamics, correlation times of the order of τ ≈ 10 for the active scales – comparable to
those of the system as a whole, and more rapid and intermittent behavior at the small scales.

2.2. PROBABILITY DISTRIBUTIONS OF WAVELET COEFFICIENTS

The most striking distinctions between the different scales and their dynamical significance
are displayed in Figure 3 by the probability distribution functions (PDFs) for different j , which
clearly show how the wavelet representation captures both scale and spatially localized infor-
mation. At large scales, the distributions are Gaussian, and the dynamics resemble slow noise.
This is consistent with the conjecture [23] that the large-scale dynamics may be described by
a noise-driven Burgers equation with a positive effective viscosity ν > 0,

ut = νuxx + λuux + f, (6)

where the stochastic forcing term may be interpreted as the derivative of Gaussian white noise.
In this picture, the (deterministically chaotic) active and small scales simulate the effect of a
random forcing on the large scales, as well as renormalizing the viscosity through nonlinear
coupling. The form of this effective equation is motivated by symmetry principles, and the
asymptotic validity of this description has been confirmed by several analytical and numerical
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studies [13, 18]; see [20, sec. 4.2.2]. The equation (6) has generated much interest since it
was shown [12] that its integral form, known as the KPZ equation, is the simplest equation
describing the kinetic roughening of growing interfaces with stochastic local dynamics [2, 8].

For modeling purposes, one can exploit the observed Gaussian dynamics of Figure 3 by
replacing the ‘noisy’ large scales with an autonomously generated stochastic process moti-
vated by the effective description (6). Computations [9, 18] of the parameters in (6) relevant
to the KS equation show that for lengths L less than several thousand, the λuux term is
asymptotically irrelevant to the scaling of solutions; so for the lengths we are interested in,
we may linearize (6) by setting λ = 0. Additionally, the forcing term f has finite correlation
time τf of order 10 [24], as expected since it is derived from the deterministic active and small
scales. This suggests a linear stochastic model in which we use (6) with λ = 0 in Fourier
space, and model the forcing with the simplest Langevin equation form that gives finite-time
(exponential) correlations in the long-time limit. Our stochastic description for a large-scale
Fourier mode v̂q driven by colored noise is thus

d

dt
v̂q = −νq2 v̂q + f̂q,

d

dt
f̂q = − 1

τf
f̂q + √

Df η̂q, (7)

where Df = Dq2/Lτ 2
f , and η̂q is zero-mean, unit-variance, Gaussian white noise, with covari-

ance 〈η̂q(t)η̂q ′(t ′)〉 = δq+q ′,0δ(t − t ′). An advantage of this description is that the parameters
in the effective forced Burgers description have all been determined for the KS equation, so
no fitting is required; we use the values D = 17.9, ν = 7.5 and τf = 7.0 quoted in [9].

In the limit of long times and large scales (q → 0), the spectra and correlations for
this modified Ornstein-Uhlenbeck process (Langevin equation with colored noise) agree with
theoretical predictions for the forced Burgers/KPZ model (6). With the values for D, ν and
τf given above, we have simulated our stochastic model (7), and found it to reproduce the
large-scale KS behavior extremely well, as shown in the PDF for level j = 0 in Figure 3
(our model is also appropriate for large-scale wavelets, since these are superpositions of few
Fourier modes). We shall use the model (7) in numerical experiments below.

At the energetic scales j = 3, 4 and 5, the wavelet coefficient PDFs are strikingly different
from any observed in the Fourier representation. The j = 3 level shows a distinct steepening
of the distribution relative to a Gaussian, while levels j = 4 and (to a slightly lesser extent)
j = 5 show strongly nonequilibrium PDFs, comparable to the distributions for pointwise
values of u [9]: a broad, triple-humped distribution, superposing a peak at 0 and a double-
humped peak reminiscent of cellular (sinusoidal-like) solutions. At these scales, the support
of the wavelets is comparable to the characteristic intrinsic wavelength lm of the dynamics,
and the wavelet coefficients appear to capture on average the spatially local structures and
events at the active scales.

The PDF for level j = 6 is again almost Gaussian; it is interesting that such an equilibrium
distribution should appear well within the dissipative range, and this property is incompletely
understood. At the smallest scales, j ≥ 7, the effects of strong dissipation are apparent, and
the wavelet coefficients display near-exponential PDFs reminiscent of those associated with
small-scale intermittency in turbulence: the small-scale coefficients remain near zero most of
the time, and undergo occasional excursions of relatively large amplitude driven by events at
larger scales, and associated with the passage of ‘coherent structures’, that is, peaks or troughs
of the field u.
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2.3. SPACE LOCALIZATION

Visual inspection of the collision and birth of peaks prevalent throughout the STC regime, as
in Figure 1, suggests that the interactions of coherent structures are spatially localized [22].
Computation of characteristic lengths, such as those associated with the exponential decay
of the two-point correlation function or the mutual information, confirms that sufficiently
distant spatial locations are statistically independent; comparison of the bulk KS dynamics
in the presence of changing boundary conditions also indicates the absence of significant
interactions beyond a certain distance.

In [22] we presented an alternative, stronger view of spatial localization, showing with the
aid of the wavelet Galerkin form of the KS equation (5) that l̄c ≈ 25 is a good estimate of an
dynamical interaction distance, capturing the localization of instantaneous coupling between
modes instead merely of statistical averages on the attractor. Specifically, we observed that the
Galerkin coefficients lαα′ in (5) describe the coupling between wavelets ψα and ψα′ separated
by a distance dαα′ = |xα − xα′ |, and decay due to the spatial exponential decay of ψ(x); sim-
ilarly for nαα′α′′ . This allows us to manipulate the dynamics, eliminating all coupling beyond
an interaction distance lc by setting lαα′ = 0 when dαα′ > lc, and similarly for the nonlinear
term. A range of experiments with varying lc showed that for large enough lc, we recover the
essential KS dynamics, while decreasing lc, cutting more and more interactions, significantly
alters the dynamics, causing departures from typical events, space and time scales, inducing
shifts in the energy distributions to larger scales, and frequent divergence and blowup of the
temporal evolution due to disruption of the energy dissipation mechanisms. This led us to
estimate a typical dynamical interaction length l̄c ≈ 25, beyond which cutting interactions
significantly disrupts the KS dynamics, and suggested that in low-dimensional ‘short’ models
for the observed spatiotemporally complex behavior as described in Section 3 below, wavelets
should be coupled, either to other modes or to external forcing, up to at least a distance ∼ l̄c,
to ensure sufficient interactions.

2.4. SCALE-BY-SCALE STRUCTURE OF THE DYNAMICS

Whereas the above statistical results indicate how wavelet spectra and PDFs can discrim-
inate between averaged contributions of different scales, we may also use wavelets as an
experimental tool to discern the detailed dynamical significance of different wavelet levels
to the overall spatiotemporally complex dynamics; the ensuing insights will form a further
ingredient for our construction of local models.

In principle, our experiments here and in Section 3 focus on the evolution of a set of internal
modes of our model, {aα}, α ∈ B, where B is a subset of the complete set A of wavelet indices;
for the experiments of this section, B contains complete wavelet levels, whereas the models of
Section 3 use a spatially localized subset, or ‘box’, of wavelet modes. These internal modes
are forced by the external modes {bα′ }, α′ �∈ B, so that the aα satisfy

d

dt
aα =

∑
α′∈B

lαα′aα′ +
∑
α′ �∈B

lαα′bα′ +
∑

α′,α′′∈B

nαα′α′′aα′aα′′

+
∑

α′∈B, α′′ �∈B

(nαα′α′′ + nαα′′α′)aα′bα′′ +
∑

α′,α′′ �∈B

nαα′α′′bα′bα′′, α ∈ B. (8)

In practice, this formulation is equivalent to overwriting modal coefficients at each time
step, and this is the method we use for our experiments. Specifically, we integrate the full
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Figure 4. Schematic representation of Section 2.4, in which the interactions of complete wavelet levels and their
contributions to the overall dynamics are investigated, particularly the influence of large scales on the active scale
modes.

KS equation for the wavelet modes {aα} = {aj k} using a wavelet pseudospectral solver. We
can then, say, eliminate wavelet level j by setting all the modes bj k′ at that level to zero
after each time step; alternatively, we can force at particular modes by replacing them with
values computed from independent KS integrations, in which case the {bα′ } satisfy (5), or
via an autonomous model of some kind for the {bα′ } (see [4] for a similar approach to the
investigation of two-dimensional Navier–Stokes dynamics). By successively eliminating or
driving different levels or combinations of levels, we deduce their respective contributions to
the spatiotemporally chaotic dynamics, as suggested in the cartoon of Figure 4; in Section 3
we use a similar approach to driving a local set of modes to evaluate various localized models.

From the results of numerous such experiments for L = 100, described in [22] and more
fully in [20], we find that the smallest scales, j ≥ 6, are essentially irrelevant to the dynam-
ics, being slaved to the larger scales, and may be eliminated at little cost except to detailed
tracking. The most active, energetic scales j = 4 and 5 are crucial for both the characteristic
spatial structure and the energy transfer mechanism, and must be included as internal modes
in any model. Experiments in which some or all of the large-scale levels j = 0–2 are ‘turned
off’, demonstrate that these scales contribute the noisy excitation that prevents the system
from settling down in a cellular state and maintains the spatiotemporal disorder, though no
one of these levels itself is vital to this purpose. Indeed, the large scales can drive the active
scales even in the absence of intermediate levels, indicating that nonlocal energy transfer
occurs. Level j = 3, intermediate between the large and most active scales, appears to play
a major role in sustaining the typical ‘events’, the interactions of coherent structures through
the creation and annihilation of defects.

In an autonomous model for a well-chosen subset of the total set of modes of the KS
equation, we shall need to model neglected modes with external forcing terms. It is important
to know how much freedom we have in this choice: how faithful does the forcing need to be
to the ‘true’ behavior to induce qualitatively and, if possible, quantitatively correct dynamics?
Answers to this question yield much information on the essential ingredients of the complex
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dynamics, and the robustness of the STC state. In view of spatial translational invariance and
the strong scale-dependence of the behavior of the wavelet modes, as before we investigate
the effects of forcing on a scale-by-scale basis [20, ch. 5].

As we observed from eliminating individual levels, forcing at levels j ≥ 6 has negligible
effect on the large- and active-scale dynamics, there being little back-propagation of energy;
consequently, these small-scale levels will typically be neglected in the models of Section 3.
In contrast, driving at or manipulating the most energetic levels j = 4 and/or 5, even with
correct statistics obtained from an independent integration of the KS equation, sufficiently
destroys the essential phase relationships and energy transfer mechanisms to lead to finite-
time blowup. At the large-scale levels there is more flexibility, and driving them from an
independent KS run certainly yields the ‘correct’ dynamics and statistics. In fact, we may
go further: We have already observed in Section 2.2 that the statistics at the large scales
are Gaussian, and may be well-simulated by an autonomously generated linear stochastic
process. However, the KS equation is completely deterministic, and we might conceivably
expect its characteristic dynamics to depend on correlations between large- and active-scale
modes. We have tested this by letting the modes at wavelet levels 0, 1 and 2 each be driven
independently by the stochastic process (7), the remaining levels undergoing KS dynamics;
the resulting evolution is visually and statistically remarkably close to that of the full KS
equation [20]. That is, purely stochastic large-scale evolutions appear to have the same effect
as their deterministically derived counterparts in the way they drive chaotic dynamics at the
active scales: the dynamical contributions of the large scales in the KS equation are essentially
random. As a consequence, in a short model for the spatiotemporally complex dynamics, it is
sufficient to use the simple linear random process (7) to simulate the effect of the noisy large
scales which are present in a long system, thereby providing the ‘heat bath’ which keeps the
system ‘alive’ and away from a simple equilibrium.

An interesting test of robustness, relevant to our modeling, is the extent of variation in the
large-scale driving tolerated by the dynamics. It turns out that variations in the rate of large-
scale forcing have little effect on the active-scale dynamics, which compensate for excessively
rapid or slow forcing and respond at their intrinsic time scales. This is unsurprising if indeed,
as is suggested by other experiments reported above, the sole purpose of the large scales is to
provide Gaussian excitation, for then altering large-scale time scales merely varies the rate at
which the Gaussian distribution is sampled.

On the other hand, the dynamics are sensitive to the driving amplitudes: excessive energy
at the large scales induces rapidly traveling structures and shock-like features. Such behavior
may be interpreted, at least qualitatively, by the observation that from the perspective of the
active levels, high large-scale energy has the effect of changing the local mean, which by the
Galilean invariance of the KS equation (2) is equivalent to imposing a drift. The traveling
and shock solutions are also reminiscent of those observed in a destabilized version of the
KS equation [21], in which the linear dispersion relation is shifted up uniformly through an
additional (ε2 − 1)u term, ε > 1, on the right-hand side of (2). For the purposes of modeling,
it is thus necessary to take more care in simulating the amplitudes than the time scales of the
neglected modes.
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Figure 5. Simplified ‘cartoon’ representation of our approach to extracting externally forced models for a spatially
localized subsystem of the full system, as in Section 3.1.

3. Spatially Localized Models

We now combine the above ingredients into the construction of localized models for spatio-
temporally chaotic dynamics. We have shown that the dynamics are localized in space and
strongly scale-dependent, and that the well-localized wavelet modes enable a good charac-
terization of the KS dynamics and a detailed understanding of the relevant contributions of
respective wavelet levels. As previously discussed, we wish to critically examine the idea of
a large, extensively chaotic system in the ‘thermodynamic limit’ being composed of smaller,
weakly interacting subsystems of relatively low dimension, by the explicit construction of
such candidate spatially localized subsystems. This motivates us to extract a ‘box’ of internal
wavelet modes {aα} evolving according to (8), using the results on the scale-by-scale structure
to choose appropriate external forcing {bα′ }.

As depicted schematically in Figure 5, for our localized model we extract a subset B of
the full wavelet hierarchy, of wavelets centered on a domain of length L̄ = 2−j0L; typically
we use j0 = 2 for a full L = 100 system, to yield short systems of length L̄ = 25. With
this choice of lengths, we may exploit the results of the previous sections and of [22] on the
separation of scales and contribution of different wavelet levels to the L = 100 KS dynamics,
which carry over to multiples of L by powers of two. We choose these parameters for various
reasons:

• We know that l̄c ≈ 25 is a good estimate for a characteristic dynamic interaction length,
so L̄ = 25 seems a reasonable length for a localized model.

• Larger L̄ implies more complex internal dynamics, and requires a higher-dimensional
model; for large enough L̄, no external forcing is needed to obtain spatiotemporally com-
plex dynamics, rendering the modeling redundant. In contrast, for the range L̄ ∈ [20, 30],
various types of ‘simple’ attractors exist for the KS equation, including fixed points,
standing and traveling waves and heteroclinic cycles [11].

• For given L̄, a larger ‘full system’ length L just adds more large-scale levels, providing
slow Gaussian forcing, and contains additional boxes which do not significantly interact
with the subsystem we are interested in, being separated from it by a distance greater
than l̄c.
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(a) (b)

(c) (d)

Figure 6. Local, nonperiodized model for the modes in the box of Figure 5. (a) No external forcing implies rigid
dynamics; the t = 150 cross-section is shown in (c). (b) Forcing at external modes at levels j = 0–5 leads to
excessive amplitudes and boundary effects, as in the t = 150 cross-section shown in (d).

3.1. LOCALIZED, NONPERIODIC MODELS WITH FORCING

In the full KS equation, each local ‘box’ of wavelet modes interacts with its neighbors and with
the large scales, which act as external forcing; and, provided the system size is sufficiently
large, the dynamics are locally unaware of the global periodicity, the bulk dynamics being
independent of boundary conditions. Thus it may seem reasonable to seek models in which
the local box is forced from the large scales and external adjacent modes, without imposing
the constraint of periodicity, as schematically portrayed in Figure 5. One would expect that
success would depend on feeding in the ‘correct’ statistics for the active scale external modes,
as described above [22]. It turns out, however, that in such models, the translational symmetry
of the KS dynamics is broken too drastically, leading to atypical dynamics, as previously
observed in preliminary unpublished experiments of J. Elezgaray (referred to in [14]).

In these experiments, the modes {aα} inside the chosen ‘box’ are evolving within the local-
ized, forced model, being driven by the outside modes {bα′ } according to (8). Our experimental
procedure is described in Section 2.4, and in more detail in [20]; in summary, we integrate a
full KS equation for the complete hierarchy of wavelet modes, and at each time step, all the
modes outside the short box are either set to zero, or overwritten by values obtained from an
independent full KS integration running simultaneously.

Figure 6 shows some representative results. In Figure 6a, the modes inside the box, rooted
at wavelet level 2, evolve in the absence of any forcing: bα′ = 0, α′ �∈ B. Such a system rapidly
settles down to a steady state, with fixed peaks, as seen in the t = 150 cross-section in (c). In
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the absence of both forcing and periodic boundary conditions, therefore, this 15-dimensional
dynamical system (containing wavelet levels j = 2–5) remains rigid.

The opposite extreme is shown in Figure 6b, in which the box B is driven at all large- and
active-scale external modes α′ �∈ B with time series bα′(t) obtained from a full independent
KS integration (5). The forcing terms thus automatically have the ‘correct’ statistics at the
different levels (note that the figure is reconstructed on L = 100 from both the internal modes
of the model and the forcing terms). The large amplitudes (particularly at the boundaries of
the box) and rapid fronts apparent in Figure 6b, and in the t = 150 cross-section in (d), are
due to the disruption of the normal feedback mechanisms, so that wavelet coefficients may
grow abnormally before they decay. Specifically, the evolution (5) of the external modes bα′ ,
which provide the driving time series, is independent of the modes aα within the box, so that
they cannot provide the ‘correct’ compensation for growth in the internal modes, sometimes
serving rather to reinforce unusually large amplitudes (relative to those observed in a full KS
run such as that of Figure 1).

The origin of the difficulties may be traced to the fact that the set B of modes internal to
the model includes ones that are (sufficiently) linearly unstable and autonomously excited,
instead of being slaved to the forcing. Consider the evolution of the differences dα = aα − bα
between internal modes aα evolving according to (8), and corresponding driving coefficients
bα satisfying (5): the dα obey the equation

ḋα =
∑
α′∈B

lαα′dα′ +
∑

α′,α′′∈B

nαα′α′′(dα′bα′′ + dα′′bα′ + dα′dα′′)

+
∑

α′∈B, α′′ �∈B

(nαα′α′′ + nαα′′α′)dα′bα′′, (9)

which may be rewritten as

ḋα =
∑
α′∈B

[lαα′ + gαα′(t)]dα′ − 1
2

∑
α′,α′′∈B

nα′α′′αdα′dα′′ . (10)

Here we have used the identity nα′α′′α = −nαα′α′′ − nαα′′α′ [14], and defined the parametric
driving term gαα′(t) = −∑

α′′ nα′α′′αbα′′(t), which has vanishing mean since all the bα′′ have
zero time average (see Figure 3).

If only a single internal mode α is driven by all others, then the nonlinear term in (10)
vanishes (since nααα = 0) and the difference dα grows or decays exponentially, on average,
depending on the sign of lαα, that is, according to the linear stability or instability of mode α.
That is, a model in which a single large-scale mode is driven by all others, will blow up, while
a small-scale (high-j ) mode will be synchronized to the control run.

In the general case in which B contains more than one element, the nonlinear term in
(10) conserves energy, but transfers it among the internal modes, and the situation is more
complicated; stability and instability depend on the operator Aαα′(t) = lαα′+gαα′(t). However,
we expect that if the internal modes are (sufficiently) linearly unstable, with all the stable
modes participating in the driving, then Aαα′(t) is, on average, positive definite, and the model
energy grows exponentially. Conversely, if all large-scale modes are involved in the driving,
and the internal modes α ∈ B are all linearly stable, then lαα′ (and thus, on average, Aαα′(t))
is negative definite, the difference decays, and tracking to the control run occurs: sufficiently
many low modes uniquely determine the asymptotic dynamics, as small scales are slaved to
large scales – in fact this can be shown rigorously under slightly stronger conditions [20].
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More generally, if the ‘box’ contains some linearly unstable and some stable modes, then
energy transfer from large to small scales prevents blow-up of the model. However, the pos-
sibility of tracking, that is, dα → 0 for α ∈ B, depends on the linear part of (10), that is,
on Aαα′(t). We expect, from (10), that the presence of (sufficiently) unstable modes among
the set B of internal modes implies positive eigenvalues of Aαα′(t), and hence, instability of
the synchronized state {dα = 0}. Our experience is that (for L = 100) any modes at wavelet
levels j ≤ 3 satisfy the requirements for instability; the situation for j = 4 is less clear.
Thus, in models of the form of Figure 5, the modes aα, α ∈ B in the box fail to synchronize
to the behavior of the corresponding modes bα satisfying the full KS equation. For more
discussion, and results of numerical experiments confirming all the above scenarios, see [20,
secs. 5.3, 6.1].

These results and simulations such as that of Figure 6b pose a serious problem for the
construction of non-periodized, externally forced local models: since undesirable results in-
cluding excessive amplitudes occur even if the forcing is from a full KS integration – that is,
the driving necessarily has all the ‘correct’ statistical properties – we can hardly expect better
results from more simplified types of external random fluctuation. The problem of excessive
growth seems destined to occur whenever our model is able to support its own dynamics by
containing unstable modes. Consequently, these conclusions do not necessarily depend on our
wavelet formulation, or even on the KS equation; they may apply more generally to driving
and synchronization of a localized model through boundary forcing.

Numerous other experiments including various types of external forcing – for instance,
forcing only at certain wavelet levels, or only from a ‘halo’ of nearest neighboring active-
scale modes – essentially confirm the above observations. We find in general that for models
of the type depicted in Figure 5, one of two possibilities occurs, broadly corresponding to the
two extreme cases of Figures 6a and 6b:

• The first case occurs when the excitation of the internal modes is weak; for instance, when
it arises from the large scales, or is due only to a few external modes, as in Figure 7a,
in which the modes in the box are forced only at level j = 3. In this case, the model
dynamics are rigid; there may be a fluctuating peak in the interior, undergoing some
typical ‘events’, but peaks at the boundaries of the model are stationary and excessively
constrain the internal dynamics.

• In the second scenario, the internal modes are influenced more strongly by exterior
modes, usually when forcing is at the active-scale levels j = 4 and/or 5, such as in
Figure 7b. In this situation, more realistic dynamics can occur, including motion of the
peaks; but there are mismatches at the boundaries and large-scale internal modes tend
to be excited excessively due to failure of the standard damping mechanisms, leading to
large amplitudes, high local means and rapid fronts.

In some experiments, the conditions for both these anomalies are satisfied, leading to even
more disrupted model dynamics. The effect of breaking the translational symmetry, so that the
modes at the edges of the box are essentially inequivalent to those in the center, is too drastic,
and such local models, it appears, cannot reproduce the spatiotemporally complex dynamics
typically observed in the KS equation. Another difficulty with such externally forced models
is that, while they may be readily investigated numerically, they appear too complicated to be
analytically tractable.
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(a) (b)

Figure 7. Nonperiodized model, with modes in the distinguished box forced from the active scales of an
independent control run at (a) level j = 3, (b) levels j = 4 and 5.

Figure 8. Schematic representation of periodized models of a short subsystem, forced from the largest-scale
external and/or internal modes, as in Sections 3.2 and 3.3.

3.2. PERIODIZED MODELS WITH APERIODIC FORCING

In the light of the above-mentioned difficulties, we have investigated another class of models,
in which active-scale interactions are restored by periodizing. A motivation for imposing
periodic boundary conditions is to replace the influence of missing adjacent ‘external’ modes
by distant ‘internal’ modes [3], with the advantage of eliminating the drastic inequivalence
between internal modes at the center and boundaries of the model, and thereby better approx-
imating the infinitesimal translation symmetry of the KS equation (Fourier-based models of
short periodic systems, which preserve the translation invariance, have been studied in [5]).

As before, we include a caricature of this approach in Figure 8. In practice, numerical
experiments with such models are performed by selecting a ‘distinguished box’ of length
L̄ = 2−j0L, and at each time step, setting wavelet coefficients in all adjacent boxes to the
corresponding values in the distinguished box (where the centers of ‘corresponding’ wavelets
are separated by a multiple of L̄). That is, essentially we only evolve the modes within the
distinguished box, subject to large-scale forcing from wavelet levels j < j0.
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Figure 9. Periodized model, forced by levels j = 0 and 1 of an independent KS integration.

The theoretical basis and a consistent notation and formalism for such models, analogous to
(8), are introduced in chapter 3 of [20], which also includes the straightforward demonstration
that, in the absence of any large-scale forcing at j < j0, a length L system periodized from
level j0 is exactly equivalent to an L̄-periodic KS equation. In particular, for L = 100, L̄ = 25,
without the largest wavelet levels the periodized model rapidly converges to a trimodal cellular
state, known to be the attractor for L̄ = 25 [11]. If we retain levels j < j0, however, such
models provide a systematic approach to interpreting a smaller periodic system as a subsystem
of a larger one, by retaining an influence of large scales as driving inputs to short periodic
boxes.

We may also write evolution equations for the internal modes in the box, interpreting
them as wavelet coefficients for a basis periodized on a domain of length L̄. However, the
Galerkin evolution equations are not particularly tractable, containing 2j0 − 1 forcing terms in
the equation for each mode. Furthermore, the large-scale forcing term is not L̄-periodic, and
hence acts differently on the different boxes, as is apparent from the representation of Figure 8.
Consequently, an initially L̄-periodic system will not remain periodic, unless constrained to
be so. This is achieved in our simulations by choosing a distinguished box a priori, and after
each time step overwriting the coefficients in the other boxes by those in the distinguished
box, as described above.

A typical experiment of this kind is shown in Figure 9, in which we force from levels
j = 0 and 1. We note that the large-scale driving (which is essentially equivalent to Gaussian
noise) maintains the periodized subsystem away from the steady state; and that local ‘events’
reminiscent of those in STC, such as traveling structures and creation and collision of peaks,
occur persistently. That is, the large-scale forcing keeps the system ‘alive’. However, visual
inspection indicates that the dynamics of this system are rather unusual, a conclusion sup-
ported by comparison of long-time statistical calculations of the model power spectrum and
distributions at different wavelet levels with Figures 2 and 3. The inconsistencies may be
related to occasional anomalous large-amplitude shock-like events, observed for instance near
t = 225 of Figure 9, which are associated with excessive energy at the largest internal scales
of the model, similar to those previously seen when forcing excessively at the large scales.

While localized periodic models with aperiodic large-scale forcing may seem natural to
capture the effect of the large-scale modes on the active scales, and do appear to reproduce
some of the typical KS events, the presence of atypical structures and shocks due to the
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asymmetry of the forcing term indicates that this type of model is inadequate. L̄-periodic
forcing leads to a more tractable model, and we now turn to this.

3.3. PERIODIZED MODELS WITH PERIODIC FORCING

We avoid the problems due to aperiodicity, described in Sections 3.1 and 3.2, by averaging the
large-scale forcing terms in space, to render them L̄-periodic. In practice, this is equivalent
to averaging corresponding wavelet coefficients over the boxes, after performing a time step
with aperiodic driving; and this latter method is the one we have used for our numerical
experiments.

Since all wavelets and driving terms in this model are now L̄-periodic, it is possible to write
an effective PDE for the solution inside a box such as one of those in Figure 8; the existence of
such a relatively simple formulation is a major reason for preferring such periodized models.
By writing out explicitly the wavelet Galerkin formulation of the KS equation, considering the
evolution of modes within the box subject to periodicity and large-scale periodic forcing, and
then ‘inverting’ the Galerkin procedure, one finds that the solution ū(x, t) on the box satisfies
a KS equation with external forcing (compare (3)),

ūt = Lū + ūD ū + D(ūv̄) + Lv̄ + w̄, (11)

with L̄-periodic boundary conditions [20, sec. 3.3]. Here it turns out that v̄ = 0, since it is the
projection of the large-scale modes j < j0 onto the scales j ≥ j0: the periodization removes
linear and parametric influences of large scales. Similarly, w̄ is the projection of the nonlinear
term reconstructed from the large scales, onto the small scales. This does not vanish in general
(since the subspaces in a multiresolution analysis are not closed under multiplication and dif-
ferentiation), but there are some special cancellations for symmetric wavelets. This procedure
thus yields an effective PDE for a short system, subject to weak averaged forcing w̄ from the
large scales:

ūt = Lū + ūD ū + w̄. (12)

We have performed experiments for L = 100 (L̄ = 25) with such forcing, in which
the driving from levels j = 0 and 1 is derived from an independent KS integration (see
Figure 10a). The atypical dynamics and excessive amplitudes which were prevalent in the
aperiodic models have disappeared under periodization, but the large-scale forcing w̄, while
nonzero, appears too weak under the averaging to sustain complex spatiotemporal activity. In
related experiments with sinusoidal or other forcing at the large scales, the system also settled
down to a steady cellular state.

The formulation (12) for a short local system modeling a subsystem of a larger spatiotem-
porally complex system, while showing promise for analytical investigation, appears to be
unsuccessful in numerical experiments, at least for the parameter values we have investigated;
the periodization seems to eliminate too much of the desirable driving. However, we can use
the ideas leading to (11) and (12) to suggest extensions of the model, in which the forcing is
periodic and thus does not incur the undesirable effects of symmetry-breaking, but there is still
a strong direct influence on the active scale modes. One possibility is to introduce a nonzero
function v̄ into (11), to simulate the effects of parametric and linear large-scale driving; this
may be a promising avenue for future exploration. An alternative, which we explore briefly
here, is to simulate the driving effect of the large Gaussian scales on the box, much of which
is lost by periodization, by explicitly driving the largest-scale internal modes.
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(a) (b)

Figure 10. Periodized model with periodized forcing from an independent KS integration, driving at (a) levels
j = 0 and 1; (b) levels j = 0 and 1, and forcing the lowest internal mode at j = 2.

Figure 10b shows the result of an experiment with L̄-periodic forcing in which, in addition
to driving at levels j = 0 and 1 via the averaged w̄, the lowest internal mode at j = 2 is
also driven from an independent KS integration. The dynamics over most of the time interval
shown (apart from those times at which the level 2 forcing is unusually small) look remarkably
like those of the full KS equation; this is confirmed by long-time statistical calculations of
spectra and PDFs. By comparison with Figure 10a, it is apparent that the j = 2 excitation has
by far the strongest effect, the periodized forcing from levels 0 and 1 exerting little influence
on the complex dynamics. It is thus reasonable to ask whether the external forcing w̄ from
j = 0 and 1 is necessary at all; what happens if we just drive at level 2? Simulations confirm
that, unsurprisingly, driving the periodized model at level j = 2 with a time series taken from
the control run is sufficient to maintain complex dynamics and good statistics. Forcing at only
the lowest internal mode of a periodized subsystem captures the effect of the large scales on
the short local model.

3.4. SHORT MODELS WITH SPATIOTEMPORALLY COMPLEX DYNAMICS

It is now readily apparent that this short periodized model, in the absence of the large-scale
term w̄, is exactly a full KS equation (2) on a short L̄-periodic domain, in which the lowest
level is externally specified. This motivates us to propose an autonomous ‘minimal model’:
small L-periodic KS systems with forcing (where we now use L rather than L̄ to emphasize
that these are not necessarily subsystems of larger systems). Within this framework, a wide
range of experiments is possible, encompassing driving with different amplitudes, time scales
and temporal characteristics, as well as variations in the length of the domain (implying
differing elementary attractors in the absence of forcing). In the present study, we present
the results of only a few such simulations, to demonstrate that such short systems with forcing
form a reasonable model for STC in the KS equation.

Our construction of the minimal model for a short box, driven at its largest scale, is
confirmed by some of our previous conclusions:
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(a) (b)

(c) (d)

Figure 11. Short systems for a range of L, randomly driven at their lowest wavelet level by a suitably chosen
colored Gaussian process: (a) L = 20, (b) L = 21, (c) L = 25, (d) L = 30.

• Within the STC regime, the dynamics are spatially localized, but interactions up to a
length l ∼ l̄c ≈ 25 are dynamically relevant.

• The typical interactions of coherent structures occur at the active scale levels, but the
large scales provide the excitation essential to sustain the complex spatiotemporal dy-
namics.

• The strength of the large-scale driving plays an important role; forcing that is too weak
may lead to collapse into a cellular state, while unduly powerful driving leads to large
amplitudes and rapidly traveling peaks, or even to a shock-like solution.

• The temporal structure and correlation time of the driving has a relatively small influence.
• To avoid excessive growth, the forcing should be spatially L-periodic; but it should

be sufficiently strong at the largest scales within the model to drive the characteristic
spatiotemporal behavior.

We have performed numerical simulations on short boxes of a range of lengths, in which
the excitation of the largest-scale internal mode is derived from the autonomous stochastic
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(a)

(b)

(c)

(d)

Figure 12. Comparison of statistics for L = 25 model driven by colored Gaussian noise at the lowest wavelet
level (solid lines), with statistics of full KS equation on L = 100 (dashed lines): (a) power spectra (see Figure 2);
(b) PDF of pointwise values of the field u; (c) PDF of wavelet level j = 2 of model, compared with j = 4 for the
L = 100 full system; and (d) model j = 3 PDF, compared with full j = 5 PDF (compare Figure 3).

process (7) (Langevin equation with colored noise); as described previously, this form is
motivated by the effective forced Burgers equation description of the large-scale dynamics
and the fact that this colored Gaussian noise model effectively simulates the statistics and
dynamical effects of the large scales.

Figure 11 shows some representative results. It appears from (a) for L = 20 that if L
is too short, the system is too highly constrained to generate the typical events necessary
for STC, and settles into an apparent heteroclinic cycle; this is consistent with the existence
of a characteristic dynamical interaction length l̄c. However, the systems with L ≥ 21 all
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display sustained chaotic behavior closely reminiscent of the STC state for long KS systems,
as borne out by a comparison of the statistics between the L = 25 model of Figure 11c and
the full KS equation of Figure 1, some of which are shown in Figure 12. Note however that
by comparison with the full system, the PDFs of u in (b), and of the level 2 wavelets in (c),
display a trend towards a cellular state, evidenced by broader distributions, with the model
spending more time at large amplitudes; this effect is readily understood by recalling that an
unforced L = 25 system tends to the attracting cellular state, so that the driven model will
temporarily approach such a state over time intervals during which the stochastic forcing has
small amplitude.

It is interesting to note that similar results are obtained if the autonomous forcing at the
lowest wavelet level is chosen to be deterministic, sinusoidal in time: the qualitative dynamics
resemble those typical for STC in a large KS system almost as often, for a range of L, as in
the case of random forcing; and (because the sinusoidal driving does not linger near zero for
extended intervals) some of the statistics appear to be even closer to those of the full system
than those shown in Figures 12b and 12c. This suggests that the Gaussian statistics at the large
scales, and the temporal characteristics of the colored noise process, are inessential to drive
active-scale chaotic dynamics. Thus it seems that both deterministic and stochastic forcing at
the lowest wavelet level of a short KS system are capable of driving the system sufficiently
that it generates complex dynamics similar to those observed in the large-L thermodynamic
limit. Such a relatively low-dimensional model of a short system with large scales forced with
externally generated processes appears to qualify as a ‘minimal box’ containing the ingredi-
ents for STC in the KS equation, and we are continuing to study such systems to explore the
origins and nature of spatiotemporal chaos.

4. Conclusion

The wavelet decomposition has given us insight into the localization of KS dynamics in space
and scale. Motivated by these results, we have proposed and investigated various wavelet-
based models for short, forced subsystems of an extended spatiotemporally complex system.
A major conclusion is that the relevant symmetries, implied by periodic boundary conditions,
are essential both in the system and in the forcing, to avoid excessive amplitudes and atypical
events. Within the context of periodized subsystems with periodic forcing, driven also at the
largest-scale internal modes, we have discovered model systems that appear to emulate the
STC of the full KS equation.

We deduce that short, driven systems, provided they have length at least of order of the
dynamical interaction length, can sustain spatiotemporal complexity. In this view, the attractor
for the appropriately forced short systems is in some sense similar to that in the extensive limit.
We postulate an, as yet purely heuristic, description for this idea that the large system may be
fully understood in terms of the dynamics of smaller subsystems, by writing

‘AL ≈ ⊕AL̄’,

where AL represents the attractor for a length L system; of course, this representation pre-
supposes the, as yet unproven, extensivity of the KS equation. This picture deduced from our
experiments of Section 3.4 allows us to speculate that the main difference between ‘large’ and
‘small’ systems is the noisy dynamics at the lowest modes which drive the typical events. This
noise arises due to the collective interactions of the subsystems; and the threshold to sustained
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STC occurs when sufficiently many subsystems interact to maintain the Gaussian large-scale
dynamics, which in turn feed into the subsystems and maintain activity within them, in a
similar way to our latest experiments.
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