Numerical Analysis Clicker Questions

Alamgir Hossain and John Stockie

Department of Mathematics
Simon Fraser University

Clicker question types

- \qitemMCthree
- \qitemMCfour
- \qitemMCfive
- \qitemTF

This teaching resource (including $A T_{E} X$ source, graphical images and Matlab code) is made available under the Creative Commons "CC BY-NC-SA" license. This license allows anyone to reuse, revise, remix and redistribute the databank of clicker questions provided that it is not for commercial purposes and that appropriate credit is given to the original authors. For more information, visit http://creativecommons.org/licenses/bync-sa/4.0.

Clicker Question \#23

You have a system of three linear equations with three unknowns. If you perform Gaussian elimination and obtain the reduced row echelon form

$$
\left[\begin{array}{rrr:r}
1 & -2 & 4 & 6 \\
0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

then the system has ...
(A) no solution
(B) a unique solution
(C) more than one solution
(D) infinitely many solutions

Clicker Question \#23

You have a system of three linear equations with three unknowns. If you perform Gaussian elimination and obtain the reduced row echelon form

$$
\left[\begin{array}{rrr:r}
1 & -2 & 4 & 6 \\
0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

then the system has ...
(A) no solution
(B) a unique solution
(C) more than one solution
(D) infinitely many solutions

Answer: (D). The last equation reads " $0=0$ " so x_{3} can be any real number. Strictly (C) is also correct, but (D) is the most accurate answer.

Clicker Question \#24

Fill in the blank: If $f(x)$ is a real-valued function of a real variable, then the error in the difference approximation for the derivative
$f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$ goes to zero as $h \rightarrow 0$.
(A) absolute
(B) relative
(C) cancellation
(D) truncation

Clicker Question \#24

Fill in the blank: If $f(x)$ is a real-valued function of a real variable, then the error in the difference approximation for the derivative
$f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$ goes to zero as $h \rightarrow 0$.
(A) absolute
(B) relative
(C) cancellation
(D) truncation

Answer: (D). Strictly, response (A) is also correct since truncation error is an (absolute) difference from the exact derivative.

Clicker Question \#25

The intersection points between the curves $y=$ x and $y=g(x)$ are $x=0$ and $x=4$, as shown in the plot. Which of the statements below regarding the fixed point iteration $x_{k+1}=g\left(x_{k}\right)$ is TRUE?
I. If $x_{0}=2$ then x_{k} converges to 4 .
II. If $x_{0}=1$ then x_{k} converges to 0 .
III. If $x_{0}=6$ then x_{k} converges to 4 .

(A) I and II
(B) II and III
(C) I and III
(D) I, II and III

Clicker Question \#25

The intersection points between the curves $y=$ x and $y=g(x)$ are $x=0$ and $x=4$, as shown in the plot. Which of the statements below regarding the fixed point iteration $x_{k+1}=g\left(x_{k}\right)$ is TRUE?
I. If $x_{0}=2$ then x_{k} converges to 4 .
II. If $x_{0}=1$ then x_{k} converges to 0 .
III. If $x_{0}=6$ then x_{k} converges to 4 .

(A) I and II
(B) II and III
(C) I and III
(D) I, II and III

Answer: (C)

Clicker Question \#26

Consider the matrix

$$
A=\left[\begin{array}{ccc}
4 & -8 & 1 \\
6 & 5 & 7 \\
0 & -10 & -3
\end{array}\right]
$$

whose $L U$ factorization we want to compute using Gaussian elimination. What will the initial pivot element be without pivoting, and with partial pivoting?
(A) 0 (no pivoting), 6 (partial pivoting)
(B) 4 (no pivoting), 0 (partial pivoting)
(C) 4 (no pivoting), 6 (partial pivoting)

Clicker Question \#26

Consider the matrix

$$
A=\left[\begin{array}{ccc}
4 & -8 & 1 \\
6 & 5 & 7 \\
0 & -10 & -3
\end{array}\right]
$$

whose $L U$ factorization we want to compute using Gaussian elimination. What will the initial pivot element be without pivoting, and with partial pivoting?
(A) 0 (no pivoting), 6 (partial pivoting)
(B) 4 (no pivoting), 0 (partial pivoting)
(C) 4 (no pivoting), 6 (partial pivoting)

Answer: (C)

Clicker Question \#27

Which of the following statements is TRUE?
I. Simpson's rule is exact for linear functions, $f(x)=a x+b$.
II. Simpson's rule is exact for second-degree polynomials (quadratics), $f(x)=a x^{2}+b x+c$.
III. Simpson's rule is exact for fourth-degree polynomials.
(A) none is true
(B) 1
(C) II
(D) I and II
(E) I, II and III

Clicker Question \#27

Which of the following statements is TRUE?
I. Simpson's rule is exact for linear functions, $f(x)=a x+b$.
II. Simpson's rule is exact for second-degree polynomials (quadratics), $f(x)=a x^{2}+b x+c$.
III. Simpson's rule is exact for fourth-degree polynomials.
(A) none is true
(B) 1
(C) II
(D) I and II
(E) I, II and III

Answer: (D)

Clicker Question \#28

True or False: Let $f(x)=x^{2}-2 x+1$. The bisection method can be used to approximate the root of the function $f(x)$ pictured.

Clicker Question \#28

True or False: Let $f(x)=x^{2}-2 x+1$. The bisection method can be used to approximate the root of the function $f(x)$ pictured.

Answer: FALSE

Clicker Question \#29

True or False: This piecewise polynomial is a quadratic spline:

$$
S(x)= \begin{cases}0, & \text { if }-1 \leqslant x \leqslant 0 \\ x^{2}, & \text { if } 0 \leqslant x \leqslant 1\end{cases}
$$

Clicker Question \#29

True or False: This piecewise polynomial is a quadratic spline:

$$
S(x)= \begin{cases}0, & \text { if }-1 \leqslant x \leqslant 0 \\ x^{2}, & \text { if } 0 \leqslant x \leqslant 1\end{cases}
$$

Answer: TRUE. The piecewise functions are both quadratic, and $S(x)$ and $S^{\prime}(x)$ match at $x=0$.

