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We investigate the influence of the thermal properties of the boundaries in turbulent
Rayleigh–Bénard convection on analytical upper bounds on convective heat transport.
We model imperfectly conducting bounding plates in two ways: using idealized
mixed thermal boundary conditions (BCs) of constant Biot number η, continuously
interpolating between the previously studied fixed temperature (η = 0) and fixed flux
(η = ∞) cases; and by explicitly coupling the evolution equations in the fluid in the
Boussinesq approximation through temperature and flux continuity to identical upper
and lower conducting plates. In both cases, we systematically formulate a bounding
principle and obtain explicit upper bounds on the Nusselt number Nu in terms of the
usual Rayleigh number Ra measuring the average temperature drop across the fluid
layer, using the ‘background method’ developed by Doering and Constantin. In the
presence of plates, we find that the bounds depend on σ = d/λ, where d is the ratio of
plate to fluid thickness and λ is the conductivity ratio, and that the bounding problem
may be mapped onto that for Biot number η = σ . In particular, for each σ > 0, for
sufficiently large Ra (depending on σ ) we show that Nu � c(σ )R1/3 � CRa1/2, where
C is a σ -independent constant, and where the control parameter R is a Rayleigh
number defined in terms of the full temperature drop across the entire plate–fluid–
plate system. In the Ra → ∞ limit, the usual fixed temperature assumption is a
singular limit of the general bounding problem, while fixed flux conditions appear to
be most relevant to the asymptotic Nu–Ra scaling even for highly conducting plates.
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1. Introduction
The Rayleigh–Bénard system, in which a fluid layer between two parallel plates is

heated from below, is a popular model system for the experimental and theoretical
investigation of the important phenomenon of convection, in which density changes
due to heating give rise to buoyancy-driven fluid flow (Normand, Pomeau & Velarde
1977; Cross & Hohenberg 1993; Kadanoff 2001). With sufficient heating the flow
becomes turbulent, and the spatiotemporal dynamics become inaccessible to a detailed
analytical or experimental understanding; instead, one focuses on bulk statistical
properties. Of considerable interest is the dimensionless Nusselt number Nu , which
measures the averaged total heat flux relative to what it would be in the absence of
convection, since the convective fluid motion transports heat upward more efficiently
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than would be achieved by pure conduction with the same overall temperature
gradient.

In particular, much research has concentrated on trying to understand the
dependence of Nu on the (averaged) temperature difference across the plates,
represented in non-dimensional form by the Rayleigh number Ra , which measures the
relative strength of buoyancy and dissipative forces. This dependence is often assumed
to take the power law form (with possible logarithmic corrections) Nu ∼ CRap . Here
the prefactor C may depend on the geometry of the experimental apparatus (e.g. the
aspect ratio of a typical cylindrical cell) and/or the Prandtl number Pr .

In spite of numerous studies over the years, a consensus on the precise form of this
scaling relationship (especially in the large-Ra limit) remains elusive. Experiments
have typically found the exponent p to lie in the range 1/4–1/3 (see e.g. Heslot,
Castaing & Libchaber 1987; Glazier et al. 1999; Niemela & Sreenivasan 2006b;
Funfschilling, Bodenschatz & Ahlers 2009, or the reviews by Kadanoff 2001, Procaccia
& Sreenivasan 2008 and Ahlers, Grossmann & Lohse 2009b), although higher values
have also been reported (Chavanne et al. 2001). Phenomenological models have
also made various predictions, ranging from the early values p = 1/3 (Malkus 1954)
and p =1/2 (Kraichnan 1962), both supported by dimensional arguments, to a
more recent model due to Grossmann & Lohse (2000), which predicts different
superpositions of scaling exponents in different parameter regimes. Meanwhile, the
numerical investigations of Amati et al. (2005) in cylindrical geometry (performed
at higher resolution by Stevens, Verzicco & Lohse 2010) found the scaling p = 1/3
(though, surprisingly, the recent two-dimensional horizontally periodic computations
of Johnston & Doering 2009 are consistent with p = 2/7).

1.1. Effect of imperfectly conducting plates bounding the fluid

While some of the variations in the observed results and discrepancies between
experiment and theory may be due to sidewall conductivity, Prandtl number
variability, non-Boussinesq effects, geometry or other factors, recent attention has
increasingly focused on the influence of the thermal properties of the fluid boundaries.
The standard assumption for Rayleigh–Bénard convection is that the upper and lower
boundaries of the fluid are held at uniform and fixed temperature; this is equivalent
to the bounding plates being perfectly conducting. In experimental situations, however,
the thermal conductivity λs of the plates is finite, though typically much larger than
the conductivity λf of the fluid. In the convective state, the rate at which the
fluid transports heat is effectively comparable to that which would ensue from
conduction with conductivity Nu λf . Hence, for sufficiently strong heating, the
assumption that the plates transport heat much more efficiently than the fluid,
and are able to maintain the fluid boundaries at constant temperature, loses validity;
indeed, in the asymptotic high-Ra limit, one might expect that relative to the fluid,
the plates are effectively insulating.

A basic consideration in investigating the influence of poorly conducting boundaries
on convection is the choice of thermal boundary conditions (BCs). Numerous
researchers have concentrated solely on idealized fixed flux conditions corresponding
to perfectly insulating boundaries (e.g. Chapman & Proctor 1980; Otero et al.
2002; Verzicco & Sreenivasan 2008; Johnston & Doering 2009), while other studies
(including Sparrow, Goldstein & Jonsson 1964; Gertsberg & Sivashinsky 1981;
Westerburg & Busse 2001) have imposed more general mixed conditions of fixed
Biot number η at the fluid boundaries. Note, however, that the Biot number in
general depends on the horizontal ‘disturbance’ wavenumber in the plates (Normand
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et al. 1977, Section V.C.1). For strong driving (high Ra), the temperature distribution
in the plates is unsteady and contains a superposition of horizontal wavenumbers,
so that even mixed, fixed η conditions form an approximation to the experimentally
more realistic situation of a fluid bounded by plates of finite width and conductivity.
Consequently, some authors have studied the effect of imperfectly conducting
boundaries by directly incorporating plates in their models, for the study of both
the convective instability and the weakly nonlinear behaviour beyond transition (see
e.g. Hurle, Jakeman & Pike 1967; Proctor 1981; Jenkins & Proctor 1984; Holmedal,
Tveitereid & Palm 2005) and for high-Ra convective turbulence (Chillà et al. 2004;
Verzicco 2004).

The influence of the plate thermal properties on the initial instability of the
conductive state and the weakly nonlinear dynamics and pattern formation beyond
instability has been studied intensively since the pioneering works of Sparrow et al.
(1964), Hurle et al. (1967), Busse & Riahi (1980), Chapman & Proctor (1980) and
others. Their effect on heat transport in turbulent convection has, however, only been
considered much more recently, though it is now receiving attention in the context
of experiments, numerical computation, phenomenological modelling and rigorous
analysis. In the latter category is the study by Otero et al. (2002), who considered
analytical bounds for fixed flux convection (perfectly insulating boundaries), as
discussed further below.

The suggestion that the finite (even if large) heat capacity and conductivity of the
plates would affect heat transport was made by Chaumat, Castaing & Chillà (2002),
who subsequently extended their phenomenological model to propose a criterion for
sufficient ideality of the plates’ thermal properties for the Kraichnan p = 1/2 ‘ultimate
regime’ to develop (Chillà et al. 2004; Roche et al. 2005); while Hunt et al. (2003)
modelled the effect of the thermal diffusivity of the lower plate on plume formation
and eddy motion. On the basis of extensive numerical studies with varying plate
properties Verzicco (2004) concluded that the effects of the plates are governed by the
ratio of the thermal resistance of the fluid layer to that of the plates, and proposed
a model quantifying the resultant effect on the Nusselt number, which was partially
confirmed in experiments by Brown et al. (2005) (see also Niemela & Sreenivasan
2006a; Ahlers, Funfschilling & Bodenschatz 2009a).

The role of boundary thermal properties is also receiving increasing attention in
the geophysical community in the context of heat transport due to mantle convection.
The ocean floor and continents impose different thermal conditions at the upper
boundary of the Earth’s mantle: the oceans are well described as enforcing a fixed
temperature, while continents act as (partial) insulators, and are modelled as lids of
finite conductivity fully or partially covering the convecting fluid. The presence of
continents is understood to affect the convective flow (Guillou & Jaupart 1995), and
the effect of finitely conducting continents on heat transport in mantle convection
has been investigated through models and numerical simulations (Lenardic & Moresi
2003; Grigné, Labrosse & Tackley 2007a , b).

Careful numerical investigations permit control of extraneous variables that may
play a role experimentally, thus making it possible to isolate the effect of the thermal
BCs. Two groups have recently explored this independently: the two-dimensional
horizontally periodic computations of Johnston & Doering (2009) studied fixed
temperature and fixed flux BCs both above and below, while Verzicco & Sreenivasan
(2008) and Stevens et al. (2010) compared the effects of fixed flux and fixed
temperature lower horizontal plates in their cylindrical simulations. No differences
between the extremes of perfectly conducting and insulating boundaries were observed
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in either case. However, direct numerical simulations are as yet unable to attain
the high Rayleigh numbers achieved experimentally or relevant to, for instance,
geophysical or astrophysical applications.

1.2. Analytical upper bounds on convective heat transport

In the investigation of transport and scaling properties, mathematical results
systematically derived from the differential equations governing the system can play a
role. The details of turbulent dynamics are beyond the reach of analysis, but bounds
on averaged quantities can often be obtained, and provide constraints against which
phenomenological theories can be tested, and which are in many situations (though
not so far in finite Prandtl number convection) remarkably close to experimental
observation. In the case of Rayleigh–Bénard convection with fixed temperature BCs,
a bound of the form Nu � C0Ra1/2 has been shown, initially with the aid of
some plausible statistical assumptions (Howard 1963; Busse 1969). More recently,
the ‘background method’ introduced in the context of shear flow by Doering &
Constantin (1992), motivated by a decomposition due to Hopf (1941), has enabled
the above p = 1/2 bound to be proved rigorously without any additional assumptions
(Doering & Constantin 1996). This approach has turned out to be remarkably fruitful;
its applications to convection have included, among others, studies of porous medium
(Otero et al. 2004), infinite Prandtl number (Doering, Otto & Reznikoff 2006), and
double diffusive (Balmforth et al. 2006) convection.

The first investigation to consider the effects of thermal BCs on rigorous variational
bounds on convective heat transport was that of Otero et al. (2002), who considered
upper and lower fixed flux BCs. This work established an overall bound of the
form Nu � C∞Ra1/2, with the same scaling as in the fixed temperature case; but
the mathematical structure of the bounding calculations and the intermediate scaling
results in the two cases turned out to be quite different. When the temperature
drop across the fluid is fixed, the Rayleigh number Ra is the control parameter,
and one obtains bounds on the heat transport by controlling the averaged heat flux
through the fluid boundaries from above (Doering & Constantin 1996; Kerswell
2001). On the other hand, given a fixed boundary heat flux, the control parameter
R is defined in terms of this imposed flux; in this case the averaged temperature
difference between the fluid boundaries (and hence the Rayleigh number Ra) must
be estimated (from below) in terms of R to find bounds on Nu . One finds (Otero
et al. 2002) that Nu � c1R

1/3, Ra � c2R
2/3, unlike in the fixed temperature case for

which Nu � C0R
1/2, Ra = R. It is thus natural to wonder how these two extreme

cases, corresponding, respectively, to the idealizations of perfectly conducting and
insulating plates, are related vis-à-vis their bounding problems, and which is more
relevant to real, finitely conducting boundaries.

1.3. Outline of this paper

In the present work, we reconsider the effect of general thermal BCs on systematically
derived analytical bounds on thermal convection, continuing the programme initiated
by Otero et al. (2002); we assume for simplicity only identical thermal properties
at the top and bottom fluid boundaries in the mathematically idealized horizontally
periodic case.

We model imperfectly conducting plates in two different ways. One method is
to assume mixed (Robin) thermal BCs of ‘Newton’s Law of Heating’ type, with a
fixed Biot number η, and to develop the analysis in a manner which interpolates
smoothly between the fixed temperature (Dirichlet: η = 0) and fixed flux (Neumann:
η = ∞) extremes (to our knowledge the only prior bounding study with general Biot
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number is the horizontal convection work of Siggers, Kerswell & Balmforth (2004),
with mixed BCs at the lower boundary). The other approach is to consider the more
realistic case of a fluid in thermal contact above and below with finite conducting
plates, restricting ourselves to homogeneous, isotropic plates with fixed temperatures
imposed at the top and bottom of the entire system.

In § 2, we formulate the governing equations for Rayleigh–Bénard convection
and discuss various thermal BCs, paying particular attention to the choice of non-
dimensionalization. Global identities and averages, including energy identities for
convection with plates, are discussed in § 3, while a bounding principle using the
Constantin–Doering–Hopf ‘background field’ variational method is derived in § 4. The
use of a piecewise linear background temperature profile and of conservative estimates
in § 5 permits the derivation of explicit analytical bounds on the Nu–Ra relationship,
asymptotically valid as Ra → ∞, as discussed in § 6. For clarity, §§ 3.2–5.1 of the main
text treat the case of convection with plates, while the corresponding calculations for
fixed Biot number BCs are presented in a parallel fashion in Appendix B.

1.4. Summary of results

For convection with plates, we find that the heat transport depends on d , the ratio of
plate to fluid thickness, and λ, the conductivity ratio, only via the combination σ = d/λ;
and that the (conservative) bounding problems with plates and with fixed Biot number
η map onto each other when σ = η; this gives a systematic correspondence between
the ‘full’ problem of conducting plates and the fixed Biot number approximation,
without stationarity, fixed horizontal wavenumber or other modelling assumptions.

Since in general the boundary temperatures are unknown a priori, one must identify
a temperature scale Θ extracted from the thermal BCs; a control parameter R, defined
like a Rayleigh number but in terms of Θ , may then be introduced as a measure of
the applied driving. For sufficiently small Biot number η (or, equivalently, σ ), we show
that for small R we have Nu � O(R1/2), Ra � O(R) as in the fixed temperature case,
but that for R (and hence Ra) beyond some critical parameter which we estimate as
Rt =O(η−2), we find Nu � c1(η)R1/3, Ra � c2(η)R2/3, implying Nu � CηRa1/2 with
intermediate scaling as in the fixed flux case. Interestingly, for each η > 0 we find
Cη = C∞: at least at the level of our estimates, the asymptotic scaling in each case is
as for fixed flux BCs, while fixed temperature BCs give a singular limit of the general
asymptotic bounding problem.

Interpreted in terms of convection with plates, the analytical bounds on the Nu–
Ra relationship confirm that for relatively small R most of the temperature drop
occurs across the fluid. However, for each σ > 0, asymptotically as R → ∞ we have
Nu � c(σ )R1/3 � C∞Ra1/2: the bounds scale as in the fixed flux case, providing
rigorous support for the intuition that for large Ra , plates of arbitrary finite thickness
and conductivity act essentially as insulators. The asymptotic result Nu � c(σ )R1/3,
where c(σ ) = O(σ −1/3(1 + 2σ )1/3) is of particular interest, since in this case R may be
interpreted as a Rayleigh number in terms of the full temperature difference across the
entire system.

2. Governing equations and thermal boundary conditions
2.1. Governing differential equations and non-dimensionalization

We consider a fluid of depth h, kinematic viscosity νf and thermal diffusivity κf ,
with density ρf at some reference temperature T0; we also let α be the thermal
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expansion coefficient, cp,f be the specific heat and hence λf = ρf cp,f κf be the thermal
conductivity of the fluid.

The (dimensional) partial differential equations (PDEs) of motion in the Boussinesq
approximation, describing the evolution of the fluid velocity field u∗ and temperature
field T ∗, are

∂u∗

∂t∗ + u∗ · ∇∗u∗ +
1

ρf

∇∗P ∗ = νf ∇∗2u∗ + αg(T ∗ − T0)ez, (2.1)

∇∗ · u∗ = 0, (2.2)

∂T ∗

∂t∗ + u∗ · ∇∗T ∗ = κf ∇∗2T ∗, (2.3)

where g is the gravitational acceleration. In this formulation, the compressibility of
the fluid is neglected everywhere except in the buoyancy force term, and the pressure
P ∗ is determined via the divergence-free condition on u∗. Variables with an asterisk
are dimensional, and we take periodic BCs in the horizontal directions, with periods
L∗

x and L∗
y , respectively. In the vertical direction, the fluid satisfies no-slip velocity

BCs u∗ = 0 at z∗ = 0 and z∗ = h.
The non-dimensionalization is chosen to treat the different thermal BCs at the

interfaces between the fluid and the plates at z∗ =0, h consistently and in a single
formulation. For now, we thus let Θ be a general temperature scale, and introduce a
reference (‘zero’) temperature Tref ; for given thermal BCs, the approach which turns
out to be successful is to define Θ and Tref so that the stationary, horizontally uniform
perfectly conducting state in the fluid (u∗ = 0, ∇∗T ∗ = C ez for some constant C < 0)
takes the non-dimensional form

u = 0, T = 1 − z (0 < z < 1). (2.4)

We non-dimensionalize using Tref and the temperature scale Θ , and with respect
to the fluid layer thickness h and thermal diffusivity time h2/κf ; that is, we take
h, h2/κf , U = κf /h and ρf U 2 as our appropriate length, time, velocity and pressure
scales, respectively. For Tref �= T0, the non-dimensional fluid momentum equation
will contain a constant term proportional to Tref − T0 in the ez direction, which we
absorb into the rescaled pressure. In summary, the non-dimensional variables (without
asterisks) are defined by

x =
x∗

h
, t =

t∗

tscal

, u =
u∗

U
, T =

T ∗ − Tref

Θ
, p =

1

Pr

P

ρf U 2
− R

Tref − T0

Θ
z,

(2.5)
where tscal = h2/κf , U = κf /h, and Pr and R are defined below. The dimensionless
periodicity lengths in the transverse directions are Lx = L∗

x/h and Ly = L∗
y/h, and

A= LxLy is the non-dimensional area of the plates.
The equations for the non-dimensional fluid velocity u = (u, v, w) and fluid

temperature T are thus

Pr−1

(
∂u
∂t

+ u · ∇u
)

+ ∇p = ∇2u + R T ez, (2.6)

∇ · u = 0, (2.7)

∂T

∂t
+ u · ∇T = ∇2T , (2.8)
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Fluid

ez

z* = h

z* = 0

h

Upper thermal BCs

Lower thermal BCs

κf, νf

Figure 1. Geometry of Rayleigh–Bénard convection system with thermal BCs imposed at
upper and lower limits of fluid layer.

with no-slip BCs u|z=0,1 = 0, and Lx, Ly-periodic BCs in the horizontal x and y

directions in all variables.
Here the dimensionless constants are the usual Prandtl number Pr = νf /κf and the

control parameter R, defined in terms of the (as yet unspecified) temperature scale
Θ as

R =
αgh3

νf κf

Θ . (2.9)

2.2. Thermal boundary conditions imposed at interfaces

The specification of the governing equations is completed once conditions on the
temperature at the fluid–plate interfaces z∗ = 0 and z∗ =h are specified. We shall
consider both thermal BCs applied directly at these interfaces, as in figure 1, and (in
§ 2.3 below) the case of solid plates in thermal contact with the fluid; in each case we
restrict ourselves to fluids with thermally identical upper and lower boundaries.

2.2.1. Fixed temperature (Dirichlet) conditions

The usual and most studied assumption regarding thermal BCs at the interfaces is
that the temperature is fixed at the upper and lower fluid boundaries:

T ∗|z∗=0 ≡ T ∗(x∗, y∗, 0, t∗) = T ∗
b , T ∗|z∗=h = T ∗

t . (2.10)

These Dirichlet BCs imply a natural choice of reference temperature Tref = T ∗
t , while

the imposed temperature drop 	T ∗ ≡ − T ∗|hz∗=0 ≡ T ∗
b − T ∗

t introduces a natural
temperature scale Θ =	T ∗. The non-dimensional thermal BCs thus take the well
known form

T = 1 on z = 0, T = 0 on z = 1. (2.11)

2.2.2. Fixed flux (Neumann) conditions

At the opposite extreme is the fixed flux assumption that the thermal heat flux
−λf T ∗

z∗ ≡ −λf ∂T ∗/∂z∗ through the fluid boundaries is a constant Φ . This corresponds
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to the Neumann BCs of fixed normal temperature gradient −β∗ at the interfaces:

T ∗
z∗ |z∗=0 = T ∗

z∗ |z∗=h = −β∗ = − Φ

λf

; (2.12)

the corresponding temperature scale is Θ = hβ∗ = hΦ/λf , while in this case Tref is
arbitrary. In this limit, the dimensionless thermal BCs are

Tz = −1 on z = 0 and z = 1. (2.13)

2.2.3. Fixed Biot number (Robin) conditions

General linear thermal conditions at the boundary of a fluid as in figure 1 are of
mixed (Robin) type; in dimensional terms, we write the mixed BCs in the form

T ∗ + η∗n · ∇∗T ∗ = A∗
l on z∗ = 0, T ∗ + η∗n · ∇∗T ∗ = A∗

u on z∗ = h (2.14)

for some given constant 0 � η∗ < ∞. These conditions may be interpreted as Newton’s
Law of Cooling (Heating), in which the boundary heat flux is assumed proportional
to the temperature change across the boundary: −λf n · ∇∗T ∗ = λf (T ∗ − A∗

l )/η
∗.

We use n = −ez, +ez on z∗ =0, h, respectively, and non-dimensionalize by
substituting z∗ = hz, T ∗ = Tref + ΘT . Defining the Biot number η = η∗/h, we find

T − η Tz =
A∗

l − Tref

Θ
on z = 0, T + η Tz =

A∗
u − Tref

Θ
on z = 1 (2.15)

(there appears to be little consensus in the literature as to whether the term ‘Biot
number’ refers to η as defined here, or to its inverse η−1). The so far unspecified
reference temperature Tref and temperature scale Θ are now determined by the
condition (2.4) on the non-dimensional form of the conduction temperature profile:
requiring T = 1 − z to satisfy the BCs (2.15), we find that (for η < ∞)

Θ =
A∗

l − A∗
u

1 + 2η
, Tref =

A∗
u + η(A∗

l + A∗
u)

1 + 2η
. (2.16)

Having finally fixed a choice of dimensionless variables, the non-dimensional mixed
thermal BCs (fixed Biot number) are

T − η Tz = 1 + η on z = 0, T + η Tz = −η on z = 1. (2.17)

Note that the mixed (Robin) BCs (2.17) reduce to the fixed temperature (Dirichlet)
BCs (2.11) in the limit η → 0, and to the fixed flux (Neumann) BCs (2.13) in the limit
η → ∞; thus we denote η = 0 and η = ∞ as the ‘fixed temperature’ and ‘fixed flux’
cases, respectively.

2.3. Fluid bounded by conducting plates

The specification of thermal conditions directly at the fluid boundaries z∗ = 0, h, as
in § 2.2, is an approximation to the experimentally more realistic situation of a fluid
bounded above and below by conducting plates, with thermal BCs imposed on the
plates. We consider only the simplest case of plates with equal thickness and thermal
properties.

Beginning with a fluid with properties as in § 2.1, we thus place identical
homogeneous, isotropic solid plates of thickness hs , thermal diffusivity κs and thermal
conductivity λs = ρs cp,s κs above and below the fluid (see figure 2). The spatial
coordinates are chosen so that z∗ =0 is at the lower boundary of the fluid, and
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Lower plate

ez

z* = –hs

z* = h

z* = h + hs

z* = 0

hs

hs

h

T* = T*
u

T* = T*
l

λs, κs

λs, κs

λf, κf, νf

Upper plate

Fluid

Figure 2. Geometry of Rayleigh–Bénard convection system with conductive plates.

thus the lower and upper plates extend from z∗ = −hs to z∗ = 0, and from z∗ = h to
z∗ = h + hs , respectively.

The governing PDEs in the fluid in the Boussinesq approximation, valid in the
region 0 < z∗ < h, are as in (2.1)–(2.3) above, where T ∗ = T ∗

f is the fluid temperature
field, and the fluid velocity u∗ satisfies the usual no-slip BCs at z∗ = 0 and z∗ = h, the
interfaces between the fluid and the plates.

These equations are coupled to the heat equation for the temperature T ∗
p in the

plates,

∂T ∗
p

∂t∗ = κs∇∗2T ∗
p , (2.18)

valid in the lower plate for −hs < z∗ < 0 and in the upper plate for h < z∗ < h + hs .
At the interfaces (where n = ez) we require continuity of temperature T ∗ and normal

heat flux λ n · ∇T ∗ = λ ∂T ∗/∂z∗. With T ∗
f , T ∗

p,l and T ∗
p,u representing the (dimensional)

temperature in the fluid, lower plate and upper plate, respectively (letting subscripts
l and u identify the plates), continuity of temperature may be written as

T ∗
p,l |z∗=0 = T ∗

f |z∗=0, T ∗
f |z∗=h = T ∗

p,u|z∗=h, (2.19)

and similarly for flux continuity. However, it is more convenient to treat T ∗ as
a single temperature field, continuous but with discontinuous derivative, which
coincides with T ∗

p,l for −hs � z∗ < 0, with T ∗
f for 0 < z∗ < h, and with T ∗

p,u for
h < z∗ � h + hs; and we write, for instance, T ∗|z∗=0+ = limz∗→0+ T ∗ = T ∗

f |z∗=0, or
(∂T ∗/∂z∗)|z∗=0− = (∂T ∗

p,l/∂z∗)|z∗=0 (see Appendix A concerning notation). We may then
express the continuity of temperature and heat flux at the fluid–plate interfaces as:
for each x∗, y∗ and t∗,

T ∗|z∗=0− = T ∗|z∗=0+, T ∗|z∗=h− = T ∗|z∗=h+ (2.20)

and

λs

∂T ∗

∂z∗

∣∣∣∣
z∗=0−

= λf

∂T ∗

∂z∗

∣∣∣∣
z∗=0+

, λf

∂T ∗

∂z∗

∣∣∣∣
z∗=h−

= λs

∂T ∗

∂z∗

∣∣∣∣
z∗=h+

. (2.21)
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We assume that the entire plate–fluid–plate system has Dirichlet thermal BCs in
the vertical direction (in addition to horizontal periodicity in all variables), with fixed
temperatures at the bottom of the lower plate and the top of the upper plate,

T ∗|z∗=−hs
= T ∗

l , T ∗|z∗=h+hs
= T ∗

u ; (2.22)

and we define the overall temperature drop across the system as

∆∗ = T ∗
l − T ∗

u . (2.23)

2.3.1. Non-dimensionalization

The coupled governing PDEs are non-dimensionalized with respect to the fluid
parameters, as described previously in (2.5). As before, the rescaling yields the
dimensionless Prandtl number Pr = νf /κf , and the parameter R defined as in (2.9).
This R will be our control parameter, in lieu of the usual Rayleigh number, because
the latter is defined in terms of the temperature drop across the fluid, whereas a priori
we know only the temperature drop ∆∗ across the entire system (2.23).

The presence of the plates introduces as additional parameters the non-dimensional
plate thickness, thermal diffusivity and thermal conductivity – equivalently, the plate-
to-fluid thickness, diffusivity and conductivity ratios –

d =
hs

h
, κ =

κs

κf

, λ =
λs

λf

; (2.24)

we also have the density and specific heat ratios ρ = ρs/ρf , cp = cp,s/cp,f , where
ρ cp = λ/κ . We now introduce the ratio σ of the dimensionless thickness and
conductivity,

σ =
d

λ
=

hs

h

λf

λs

; (2.25)

this will turn out to be the main physical parameter of the problem, playing an
analogous role to the Biot number η of (2.17). (We remark that σ = d/λ is sometimes
referred to as ‘the Biot number’ of a system; see for instance Sparrow et al. (1964),
Chapman, Childress & Proctor (1980) and Grigné et al. (2007a). However, we use
the term Biot number specifically to denote the constant η in given (mixed) thermal
BCs of the form T + η n · ∇T = const. applied at the fluid boundaries (but note the
remark following (2.15)). When plates are present the Biot number then depends on a
perturbation horizontal wave number; and d/λ is in fact the Biot number at zero wave
number, or that appropriate to the thin-plate limit; see for instance Section VIII.F.1
of Cross & Hohenberg (1993).)

Lastly, we need to choose the reference temperature Tref and temperature scale
Θ , so that in non-dimensional form the temperature field is T = (T ∗ − Tref )/Θ; the
imposed boundary temperatures (2.22) then become

Tu = T |z=1+d =
T ∗

u − Tref

Θ
, Tl = T |z=−d =

T ∗
l − Tref

Θ
=

∆∗

Θ
+ Tu. (2.26)

It is again convenient and consistent to define Θ and Tref so that the dimensionless
linear conducting state in the fluid (0 < z < 1) is given by (2.4). By flux continuity (see
(2.32)), we have Tz = −1/λ in the plates, so that the dimensionless temperatures at the
lower and upper boundaries of the system are Tl = T |z=0 − d(−1/λ) = 1 + σ , Tu = −σ ,
with total overall temperature drop Tl − Tu = (T ∗

l − T ∗
u )/Θ = 1 + 2σ . Substituting into
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(2.26) and solving for Tref and Θ , we conclude that appropriate choices are

Θ =
∆∗

1 + 2σ
=

T ∗
l − T ∗

u

1 + 2d/λ
, Tref =

T ∗
u + σ (T ∗

l + T ∗
u )

1 + 2σ
. (2.27)

2.3.2. Dimensionless formulation of Boussinesq convection with plates

The non-dimensional formulation of the governing PDEs and BCs for Rayleigh–
Bénard convection with conducting plates is now complete: The equations for the
dimensionless fluid velocity u = (u, v, w) and temperature T = Tf , valid on 0 < z < 1,
are (2.6)–(2.7) with no-slip vertical velocity BCs, exactly as before. The continuous
(piecewise smooth) temperature field T satisfies an advection–diffusion equation in
the fluid, and heat equations in the plates, so that we have

∂T

∂t
= κ∇2T , −d < z < 0 (T = Tp,l), (2.28)

∂T

∂t
+ u · ∇T = ∇2T , 0 < z < 1 (T = Tf ), (2.29)

∂T

∂t
= κ∇2T , 1 < z < 1 + d (T = Tp,u). (2.30)

The dimensionless interface and boundary conditions are: at the fluid–plate
interfaces, we have continuity of temperature

T |z=0− = T |z=0+, T |z=1− = T |z=1+ (2.31)

and of heat flux

λ
∂T

∂z

∣∣∣∣
z=0−

=
∂T

∂z

∣∣∣∣
z=0+

,
∂T

∂z

∣∣∣∣
z=1−

= λ
∂T

∂z

∣∣∣∣
z=1+

, (2.32)

while the applied temperatures at the upper and lower boundaries of the system are

T |z=−d = Tl = 1 + σ, T |z=1+d = Tu = −σ. (2.33)

In proceeding further, the formulation of global identities and of a bounding
principle for these coupled equations in the plates and fluid is greatly simplified by
an appropriate well-chosen notation; we relegate some of our notational definitions
to Appendix A.

2.3.3. Limiting values of σ

It is instructive to consider the interpretation of the limits σ → 0 and σ → ∞,
when (for fixed fluid height h and conductivity λf ) either the plate thickness hs or
conductivity λs approach 0 or ∞ (we do not consider situations where hs and λs

approach 0 and/or ∞ simultaneously).
In the limit of vanishing plate thickness hs → 0, according to (2.22) the temperatures

are fixed at the lower and upper boundaries of the fluid. Similarly, when the plates
are perfect conductors, λs → ∞, they sustain no temperature gradient, and the
temperatures at the fluid boundaries coincide with those applied to the plates. In
both of these cases, d → 0 and λ → ∞, we recover the fixed temperature BCs (2.11),
so that σ = d/λ → 0 corresponds to the fixed temperature limit; the corresponding
temperature scale is just given by the applied temperature drop, Θ = limσ→0 ∆∗/(1 +
2σ ) =∆∗, as expected.

Somewhat more care is required for σ → ∞, as by (2.27) we then simultaneously
need ∆∗ = T ∗

l − T ∗
u → ∞ for Θ to remain finite. Since then Θ = limσ→∞ ∆∗/(1 + 2σ )
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= limσ→∞ (∆∗/2σ ), this implies that limσ→∞ (λs∆
∗/2hs) = λf Θ/h is finite, while

∆∗ → ∞ and either λs → 0 or hs → ∞. Thus Φ = limσ→∞ (λs∆
∗/2hs) is well defined,

and is the magnitude of the fixed imposed flux across the system.
Specifically, the limit λs → 0 corresponds to perfectly insulating plates; in this case,

by (2.21) the vertical temperature gradient T ∗
z∗ across the plates must diverge so that

λs T ∗
z∗ |z∗=0− = λf T ∗

z∗ |z∗=0+ remains bounded, and equals the boundary flux −Φ (similarly
at z∗ =h). Alternatively, for 0 < λs < ∞, we may model infinitely thick plates (Hurle
et al. 1967) by letting hs → ∞ and ∆∗ → ∞ so that the global temperature gradient
limhs→∞ (−∆∗/(h + 2hs)) = limhs→∞ (−∆∗/2hs) remains finite, and hence so does the
overall flux limhs→∞ (−λs∆

∗/2hs) = −Φ . In either case λ → 0 or d → ∞, we have
σ = d/λ → ∞, which gives the fixed flux limit with BCs (2.13); and the temperature
scale is chosen as Θ = hΦ/λf .

The limiting cases σ → 0 and σ → ∞ are thus best treated by imposing the
thermal BCs on the fluid boundaries as in § 2.2, as in the literature (see e.g. Doering
& Constantin 1996; Otero et al. 2002). In the following, we consider plates of finite
thickness and conductivity, so that 0 < σ < ∞, and (2.6)–(2.7) and (2.28)–(2.33) apply.

3. Global identities
We next derive some exact relations between averaged quantities, using the notation

outlined in Appendix A. First we need to recall the definitions of the Rayleigh
and Nusselt numbers, as the relationship between these is the primary goal of our
investigation.

3.1. Rayleigh and Nusselt numbers

3.1.1. Rayleigh number

We define the non-dimensional horizontally- and time-averaged temperature drop
across the fluid as

	T = −〈T
∣∣1
z=0

〉 = 〈T |z=0 − T |z=1〉 =
	T ∗

Θ
, (3.1)

where 	T ∗ = 〈T ∗|z∗=0 − T ∗|z∗=h〉 (this is well defined in the presence of plates since
T is continuous at the interfaces (2.31)). We observe that this temperature difference
	T is known a priori only for fixed temperature BCs (or equivalently, when η =0
or σ = 0), in which case 	T ∗ = Θ , 	T = 1. The conventional Rayleigh number Ra is
defined in terms of the averaged fluid temperature drop 	T ∗ as

Ra =
αgh3

νf κf

	T ∗ =
αgh3Θ

νf κf

	T, (3.2)

and is related to the control parameter R (defined in (2.9) in terms of Θ) by

Ra = R 	T. (3.3)

3.1.2. Nusselt number

The Nusselt number Nu is a non-dimensional measure of the enhanced vertical
heat transport across the fluid due to convection, relative to the conductive heat
transport associated with the same temperature drop 	T ∗. Its expression in terms
of flow quantities is standard: one writes the thermal advection equation in the
fluid (2.8) as a conservation law, Tt + ∇ · J = 0 (using (2.7)), where the dimensionless
heat current J = J c + Jv is the sum of the conductive and convective heat currents,
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J c = −∇T and Jv = u T . Then Nu is defined as the ratio of the total (averaged)
vertical heat transport, 〈

∫
f

ez · J〉, to the purely conductive transport 〈
∫

f
ez · J c〉, to

give the well-known expression

Nu = 1 +

1

A

〈∫
f

wT

〉
	T

. (3.4)

A more useful formula, which allows us to estimate Nu from the equations of
motion, is found by relating 〈

∫
f

wT 〉 to the time-averaged temperature drop and

boundary flux. To do so, we begin by taking the horizontal average of the temperature
equation (2.8), using the horizontally periodic BCs, to get

T t + ∇ · J = T t +
(
wT − T z

)
z
= 0. (3.5)

Integrating over z and using the vertical no-slip BCs on w,

d

dt

∫
f

T + A

∫ 1

0

(
wT − T z

)
z

dz =
d

dt

∫
f

T + A (−T z)
∣∣1−
z=0+

= 0. (3.6)

Now one may show, using techniques similar to those introduced by Doering &
Constantin (1992) in the context of shear flow (based on an idea of Hopf 1941), that
the fluid thermal energy ‖T ‖2

f =
∫

f
T 2 is uniformly bounded in time; for Rayleigh–

Bénard convection with fixed temperature BCs this boundedness was verified by
Kerswell (2001). It follows via

∫
f

T � A1/2 ‖T ‖f that
∫

f
T is also uniformly bounded.

Hence on taking a time average of (3.6), the time derivative term vanishes, and we
find 〈−T z〉|1−

z=0+ = 0, expressing the expected result that, on average, there is a balance
between the heat fluxes entering the fluid layer at the bottom and leaving it at the top.

This motivates the definition of β , the non-dimensional horizontally- and time-
averaged vertical temperature gradient, or equivalently, the non-dimensional heat flux,
at the interface between the fluid and the plates: we define

β = 〈−T z〉
∣∣
z=0+

= 〈−T z〉
∣∣
z=1− . (3.7)

Note that this quantity is known a priori only for fixed flux BCs (or equivalently, in
the limits η = ∞ or σ = ∞), in which case β = 1. In the presence of plates, by (2.32)
we also have

β = λ 〈−T z〉
∣∣
z=0− = λ 〈−T z〉

∣∣
z=1+

. (3.8)

If we had a general uniform bound on T , we could immediately take a time average
of (3.5) and deduce that 〈T t〉 =0. However, for fixed flux BCs we have no maximum
principle on T to provide such an a priori bound. Instead, following Otero et al.
(2002), uniformly in thermal BCs we multiply (3.5) by z and integrate to obtain

d

dt

∫ 1

0

zT dz +

∫ 1

0

z
(
wT − T z

)
z

dz = 0; (3.9)

and as before, via
∫ 1

0
zT dz � (3A)−1/2 ‖T ‖f and the uniform boundedness of ‖T ‖2

f ,
the time average of the first term in (3.9) vanishes. By integration by parts and

the no-slip BCs, the second term in (3.9) becomes
∫ 1

0
z(wT − T z)z dz = −T z

∣∣
z=1−

−
∫ 1

0
wT dz + T

∣∣1
z=0

; taking time averages of (3.9) and using (3.1) and (3.7), we
obtain

1

A

〈∫
f

wT

〉
= β − 	T. (3.10)
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Substituting (3.10) into (3.4), we now obtain the fundamental Nusselt number
identity,

Nu =
β

	T
; (3.11)

while via (3.3), Nu , Ra and the control parameter R are related by

Nu Ra = R β. (3.12)

3.1.3. Organizational remark – Biot number calculations in Appendix B

In the following sections, we extend the bounding principle, previously studied in
the fixed temperature and fixed flux extremes, to our more general thermal BCs. As
described in §§ 2.2 and 2.3, we model imperfectly conducting fluid boundaries in two
ways: by imposing mixed BCs of finite Biot number, and by assuming the fluid to be
in thermal contact with (identical) plates of finite thickness and conductivity. Since
details of the calculations differ in these two cases, for clarity of presentation we have
separated them: in the following sections of the main text we consider convection
with bounding plates, while the analogous results for finite Biot number are relegated
to Appendix B.

3.2. Relation between β and 	T for convection with plates

In the general case, when the boundaries of the fluid are neither perfectly conducting
(fixed temperature) nor perfectly insulating (fixed flux), neither 	T nor β is known a
priori. However, they are related via the thermal BCs; this is crucial to formulating
a bounding principle on the Nusselt number, as once one of β and 	T is estimated,
the other and, using (3.11), hence Nu may also be controlled.

For convection with bounding plates, taking horizontal and time averages of the
heat equations (2.28) and (2.30), we find that in each of the two conducting plates

κ〈T zz〉 = 〈T t〉 = 0 (3.13)

(using a maximum principle on T for σ < ∞); consequently the averaged temperature
gradient 〈T z〉 is a z-independent constant in each plate, separately for −d < z < 0
and 1 < z < 1 + d . In particular, in the lower plate this gives 〈T |z=0 − T |z=−d〉/d =
〈T z〉

∣∣
z=0− = −β/λ (where in the last identity we used (3.8)), or

〈T |z=0〉 = 〈T |z=−d〉 − β
d

λ
= Tl − σβ. (3.14)

Similarly, in the upper plate we find

〈T |z=1+d − T |z=1〉/d = 〈T z〉
∣∣
z=1+

, or 〈T |z=1〉 = 〈T |z=1+d〉 + β
d

λ
= Tu + σβ. (3.15)

Subtracting (3.15) from (3.14), and using (3.1) and (2.33), we obtain the basic relation
between 	T and β for conducting plates,

	T + 2σβ = 1 + 2σ (3.16)

(cf. the analogous result (B 1) for fixed Biot number).

3.3. Energy identities

We next obtain the basic L2 ‘energy’ identities from the governing Boussinesq PDEs,
which allow us to relate Nu to the momentum and heat dissipation. In evaluating
time averages, we again use the fact that u and T are a priori bounded in L2.
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3.3.1. Kinetic energy

The kinetic energy balance is obtained by taking the inner product of the
momentum equation (2.6) with u; standard integration by parts, using no-slip BCs
and incompressibility, and time averaging yields the identity across the fluid (also
using (3.10))

1

R

〈∫
f

|∇u|2
〉

=

〈∫
f

wT

〉
= A(β − 	T ). (3.17)

Observe that (3.17) implies that β � 	T , so that by (3.11) we have Nu � 1, as
expected.

In the presence of finitely conducting plates, by (3.16) we can solve for one of 	T

and β and state the energy identities in terms of the other. We shall state our results
(for σ < ∞) in a way that permits the derivation of an upper bound on β; this
formulation, suitable for small σ , reduces to the known fixed temperature identities
as σ → 0. Thus, using (3.16) in the form β − 	T =(1 + 2σ )(β − 1) to substitute for
	T , (3.17) gives

1

R

〈{
|∇u|2

}〉
= A(1 + 2σ )(β − 1), (3.18)

where we have also used the weighted integral (A 7), defining u = 0 in the plates.

3.3.2. Thermal energy

The presence of plates modifies the global thermal energy balance, since the thermal
BCs (2.33) are given at the ends of the plates, not of the fluid. Multiplying (2.29) by
T , integrating over the fluid, integrating by parts and taking time averages, we find
the general thermal energy identity over the fluid,〈∫

f

|∇T |2
〉

= A
〈

T Tz

∣∣1−
z=0+

〉
, (3.19)

using the notation introduced in (A 1). Beginning with (2.28) and (2.30) and proceeding
similarly over the plates, we find〈

κ

∫
l

|∇T |2
〉

= A
〈
κ T Tz

∣∣0−
z=−d

〉
,

〈
κ

∫
u

|∇T |2
〉

= A
〈
κ T Tz

∣∣1+d

z=1+

〉
. (3.20)

We now multiply the identities over the plates by ρcp = λ/κ before adding them to
the fluid identity (3.19); since from (2.31) and (2.32) we have λ T Tz|z=0− = T Tz|z=0+

and T Tz|z=1− = λ T Tz|z=1+, all terms evaluated at the fluid–plate interfaces cancel by
the temperature and flux continuity conditions. Thus we find〈

λ

∫
l

|∇T |2 +

∫
f

|∇T |2 + λ

∫
u

|∇T |2
〉

= A
〈
λ T Tz

∣∣0−
z=−d

+ T Tz

∣∣1−
z=0+

+ λ T Tz

∣∣1+d

z=1+

〉
= A

〈
λ T Tz

∣∣1+d

z=−d

〉
. (3.21)

To evaluate the boundary terms in (3.21), we use the known values of T at z = −d

and 1 + d (2.33), and the result from (3.13) that the averaged temperature gradient
〈T z〉 is constant in each plate; using (3.8) we find 〈T z〉|z=−d = 〈T z〉|z=0− = −β/λ and
〈T z〉|z=1+d = −β/λ. Writing the left-hand side of (3.21) using the shorthand (A 7) for
the weighted integral over the entire plate–fluid–plate system, we substitute the BCs
to obtain the global thermal energy identity〈{

|∇T |2
}〉

= Aβ (Tl − Tu) = A(1 + 2σ ) β. (3.22)
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4. Background fields and formulation of bounding principle
4.1. Background flow decomposition

The Constantin–Doering–Hopf ‘background’ method for the convection problem
(Doering & Constantin 1996) relies upon a decomposition of the temperature field
T (x, t) across the entire system into a background profile τ̄ = τ̄ (z) which obeys the
inhomogeneous thermal BCs, and a space- and time-dependent component θ(x, t)
with homogeneous BCs:

T (x, t) = τ̄ (z) + θ(x, t). (4.1)

For the velocity decomposition, the assumption of zero background flow is likely to
be sufficient (Kerswell 2001). It can nevertheless be helpful to introduce a ‘fluctuating’
field v over which we shall optimize, conceptually distinct from the velocity field u
solving the Boussinesq equations; so we write u(x, t) = v(x, t) = (u, v, w).

The function τ̄ (z) is for now arbitrary, provided it satisfies the boundary and
interface conditions on T ; that is, from (2.31)–(2.33) we require

τ̄ (−d) = Tl = 1 + σ, τ̄ (1 + d) = Tu = −σ (4.2)

and

τ̄ (0−) = τ̄ (0+), λτ̄ ′(0−) = τ̄ ′(0+), τ̄ (1−) = τ̄ (1+), τ̄ ′(1−) = λτ̄ ′(1+) (4.3)

(note that if λ �= 1, τ̄ (z) has discontinuous slope at the fluid–plate interfaces). When
the upper and lower plates are identical, it is sufficient to consider only symmetric
background fields satisfying τ̄ ′(0+) = τ̄ ′(1−) (cf. (3.7)); we define

	τ̄ = τ̄ (0) − τ̄ (1), γ̄ = −τ̄ ′(0+) = −τ̄ ′(1−), (4.4)

and observe that by (4.3) we have −τ̄ ′(0−) = − τ̄ ′(1+) = γ̄ /λ.
Since the background τ̄ carries the same boundary and interface conditions as the

temperature field T , the fluctuation θ = T − τ̄ vanishes at the outer ends of the plates,

θ |z=−d = θ |z=1+d = 0, (4.5)

and also satisfies the temperature and flux continuity interface conditions,

θ |z=0− = θ |z=0+, λ θz|z=0− = θz|z=0+, θz=1− = θ |z=1+, θz|z=1− = λ θz|z=1+. (4.6)

Substituting the decomposition T = τ̄ + θ into the Boussinesq equations with plates
(2.6)–(2.7), (2.28)–(2.30), we obtain the PDEs for the fluctuating fields:

Pr−1

(
∂v

∂t
+ v · ∇v

)
+ ∇p̄ = ∇2v + R θ ez, 0 < z < 1, (4.7)

∇ · v = 0, 0 < z < 1, (4.8)

∂θ

∂t
= κ∇2θ + κτ̄ ′′, −d < z < 0, (4.9)

∂θ

∂t
+ v · ∇θ = ∇2θ + τ̄ ′′ − wτ̄ ′, 0 < z < 1, (4.10)

∂θ

∂t
= κ∇2θ + κτ̄ ′′, 1 < z < 1 + d, (4.11)

where in (4.7) we have absorbed the Rτ̄ ez term into a redefinition of the pressure p̄.
Here v satisfies no-slip BCs v|z=0,1 = 0 and can be defined across the entire domain
z ∈ [−d, 1 + d] by setting v = 0 in the plates.
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4.2. Energy identities for fluctuating fields

The L2 evolution equation for the field θ is obtained in a similar way to (3.21):
multiplying each of (4.9)–(4.11) by θ , integrating over the relevant domains, integrating
by parts (using (4.8)), multiplying the integrals over the plates by ρcp = λ/κ and adding
the results, we find

1

2

d

dt

[
λ

κ

∫
l

θ2 +

∫
f

θ2 +
λ

κ

∫
u

θ2

]
= −

[
λ

∫
l

|∇θ |2 +

∫
f

|∇θ |2 + λ

∫
u

|∇θ |2
]

+ A
[
λ θθz

∣∣0−
z=−d

+ θθz

∣∣1−
z=0+

+ λ θθz

∣∣1+d

z=1+

]
−
[
λ

∫
l

θzτ̄
′ +

∫
f

θzτ̄
′ + λ

∫
u

θzτ̄
′
]

+ A
[
λ τ̄ ′θ

∣∣0−
z=−d

+ τ̄ ′θ
∣∣1−
z=0+

+ λ τ̄ ′θ
∣∣1+d

z=1+

]
−
∫

f

wθτ̄ ′

= −
{

|∇θ |2
}

− {θzτ̄
′} −

∫
f

wθτ̄ ′. (4.12)

No boundary terms remain, since all the terms at the fluid–plate interfaces cancel
due to the continuity conditions (4.3) and (4.6), while the extremal boundary terms
λθθz|1+d

z=−d and λτ̄ ′θ |1+d
z=−d vanish by the homogeneous Dirichlet conditions (4.5) on θ .

An identity between the norms of gradients of T and θ will permit us to relate the
fluctuating field θ to the unknown flux β (via (3.22)): the decomposition (4.1) implies
|∇T |2 = |∇θ + ezτ̄

′|2 = |∇θ |2 +2θzτ̄
′ + τ̄ ′2, and taking the conductivity-weighted integral

(A 7) we obtain {
|∇T |2

}
=
{

|∇θ |2
}

+ 2 {θzτ̄
′} +

{
τ̄ ′2} . (4.13)

We eliminate the {θzτ̄
′} term by adding 2 · (4.12) + (4.13); time averaging, we find〈{

|∇T |2
}〉

= −
〈{

|∇θ |2
}〉

− 2 〈{τ̄ ′wθ}〉 +
{
τ̄ ′2} . (4.14)

The relation u = v between the velocity field u and fluctuations v is incorporated
into the upper bounding principle in the form

1

R

〈{
|∇u|2

}〉
=

1

R

〈{
|∇v|2

}〉
. (4.15)

4.2.1. Balance parameter and quadratic form

In order to formulate upper bounding principles for the Nusselt number, we
now take appropriate linear combinations of the above identities, using a ‘balance
parameter’ b (Nicodemus, Grossmann & Holthaus 1997). (When the evolution of the
norm of v is also taken into account, in general such linear combinations may in fact
contain up to three free parameters, over which one might optimize to obtain the
best possible bound available within this formalism (Kerswell 1997, 2001); we shall
not pursue this generalization here.)

Forming the linear combination b · (4.14) + (1 − b) · (4.15), we obtain

b
〈{

|∇T |2
}〉

+
1 − b

R

〈{
|∇u|2

}〉
= b
{
τ̄ ′2}−

〈
b
{

|∇θ |2
}

+ 2b {τ̄ ′wθ} +
b − 1

R

{
|∇v|2

}〉
= b
{
τ̄ ′2}− bQ̄τ̄ ,Re

[v, θ], (4.16)
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where we define the quadratic form in the presence of plates, using a weighted integral
across the system, as

Q̄τ̄ ,Re
[v, θ] =

〈{
b − 1

bR
|∇v|2 + 2τ̄ ′wθ + |∇θ |2

}〉

=

〈
λ

∫
l

|∇θ |2 +

∫
f

[
1

Re

|∇v|2 + 2τ̄ ′wθ + |∇θ |2
]

+ λ

∫
u

|∇θ |2
〉

. (4.17)

Here we have defined an ‘effective control parameter’ Re via

Re =
b

b − 1
R, (4.18)

having observed that Q̄τ̄ ,Re
depends on R and b only through the combination

bR/(b − 1). We desire a positive balance parameter b so that a lower bound on Q̄τ̄ ,Re

should imply an upper bound on β and/or a lower bound on 	T ; since Re > 0 is
necessary for Q̄τ̄ ,Re

to be a positive definite quadratic form, we thus require b > 1.
Now substituting the identities (3.18) and (3.22) for the momentum and thermal

dissipation into (4.16), we obtain after rearranging

(1 + 2σ )(β − 1) = b

(
1

A

{
τ̄ ′2}− (1 + 2σ )

)
− b

A
Q̄τ̄ ,Re

[v, θ] (4.19)

(we could alternatively substitute β − 1 = (1 − 	T )/2σ to get an expression only
in 	T ).

4.3. Admissible backgrounds and a bounding principle

Although the relation (4.19) is exact, it does not permit us to compute β since we do
not have access to sufficient analytical information about the fields v(x, t) and θ(x, t)
solving (4.7)–(4.11). The basic idea of the background flow method for obtaining
upper bounds is that, given R, if for some τ̄ and b, Q̄τ̄ ,Re

can be shown to be bounded
below, then (4.19) yields an upper bound on β and ultimately (via (3.16) and (3.11))
an upper bound on the Nusselt number Nu (Doering & Constantin 1996).

Furthermore, by widening the class of fields v, θ over which the minimization
of Q̄τ̄ ,Re

takes place (provided this class contains all solutions of (4.7)–(4.11)), a
(weakened) lower bound on Q̄τ̄ ,Re

(which, if it exists, must be zero) may indeed be
demonstrated. Note that if the dynamical constraints on v and θ imposed by the
governing PDEs are removed, so that no assumptions are made on the temporal
structure of these fields, it is sufficient to minimize Q̄τ̄ ,Re

over stationary fields. We
thus consider, and denote as allowed fields, scalar fields θ(x) and divergence-free
vector fields v(x) which satisfy the (homogeneous) boundary and interface conditions
consistent with the given problem; in our case of convection with plates, these are
horizontal periodicity for v and θ , the no-slip condition v = 0 at z = 0, 1, and that θ

satisfies (4.5)–(4.6).

4.3.1. Admissible and strongly admissible backgrounds

For each Re > 0 (i.e. for each R > 0 and b > 1), we call a background field τ̄ (z)
admissible if it satisfies the same boundary and interface conditions as T , in this case
(4.2)–(4.3); and if the resultant quadratic form Q̄τ̄ ,Re

is non-negative, Q̄τ̄ ,Re
[v, θ] � 0

for all allowed fields v and θ .
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Consider now again the quadratic form Q̄τ̄ ,Re
[v, θ], which from (4.17) may be

written (for stationary fields) as

Q̄τ̄ ,Re
[v, θ] = Qτ̄ ,Re

[v, θ] + λ

∫
l

|∇θ |2 + λ

∫
u

|∇θ |2, (4.20)

where the quadratic form Qτ̄ ,Re
is defined as an integral over the fluid layer only, as

Qτ̄ ,Re
[v, θ] =

∫
f

[
1

Re

|∇v|2 + 2τ̄ ′wθ + |∇θ |2
]

. (4.21)

Note that Qτ̄ ,Re
depends on the background τ̄ only through its values on the fluid

domain 0 < z < 1, that is, only on its restriction τ = τ̄ |[0,1]. Now since the contributions
to Q̄τ̄ ,Re

from the plates are clearly non-negative, from (4.20) we immediately deduce

Q̄τ̄ ,Re
[v, θ] � Qτ̄ ,Re

[v, θ]; (4.22)

that is, a lower bound on Qτ̄ ,Re
implies a lower bound on Q̄τ̄ ,Re

.
This motivates the definition of a stronger condition on the background τ̄ (z)

sufficient for obtaining an upper bound, in which we require positivity of the
quadratic form over the fluid alone, without assistance from the plate contributions.
Correspondingly, we enlarge the class of fields over which we minimize: Since we do
not have much control over θ at the fluid boundaries, we shall leave the BCs on θ at
z = 0, 1 unspecified. Thus we say that τ̄ (z) (satisfying the appropriate boundary and
interface conditions) is strongly admissible if Qτ̄ ,Re

[v, θ] � 0 for all sufficiently smooth
horizontally periodic fields v(x) and θ(x), where v is divergence-free with v = 0 at
z = 0, 1. Clearly, by (4.22) strong admissibility implies admissibility.

Our analysis in § 5.3 below shall in fact yield a condition for strong admissibility on
the piecewise linear background field τ̄δ (or equivalently, on its restriction to [0, 1]),
so in the following we restrict ourselves to studying this condition.

4.3.2. Fourier formulation of strong admissibility condition

Due to the horizontal periodicity of the problem, we may reformulate the strong
admissibility condition Qτ̄ ,Re

[v, θ] � 0 in horizontally Fourier-transformed variables.
To do so, we Fourier decompose the vertical component of velocity w = ez · v and the
temperature fluctuation θ in the usual way,

w(x, y, z) =
∑

k

ei(kxx+kyy)ŵk(z), θ(x, y, z) =
∑

k

ei(kxx+kyy)θ̂k(z); (4.23)

here we use the notation k = (kx, ky) = (2πnx/Lx, 2πny/Ly) for the horizontal wave

vector, with k2 = |k|2; we also write θ̂∗
k for the complex conjugate of θ̂k , and D= d/dz.

We can use incompressibility to express the transformed horizontal components of
velocity in terms of the vertical component, so that the admissibility criterion may be
written completely in terms of the Fourier modes ŵk and θ̂k . This considerably
simplifies the formulation, particularly since different horizontal Fourier modes
decouple in the quadratic form Qτ̄ ,Re

. For strong admissibility we do not impose

BCs on θ̂k at z = 0, 1, while the no-slip BC and incompressibility imply that the BCs
on ŵk(z) are ŵk = Dŵk = 0 for z = 0, 1. We note also that ŵ0 = 0; this follows from
incompressibility and horizontal periodicity via A wz =

∫∫
A

wz dx dy = −
∫∫

A
(ux +

vy) dx dy =0, which implies using w|z=0 = 0 that w = 0 for all z.
Substituting (4.23) into (4.21) and using incompressibility, as in Otero et al. (2002)

we can write the quadratic form Qτ̄ ,Re
evaluated on allowed (stationary) fields v and
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θ as

Qτ̄ ,Re
[v, θ] =

∫
f

[
1

Re

|∇v|2 + 2τ̄ ′wθ + |∇θ |2
]

� A
∑

k

Qk, (4.24)

where (see Constantin & Doering 1996; Kerswell 2001)

Qk ≡ Qk;τ̄ ,Re
[ŵk, θ̂k] =

∫ 1

0

[
1

Re

(
k2|ŵk|2 + 2|Dŵk|2 +

1

k2
|D2ŵk|2

)

+ 2τ̄ ′Re[ŵkθ̂
∗
k ] +

(
k2|θ̂k|2 + |Dθ̂k|2

)]
dz; (4.25)

note that (4.24) is an equality for two-dimensional flows.
Since the class of fields v and θ considered for strong admissibility includes fields

containing a single horizontal Fourier mode, it is clear that Qτ̄ ,Re
is a positive quadratic

form if and only if all the quadratic forms Qk = Qk;τ̄ ,Re
are positive. Thus the strong

admissibility criterion for background fields τ̄ (z) (for given Re > 0) may be formulated,
in Fourier space, as the condition that Qk[ŵk, θ̂k] � 0 for all k and for all sufficiently
smooth (complex-valued) functions ŵk(z), θ̂k(z) satisfying ŵk = Dŵk = 0 at z = 0, 1.

4.3.3. Bounding principle

The expression (4.19) now implies an upper bounding principle for the Nusselt
number: for each R > 0, if we can find a b > 1 and an admissible background field
τ̄ (z) (so that Q̄τ̄ ,Re

[v, θ] � 0 for all allowed v and θ), then the averaged boundary
heat flux β is bounded above according to

β � 1 − b +
b

A

1

1 + 2σ

{
τ̄ ′2}

= 1 − b +
b

1 + 2σ

(
λ

∫ 0

−d

τ̄ ′2 dz +

∫ 1

0

τ̄ ′2 dz + λ

∫ 1+d

1

τ̄ ′2 dz

)
≡ B̄σ [τ̄ ; b], (4.26)

while the identity (3.16) then implies a corresponding lower bound on the averaged
temperature drop across the fluid 	T ,

	T � 1 + 2σb − b

A

2σ

1 + 2σ

{
τ̄ ′2} ≡ D̄σ [τ̄ ; b]. (4.27)

Via (3.11), together these bounds yield an upper bound on the Nusselt number:

Nu � N̄σ [τ̄ ; b] = B̄σ [τ̄ ; b]/D̄σ [τ̄ ; b]. (4.28)

5. Piecewise linear background and elementary estimates
For each R, the best upper bound on the Nusselt number achievable in the

formulation developed above is obtained by optimizing the upper bounds N̄σ [τ̄ ; b]
(4.28) over all admissible backgrounds τ̄ (z) and balance parameters b > 1. Careful
numerical studies obtaining such optimal solutions of analogous bounding problems
have been performed for plane Couette flow (which is relevant to fixed temperature
convection) by Plasting & Kerswell (2003) and for infinite-Prandtl-number convection
by Ierley, Kerswell & Plasting (2006).

Rather than attempting such a full solution of the optimization problem for the
upper bound, though, we consider only a restricted class of profiles τ̄ (z), for which we
shall enforce the strong admissibility criterion through Cauchy–Schwarz estimates;
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z1/2 1 – δ 1 1 + d

Slope = –γ–

Slope = –γ–/λ
1 + σ

–σ

(1 + �τ–)/2

(1 – �τ–)/2

τ–δ(z)

τ–a = 1/2

–d 0 δ

Figure 3. The piecewise linear background profile τ̄δ(z), with τ̄ ′ = −γ̄ /λ in the plates,
τ̄ ′ = −γ̄ in the fluid boundary layer, and τ̄ ′ =0 in the bulk.

we thereby much more readily obtain explicit, albeit presumably weakened, analytical
upper bounds on Nu for Rayleigh–Bénard convection with conductive plates.

5.1. Piecewise linear background profiles in presence of plates

Following Doering & Constantin (1996) and subsequent works, we introduce a
family of continuous, piecewise linear background profiles τ̄δ(z) parametrized by δ

(0 < δ � 1/2), for which in the fluid τ̄ ′
δ = −γ̄ for 0 < z < δ and 1 − δ < z < 1. By

the interface conditions (4.3), the (constant) gradient in the plates is then given by
τ̄ ′
δ = −γ̄ /λ for −d � z < 0 and 1 < z � 1 + d , so that we define τ̄δ as follows:

τ̄ (z) = τ̄δ(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ̄a + γ̄ δ − γ̄ z/λ, −d � z < 0,

τ̄a − γ̄ (z − δ), 0 � z � δ,

τ̄a, δ < z < 1 − δ,

τ̄a − γ̄ (z − (1 − δ)), 1 − δ � z � 1,

τ̄a − γ̄ δ − γ̄ (z − 1)/λ, 1 < z � 1 + d,

(5.1)

where we still need to find γ̄ and the average τ̄a in terms of δ and the parameters in
the problem (see figure 3).

The intuition behind this definition is that in order for τ̄ (z) to be strongly admissible,
the indefinite term

∫
f

2τ̄ ′wθ in Qτ̄ ,Re
[v, θ] (see (4.21)) should be controlled by the other,

positive terms. With this choice of background, 2τ̄ ′wθ vanishes in the bulk of the fluid
domain, and is non-zero only near the fluid boundaries, where w and wz are small.
Furthermore, since τ̄ ′ is piecewise constant, explicit analytical bounds are readily
attainable, giving (non-optimal) rigorous bounds on the Nusselt number.

Observe that in the fluid region 0 � z � 1, τ̄δ(z) is reminiscent of observed
mean temperature profiles in convection, with strong gradients in a narrow thermal
boundary layer of width ∼δBL near the boundaries and approximately constant
temperature in the bulk. This suggests that δ might be interpreted as modelling the
thickness of the thermal boundary layer (see also the discussion following (6.15)
below).
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Since the background τ̄δ defined in (5.1) should satisfy the BCs (4.2), we must have
τ̄δ(−d) = τ̄a + γ̄ δ + γ̄ d/λ= τ̄a + γ̄ (δ + σ ) = 1 + σ and τ̄δ(1 + d) = τ̄a − γ̄ (δ + σ ) = − σ ;
solving for γ̄ and for τ̄a (for σ < ∞), we find

γ̄ =
1 + 2σ

2(δ + σ )
, τ̄a =

1

2
, (5.2)

completing the specification of the background τ̄δ(z). We can now compute

	τ̄ = τ̄δ(0) − τ̄δ(1) = 2γ̄ δ =
δ(1 + 2σ )

δ + σ
= 1 + 2σ (1 − γ̄ ) (5.3)

(cf. (B 5)); since δ � 1/2, we remark that 1 � γ̄ � 1/2δ and 	τ̄ � 1. It follows also
that τ̄δ(0) = τ̄a + γ̄ δ = (1 + 	τ̄ )/2 = 1 + σ − σ γ̄ and τ̄δ(1) = (1 − 	τ̄ )/2 = −σ + σ γ̄ ,
which shows that

τ̄δ − σ τ̄ ′
δ = 1 + σ at z = 0+, τ̄δ + σ τ̄ ′

δ = −σ at z = 1− : (5.4)

at the fluid boundaries z = 0+ and z = 1−, the piecewise linear background in the
presence of plates τ̄δ(z) satisfies the mixed thermal BCs (2.17) with Biot number η = σ .

To evaluate the bound (4.26), (4.27) for this background profile, we compute

1

A

{
τ̄ ′2} = λ

∫ 0

−d

τ̄ ′2 dz +

∫ 1

0

τ̄ ′2 dz + λ

∫ 1+d

1

τ̄ ′2 dz = λd

(
γ̄

λ

)2

+ 2δγ̄ 2 + λd

(
γ̄

λ

)2

= 2γ̄ 2(δ + σ ) = γ̄ (1 + 2σ ). (5.5)

Substituting, the upper bound (4.26) on β and lower bound (4.27) on 	T in the
presence of conductive plates using a piecewise linear (pwl) background then take the
simple form

β � B̄pwl,σ (δ, b) ≡ B̄σ [τ̄δ; b] = 1 + b
1 − 2δ

2(δ + σ )
= 1 + b(γ̄ − 1), (5.6)

	T � D̄pwl,σ (δ, b) ≡ D̄σ [τ̄δ; b] = 1 − b
σ (1 − 2δ)

δ + σ
= 1 + b(	τ̄ − 1); (5.7)

and the corresponding upper bound on the Nusselt number is Nu =β/	T �
N̄pwl,σ (δ, b) = B̄pwl,σ (δ, b)/D̄pwl,σ (δ, b). Since b > 0, these bounds satisfy B̄pwl,σ (δ, b) �
1, D̄pwl,σ (δ, b) � 1, and hence N̄pwl,σ (δ, b) � 1, as one might expect. Observe that the

bounds B̄pwl,σ (δ, b) and D̄pwl,σ (δ, b) do not depend explicitly on the control parameter
R, but rather indirectly through the admissibility condition on δ. It remains, in § 5.3,
to find conditions on δ for which τ̄δ(z) is (strongly) admissible.

5.2. Correspondence between bounding problems with and without plates

The preceding §§ 3.2–5.1 concern the formulation of a bounding principle, and the
derivation of explicit formulae for the bounds on β and 	T in the case of piecewise
linear background fields τ̄δ , for Rayleigh–Bénard convection in a fluid bounded by
conducting plates with dimensionless thickness d and conductivity λ. In Appendix B,
convection with Robin thermal BCs of fixed Biot number η at the fluid boundaries is
treated analogously.

The details of the calculations for these two cases differ at various points, when
it is necessary to consider the contributions of the plates on the one hand, or of
boundary terms on the other. At the level of the strong admissibility criterion for
background fields and of formulae for the bounds for piecewise linear backgrounds
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with a given δ, however, the problems with and without plates map onto one another
when η = σ = d/λ:

As pointed out in § 4.3, the strong admissibility criterion on a background τ̄ (z) for
the full plate–fluid–plate system, Qτ̄ ,Re

[v, θ] � 0 for Qτ̄ ,Re
defined in (4.21), depends

only on the restriction of τ̄ onto the fluid domain z ∈ [0, 1]. Consequently, for a given
Re it coincides with the strong admissibility criterion of Appendix B.2 on τ (z) for
convection with thermal BCs applied to the fluid boundaries, Qτ,Re

[v, θ] � 0 for the
quadratic form Qτ,Re

from (B 12). This is because in both criteria we optimize over
the same classes of fields v and θ , as no BCs on θ are assumed.

Of course the background fields with and without plates, τ̄ (z) and τ (z), should
satisfy their appropriate thermal BCs, (4.2)–(4.3) or (2.17), respectively. However, for
plates with a given d and λ, (5.4) shows that the piecewise linear background τ̄δ ,
defined in (5.1) and satisfying (4.2)–(4.3), automatically also satisfies mixed BCs with
Biot number η = σ = d/λ. Thus for a given δ, over the fluid domain 0 � z � 1, τ̄δ(z)
coincides with τδ(z) defined in (B 23) (so that also γ̄ = γ , 	τ̄ =	τ ). That is, for a
given Re a piecewise linear background τ̄δ is strongly admissible in the sense of § 4.3
(this is a condition on δ) if and only if its restriction τδ = τ̄δ|[0,1] is strongly admissible
in the sense of Appendix B.2.

Furthermore, comparing (5.6)–(5.7) with (B 26)–(B 27), the corresponding bounds
due to strongly admissible piecewise linear backgrounds at a given δ agree:
B̄pwl,σ (δ, b) = Bpwl,η(δ, b) and D̄pwl,σ (δ, b) = Dpwl,η(δ, b) for σ = η.

In this analysis, we have thus systematically mapped the conservative bounding
problem with imperfectly conducting plates onto that with mixed BCs with the fixed
Biot number η = d/λ. In the following sections, we discuss bounds for convection for
these two problems simultaneously, assuming η = σ = d/λ. The results are presented
mainly in the notation of Appendix B, using η, τδ , γ and 	τ , recalling that for
piecewise linear backgrounds with the same δ, we also have γ̄ = γ , 	τ̄ = 	τ and
τ̄δ|[0,1] = τδ .

5.3. Cauchy–Schwarz estimates on the quadratic form

Recall the strong admissibility criterion for the background field τδ(z): Qτδ,Re
[v, θ] � 0,

or in Fourier space (by (4.24)–(4.25)) Qk = Qk;τδ,Re
[ŵk, θ̂k] � 0 for all k and for

all sufficiently smooth (complex-valued) functions ŵk(z), θ̂k(z), where ŵk satisfies
ŵk = Dŵk =0 at z = 0, 1 while no BCs are assumed for θ̂k . (However, thermal BCs
enter the strong admissibility condition through the BCs for τδ , which fix the value of
γ for given δ and η). For piecewise linear background fields τδ(z) of the form (B 23)
(or τ̄δ(z) as in (5.1)), this criterion reduces to a requirement that δ is sufficiently small,
for given Re = bR/(b − 1).

Elementary Cauchy–Schwarz and Young inequalities applied to the Fourier space
quadratic form Qk allow us to derive explicit sufficient conditions on δ so that Qk � 0
for all k, and hence to estimate upper bounds on Nu . To do so, we need to control

the only indefinite term in Qk ,
∫ 1

0
2τ ′

δRe[ŵkθ̂
∗
k ], by the other terms. For completeness,

we review the necessary estimates from Otero et al. (2002): Since ŵk and Dŵk (and
hence also ŵk θ̂∗

k ) vanish at both boundaries, we have

|ŵk(z) θ̂∗
k (z)| =

∣∣∣∣
∫ z

0

D
(
ŵkθ̂

∗
k

)
dζ

∣∣∣∣ �

∫ z

0

|ŵkDθ̂∗
k | dζ +

∫ z

0

|θ̂∗
k Dŵk| dζ, (5.8)

where for 0 � z � 1/2, by the Fundamental Theorem of Calculus and the
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Cauchy–Schwarz inequality we find that

|ŵk(z)| =

∣∣∣∣
∫ z

0

Dŵk dζ

∣∣∣∣ �
√

z

(∫ z

0

|Dŵk(ζ )|2 dζ

)1/2

�
√

z‖Dŵk‖[0,1/2], (5.9)

|Dŵk(z)| =

∣∣∣∣
∫ z

0

D2ŵk dζ

∣∣∣∣ �
√

z

(∫ z

0

∣∣D2ŵk(ζ )
∣∣2 dζ

)1/2

�
√

z‖D2ŵk‖[0,1/2]. (5.10)

Substituting these estimates into (5.8) and again applying the Cauchy–Schwarz
inequality, for 0 � z � 1/2 we obtain

|ŵk(z) θ̂∗
k (z)| �

(∫ z

0

ζ dζ

)1/2
[

‖Dŵk‖[0,1/2]

(∫ z

0

|Dθ̂k|2 dζ

)1/2

+‖D2ŵk‖[0,1/2]

(∫ z

0

|θ̂k|2 dζ

)1/2
]

�
z

2
√

2

[
a1‖Dŵk‖2

[0,1/2] +
1

a1

‖Dθ̂k‖2
[0,1/2] +

a2

k2
‖D2ŵk‖2

[0,1/2] +
k2

a2

‖θ̂k‖2
[0,1/2]

]
,

(5.11)

where we have also applied Young’s inequality pq � (ajp
2 + q2/aj )/2 for any aj > 0.

Proceeding similarly, we obtain an analogous estimate for 1/2 � z � 1.
For the piecewise linear background τδ(z), for which τ ′

δ = − γ < 0 for 0 � z � δ

and 1 − δ � z � 1, and τ ′
δ = 0 otherwise, applying these estimates we have∣∣∣∣

∫ 1

0

τ ′
δ ŵkθ̂

∗
k dz

∣∣∣∣ � γ

(∫ δ

0

|ŵkθ̂
∗
k | dz +

∫ 1

1−δ

|ŵkθ̂
∗
k | dz

)

�
γ δ2

4
√

2

[
a1‖Dŵk‖2

[0,1] +
1

a1

‖Dθ̂k‖2
[0,1] +

a2

k2
‖D2ŵk‖2

[0,1] +
k2

a2

‖θ̂k‖2
[0,1]

]
,

and thus∫ 1

0

2τ ′
δRe[ŵkθ̂

∗
k ] dz =

∫ 1

0

τ ′
δ

(
ŵkθ̂

∗
k + ŵ∗

k θ̂k

)
dz

� − γ δ2

2
√

2

[
a1‖Dŵk‖2 +

1

a1

‖Dθ̂k‖2 +
a2

k2
‖D2ŵk‖2 +

k2

a2

‖θ̂k‖2

]
,

(5.12)

where norms are taken over the entire interval [0, 1] unless otherwise indicated.
Substituting this estimate on the indefinite term into Qk given by (4.25), we find

Qk �

(
2

Re

− γ δ2 a1

2
√

2

)
‖Dŵk‖2 +

(
1

Re

− γ δ2 a2

2
√

2

)
1

k2
‖D2ŵk‖2 +

1

Re

k2‖ŵk‖2

+

(
1 − γ δ2

2
√

2 a2

)
k2‖θ̂k‖2 +

(
1 − γ δ2

2
√

2 a1

)
‖Dθ̂k‖2. (5.13)

In the absence of any additional a priori information, for instance, on the decay
rate of the Fourier coefficients (cf. Constantin & Doering 1996; Kerswell 2001), our
remaining estimates are necessarily k-independent; we ensure the positivity of Qk

by requiring all coefficients to be non-negative. We choose a1 = a2 = γ δ2/2
√

2; then,
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dropping manifestly non-negative terms,

Qk �

(
2

Re

− γ 2δ4

8

)
‖Dŵk‖2 +

(
1

Re

− γ 2δ4

8

)
1

k2
‖D2ŵk‖2. (5.14)

We can thus guarantee that Qk � 0 independent of k (and hence that τδ is strongly
admissible) if we choose γ 2δ4/8 � 1/Re. For given thermal BCs, γ = γ (δ) is specified
as a function of δ; so this is a constraint on δ to have Qk � 0, that is, for τδ(z) to be
an admissible background. Defining δc by

γ (δc)
2δ4

c =
(1 + 2η)2

4(δc + η)2
δ4
c =

8

Re

= 8
b − 1

bR
, (5.15)

we obtain the best bound in this approach by choosing δ = δc; the piecewise linear
profile τδ (or τ̄δ) is strongly admissible for any δ � δc.

6. Explicit asymptotic bounds for convection with thin highly conductive plates
or mixed thermal boundary conditions

Using piecewise linear background profiles and the estimates in § 5.3, we may now
derive explicit analytical bounds on the growth of the Nusselt number Nu with the
control parameter R, and hence with the Rayleigh number Ra .

The results are described below mainly in terms of the mathematical idealization
of mixed (Robin) thermal BCs with Biot number η, showing that one may interpolate
between the fixed temperature (Dirichlet) and fixed flux (Neumann) limits in a unified
formulation. However, as discussed in § 5.2, all results apply also to the more physical
problem of a convection in a fluid bounded by imperfectly conducting plates of
finite, non-zero (scaled) thickness d and conductivity λ, when η = σ ∈ (0, ∞). We shall
remark on possible interpretations of our results for convection with plates when
appropriate.

In this section, we summarize the main asymptotic bounds; more details, including
improved values of the prefactors obtained by numerical solution of the optimization
problem for piecewise linear background profiles, are given elsewhere (Wittenberg
& Gao 2010). The asymptotic analytical and the numerical bounds obtained using
piecewise linear background functions differ only in their prefactors; the scaling with
respect to R and η (or σ ) is the same in each case.

We begin by reviewing the results for Dirichlet (η =0) and Neumann (η = ∞) BCs,
since in the general case, depending on the relative sizes of δ and η, the scaling
behaviour agrees with one or the other of these extremes. In fact, we shall see that
for any η > 0, the R → ∞ asymptotic scaling behaviour is as in the fixed flux case.

6.1. Fixed temperature boundary conditions

In the case of Dirichlet BCs (η = 0 or σ =0), we have 	T = 	τ =1, R = Ra , and
(B 25) implies γ =1/2δ. Thus the sufficient condition (5.15) on δ simplifies to δ � δc

where

δ2
c =

32

Re

= 32
b − 1

bR
. (6.1)

One can show that the optimal choice of b in this formulation is b0 = 3/2 (see
Wittenberg & Gao 2010), for which Re = 3R, and hence δ � δc =4

√
2/3 R−1/2 is

sufficient to obtain a rigorous bound. Since for this b = b0, (B 26) becomes

Nu = β � Bpwl,0(δ, b0) = 1 − b0 +
b0

2δ
= −1

2
+

3

4δ
, (6.2)
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for any δ � δc, the best rigorous analytical bound on the Nusselt number using this
approach, valid for all R sufficiently large that δc � 1/2, is

Nu � Bpwl,0(δc, b0) = −1

2
+

3

4δc

= −1

2
+

3

16

√
3

2
R1/2 = −1

2
+

3
√

6

32
Ra1/2, (6.3)

where we used the fact that for fixed temperature BCs, the control parameter R is
the usual Rayleigh number Ra .

6.2. Fixed flux boundary conditions

In the opposite extreme, for Neumann BCs (η = ∞), we have β = γ = 1, so 	τ = 2δ

from (B 24), and we bound 	T from below using (B 27). Since b > 1, in order for the
lower bound Dpwl,∞(δ, b) = 1 − b + 2δ b on 	T to remain positive as R → ∞ (δ → 0),
we need b − 1 = O(δ). Thus following Otero et al. (2002) we choose b = 1 + c δ and
let c take its optimal value c∞ = 1/2, so that the bound on 	T becomes

Nu−1 = 	T � Dpwl,∞(δ, 1 + c∞δ) = 1 + (1 + δ/2)(2δ − 1) =
3

2
δ + δ2 ∼ 3

2
δ. (6.4)

The condition on δ is as usual δ � δc, where with γ =1 and b = 1 + δ/2, the equation
(5.15) satisfied by δc takes the form

δ4 =
8

Re

= 4
δ

1 + δ/2
R−1 ∼ 4

δ

R
(6.5)

for large R, for which δ → 0; and hence δc ∼ 41/3R−1/3. Thus we have (using (3.3))

Nu−1 = 	T � Dpwl,∞(δc, 1 + δc/2) ∼ 3

2
δc ∼ 3

21/3
R−1/3,

Ra = R	T � R Dpwl,∞(δc, 1 + δc/2) ∼ 3

21/3
R2/3,

⎫⎪⎬
⎪⎭ (6.6)

and so

Nu �
21/3

3
R1/3 �

√
2

27
Ra1/2, (6.7)

as in Otero et al. (2002). Note the scaling Nu � C1R
1/3 in terms of the control

parameter R, which translates to the usual scaling Nu � C2Ra1/2.

6.3. Mixed thermal boundary conditions

For general mixed (Robin) thermal BCs with fixed Biot number η (or equivalently, for
plates with non-zero, finite σ = d/λ), we need to estimate both 	T and β , using (B 26)
and (B 27), where γ and 	τ are given in terms of η and δ by (B 25). The sufficient
condition δ � δc for τδ to be (strongly) admissible, derived via the Cauchy–Schwarz
estimates of § 5.3, is that δc satisfies (5.15), which (substituting for γ from (B 25)) here
takes the form

γ 2δ4 =
(1 + 2η)2

4(δ + η)2
δ4 =

8

Re

= 8
b − 1

b
R−1. (6.8)

We shall see that in this general case with 0 < η < ∞, the scaling of the bounds
depends on the relative sizes of δ and η, behaving either as in the fixed temperature
limit (for δ � η) or the fixed flux limit (for δ � η); but that for any η > 0, the
asymptotic scaling properties as R → ∞ are as for fixed flux BCs.
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6.3.1. The fixed temperature problem η = 0 as a singular limit

Recall that for Dirichlet thermal BCs η = 0, we have 	T = 	τ =1, so that we
obtain an upper bound on Nu for any b > 0 (there is no concern that the lower
bound Dpwl,0 on 	T may become negative), and we can choose b − 1 = O(1) for all
δ. In the case η = 0, though, γ = 1/2δ is not bounded above as R → ∞ (δ → 0), and
hence neither is β; the growth in the (upper bound for the) Nusselt number Nu = β

in the fixed temperature case with increasing control parameter R =Ra is due to that
of the (non-dimensional) boundary heat flux.

The situation is quite different for any non-zero Biot number η: since 0 < δ � 1/2,
we have 0 � (1 − 2δ)/2(δ + η) = γ − 1 < 1/2η, so that for each η > 0, now γ is
bounded above as δ → 0. From (B 26) (and choosing b � 2) it follows that for all
η > 0, we have the rigorous (though presumably weak) upper bound on the boundary
heat flux

β � 1 +
b

2η
� 1 +

1

η
; (6.9)

that is, β saturates at a finite value as R → ∞. On the other hand, the (non-
dimensional) averaged temperature drop across the fluid 	T is not bounded below
away from zero: 	T → 0. (Recalling the non-dimensionalization, observe that this
does not imply that the dimensional averaged boundary heat flux is uniformly bounded
above, or that the dimensional averaged temperature drop 	T ∗ decays to zero as
R → ∞.) Hence asymptotically for large R, the growth in the Nusselt number
Nu = β/	T (and in the corresponding bound) is due to the decrease in 	T , rather
than due to growth of β . That is, for any η > 0 the (asymptotic) behaviour and
scaling is as in the fixed flux case; the fixed temperature problem is a singular limit of
the bounding problem. (A similar observation was made in the context of horizontal
convection by Siggers et al. 2004.)

6.3.2. Scaling for poorly conducting boundaries

The nature of the Nu–R scaling depends on whether δ � η or δ � η, and hence
on the value of η. For sufficiently large Biot number (largely insulating boundary)
η � 1/2, we always have δ � η. Since for such η, γ is approximately constant
(1 � γ < 1 + 1/2η � 2; compare γ =1 for η = ∞), we see from (6.8) that a sufficient
admissibility condition for τδ is δ � δc = O(R−1/4

e ), as in the fixed flux case. We choose
b =1+ cδ � 3/2 for some c � 1, so β � 1+ b(γ − 1) � 5/2, and there is no transition
in scaling regimes; as in the fixed flux case, for all sufficiently large η the growth in
Nu with increasing R is due to the decrease in 	T . This conclusion equivalently holds
for thick and/or poorly conducting plates for which σ = d/λ � O(1).

6.3.3. Scaling regimes for highly conductive plates

For relatively small Biot number (largely conducting boundary) η < 1/2, on the
other hand, it is possible to have δ � η for low enough thermal driving, thereby
allowing for different scaling behaviours. In particular, we consider the case of small
Biot number (η � 1, near the fixed temperature limit). This is relevant (by the
correspondence σ = η) to convection in a fluid bounded by conductive plates in the
physically relevant limit of 0 < σ = d/λ � 1; some implications for that situation are
discussed in § 6.4.

As the control parameter R increases, one observes a transition between two distinct
scaling regimes:

For sufficiently small R (low Rayleigh numbers), we have δ � η; in this limit, we
find γ ≈ 1/2δ and 	τ ≈ 1, and the sufficiency condition (6.8) is δ � δc = O(R−1/2

e ).
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Since 	τ is bounded below away from zero (by 1/2 � 	τ = δ(1 + 2η)/(δ + η) � 1
for δ � η), so is the lower bound Dpwl,η(δ, b) = 1 + b(	τ − 1) � 1 − b/2 on 	T for
any fixed b < 2. Thus we may obtain a bound on Nu in this regime by choosing
any b ∈ (1, 2), and by comparison with the fixed temperature problem, it is sufficient
to choose b − 1 = O(1), so that the ‘effective control parameter’ Re = bR/(b − 1) is
proportional to R, and δc = O(R−1/2).

It follows that the bounds on β and 	T scale as β � Bpwl,η(δ, b) = 1 + b(γ −
1) = O(δ−1) = O(R1/2) and 	T � Dpwl,η = O(1); hence the growth in the Nusselt
number is due to the growth in the dimensionless averaged boundary heat flux,
Nu = β/	T � Npwl,η = O(δ−1) = O(R1/2). Furthermore, we have Ra =R	T ≈ R, so
that the control parameter approximately coincides with the usual Rayleigh number
in this case, and we have δ = O(Ra−1/2), and Nu � C1Ra1/2 for some η-independent
constant C1. Hence for η � 1, when R is sufficiently small everything scales as in the
fixed temperature case.

As the control parameter R increases, δ shrinks, eventually decreasing below the
Biot number η; the system then enters another scaling regime, in which the above
estimates no longer apply. The transition at δ ≈ η occurs (based on the low-R ‘fixed
temperature’ scaling, which gives δ =O(R−1/2) = O(Ra−1/2) in our formalism) for

R ≈ Rt = O(η−2), (6.10)

that is, Ra t = O(η−2).
Once the ‘boundary layer thickness’ δ has decreased below η > 0 for increasing

R � Rt , we enter another regime (which does not exist in the fixed temperature case
η =0), with changes in the scaling behaviour of the bounds, and especially in the
relative contributions of β and 	T to the Nusselt number.

In this regime, as R → ∞ (i.e. Ra → ∞) for fixed η the growth in γ saturates,
while 	τ = O(δ) decreases. Asymptotically for δ � η � 1/2, we have γ ∼ (1 +
2η)/2η = γmax (η), while 	τ ∼ δ(1+2η)/η � 1, and for each fixed η > 0 the behaviour
is now as if we had Neumann thermal BCs.

More generally, for 0 < η � 1/2 and decreasing δ � η, we have γ =O(η−1) and
	τ = O(δ/η). Consequently, in order for the lower bound Dpwl,η =1−b+b	τ on 	T

from (B 27) to remain positive as δ → 0, the so far arbitrary parameter b > 1 must
be chosen as b = 1 + O(δ/η). We then find that β � Bpwl,η =1 + b(γ − 1) = O(η−1)
saturates, while 	T � O(δ/η); hence the growth in Nu is now due to the decay
in 	T . In this ‘fixed flux’ high Rayleigh number regime, the scaling behaviours are
Ra � O(δR/η), Re = O(ηR/δ) and

δ = O
(
η1/2R−1/4

e

)
= O

(
η1/3R−1/3

)
= O

(
Ra−1/2

)
; (6.11)

more precise asymptotic statements are given below, while implications for convection
with plates are in § 6.4.

6.3.4. Asymptotic scaling of bounds for 0 < η < ∞
Having outlined the behaviour in the different regimes, we now derive the scaling of

the bound on Nu in the limit of large driving, R → ∞, so that δ � 1 and δ � η; see
Wittenberg & Gao (2010) for a comparison with the optimal solution for piecewise
linear backgrounds τδ(z). (As usual all these results carry over directly to convection
with plates for σ = η.)
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In the light of the previous discussion, to ensure a positive lower bound on 	T for
δ � η we must take b =1 + c δ, where the optimal value of c turns out to be

cη =
1 + 2η

4η
. (6.12)

Using this optimal choice of b, the lower bound (B 27) on 	T becomes

	T � Dpwl,η(δ, 1 + cηδ) = −cηδ + (1 + cηδ)
δ(1 + 2η)

δ + η

=
δ(1 + 2η)

δ + η

3 + 2δ

4
∼ 3

4

δ(1 + 2η)

η
, (6.13)

while similarly, the upper bound (B 26) is

β � Bpwl,η(δ, 1 + cηδ) = −cηδ + (1 + cηδ)
1 + 2η

2(δ + η)

=
1 + 2η

2(δ + η)

[
1 +

δ

4η
(1 − 2δ)

]
∼ 1 + 2η

2η
, (6.14)

so that an upper bound on the Nusselt number for admissible δ � η is

Nu =
β

	T
� Npwl,η(δ, 1 + cηδ) =

1

2δ

4 + δ(1 − 2δ)/η

3 + 2δ
∼ 2

3δ
; (6.15)

compare (6.2) and (6.4).
We remark that the width δBL of the thermal boundary layer is often related to the

Nusselt number via δBL = (2Nu)−1 (Niemela & Sreenivasan 2006b); our high-R result
for the piecewise linear background, δ ∼ (3Nu/2)−1 for η > 0 (or δ ∼ (4Nu/3)−1 for
η = 0), may be interpreted as a systematic statement of such a boundary layer model.

Returning to the computation of asymptotic bounds, we note from (6.12) that
for η � 1/2, cη = 1/2 + 1/4η � 1, while for η � 1/2, cηδ = (1 + 2η)δ/4η � δ/2η, so
that whenever δ � min(η, 1) we have cηδ � 1; consequently b =1 + cηδ ∼ 1 and
Re = b R/(b − 1) ∼ R/cηδ. In this case, the condition (6.8) is thus

δ4 = 32
(δ + η)2

(1 + 2η)2
R−1

e ∼ 32
η2

(1 + 2η)2
1 + 2η

4η
δR−1 = 8

η

1 + 2η
δR−1, (6.16)

or δc ∼ 2η1/3(1 + 2η)−1/3R−1/3. Substituting into the above bounds, we have

Nu � Npwl,η(δc, 1 + cηδc) ∼ 2

3 δc

∼ 1

3

(
1 + 2η

η

)1/3

R1/3, (6.17)

Ra = R	T � RDpwl,η(δc, 1 + cηδc) ∼ 3

4

1 + 2η

η
δc R ∼ 3

2

(
1 + 2η

η

)2/3

R2/3, (6.18)

so that we obtain a bound on the asymptotic scaling as R → ∞ of the Nusselt number
with the Rayleigh number whenever η > 0:

Nu �
1

3

(
1 + 2η

η

)1/3
√

2

3

(
η

1 + 2η

)1/3

Ra1/2 =

√
2

27
Ra1/2, (6.19)

independent of the Biot number. Observe in particular, by comparison with (6.7), that
the prefactor

√
2/27 is the same as for the fixed flux problem.
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6.4. Heat transport in thin, highly conducting plates

It is instructive to view the above scaling results in the experimentally realistic
context of conductive plates with small, but non-zero, thickness hs and/or large,
but finite, conductivity λs , relative to the properties of the fluid. In dimensionless
terms, this corresponds to fixed small, non-zero σ , since we have 0 < d =hs/h � 1,
1 � λ= λs/λf < ∞, and thus 0 < σ = d/λ � 1.

Observe that in this case we have 1 + 2σ ≈ 1, so that (from (2.23) and (2.27))
Θ ≈ ∆∗ = T ∗

l − T ∗
u , that is, temperatures are scaled with respect to the applied

temperature difference across the entire system. This allows us to interpret the control
parameter

R =
αgh3

νf κf

Θ =
αgh3

νf κf

∆∗

1 + 2σ
≈ αgh3

νf κf

(T ∗
l − T ∗

u ) (6.20)

as the Rayleigh number measured in terms of the imposed temperature drop across the
full plate–fluid–plate system, instead of the temperature difference across the fluid only.

Letting δ be a measure of the thermal boundary layer width, for sufficiently small
R we have δ � σ ; that is, the thermal boundary layer thickness, approximated by
hδ, is much greater than the plate thickness scaled by the conductivity ratio, given
by hs λf /λs . In this limit, we have 	T ≈ 1, which implies that essentially the entire
temperature drop across the system occurs across the fluid (and that Ra ≈ R).
That is, for σ � 1 and sufficiently small driving, the thermal behaviour of the
fluid is essentially unaffected by the presence and finite conductivity of the plates,
and the commonly used approximation, that the fluid boundaries are held at fixed
temperature, is appropriate.

As R increases, δ decreases, until eventually δ ≈ σ ; this occurs for R ≈ Rt , where
in our analysis the transition value Rt = O(σ −2) (see (6.10)). Near this transition,
Nu � O(R1/2) = O(σ −1) = O(λ/d) (with O(1) constant prefactors), so that we can
interpret the scaling transition as occurring when the effective conductivity of the fluid,
measured by the Nusselt number, becomes comparable to the plate–fluid conductivity
ratio, scaled by the plate–fluid thickness ratio; this is in accord with our intuition.

Once the control parameter R increases beyond Rt , the high-Ra asymptotic regime
is entered, in which the scaling behaviours of the bounds differ from those in the
low-Ra case. In particular, in the R → ∞ limit, when δ � σ � 1, using (5.6)–(5.7)
and the δ-scaling (6.11) we may estimate the bounds on 	T and β in this analysis to
be

	T � D̄pwl,σ = O
(
σ −1δ

)
= O

(
σ −2/3R−1/3

)
, β � B̄pwl,σ = O

(
σ −1
)
, (6.21)

and the usual Rayleigh number is related to R via Ra = R	T � O
(
σ −2/3R2/3

)
. It

is apparent that for fixed non-zero σ , for sufficiently large Ra all the intermediate
variables scale as in the fixed flux case discussed in Otero et al. (2002), as expected.

In this scaling regime, the dimensionless averaged heat flux β through the fluid
boundaries saturates, while an appreciable portion of the temperature drop across the
system now occurs across the plates, whose finite thickness and conductivity become
significant for R � Rt . Consequently Nu increases no longer via growth in β , but
due to the decrease in the averaged temperature drop across the fluid, as a fraction of
the overall applied temperature drop, according to 	T � O

(
(R/Rt )

−1/3
)
. Finally, we

find the high-R asymptotic scaling of the bound on the Nusselt number Nu = β/	T �
O(δ−1) for convection in the presence of conductive plates with 0 < σ � 1 (in this
formalism, using a family of piecewise linear backgrounds and conservative Cauchy–
Schwarz estimates): Nu � N̄pwl,σ = O(σ −1/2R1/4

e ) = O(σ −1/3R1/3) = O(Ra1/2).
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In summary, for Rayleigh–Bénard convection in a fluid bounded by thin, highly
but not perfectly conducting plates, the main analytical results are: there exist σ -
independent O(1) constants C2 and C3 so that as R → ∞,

Nu � C2Ra1/2, (6.22)

Nu � C3 σ −1/3R1/3. (6.23)

The scaling in (6.22) is the same as obtained elsewhere for finite Prandtl number
Rayleigh–Bénard convection; in this formalism, the presence of conductive plates
does not appear to alter the asymptotic scaling dependence of the Nusselt number
on the usual Rayleigh number Ra .

In contrast, consider the result (6.23): while this (possibly non-optimal) bound on
Nu scales as Ra1/2 in terms of the Rayleigh number measuring the averaged temperature
drop across the fluid, for sufficiently large imposed temperature gradient we find that
Nu scales as R1/3 in terms of the Rayleigh number measured across the entire system;
albeit with a prefactor that grows for small σ as σ −1/3.

In an experiment with sufficiently small fixed dimensionless plate thickness d and/or
large conductivity ratio λ, so σ = d/λ � 1, it might seem plausible to ignore the plates
and evaluate the Rayleigh number assuming that the fixed temperature difference is
imposed at the boundaries of the fluid. We have shown directly from the governing
PDEs that in terms of this ‘Rayleigh number’ R across the full system, for sufficiently
strong heating the scaling exponent p in a relationship Nu ∼ CRp could be no greater
than 1/3. We should emphasize though that this ‘1/3 scaling’ in our bounds is only
relevant for large R (or Ra) – beyond a transition value Rt which scales, in our
estimates, as σ −2, and may thus for small σ be inaccessible to experiments or direct
numerical simulations – and is presumably unrelated to the exponents p � 1/3 seen
in experiments or simulations.

7. Conclusions
For finite Prandtl number Rayleigh–Bénard convection, we have formulated the

energy identities and bounding problem in the case of mixed thermal BCs with
fixed Biot number η applied at the upper and lower boundaries of the fluid, and
demonstrated that the fixed temperature and fixed flux extremes may indeed be
treated as special cases of a more general model, for which one can obtain rigorous
analytical and asymptotic bounds on convective heat transport.

It has also come out of this formalism that, at least at the level of our conservative
upper bounds with piecewise linear backgrounds, the case of convection with plates
may be systematically mapped onto that with finite Biot number, via η = σ = d/λ.

While the scaling of these analytical bounds on the Nu–Ra relationship remains
well above that observed experimentally or in direct numerical simulations, some of
the qualitative conclusions may be instructive. Of particular interest is that while for
each fixed control parameter R the bounds depend smoothly on η for 0 � η � ∞, the
asymptotic R → ∞ behaviour of the bounding problem for any non-zero Biot number
is as for the η = ∞ fixed flux problem. Indeed, we have proved that unlike in the fixed
temperature case η = 0, for each η > 0 the averaged dimensionless boundary heat flux
β is bounded above uniformly in R, β − 1 � η−1, so that the asymptotic growth in
Nu is necessarily due to decay of 	T . That is, the limits η → 0 and R → ∞ do not
commute: the much-studied fixed temperature case is a singular limit of the general
bounding problem. From the point of view of understanding a realistic convection
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situation in the limit of large R, it appears that the mathematical structure of the
insulating-plates fixed flux problem is more relevant.

Furthermore, our analysis reveals two distinct scaling behaviours for sufficiently
small non-zero σ (or η): In the ‘fixed temperature scaling regime’ for small Rayleigh
number Ra , the growth in the (bounds on the) convective heat transport measured by
Nu is largely due to the increase in the averaged boundary heat flux β . However, for
strong driving, eventually a ‘fixed flux scaling regime’ is reached in which the effective
conductivity of the fluid due to convective transport exceeds the plate conductivity,
and the plates effectively act as insulators; β saturates and further increases in Nu
are due to decreases in the averaged temperature drop 	T . The transition between
these regimes occurs when the ‘thermal boundary layer width’ δ is comparable to σ .

It would be of interest to determine whether this qualitative transition at R ≈ Rt

from effectively conducting to effectively insulating boundaries is in fact reflected in
the physics of convective turbulence in the fluid, and thus observable in experiments
with small σ = d/λ, or in direct numerical simulations with fixed Biot number η � 1.
It is possible that it may not be: the recent direct numerical simulations comparing
fixed temperature and fixed flux BCs, due to Johnston & Doering (2009) in two
dimensions with horizontal periodicity, and to Verzicco & Sreenivasan (2008) and
Stevens et al. (2010) in three-dimensional cylindrical geometry, suggest that the heat
transport in large-Ra turbulent convection appears to be insensitive to thermal BCs.

In this context, we observe that the prefactor in our asymptotic analytical bound
Nu � C Ra1/2 increases from C0 = 3

√
6/32 ≈ 0.230 to Cη = C∞ =

√
2/27 ≈ 0.272 for

η > 0; that is, within the framework of our upper bounding calculations with piecewise
linear background it appears that the estimates on the heat transport increase when
the boundaries are not perfectly conducting. It remains to determine whether this
increase is an artifact of the choice of background τ (z) or of the background flow
bounding approach in general.
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from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix A. Comments on the formulation and notation
The problem of Rayleigh–Bénard convection with bounding plates may be

formulated using separate fields in the fluid and the lower and upper plates, with
appropriate conditions at the interfaces between the different domains. However, as
discussed before (2.20), for simplicity of notation it is more convenient to treat the
space- and time-dependent fields as being defined across the entire plate–fluid–plate
system, for −d � z � 1 + d . (Recall that all x- and y-dependent quantities are Lx ,
Ly-periodic in the horizontal directions.) Thus we consider a single dimensionless
temperature field T , which coincides with the temperature in the lower plate Tp,l on
z ∈ [−d, 0), with the fluid temperature Tf on z ∈ (0, 1) and with the upper plate
temperature Tp,u on z ∈ (1, 1 + d]; it is a continuous function with discontinuous
vertical derivative at z = 0 and 1, which satisfies the conditions (2.31)–(2.32) at
the fluid–plate interfaces at z =0 and 1, and the BCs (2.33). (Equivalently, defining
a piecewise constant global thermal conductivity function λ̄= λ̄(z) which takes the
values 1 in the fluid and λ in the plates, (2.31)–(2.32) can be interpreted as continuity
conditions on both T and the weighted derivative λ̄ ∂T /∂z.) Similarly, we may extend
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the definition of the velocity field by u ≡ 0 in the plates −d � z � 0 and 1 � z � 1+d;
then (by the no-slip BCs u|z = 0,1 = 0) the velocity field is similarly continuous across
the entire system, with discontinuous vertical derivative in the horizontal velocity
components (by incompressibility, wz|z=0,1 = 0). Similar considerations apply to the
fluctuating quantities v = u, θ = T − τ̄ defined in § 4.1.

For convection in the presence of plates, since the temperature field T is
piecewise defined, care should be taken in evaluating Tz and related fields which
are discontinuous at the interfaces z = 0 and 1, for instance when evaluating
boundary terms upon integrating over the fluid or plates. To simplify the
description, before (2.20) we introduced notation for limits, writing, for instance,
T |z=1+ = limz→1+ T = Tp,u|z=1, or (∂T /∂z)|z=0+ = (∂Tf /∂z)|z=0. Similarly, we write
( · )|1−

z=0+ to indicate that boundary values are approached from within the fluid:
specifically, for any function f (z), we have

(f )|1−
z=0+ ≡ f |z=1− − f |z=0+ ≡ lim

z→1−
f − lim

z→0+
f =

∫ 1

0

fz dz; (A 1)

and similarly for (f )|0−
z=−d =

∫ 0

−d
fz dz and (f )|1+d

z=1+ =
∫ 1+d

1
fz dz.

Following Otero et al. (2002), for functions h(x, y, z) and g(t) we define the
horizontal and time averages, h(z) and 〈g〉, respectively, by

h(z) =
1

A

∫∫
A

h(x, y, z) dx dy =
1

A

∫ Ly

0

∫ Lx

0

h(x, y, z) dx dy (A 2)

and

〈g〉 = lim sup
τ→∞

1

τ

∫ τ

0

g(t) dt, (A 3)

where A = LxLy is the non-dimensional area of the plates.
For a function h(x, y, z), we define volume integrals of h over the fluid, lower plate

and upper plate by
∫

f
h,
∫

l
h and

∫
u
h, in the expected way: over the full fluid layer,

we have ∫
f

h = A

∫ 1

0

h(z) dz =

∫ 1

0

∫∫
A

h(x, y, z) dx dy dz; (A 4)

while over the lower and upper plates, respectively,

∫
l

h = A

∫ 0

−d

h(z) dz,

∫
u

h = A

∫ 1+d

1

h(z) dz. (A 5)

The usual L2 norm is defined over the fluid layer by

‖h‖2
f =

∫
f

h2 =

∫ 1

0

∫∫
A

h2(x, y, z) dx dy dz. (A 6)

For the full convection problem with plates, it turns out that the energy identities are
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best formulated in terms of a conductivity-weighted integral across the plate–fluid–
plate system; we define

{h} = λ

∫
l

h +

∫
f

h + λ

∫
u

h =

∫ 1+d

−d

∫∫
A

h(x, y, z) dx dy λ̄(z) dz = A

∫ 1+d

−d

h(z) λ̄(z) dz,

(A 7)
which may be interpreted as an integral with a weighted measure dζ = λ̄(z) dz.

With this notation, the divergence theorem applied to vector fields H over the fluid
gives

∫
f

∇ · H = AH · ez|1−
z=0+, using horizontal periodicity, and similarly for integrals

over the plates.
A further notational convention we introduce (not to be confused with the use of h

to denote the horizontal average of a function h(x, y, z) or h(x, y, z, t)) is the use of a
bar ·̄ to denote quantities relevant to the problem with plates, such as the background
field τ̄ (z) (defined on [−d, 1 + d]) with associated γ̄ , 	τ̄ and τ̄a , and the bounds B̄σ ,
D̄σ and N̄σ (or, for piecewise linear backgrounds, B̄pwl,σ , D̄pwl,σ and N̄pwl,σ ). This
convention is chosen to distinguish them from the corresponding quantities (such as
the background τ (z) defined only on [0, 1]) for the convection problem without plates
treated in Appendix B, in which thermal BCs are applied directly at the boundaries
of the fluid.

Appendix B. Derivation of bounding principle for mixed (fixed Biot number)
thermal boundary conditions

In §§ 3.2–5.1 of the main body of this manuscript, we have chosen to concentrate on
convection in a fluid bounded by conducting plates of finite thickness and conductivity
with fixed temperatures applied to the outer boundaries of the plates, deriving the
governing identities and bounding formalism for that case. In this appendix, in parallel
with the presentation in the main text we obtain the analogous formulae for mixed
thermal BCs applied directly to the fluid boundaries. In many cases, we can reuse
computations over the fluid layer 0 < z < 1 (in non-dimensional variables), merely
modifying the BCs on the temperature at z = 0 and 1.

We recall from § 2.2 the definition of the mixed (Robin) thermal BCs; specifically,
from (2.17) we have, in dimensionless form, that for a fixed η (we assume here
0 < η < ∞) the temperature field T satisfies T − ηTz = 1 + η on z = 0, and
T + ηTz = −η on z = 1.

B.1. Governing identities

B.1.1. Relation between β and 	T

As in § 3.2, we can relate the averaged (non-dimensional) boundary temperature
drop 	T and heat flux β: taking horizontal averages of (2.17), and subtracting the
upper BC from the lower, we find T |z=0 − T |z=1 − η(T z|z=0 + T z|z=1) = 1 + 2η. Taking
time averages and using (3.1) and (3.7), we find the fundamental relation

	T + 2ηβ = 1 + 2η. (B 1)

Hence for 0 < η < ∞, an upper bound on β constitutes a lower bound on 	T ,
and vice versa, and we only need to bound one of these quantities to obtain an
upper bound on Nu = β/	T = β/[1 + 2η(1 − β)] = 	T −1 +

(
	T −1 − 1

)
/2η. In the

following, assuming η < ∞ we shall solve for 	T using (B 1) to present the identities
in a form, valid in the fixed temperature limit η → 0, that allows the derivation of an
upper bound on β .
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B.1.2. Global energy identities

We next express the general energy identities over the fluid layer, (3.17) and (3.19),
for fixed (finite) Biot number BCs. Substituting 	T = 1 + 2η(1 − β) into (3.17), we
find

1

AR
〈‖∇u‖2

f 〉 = β − 	T = (1 + 2η) (β − 1) . (B 2)

Similarly, we can evaluate the boundary term in (3.19) by using the BCs (2.17) to
solve for T at z = 0, 1 in terms of Tz; substituting into T Tz|1z=0 and taking horizontal
and time averages, we find that the global thermal energy identity (3.19) becomes

1

A
〈‖∇T ‖2

f 〉 = 〈T Tz

∣∣1
z=0

〉 = (1 + 2η)β − η〈T 2
z |z=0 + T 2

z |z=1〉 (B 3)

(note the additional quadratic boundary terms not present in (3.22)).

B.2. Background fields

Following the ‘background flow’ variational method for obtaining upper bounds,
as in § 4.1 we decompose the velocity and temperature fields via u(x, t) = v(x, t),
T (x, t) = τ (z) + θ(x, t). The background field τ (z) is assumed to inherit the BCs on
the temperature; assuming that the upper and lower boundaries of the fluid have
identical thermal properties, we require τ ′(0) = τ ′(1) (cf. (3.7)), and define

	τ = τ (0) − τ (1), γ = −τ ′(0) = −τ ′(1). (B 4)

In the case of fixed Biot number BCs, τ (z) satisfies (2.17), which implies that

	τ + 2ηγ = 1 + 2η. (B 5)

Consequently, the perturbation θ satisfies the homogeneous Robin BCs θ+ηn · ∇θ = 0
at the interfaces, which in our geometry become

θ − η θz = 0 at z = 0, θ + η θz = 0 at z = 1. (B 6)

B.2.1. Evolution equations and L2 identities for fluctuating fields

Substituting the decomposition of u and T into (2.6)–(2.8) (for general thermal
BCs on the fluid boundaries), we readily find that the fields v and θ evolve in the
fluid as in (4.7), (4.8) and (4.10) (with τ instead of τ̄ ), with homogeneous BCs. The
L2 evolution for the perturbed temperature θ , found by multiplying (4.10) by θ and
integrating, is

1

2

d

dt
‖θ‖2

f = − ‖∇θ‖2
f + A θθz

∣∣1
z=0

−
∫

f

θzτ
′ + A θτ ′∣∣1

z=0
−
∫

f

wθτ ′. (B 7)

Comparing with (4.12), we observe that when general (non-Dirichlet) thermal BCs
are imposed at the fluid boundaries, boundary terms remain and play a significant
role. We also use the relations u = v, T = τ + θ between the physical fields and the
fluctuations over which the optimization is performed, expressed in the form

1

R
‖∇u‖2

f =
1

R
‖∇v‖2

f , (B 8)

‖∇T ‖2
f = ‖∇θ‖2

f + 2

∫
f

θzτ
′ +

∫
f

τ ′2. (B 9)
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As in § 4.2, we now form the linear combination b · [2 · (B 7)+(B 9)]+(1−b) · [(B 8)],
and take time averages, to give

b
〈

‖∇T ‖2
f

〉
+

1 − b

R

〈
‖∇u‖2

f

〉
= b

∫
f

τ ′2 +
〈
2bA θτ ′∣∣1

z=0
+ 2bA θθz

∣∣1
z=0

〉

+

〈∫
f

[
1 − b

R
|∇v|2 − 2bτ ′wθ − b|∇θ |2

]〉
. (B 10)

Substituting (B 2) and (B 3), this becomes

bA〈T Tz

∣∣1
z=0

〉+(1−b)A(β−	T ) = b

∫
f

τ ′2+2bA〈θτ ′∣∣1
z=0

〉+2bA〈θθz

∣∣1
z=0

〉−b Qτ,Re
[v, θ],

(B 11)
where as in (4.21) we define the quadratic form

Qτ,Re
[v, θ] =

〈∫
f

[
1

Re

|∇v|2 + 2τ ′wθ + |∇θ |2
]〉

, (B 12)

with Re = bR/(b − 1) (see (4.18)).
Using T = τ + θ , (B 4) and the definitions (3.1) and (3.7), we may write 〈θτ ′|1z=0〉 =

−γ 〈θ |1z=0〉 ≡ γ	θ , and decompose the first term in (B 11) via

〈T Tz

∣∣1
z=0

〉 = 〈τTz

∣∣1
z=0

〉 + 〈θτ ′∣∣1
z=0

〉 + 〈θθz

∣∣1
z=0

〉 = β	τ + γ	θ + 〈θθz

∣∣1
z=0

〉. (B 13)

Substituting into (B 11), writing 	θ = 	T − 	τ and rearranging terms, we obtain

b (β	τ − γ	T ) + (1 − b)(β − 	T ) = b

(∫ 1

0

τ ′2 dz − γ	τ

)
− b

A
Q′

τ,Re
[v, θ]. (B 14)

Here we have introduced a modified quadratic form with boundary terms added to
(B 12) (these extra terms vanish in both the fixed temperature and fixed flux limits),

Q′
τ,Re

[v, θ] = Qτ,Re
[v, θ] − A

〈
θθz

∣∣1
z=0

〉
. (B 15)

The identity (B 14) is independent of the thermal BCs applied directly at the fluid
boundaries. In specializing to mixed, fixed Biot number BCs (2.17), we solve for 	T

and 	τ using (B 1) and (B 5) (for η < ∞) to compute

β	τ − γ	T + γ	τ = (1 + 2η)β − 2ηγ 2. (B 16)

Now substituting (B 2) and (B 16), (B 14) becomes in terms of β

(1 + 2η)(β − 1) = b

(∫ 1

0

τ ′2 dz − (1 + 2η) + 2ηγ 2

)
− b

A
Q′

τ,Re
[v, θ], (B 17)

where for fixed, finite Biot number, the boundary term in Q′
τ,Re

from (B 15) can be
written, using (B 6), as

θθz

∣∣1
z=0

= −η
(
θ2
z |z=0 + θ2

z |z=1

)
. (B 18)

Observe the similarities between (B 17) and the analogous formula (4.19) for
convection in the presence of conducting plates; in this case, though, explicit
contributions from the fluid boundaries replace the integrals over the plates.



194 R. W. Wittenberg

B.2.2. A bounding principle for mixed thermal boundary conditions

As in § 4.3, we can now use (B 17) to deduce an approach to bounding β , and
hence the Nusselt number Nu . We begin by letting allowed fields be those sufficiently
smooth scalar fields θ and divergence-free vector fields v which satisfy the BCs of the
problem. A background profile τ (z) satisfying the thermal BCs will then be admissible
if, for a given Re > 0, the quadratic form Q′

τ,Re
appearing in (B 17) is non-negative,

Q′
τ,Re

[v, θ] � 0 for all allowed fields v and θ (and hence for all solutions of the
evolution PDEs for the fluctuating fields).

We now formulate an upper bounding principle for the Nusselt number Nu in
terms of the control parameter R (and hence in terms of Ra = R 	T ): For each
R > 0, if we can choose b > 1 and a corresponding admissible background field τ (z),
then from (B 17) the averaged boundary temperature gradient β is bounded above
(for η < ∞) by

β � 1 − b +
b

1 + 2η

(∫ 1

0

τ ′2 dz + 2ηγ 2

)
= Bη[τ ; b], (B 19)

while using (B 1) and (B 5), a corresponding lower bound for the averaged temperature
drop across the fluid 	T is (for η > 0)

	T � 1 + b(2	τ − 1) − b
2η

1 + 2η

(∫ 1

0

τ ′2 dz +
1

2η
	τ 2

)
= Dη[τ ; b], (B 20)

where the above equations define the functionals Bη[τ ; b] and Dη[τ ; b] (where
Dη[τ ; b] + 2ηBη[τ ; b] = 1 + 2η). It follows from (3.11) that the Nusselt number
is bounded above by

Nu � Nη[τ ; b] = Bη[τ ; b]/Dη[τ ; b]. (B 21)

Observe that for the conduction solution τ (z) = 1−z, we have Bη[τ ; b] = Dη[τ ; b] =
1, so that whenever this is an admissible profile, the bound on the Nusselt number
takes its minimum value of 1, as expected.

B.2.3. Strong admissibility

As in § 4.3, for convection with fixed Biot number BCs it is convenient to strengthen
the admissibility condition on τ (z), here by ignoring the BCs on θ and removing the
boundary terms from the quadratic form Q′

τ,Re
:

We say that a background field τ (z) defined on [0, 1] is strongly admissible if the
quadratic form Qτ,Re

defined in (B 12) is non-negative, Qτ,Re
[v, θ] � 0 for all sufficiently

smooth, horizontally periodic v and θ , where ∇ · v = 0 and v = 0 on z = 0, 1, but we
impose no additional constraints on θ .

That the strong admissibility condition (positivity of Qτ,Re
) implies admissibility

(positivity of Q′
τ,Re

) for fixed Biot number boundaries follows in this case from the
fact that by (B 18), the additional boundary term appearing in (B 15) for η �= 0, ∞ is
stabilizing:

Q′
τ,Re

[v, θ] = Qτ,Re
[v, θ] + Aη

〈(
θ2
z |z=0 + θ2

z |z=1

)〉
� Qτ,Re

[v, θ]. (B 22)

B.3. Explicit conservative bounds using piecewise linear background profiles

While the strong admissibility criterion is difficult to verify for general backgrounds
τ (z), by restricting consideration only to piecewise linear profiles we may obtain
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Slope = –γ

(1 + �τ)/2

(1 – �τ)/2

τδ(z)

τa = 1/2

z1/2 1 – δ 10 δ

Figure 4. The piecewise linear background profile τδ(z), with τ ′ = −γ in the boundary layer,
and τ ′ = 0 in the bulk.

analytical conditions ensuring Qτ,Re
[v, θ] � 0; such profiles shall in fact also allow

us to map the convection problem with fixed Biot number BCs and that with plates
onto one another.

B.3.1. Piecewise linear profiles for fixed Biot number conditions

We define a one-parameter family of piecewise linear background profiles τδ(z) over
the fluid domain z ∈ [0, 1] as follows (see figure 4):

τ (z) = τδ(z) =

⎧⎨
⎩

τa − γ (z − δ), 0 � z � δ,

τa, δ < z < 1 − δ,

τa − γ (z − (1 − δ)), 1 − δ � z � 1.

(B 23)

From (B 23) we immediately compute τ (0) = τa + γ δ, τ (1) = τa − γ δ, and so

	τ = τ (0) − τ (1) = 2δγ,

∫ 1

0

τ ′2 dz = 2δγ 2 = γ	τ, (B 24)

where it remains to choose the average τa = (τ (0) + τ (1))/2 and boundary slope
γ = −τ ′(0) = −τ ′(1) of the background as functions of δ. Substituting 	τ = 2δγ into
(B 5), we obtain the values of γ and 	τ (for given δ and η) for which τδ(z) defined in
(B 23) satisfies the mixed (Robin) thermal BCs:

γ =
1 + 2η

2(δ + η)
, 	τ = 2δγ =

δ(1 + 2η)

δ + η
. (B 25)

Now using this γ in the BC (2.17) written as τ (0) = 1 + η + ητ ′(0) for η < ∞, we find
that τa = 1/2, completing the specification of the background τδ(z). (In the fixed flux
case η = ∞, in which the governing equations depend only on temperature gradients,
τa is arbitrary; for consistency we choose τa = 1/2.)

Substituting (B 24)–(B 25) into (B 19)–(B 20) and simplifying, we now find that the
conservative bounds on β and 	T for fixed Biot number convection with a piecewise
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linear (pwl) background profile τδ take the concise forms

β � Bpwl,η(δ, b) ≡ Bη[τδ; b] = 1 + b
1

2

1 − 2δ

δ + η
= 1 + b(γ − 1), (B 26)

	T � Dpwl,η(δ, b) ≡ Dη[τδ; b] = 1 − b η
1 − 2δ

δ + η
= 1 + b(	τ − 1), (B 27)

corresponding to an upper bound on the Nusselt number of Nu � Npwl,η(δ, b) ≡
Nη[τδ; b] = Bpwl,η(δ, b)/Dpwl,η(δ, b).

B.3.2. Relation to convection with plates

The development in this appendix of a bounding principle for convection with
mixed thermal BCs of fixed Biot number η, applied directly at the fluid boundaries,
parallels the calculations in §§ 3.2–5.1 for convection with imperfectly conducting
bounding plates.

As discussed in § 5.2, it turns out that the strong admissibility criteria for convection
with and without plates coincide, so that the estimates of § 5.3 for verifying strong
admissibility for piecewise linear backgrounds also apply to the present mixed BC
case. Furthermore, for convection with plates with σ = d/λ, the piecewise linear field
τ̄δ(z) defined in (5.1) satisfies mixed thermal BCs with Biot number η = σ , and the
corresponding bounds on Nu agree. Hence the further derivation of bounds for fixed
Biot number BCs can proceed simultaneously with that for convection with bounding
plates. Asymptotic bounds for convection with Biot number η, and equivalently for
plates with σ = η, are obtained in § 6, with a discussion of their scaling regimes for
increasing R.
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