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SOLUTIONS TO SELECTED EXERCISES FOR
“THE MATHEMATICS OF ATMOSPHERIC DISPERSION MODELLING”

SIAM REVIEW, 53(2):349-372, 2011

JOHN M. STOCKIE

These notes contain solutions to selected exercises from the paper. Equations that are introduced in this
document are labelled as “(Ex-nn)”, while all other references of the form “(nn.nn)” correspond to equations
from the published paper. Helpful tables of Laplace transforms and Bessel function identities are provided at
the end.

A few of the solutions are still incomplete, namely for Exercises 5 and 16. And there are a few details of
the derivation in Exercise 7 that still remain to be worked out.

Exercise 1. Reformulate with a delta function source in the boundary condition.

Start by taking the steady advection-diffusion equation (2.4a) with a delta function source term

u
∂C

∂x
= K

∂2C

∂y2
+ K

∂2C

∂z2
+ Qδ(x) δ(y) δ(z −H) (2.4a)

and integrate both sides over the interval x ∈ [−d, d] where d > 0 to obtain

u (C(d, y, z)− C(−d, y, z)) = 2dK

(
∂2C̄d

∂y2
+

∂2C̄d

∂z2

)
+ Qδ(y)δ(z −H),

where C̄d(y, z) = 1
2d

∫ d

−d
C(x, y, z) dx represents the average value of concentration over the interval [−d, d]

and we have used the fact that
∫ d

−d
δ(x) dx = 1. Consider the limit as d → 0+ in the equation above to obtain

C(0, y, z) =
Q

u
δ(y)δ(z −H),

making use of the assumption that C(−d, y, z) = 0. All of the other boundary conditions remain unchanged.
Because we are only concerned with solving the PDE on the interval x > 0, the delta function term can be
neglected and the PDE reduces to

u
∂C

∂x
= K

∂2C

∂y2
+ K

∂2C

∂z2
,

as required.

Exercise 2. Nondimensionalization.

Consider the advection-diffusion equation with constant eddy diffusivity K

u
∂C

∂x
= K

∂2C

∂x2
+ K

∂2C

∂y2
+ K

∂2C

∂z2
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and boundary conditions

C(0, y, z) =
Q

u
δ(y)δ(z −H), C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0,

K
∂C

∂z
(x, y, 0) = 0.

Using the change of variables

x̃ = (K/uH2) x, ỹ = y/H, z̃ = z/H and C̃(x̃, ỹ, z̃) = (uH2/Q) C(x, y, z),

derivatives transform according to

∂

∂x
=

K

uH2

∂

∂x̃
,

∂

∂y
=

1
H

∂

∂ỹ
,

∂

∂z
=

1
H

∂

∂z̃
,

and the partial differential equation becomes

∂C̃

∂x̃
=
(

K

uH

)2
∂2C̃

∂x̃2
+

∂2C̃

∂ỹ2
+

∂2C̃

∂z̃2
. (Ex-1)

To determine the size of the quantity multiplying the x-diffusion term, we can use typical parameter values
u = 5 m/s, H = 15 m from Table 3.1, but we still require an estimate for K. Using the relationship
K = (µ/2)∂2

x(σ2) = (abu/2)xb−1 we find K ≈ 0.70x−0.14 ≈ 0.37 if we choose x = 100 m. Consequently,
(K/uH)2 ≈ 2.5× 10−5, which is sufficiently small that the x-diffusion term can be neglected.

Transforming the boundary conditions leads to

C̃(∞, ỹ, z̃) = 0, C̃(x̃,±∞, z̃) = 0, C̃(x̃, ỹ,∞) = 0,
∂C̃

∂z̃
(x̃, ỹ, 0) = 0, (Ex-2)

C̃(0, ỹ, z̃) = H2 δ(Hỹ) δ(Hz̃ −H)

Applying the identity δ(Hx) = δ(x)/H to the final boundary condition yields

C̃(0, ỹ, z̃) = δ(ỹ) δ(z̃ − 1). (Ex-3)

Exercise 3. Derivation of Gaussian plume by separation of variables.

Start with the PDE boundary value problem

u
∂C

∂x
= K

∂2C

∂y2
+ K

∂2C

∂z2
, (2.5a)

C(0, y, z) =
Q

u
δ(y)δ(z −H), (2.5b)

C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0, (2.5c)

K
∂C

∂z
(x, y, 0) = 0, (2.5d)

and perform the change of variables r = 1
u

∫ x

0
K(x′) dx′, under which derivatives transform according to

∂x = K
u ∂r. Defining c(r, y, z) = C(x, y, z) we obtain the transformed problem

∂c

∂r
=

∂2c

∂y2
+

∂2c

∂z2
,

c(0, y, z) = (Q/u) δ(y)δ(z −H), c(∞, y, z) = 0, c(r,±∞, z) = 0, c(r, y,∞) = 0,
∂c

∂z
(r, y, 0) = 0.
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Substitute the separable solution c(r, y, z) = Q
u a(r, y) b(r, z) into the PDE to obtain

a
∂b

∂r
+ b

∂a

∂r
= b

∂2a

∂y2
+ a

∂2b

∂z2
.

Dividing by ab and collecting terms yields

1
a

(
∂a

∂r
− ∂2a

∂y2

)
=

1
b

(
∂2b

∂z2
− ∂b

∂r

)
.

Because the left hand side is a function of r and y (but not z) whereas the right hand side depends on r
and z (but not y), both sides of the equation must be equal to λ(r), an as-yet undetermined function of r;
consequently,

∂a

∂r
=

∂2a

∂y2
+ aλ and

∂b

∂r
=

∂2b

∂z2
− bλ (Ex-4)

We demonstrate later why it must be true that λ(r) ≡ 0, but for now we just assume that λ is constant. It
is also straightforward to show that the corresponding boundary conditions separate to yield

a(0, y) = δ(y) b(0, z) = δ(z −H)
a(∞, y) = 0 b(∞, z) = 0

a(r,±∞) = 0 b(r,∞) = 0 (Ex-5)
∂b

∂z
(r, 0) = 0

Notice that both problems have the same form as the familiar initial value problems for the 1D diffusion (or
heat) equation where r is a “time-like” variable. The conditions at r = 0 correspond to initial values while
the conditions at r = ∞ are redundant since any solution of the diffusion equation necessarily decays to zero
as r →∞.

Why is λ(r) ≡ 0?. Consider first the case when λ is a constant. Then the solutions to Eqs. (Ex-4)–
(Ex-5) can be obtained using a slightly modified version of the Laplace transform technique applied in
Section 3.1 of the paper. The Laplace transform in r yields the modified equation

∂2â

∂y2
− (ρ− λ)â = −δ(y),

where the only difference is that the Laplace transform variable ρ is replaced by (ρ− λ). Consequently, the
solution becomes

â =
1

2(ρ− λ)
e−y

√
ρ−λ,

which after applying the “frequency shift” property of the Laplace transform yields

a(r, y) =
1√
4πr

e−y2/4reλy.

In order that a(r, y) remain bounded as y → ±∞, we require that λ = 0.
A similar argument can be applied in the case when λ is a function of r, but then the Laplace transform

approach cannot be used.
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Exercise 4. Cross-wind averaged concentration.

Begin with

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
, (3.8)

and integrate over y ∈ [−∞,∞]. Here, we can simply make use of the following property of Gaussian-type
functions

I =
∫ ∞

−∞
e−y2/4r dy = 2

√
πr,

to show that the cross–wind averaged concentration is given by

c̄(r, z) =
∫ ∞

−∞
c(r, y, z) dy =

Q

u
√

4πr

[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
.

This is a nice opportunity to remind students of a neat integration trick, usually first seen in a mul-
tivariable calculus course, for determining the integral I above. It is easiest to consider the square of the
integral

I2 =
(∫ ∞

−∞
e−y2/4r dy

)2

=
∫ ∞

−∞
e−y2/4r dy

∫ ∞

−∞
e−x2/4r dx,

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/4r dxdy.

Converting to polar coordinates using x = ρ cos θ and y = ρ sin θ, we obtain

I2 =
∫ 2π

0

∫ ∞

0

e−ρ2/4r ρ dρ dθ,

=
∫ 2π

0

dθ

∫ ∞

0

e−ρ2/4r ρ dρ,

= 2π
(
−2re−ρ2/4r

)∣∣∣∞
ρ=0

,

= 4πr,

and hence I = 2
√

πr as required.

Exercise 5. Numerical simulations with noise.

Exercise 6. Reduction of Eq. (3.18) to the Gaussian plume solution.

Take the following expression for concentration

c(r, y, z) =
Q

2uo
√

πry
exp

(
− y2

4ry

)
(zH)(1−β)/2

λrz
exp

(
−zλ + Hλ

λ2rz

)
I−ν

(
2(zH)λ/2

λ2rz

)
, (3.18)

and assume that α = 0 (constant wind velocity) and β = 0 (diffusivities are functions of x only). Then
λ = 2 + α− β = 2 and ν = (1− β)/λ = 1/2, and so the concentration becomes

c(r, y, z) =
Q

2uo
√

πry
exp

(
− y2

4ry

) √
zH

2rz
exp

(
− (z2 + H2)

4rz

)
I−1/2

(
2zH

4rz

)
.
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Applying the identity
√

2/πx cosh(x) to the Bessel function term yields

c(r, y, z) =
Q
√

zH

4uorz
√

πry
exp

(
− y2

4ry

)
exp

(
− (z2 + H2)

4rz

) √
4rz

πzH
cosh

(
zH

2rz

)
,

=
Q

2πuo
√

ryrz
exp

(
− y2

4ry

)
exp

(
− (z2 + H2)

4rz

)
cosh

(
zH

2rz

)
,

=
Q

4πuo
√

ryrz
exp

(
− y2

4ry

)
exp

(
− (z2 + H2)

4rz

) [
exp

(
zH

2rz

)
+ exp

(
−zH

2rz

)]
,

where the final line follows from cosh(x) = 1
2 (ex + e−x). The final result comes from combining the expo-

nential terms involving z:

c(r, y, z) =
Q

4πuo
√

ryrz
exp

(
− y2

4ry

) [
exp

(
−z2 −H2 + 2zH

4rz

)
+ exp

(
−z2 −H2 − 2zH

4rz

)]
,

=
Q

4πuo
√

ryrz
exp

(
− y2

4ry

) [
exp

(
−(z −H)2

4rz

)
+ exp

(
−(z + H)2

4rz

)]
,

which is identical to the formula (3.13).

Exercise 7. Derivation for height-dependent parameters.

The formula (3.18) appears in many papers that study atmospheric dispersion with height-dependent
parameters (for example, [8, 5, 11, 12, 4, 6]); however, to our knowledge there is no complete derivation
available for this formula in the literature. This exercise is actually more of a small project, requiring a large
number of intermediate steps and fairly detailed calculations. Therefore, if this problem is to be assigned to
students then it would make sense to divide it up into a number of smaller problems and provide hints at
several places during the derivation.

Simplify the governing equation. Integrating Eqs. (2.5a)–(2.5d) for y ∈ [−∞,∞] yields the following
problem for the crosswind-averaged concentration C̄(x, z) =

∫∞
−∞ C(x, y, z) dy:

u(z)
∂C̄

∂x
=

∂

∂z

(
K(z)

∂C̄

∂z

)
, (2.5a)

C̄(0, z) =
Q

u(H)
δ(z −H), (2.5b)

C̄(∞, z) = 0, C̄(x,∞) = 0, (2.5c)

∂C̄

∂z
(x, 0) = 0. (2.5d)

Take note of the following:
• The eddy diffusion coefficent depends on z and so it cannot be brought outside the z-derivative in

Eq. (2.5a).
• The factor of u(H) in Eq. (2.5b) is evaluated at H and not z because the delta function term zero

everywhere except at z = H.
Based on the given functional forms for u(z) = zα and K(z) = zβ , we then suggest the change of independent
variable z = Hζp so that z–derivatives transform according to

∂

∂z
=

∂ζ

∂z

∂

∂ζ
=

1
Hp

ζ1−p ∂

∂ζ
.
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Rescale the dependent variable using C̄(x, z) = QH ζν C(x, ζ), where the exponent ν is to be determined and
the constant factor QH is chosen to simplify the form of the boundary condition (2.5b) later on.

Substituting these expressions into the PDE yields

Hαζαp+ν ∂C
∂x

=
1

H2p2
ζ1−p ∂

∂ζ

[
ζβp−p+1 ∂

∂ζ
(ζνC)

]
.

Then

H2+αp2 ζν+p(1+α)−1 ∂C
∂x

=
∂

∂ζ

[
νζν+pβ−p C + ζ1+ν+pβ−p ∂C

∂ζ

]
,

= ν(ν + pβ − p) ζν+pβ−p C + (1 + 2ν + pβ − p) ζν+pβ−p ∂C
∂ζ

+ ζ1+ν+pβ−p ∂2C
∂ζ2

.

Dividing both sides of the equation by ζ1+ν+pβ−p, we obtain

H2+αp2 ζ−2+p(2+α−β) ∂C
∂x

= ν(ν + pβ − p) ζ−2C + (1 + 2ν + pβ − p) ζ−1 ∂C
∂ζ

+
∂2C
∂ζ2

,

which can be simplified significantly by taking −2 + p(2 + α− β) = 0 and 1 + 2ν + pβ − p = 1, or

p =
2
λ

and ν =
1− β

λ
where λ = 2 + α− β,

so the PDE reduces to

H2+αp2 ∂C
∂x

= −ν2

ζ2
C +

1
ζ

∂C
∂ζ

+
∂2C
∂ζ2

.

Finally, we take the Laplace transform in x to get

∂2Ĉ
∂ζ2

+
1
ζ

∂Ĉ
∂ζ

−
(

H2+αp2ξ +
ν2

ζ2

)
Ĉ = −H2+αp2 C(0, ζ), (Ex-6)

where ξ > 0 is the Laplace transform variable.
NOTE: This last equation doesn’t quite match Tayler’s equation – his right-hand side is −p δ(ζ − 1)

while ours is

−H2+αp2 C(0, ζ) = −H2+αp2

QHζν
C̄(0, z) = −H1+αp2

Qζν

Qδ(Hζp −H)
Hα

= −p2 δ(ζp − 1).

Until this is sorted out, let’s assume for the moment that the equation we are solving is Tayler’s [9, p. 198]
instead

∂2Ĉ
∂ζ2

+
1
ζ

∂Ĉ
∂ζ

−
(

θ2ξ +
ν2

ζ2

)
Ĉ = −p δ(ζ − 1), (Ex-7)

where θ2 = H2+αp2.

Derive the Laplace transform solution. The solution can be found using the method of variation of
parameters, which proceeds as follows:

• First, determine the solution to the homogeneous equation with zero right hand side in (Ex-7). This
problem has two linearly independent solutions that are given by the modified Bessel functions of
the first and second kind, Iν(θξ1/2ζ) and Kν(θξ1/2ζ) respectively, and so the homogeneous solution
can be written as

Ĉo(ξ, ζ) = c1Iν(θξ1/2ζ) + c2Kν(θξ1/2ζ),

where c1 and c2 are unknown constants.
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• Next, guided by the homogeneous solution, look for a solution to the non-homogeneous problem that
has the form

Ĉ(ξ, ζ) = A(ζ)Iν(θξ1/2ζ) + B(ζ)Kν(θξ1/2ζ).

• Use the fact that the Wronskian of the modified Bessel functions is W {Iν(x),Kν(x)} = −x−1 to
calculate the variation of parameters formulas

A′(ζ) =
1
W

det
[

0 Kν(θξ1/2ζ)
−pδ(ζ − 1) θξ1/2K ′

ν(θξ1/2ζ)

]
= −ζpδ(ζ − 1)Kν(θξ1/2ζ)

B′(ζ) =
1
W

det
[

Iν(θξ1/2ζ) 0
θξ1/2I ′ν(θξ1/2ζ) −pδ(ζ − 1)

]
= ζpδ(ζ − 1)Iν(θξ1/2ζ)

These two equations can then be integrated (easily, because of the delta function terms), to obtain

A(ζ) = −pKν(θξ1/2)H(ζ − 1) + c1 and B(ζ) = pIν(θξ1/2)H(ζ − 1) + c2,

where H is the Heaviside function. Then the general solution is

Ĉ(ξ, ζ) = c1Iν(θξ1/2ζ) + c2Kν(θξ1/2ζ) + pH(ζ − 1)
[
−Kν(θξ1/2)Iν(θξ1/2ζ) + Iν(θξ1/2)Kν(θξ1/2ζ)

]
.

• Finally, we determine the two constants c1 and c2 using the boundary conditions. The decay condition
at infinity Ĉ(ξ,∞) = 0 means that the coefficient of Iν must be zero, since Kν decays to zero at
infinity but Iν does not; therefore, c1 = pKν(θξ1/2). Consider next the no-flux condition at the
ground, Ĉζ(ξ, 0) = 0 for which we require the ζ-derivative

∂Ĉ(ξ, ζ)
∂ζ

= pθξ1/2Kν(θξ1/2)I ′ν(θξ1/2ζ) + c2θξ
1/2K ′

ν(θξ1/2ζ),

where we have used the fact that H(ζ − 1) = 0 for ζ close to 0. Next set the derivative to zero,
yielding

c2 = −pKν(θξ1/2) lim
ζ→0

I ′ν(θξ1/2ζ)
K ′

ν(θξ1/2ζ)
= pKν(θξ1/2) lim

ζ→0

Iν−1(θξ1/2ζ) + Iν+1(θξ1/2ζ)
Kν−1(θξ1/2ζ) + Kν+1(θξ1/2ζ)

,

and then consider the limit as ζ → 0. Using the fact that Iν(x) ∼ (x/2)ν
/Γ(ν + 1) and Kν(x) ∼

1
2Γ(ν) (x/2)−ν , it is then easy to show that c2 → 0 as ζ → 0.

Therefore, the particular solution is

Ĉ(ξ, ζ) = pKν(θξ1/2)Iν(θξ1/2ζ)(1−H(ζ − 1)) + pIν(θξ1/2)Kν(θξ1/2ζ)H(ζ − 1),

or alternately

Ĉ(ξ, ζ) =

{
pKν(θξ1/2)Iν(θξ1/2ζ), if ζ 6 1,
pIν(θξ1/2)Kν(θξ1/2ζ), if ζ > 1,

(Ex-8)

where θ = pH1+α/2.

Invert the Laplace transform. A similar piecewise modified Bessel function was encountered by
Carslaw & Jaeger [5, App. V(22)] while deriving the Green’s function for heat flow in a cylinder, in which
they made use of the following Laplace transform identity

L

{
1
2t

e−(a2+b2)/4t Iν

(
ab

2t

)}
=

{
Iν(bζ1/2) Kν(aζ1/2), if a > b,
Iν(aζ1/2) Kν(bζ1/2), if a < b.
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This can be applied directly to Eq. (Ex-8) to invert the Laplace transform, yielding

C(x, ζ) =
p

2x
exp

(
−θ2(ζ2 + 1)

4x

)
Iν

(
θ2ζ

2x

)
.

Next, replace p = 2
λ , θ2 = p2H2+α and ζ = (z/H)1/p = (z/H)λ/2 to obtain

C(x, ζ) =
1
λx

exp
(
−Hβ(zλ + Hλ)

λ2x

)
Iν

(
2Hβ(zH)λ/2

λ2x

)
.

Finally, the cross-wind averaged concentration is

C̄(x, z) = QH
( z

H

)ν/p

C(x, ζ) (Ex-9)

= QH1−2ν/p (zH)ν/p C(x, ζ)

=
QHβ(zH)(1−β)/2

λx
exp

(
−Hβ(zλ + Hλ)

λ2x

)
Iν

(
2Hβ(zH)λ/2

λ2x

)
. (Ex-10)

This result does not match with the cross-wind averaged version of Eq. (3.18) from the paper. Using param-
eters ry,z =

∫ x

0
ky,z(x′)dx′ ≡ x, we obtain

C̄(x, z) =
Q(zH)(1−β)/2

λx
exp

(
−zλ + Hλ

λ2x

)
I−ν

(
2(zH)λ/2

λ2x

)
. (Ex-11)

Note 1. This is pretty close! But evidently, there remain some discrepancies to be resolved in the
derivation in this exercise, namely:

• There is a discrepancy between our equation (Ex-6) and Tayler’s equation (Ex-7).
• When comparing the solution we derived in (Ex-10) to that in (Ex-11) appearing in the literature,

we have an extra factor of Hβ appears wherever there is an x, the order parameter for the Bessel
function is ν instead of −ν.

Note 2. Typical values for the exponents appearing in the height dependent velocity and diffusivity
functions are α ≈ 0.29 and β ≈ 0.45, which corresponds to the following values for the other parameters:
λ = 1.84, ν = 0.30 and p = 1.09. Notice in particular that the order parameter ν is not an integer and so we
cannot take advantage of any of the simplified expressions that are available for Bessel functions of integer
order.

Note 3. When a Dirichlet boundary condition is used instead of the flux condition (2.5d), then the only
change required in the solution is that I−ν is replaced with Iν in Eq. (Ex-11). This can be checked by simple
substitution.

Exercise 8. Large-x asymptotics for the puff solution.

Begin with the Gaussian puff solution

Cpuff(x, y, z, t) =
Q

T

8(πr)3/2
exp

(
− (x− ut)2

4r

)
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
,

(3.20)

and consider “summing up” all such puffs over times t ∈ [0,∞), which corresponds to evaluating the integral∫∞
0

Cpuff(x, y, z, t) dt. If we extract the term in Cpuff that involves the time variable, our task reduces to that
of evaluating the integral

I =
∫ ∞

0

exp
(
− (x− ut)2

4r

)
dt.
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Using the change of variables ξ = (x− ut)/2
√

r, this reduces to

I = −2
√

r

u

∫ −∞

x/2
√

r

e−ξ2
dξ,

=
2
√

r

u

∫ x/2
√

r

−∞
e−ξ2

dξ.

We then recognize that this integral is in the form of an error function erf(x) = 2√
π

∫ x

0
e−ξ2

dξ, which suggests
splitting the domain of integration into two subintervals as follows

I =
2
√

r

u

[∫ x/2
√

r

0

e−ξ2
dξ +

∫ 0

−∞
e−ξ2

dξ

]
,

=
√

πr

u

[
erf
(

x

2
√

r

)
− erf(−∞)

]
,

=
√

πr

u

[
erf
(

x

2
√

r

)
+ 1
]

,

where in the final line we have made use of the fact that erf(∞) = − erf(−∞) = 1.
It is important to realize that in integrating the Gaussian puff solution, we cannot hope to obtain exactly

the same result as the Gaussian plume since the plume solution corresponds to an idealized steady-state
situation in which all contaminant emitted at the origin has time to reach the boundary at infinity. However,
a comparison of the puff and plume solutions is possible if we consider points sufficiently removed from the
source, where we find that I ∼ 2

√
πr/u for large x. Substituting this result into the integrated concentration

profile, we obtain∫ ∞

0

Cpuff(x, y, z, t) dt ∼ Q
T

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
,

which matches exactly with the plume solution (3.8).

Exercise 9. Practical application of the finite line source formula.

Take the formula for the finite line source

c(r, y, z) =
Q

L

2u
√

πr
exp

(
−z2

4r

) [
erf
(

y + L/2
2
√

r

)
− erf

(
y − L/2

2
√

r

)]
, (3.16)

so that when z = 0 (at ground level) and y = 0 (along the centerline) the concentration reduces to

c(r, 0, 0) =
Q

L

u
√

πr
erf
(

L

4
√

r

)
. (3.16)

Then substitute values of the remaining parameters L = 200 m, u = 2.5 m/s, Q
L

= 0.5 × 10−3 kg/m s, and
r = 0.16x0.70 m2 to obtain the concentration in terms of downwind distance x:

C(x, 0, 0) ≈ 0.5× 10−3

x0.35
√

π
erf
(

200
1.6 x0.35

)
,

≈ 2.82× 10−4 x−0.35 erf
(
125x−0.35

)
.

At the two downwind locations of interest, C(500, 0, 0) ≈ 3.2 × 10−5 kg/m3 and C(5000, 0, 0) ≈ 1.4 ×
10−5 kg/m3.
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Next, calculate the standard plume solution in terms of r,

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
, (3.8)

with the same parameters as above except that H = 0 m (for a ground-level source) and we have approximated
the emission rate using Q = LQL = 0.1 kg/s. The concentration can then be written as a function of the
downwind distance,

C(x, 0, 0) =
Q

2πur
≈ 0.040 x−0.70,

and so C(500, 0, 0) ≈ 5.1× 10−4 kg/m3 and C(5000, 0, 0) ≈ 1.0× 10−5 kg/m3.
The concentration from the point source model is approximately 16 times larger than the line source at a

downwind distance of 500 m, and 7 times larger at 5000 m. This result is not surprising since the line source
can be expected to disperse contaminant particles over an area of much greater extent in the y–direction,
and hence will leads to much lower concentrations along the plume centerline. Consequently, we conclude
that the plume approximation is too inaccurate to be of much use and that the line source solution should
be used in practice.

Exercise 10. Typos in Ermak’s paper.

The plume solution derived by Ermak for the case of dispersion with deposition and settling is

C(x, y, z)︸ ︷︷ ︸
kg/m3

=
Q

2πuσyσz︸ ︷︷ ︸
kg/s

(m/s)·m·m = kg/m3

exp
(
− y2

2σ2
y

)
︸ ︷︷ ︸

m2
m·m = 1

exp

(
−wset (z −H)

2K︸ ︷︷ ︸
(m/s)·m
m2/s

= 1

− w2
set σ2

z

8K2︸ ︷︷ ︸
(m/s)2·m2

(m2/s)2
= 1

)

×

[
exp

(
− (z −H)2

2σ2
z︸ ︷︷ ︸

m2

m2 = 1

)
+ exp

(
− (z + H)2

2σ2
z︸ ︷︷ ︸

m2

m2 = 1

)

− woσz

√
2π

K︸ ︷︷ ︸
(m/s)·m
m2/s

= 1

exp

(
wo(z + H)2

K︸ ︷︷ ︸
(m/s)·m2

m2/s
= m

+
w2

o σ2
z

2K︸ ︷︷ ︸
(m/s)2·m2

m2/s
= m2/s

)
erfc

(
wo σz√

2 K︸ ︷︷ ︸
(m/s)·m
m2/s

= 1

+
z + H√

2 σz︸ ︷︷ ︸
m
m = 1

)]
,

where we have made the following substitutions in notation:

Ermak’s Ours
U u
h H
W wset

V1 wo

We have calculated the corresponding units below each term in the above equation, making use of the fact
that the units of the various physical quantities are as follows:

x, y, z,H [m], u, wset , wo [m/s], Q [kg/s], σy, σz [m], K [m2/s].

It is easy to see that all terms in the equation are dimensionally consistent except for the middle exponential
term appearing in the final line; here, the quantity within the exponential must be dimensionless. Clearly,
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there are two exponents incorrect in this expression and it should be replaced by

exp

(
wo(z + H)

K
+

w2
o σ2

z

2K2

)
.

If we make the substitution σy = σz =
√

2r, then the corrected version of Ermak’s equation becomes

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

)
exp

(
−wset (z −H)

2K
− w2

set r

4K2

)
×
[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)
− 2wo

√
πr

K
exp

(
wo(z + H)

K
+

w2
o r

K2

)
erfc

(
wo
√

r

K
+

z + H

2
√

r

)]
,

which is exactly the expression given in Ermak’s paper.

Exercise 11. Derivation of Ermak’s solution with deposition.

Begin by substituting the separated solution c(r, y, z) = Q
u a(r, y) b(r, z) E(r, z) into the advection–

diffusion equation with settling

∂c

∂r
− wset

K

∂c

∂z
=

∂2c

∂y2
+

∂2c

∂z2
,

where we have abbreviated

E(r, z) = exp
[
−wset(z −H)

2K
− w2

setr

4K2

]
.

Using the partial derivatives

∂E
∂r

= −w2
set

4K2
E and

∂E
∂z

= −wset

2K
E ,

we obtain (
b

∂a

∂r
+ a

∂b

∂r
− ab

w2
set

4K2

)
− wset

K

(
a

∂b

∂z
− ab

wset

2K

)
= b

∂2a

∂y2
+
(

a
∂2b

∂z2
+ ab

w2
set

4K2
− 2a

∂b

∂z

wset

2K

)
,

where we have cancelled a factor of E from every term. A number of terms cancel leaving simply

b
∂a

∂r
+ a

∂b

∂r
= b

∂2a

∂y2
+ a

∂2b

∂z2
,

which is the exact same separated equation we derived for the plume solution in Exercise 3. Hence, the PDEs
governing a and b are the same as for the standard Gaussian plume solution:

∂a

∂r
=

∂2a

∂y2
and

∂b

∂r
=

∂2b

∂z2
.

The source boundary condition is

c(0, y, z) =
Q

u
a(0, y) b(0, z) exp

[
−wset

2K
(z −H)

]
=

Q

u
δ(y) δ(z −H),

11



which is only possible if

a(0, y) = δ(y) and b(0, z) = δ(z −H).

The boundary conditions at infinity are identical

a(r,±∞) = 0 and b(r,∞) = 0,

a(∞, y) = 0 and b(∞, z) = 0.

The radiation boundary condition

K
∂c

∂z
(r, 0) = (wdep − wset) c(r, 0) (3.22)

becomes

∂b

∂z
(r, 0) = γ b(r, 0),

where γ = wo/K and wo = wdep − 1
2 wset . This completes the specification of the equations for a and b.

The problem for a is unchanged from that for the plume solution and so we have

a(r, y) =
1√
4πr

e−y2/4r,

as before. The radiation boundary condition introduces a significant complication in the solution for b.
Several approaches have been used to solve this problem such as [5, Sec. 14.II] and [10, p. 358-361], although
we will use an approach developed by Duffy [2, Ex. 4.1.3] that generalizes in a straightforward manner the
method we already applied for the standard plume solution. The problematic aspect here is the radiation
condition, which can be simplified significantly using the substitution β = γb− ∂zb or equivalently

b(r, z) = eγz

∫ ∞

z

β(r, ζ) e−γζ dζ. (Ex-12)

Then the new variable β satisfies

∂β

∂r
=

∂2β

∂z2
,

the radiation condition ∂zb(r, 0) = γb(r, 0) reduces to the zero Dirichlet condition β(r, 0) = 0, and the
boundary condition at r = 0 becomes

β(0, z) = γδ(z −H)− δ′(z −H),

where the derivative δ′ must be thought of in the distributional sense and represents a dipole source. The
Green’s function for this new problem in β is now easily found using the method of images,

Gβ(r, z; 0, ζ) =
1√
4πr

[
exp

(
− (z − ζ)2

4r

)
− exp

(
− (z + ζ)2

4r

)]
,

and then the solution is given by

β(r, z) =
∫ ∞

0

Gβ(r, z; 0, ζ) β(0, ζ) dζ,

=
∫ ∞

0

Gβ(r, z; 0, ζ) [γδ(ζ −H)− δ′(ζ −H)] dζ,

=
∫ ∞

0

[
γGβ(r, z; 0, ζ)− ∂Gβ

∂ζ
(r, z; 0, ζ)

]
δ(ζ −H) dζ,
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where in the last step we have used integration by parts to transfer the ζ–derivative onto the Green’s function.
Using the expression for Gβ above, we can calculate this last integral explicitly as

β(r, z) =
1√
4πr

[(
z −H

2r
+ γ

)
exp

(
− (z −H)2

4r

)
+
(

z + H

2r
− γ

)
exp

(
− (z + H)2

4r

)]
This expression is then substituted into Eq. (Ex-12), yielding

b(r, z) =
eγz

√
4πr

∫ ∞

z

[(
ζ −H

2r
+ γ

)
exp

(
− (ζ −H)2

4r
− γζ

)
+
(

ζ + H

2r
− γ

)
exp

(
− (ζ + H)2

4r
− γζ

)]
dζ.

Notice that the first term under the integral sign integrates exactly, while the second term can be made exact
by adding and subtracting an appropriate quantity. We then obtain

b(r, z) =
eγz

√
4πr

[
exp

(
− (z −H)2

4r
− γz

)
+ exp

(
− (z + H)2

4r
− γz

)]
− eγz

√
πr

∫ ∞

z

exp
(
−(ζ + H)2

4r
− γζ

)
dζ,

=
1√
4πr

[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
− eγz

√
πr

∫ ∞

z

exp
(
−(ζ + H + 2γr)2

4r
+ γH + γ2r

)
dζ,

=
1√
4πr

[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
− γeγ(z+H)+γ2r erfc

(
z + H + 2γr

2
√

r

)
,

where in the last line we have used the definition erfc(x) = 2√
π

∫∞
x

e−ξ2
dξ. Finally, by replacing γ = wo/K

and substituting the expressions for a(r, y) and b(r, z) into the separable form of the solution c(r, y, z), it is
straightforward to obtain the Ermak solution in Eq. (3.23) in the paper.

Exercise 12. Derive Ermak’s solution when Ky(x) 6= Kz(x).

We will only give an overview of the solution procedure here since the details of the derivation are so
similar what we did in Exercise 11. We proceed in three main steps:

• First, replace the independent variable x with the two new variables

ry(x) =
1
u

∫ x

0

Ky(x′) dx′ and rz(x) =
1
u

∫ x

0

Kz(x′) dx′,

while at the same time performing the substitution

C(x, y, z) =
Q

u
D(x, y, z) exp

[
−wset(z −H)

2Kz
− w2

setrz

4K2
z

]
, (Ex-13)

which eliminates the gravitational settling term and the constants Q and u. The resulting partial
differential equation is

Ky
∂D

∂ry
+ Kz

∂D

∂rz
= Ky

∂2D

∂y2
+ Kz

∂2D

∂z2
.

• Next, separate variables by letting D(x, y, z) = a(ry, y) b(rz, z) to obtain the two PDEs

∂a

∂ry
=

∂2a

∂y2
and

∂b

∂rz
=

∂2b

∂z2
,

which are identical to what we had before except that the single parameter r is replaced by ry and
rz. The boundary conditions for a and b remain unchanged.
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• The separated solutions are obtained in exactly the same way as before, with

a(ry, y) =
1√
4πry

e−y2/4ry and b(rz, z) =
1√

4πrz

[
e−(z−H)2/4rz + e−(z+H)2/4rz

]
,

so that

D(x, y, z) =
1

4π
√

ryrz
exp

(
− y2

4ry

) [
exp

(
− (z −H)2

4rz

)
+ exp

(
− (z + H)2

4rz

)]
,

and the concentration is given by the expression in (Ex-13).
In order to permit a direct comparison with the solution in Ermak’s paper [3, Eq. (5)], we replace ry and rz

with the standard deviation parameters σ2
y,z(x) = 2ry,z(x) to obtain

C(x, y, z) =
Q

2πuσyσz
exp

(
− y2

2σ2
y

)
exp

(
−wset (z −H)

2Kz
− w2

set σ2
z

8K2
z

)
×
[
exp

(
− (z −H)2

2σ2
z

)
+ exp

(
− (z + H)2

2σ2
z

)
−
√

2πwoσz

Kz
exp

(
wo(z + H)

Kz
+

w2
o σ2

z

2K2
z

)
erfc

(
z + H√

2σz

+
wo σz√

2Kz

)]
.

It is interesting to note that this expression is identical to Eq. (3.13) when we substitute σy =
√

2ry and
σz =

√
2rz, and let wset = wdep = wo = 0.

Exercise 13. Modify Matlab code for Ermak’s solution.

Ermak’s solution has been implemented in the following Matlab subroutines:
• setparams.m: assigns all values of the physical and numerical parameters (identical to the previous

version).
• ermak.m: a modified version of the file gplume.m which requires two extra parameters, Wdep and
Wsep.

• forward2.m: the main program that calculations and plots results.
The code can be found on the web page http://www.math.sfu.ca/~stockie/atmos, and sample output is
provided in Fig. 1. The changes that have been required to the gplume and forward code are most easily
seen by directly comparing the files. On any Unix-based operating system, this can be done using the diff
command as follows:

diff -w gplume.m ermak.m

Exercise 14. Source identification (single source).

The Matlab code inverse2.m contains a modified version of the file inverse1.m that calculates the
Ermak solution using the computed S1 emission rate, and then produces a bar plot that compares the
measured and computed depositions. The plot is shown in Fig. 2(a), which shows that only the depositions
at R6 and R7 are close to the measured values while the other estimates appear to be zero. In fact, the
computed values of Dr at receptors R1–R4 are equal to zero, while those at R5, R8 and R9 are several orders
of magnitude smaller than the R6 and R7 values, which is evident when printing the contents of the Matlab
variable “dep”:

dep =
1.0e-05 *

0
0

14



Fig. 1. Results from the Ermak problem in Exercise 13, with a contour plot of the ground-level zinc concentration (left)
and bar plot of the deposition (right).
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(a) Using all nine receptors. (b) Using only R5–R9.

Fig. 2. Comparison of measured zinc depositions with the values computed using the inverse algorithm for source S1 only.

0
0.000000000000000
0.013830118629149
0.859225075474992
0.197185569631577
0.001739400324537
0.000000013382877

On closer examination, we find that dep(4) is not identically zero but rather contains the vanishingly small
but still non-zero value 1.298980006683381e-214, which is exact to within round-off error.

There is clearly a major difference between the experimentally measured deposition values and those
computed using our inverse algorithm. But why would the first four deposition measurements be zero?
The reason for this discrepancy can be found by carefully studying the aerial photo in Fig. 4.1 showing the
placement of source and receptors. If the wind is unidirectional and blows in the direction of the prevailing
winds, then the Gaussian plume solution returns a value that is identically zero for any value of x 6 0 (that
is, for any point lying upwind of the source). And it is clear from the figure that R1, R2 and R3 lie upwind
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of S1, while R4 is so close to the line x = 0 that the Gaussian plume solution is essentially zero at that point.
Consequently, it is not possible for the linear least squares solver to compute a non-zero value at these four
receptors.

We might then ask the question: Does the quality of the approximation improve if receptors R1–R4
are removed from the computation? This is easily checked by modifying the rlist variable, after which we
obtain the plot in Fig. 2(b). Along with the Matlab output below:

dep =
1.0e-05 *
0.013830118629149
0.859225075474992
0.197185569631577
0.001739400324537
0.000000013382877

it is clear that the two computed solutions are identical to each other, within round-off error. It turns out
that there are two problems with our approach:

• The deposition measurements were actually made under conditions when the wind is varying in both
speed and direction, which we cannot deal with properly until Section 4.4.

• The measurements derive from all four sources S1–S4, which is addressed in the solution to the next
exercise.

Exercise 15. Source identification (multiple sources).

Including the additional sources in the inversion process implemented in the code inverse2.m from the
previous exercise can be done by simply modifying the variable slist to contain a list of sources. The
estimated source emission rates are then given by

Zn emission rates (T/yr):
S1: 155.1727
S2: 41.5757
S3: 82.5734
S4: 36.0550

----------
Total: 315.3768 T/yr
LSQLIN residual = 7.878078e-18

from which we observe that there is a slight reduction in the value of Q1 to 155 T/yr (compared to the
value of 169 T/yr with only S1). However, there are now also significant emissions from the other three
sources which lead to a total zinc emission rate from all four sources of 315 T/yr. This value is considerably
above the total emissions for the actual smelter operation reported in [7], but let’s press on nonetheless and
investigate the corresponding plot of the computed deposition values. After substituting the above values of
Qs into the Ermak solution, we find in Fig. 3 that (with the exception of R9) the computed depositions are
now indistinguishable from the measured values; in fact,

dep =
1.0e-04 *
0.110000231049631
0.081999996425827
0.029000000000000
0.022000000000000
0.000002702121734

As in the previous question, it is not possible to obtain non-zero values at receptors R1–R4 because they are
upwind of the four emissions sources.

It is now natural to ask: Why is the R9 deposition estimate so far away from the measured value? This
has to do with the funny behaviour of solutions to overdetermined systems of equations – in our case, the
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Fig. 3. Comparison of measured zinc depositions with the values computed using the inverse algorithm with sources S1–S4
and receptors R5–R9.

problem consists of solving 5 equations in 4 unknowns. The measured data are such that the minimum-
residual solution from the linear least squares algorithm has D9 = 0, and any deviation from that value
generates a much larger residual. In fact, if we attempt to remove one more data point and solve the
resulting 4× 4 problem – which incidentally has a unique solution! – then we find the following:

• Omitting R9 yields essentially the same solution as above.
• Omitting any of the receptors R5–R8 yields non-physical solutions with negative emission rates. In

other words, it is not possible to satisfy the equations if any of these other receptor measurements is
left out of the least squares optimization approach.

This suggests that perhaps there is some problem (e.g., a large measurement error?) with the value of the
deposition measured at R9.

Exercise 16. Inverse problem with time-varying wind.

This question is a bit more involved in terms of programming, mostly because of the rotation of coordi-
nates, and some trickiness in ensuring that the wind angle is converted correctly . . .

Appendix A. Table of Laplace transforms.

We summarize a number of Laplace transforms used in the derivation of the plume solution. Here,
f(t) represents the original function, f̂(s) = Lt{f(t)} :=

∫∞
0

e−stf(t) dt denotes its Laplace transform, and
H(t) is the Heaviside step function. In this document, we restrict ourselves to the case where the constants
appearing below (a, b, ν, . . . ) are real-valued, and any other restrictions on the constants are indicated in
the respective table entry.
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f(t) f̂(s)

1. δ(t) 1

2. sinh(at)
a

s2 − a2

3. cosh(at)
s

s2 − a2

4.
1√
πt

e−a2/4t 1√
s
e−a

√
s

(a > 0)

5. f ′(t) sf̂(s)− f̂(0)

6. f ′′(t) s2f̂(s)− sf(0)− f ′(0)

7. f(t− a)H(t− a) e−asf̂(s)
(a > 0)

8. eatf(t) f̂(s− a)

9.
1
2t

e−(a2+b2)/4t Iν

(
ab

2t

)
Iν

(
a
√

s
)

Kν

(
b
√

s
)

(b > a > 0)

Appendix B. Bessel Function Identities.

We state next a number of identities involving the Bessel functions of the first and second kind – Jν(z)
and Yν(z) – as well as the modified Bessel functions of the first and second kind – Iν(z) and Kν(z). Here,
the quantities x and ν are real, while z is complex and i =

√
−1 represents the imaginary unit.

Jν(z) =
z

2ν

[
Jν−1(z) + Jν+1(z)

]
(Ex-14)

Yν(z) =
z

2ν

[
Yν−1(z) + Yν+1(z)

]
(Ex-15)

Iν(x) = i−νJν(ix) (Ex-16)

Kν(x) =
π

2 sin(νπ)

[
I−ν(x)− Iν(x)

]
(Ex-17)
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Derivatives of Bessel functions:

J ′ν(z) = Jν−1(z)− ν

z
Jν(z) (Ex-18)

= −Jν+1(z) +
ν

z
Jν(z) (Ex-19)

=
1
2

[
Jν−1(z)− Jν+1(z)

]
(Ex-20)

I ′ν(x) =
1
2

[
Iν−1(x) + Iν+1(x)

]
(Ex-21)

= Iν−1(x)− ν

x
Iν(x) (Ex-22)

= Iν+1(x) +
ν

x
Iν(x) (Ex-23)

K ′
ν(x) = −1

2

[
Kν−1(x) + Kν+1(x)

]
(Ex-24)

= −Kν−1(x)− ν

x
Kν(x) (Ex-25)

= −Kν+1(x) +
ν

x
Kν(x) (Ex-26)

Wronskian:

W {Iν(x),Kν(x)} = det
[

Iν(x) Kν(x)
I ′ν(x) K ′

ν(x)

]
= −Iν(x)Kν+1(x)− Iν+1(x)Kν(x) = − 1

x
(Ex-27)

Asymptotic behaviour as x → 0:

Iν(x) ∼
(

x
2

)ν
Γ(ν + 1)

(ν 6= −1,−2, . . . ) (Ex-28)

Kν(x) ∼ 1
2
Γ(ν)

(x

2

)−ν

(Re(ν) > 0) (Ex-29)
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