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Abstract. The Gaussian plume model is a standard approach for studying the transport of airborne contaminants due
to turbulent diffusion and advection by the wind. This paper reviews the assumptions underlying the model, its derivation
from the advection-diffusion equation, and the key properties of the plume solution. The results are then applied to solving
an inverse problem in which emission source rates are determined from a given set of ground-level contaminant measurements.
This source identification problem can be formulated as an over-determined linear system of equations that is most easily
solved using the method of least squares. Various generalizations of this problem are discussed and we illustrate our results
with an application to the study of zinc emissions from a large smelting operation.
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1. Introduction. Atmospheric dispersion modelling refers to the mathematical description of con-
taminant transport in the atmosphere. The term dispersion in this context is used to describe the combina-
tion of diffusion (due to turbulent eddy motion) and advection (due to the wind) that occurs within the air
near the Earth’s surface. The concentration of a contaminant released into the air may therefore described
by the advection-diffusion equation which is a second-order partial differential equation of parabolic type.

This problem is an excellent example of interdisciplinary mathematics that has direct application
to problems having industrial relevance. In addition to forming the basis for an extensive and active
body of current research in atmospheric dispersion modelling, this material is also ideal for inclusion
in an upper-year undergraduate or graduate course in mathematical modelling or scientific computing.
The results discussed here may be used to illustrate basic techniques from partial differential equations
(Green’s functions, Laplace transforms, asymptotics, special functions), constrained optimization (linear
least squares), numerical analysis, and inverse problems. The suggested prerequisites are basic knowledge
of partial differential equations and linear algebra, plus some prior computing experience. We employ the
software package Matlab for the numerical simulations in this paper, and have posted the relevant codes
on the web site

http://www.math.sfu.ca/~stockie/atmos.
On this site we also provide supplemental notes that give detailed derivations of numerous results appearing
in the main text, solutions to selected exercises, and Matlab code.

Since the pioneering work of Roberts [30] and Sutton [37], analytical and approximate solutions for
the atmospheric dispersion problem have been derived under a wide range of simplifying assumptions,
as well as various boundary conditions and parameter dependencies. These analytical solutions are es-
pecially useful to engineers and environmental scientists who study pollutant transport, since they allow
parameter sensitivity and source estimation studies to be performed. The simplest of these exact solutions
is called the Gaussian plume, corresponding to a continuous point source that emits contaminant into a
uni-directional wind in an infinite domain. This Gaussian plume solution, along with numerous variants,
has been incorporated into industry-standard software packages that are used for monitoring and regula-
tory purposes. Gaussian plume models have been applied extensively in the study of emissions from large
industrial operations as well as a variety of other applications including ash release from volcanic eruptions
[39]; seed, pollen and insect dispersal [17, 21, 45]; and odor propagation from livestock facilities [35]. The
same approach (with slight modifications) may also be used to describe the flow of gas or liquid in porous
soils and rocks, with applications to oil reservoirs, groundwater and pollutant transport in aquifers, etc.
[10, 11]. There is a great deal of recent interest in applications relating to nuclear and biological contam-
inant release [16, 41], for which the importance of analytical approaches is nicely summed up in a review
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Fig. 1.1. A photograph of emissions from the Inco Superstack (in Sudbury, Ontario, Canada) that illustrates the three
main contributions to atmospheric contaminant transport: advection from the wind; diffusion from turbulent eddy motion;
and deposition owing to gravitational settling.

article by Settles: “plume dispersion modeling is central to homeland security” [32].
Our aim in this paper is to guide the reader through the entire mathematical modelling process, from

the original conception of the model to the interpretation of results in the context of an actual industrial
application. We begin by deriving the Gaussian plume solution to the advection-diffusion equation, in-
vestigating its mathematical properties, and drawing conclusions regarding the usefulness and limitations
of the Gaussian plume approach. The model is illustrated using a simplified version of an real industrial
emissions scenario in airborne contaminants are released from a large smelting operation (such as that
pictured in Fig. 1.1). We then move onto the study of the associated inverse problem in which our objec-
tive is to estimate the unknown contaminant emission rate(s) given a series of ground-level concentration
measurements. This inverse problem is formulated as an over-determined linear system of equations, and
the resulting solution is obtained using a constrained linear least squares algorithm. We discuss the con-
ditioning and well-posedness of the inverse problem, and relate these aspects back to the original source
identification problem and their significance in regulatory applications.

Throughout the discussion of the plume model and associated inverse problem, we provide details of
various derivations that although elementary, are not easily found in the literature or textbooks on the
subject. Consequently, we hope that this material will also be a useful reference not only for applied and
industrial mathematics, but also for environmental engineers and other practitioners who use Gaussian
plume and related models in their everyday work.

2. Governing equations. A readable introduction to atmospheric dispersion modelling is available
on Wikipedia [43], while a more in-depth treatment including details about analytical solutions can be
found in the books by Arya [1] or Seinfeld and Pandis [31]. We will restrict our attention at the outset to
the transport of a single contaminant whose mass concentration (or density) at location ~x = (x, y, z) ∈ R3
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[m] and time t ∈ R [s] can be described by a smooth function C(~x, t) [kg/m3]. The law of conservation of
mass for C may be expressed in differential form as

∂C

∂t
+∇ · ~J = S, (2.1)

where S(~x, t) [kg/m3 s] is a source or sink term, and the vector function ~J(~x, t) represents the mass
flux [kg/m2 s] of contaminant owing to the combined effects of diffusion and advection. The diffusive
contribution to the flux arises from turbulent eddy motion in the atmosphere, for which a full description
can be found in texts such as [1, 31]. The main result is that atmospheric diffusion may be assumed
to follow Fick’s law, which states that the diffusive flux is proportional to the concentration gradient, or
~J

D
= −K∇C. The negative sign ensures that the contaminant will flow from regions of high concentration

to regions of low concentration, and the diffusion coefficient K(~x) = diag(Kx,Ky,Kz) [m2/s] is a diagonal
matrix whose entries are the turbulent eddy diffusivities and are in general functions of position. The
second contribution to the flux is due to simple linear advection by the wind, which can be expressed as
~J

A
= C~u where ~u [m/s] is the wind velocity. By adding these two contributions together, we obtain the

total flux ~J = ~J
D

+ ~J
A

= C~u − K∇C, which after substituting into the equation of conservation of mass
(2.1) yields the three-dimensional advection-diffusion equation

∂C

∂t
+∇ · (C~u) = ∇ · (K∇C) + S. (2.2)

We next make a number of simplifying assumptions that will permit us to derive a closed-form ana-
lytical solution:

A1. The contaminant is emitted at a constant rate Q [kg/s] from a single point source ~x = (0, 0,H)
located at height H above the ground surface, as depicted in Fig. 2.1. Then the source term may
be written as

S(~x) = Qδ(x) δ(y) δ(z −H), (2.3)

where δ(·) is the Dirac delta function. Note that the units of the delta function are [m−1]. For the
stack-like configuration pictured in Fig. 2.1 the height is actually an effective height H = h + δh,
which is the sum of the actual stack height h and the plume rise δh that arises from buoyant
effects.

A2. The wind velocity is constant and aligned with the positive x–axis so that ~u = (u, 0, 0) for some
constant u > 0.

A3. The solution is steady state, which is reasonable if the wind velocity and all other parameters are
independent of time and the time scale of interest is long enough.

A4. The eddy diffusivities are functions of the downwind distance x only, and diffusion is isotropic so
that Kx(x) = Ky(x) = Kz(x) =: K(x).

A5. The wind velocity is sufficiently large that diffusion in the x–direction is much smaller than ad-
vection; then the term Kx∂2

xC can be neglected.
A6. Variations in topography are negligible so that the ground surface can be taken as the plane z = 0.
A7. The contaminant does not penetrate the ground.

Making use of Assumptions A1–A6, Eq. (2.2) reduces to

u
∂C

∂x
= K

∂2C

∂y2
+ K

∂2C

∂z2
+ Qδ(x) δ(y) δ(z −H), (2.4a)

and we are only concerned with the solution for values of x, z ∈ [0,∞) and y ∈ (−∞,∞). In order to
obtain a well-posed problem, we must supplement the PDE with an appropriate set of boundary conditions,
namely

C(0, y, z) = 0, C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0. (2.4b)
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Fig. 2.1. A contaminant plume emitted from a continuous point source, with wind direction aligned with the x–axis.
Profiles of concentration are given at two downwind locations, and the Gaussian shape of the plume cross-sections are shown
relative to the plume centerline.

The first condition is a consequence of the uni-directional wind and the assumption that there are no
contaminant sources for x < 0. The remaining conditions at infinity are consistent with the requirement
that the total mass of contaminant must remain finite. According to Assumption A7, the vertical flux at
the ground must vanish, which leads to the final boundary condition

K
∂C

∂z
(x, y, 0) = 0. (2.4c)

When taken together, Eqs. (2.4a)–(2.4c) represent a well-posed problem for the steady-state contaminant
concentration C(x, y, z).

An equivalent formulation of this problem can be found by eliminating the source term from the PDE
and instead introducing a delta function term into the boundary condition [8]:

u
∂C

∂x
= K

∂2C

∂y2
+ K

∂2C

∂z2
, (2.5a)

C(0, y, z) =
Q

u
δ(y)δ(z −H), (2.5b)

C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0, (2.5c)

K
∂C

∂z
(x, y, 0) = 0. (2.5d)

The equivalence between problems (2.4) and (2.5) for x > 0 is presented as a theorem in [36, p. 59]. It
is this second form of the governing equations that will be used in deriving the analytical solution in the
next section.
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Exercise 1. Prove Stakgold’s theorem [36, p. 59]. Show that Eqs. (2.5) are consistent with the
alternate formulation in Eqs. (2.4) by integrating the PDE (2.4a) over the interval x ∈ [−d, d], letting
d → 0+, and then imposing C ≡ 0 for x < 0. Explain why the boundary conditions for the two problems
are consistent.

Exercise 2. Investigate Assumption A5 by considering the steady 3D advection-diffusion problem
in the same form as Eqs. (2.5), except that the term ∂2

xC is retained and K is held constant. Non-
dimensionalize the PDE and initial/boundary conditions using the change of variables x̃ = (K/uH2) x,
ỹ = y/H, z̃ = z/H, and C̃ = (uH2/Q) C (a similar rescaling of variables is used in other studies such as
[23] and [29]). Compare the relative sizes of terms in the equation for typical values of the parameters given
in Table 3.1, and consequently show that neglecting the diffusion term in the x–direction is a reasonable
approximation. Hint: You will to make use of the scaling property δ(αx) = δ(x)/α for the delta function.

3. Derivation of the Gaussian plume. Most books and articles aimed at practitioners present the
Gaussian plume solution as a fait accompli and avoid either working through the details of the derivation or
carefully discussing the underlying assumptions (for example, [13, Chs. 3 and 7] and [31]). The atmospheric
dispersion problem is derived in a few more mathematical treatises such as Tayler [38, Ch. 4], but even then
a number of important details are omitted. Our main aim in this section is therefore to lead the reader
through the derivation in enough detail that the problem can be generalized to other more complicated
situations.

The eddy diffusion coefficients in the atmospheric boundary layer are strong functions of downwind
distance, not to mention that they vary with weather conditions and time from release, and consequently
they are very difficult to determine in practice. It is therefore common practice to replace x with the new
independent variable

r =
1
u

∫ x

0

K(ξ) dξ, (3.1)

which has units of [m2]. This change of variables eliminates the K coefficients in Eqs. (2.5a), leading to
the following constant coefficient problem for c(r(x), y, z) := C(x, y, z):

∂c

∂r
=

∂2c

∂y2
+

∂2c

∂z2
. (3.2)

The boundary conditions for c are identical to those for C in Eqs. (2.5b)–(2.5d) except that x is replaced
with r.

We next apply the method of separation of variables to Eq. (3.2), assuming that the dependence of
the solution on y and z can be separated according to1

c(r, y, z) =
Q

u
a(r, y) · b(r, z). (3.3)

We then obtain the two reduced dimensional problems that have the form of 2D diffusion equations

∂a

∂r
=

∂2a

∂y2
for 0 6 r < ∞ and −∞ < y < ∞, (3.4a)

a(0, y) = δ(y), a(∞, y) = 0, a(r,±∞) = 0, (3.4b)

and

∂b

∂r
=

∂2b

∂z2
for 0 6 r < ∞ and 0 < z < ∞, (3.5a)

b(0, z) = δ(z −H), b(∞, z) = 0, b(r,∞) = 0,
∂b

∂z
(r, 0) = 0. (3.5b)

1This is a slight modification of the “usual” separation of variables approach wherein one would normally assume a fully
separable solution of the form c(r, y, z) = R(r)Y (y)Z(z).
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In both problems, the variable r can be viewed as a time-like variable and so the boundary conditions at
r = 0 (which contain the delta functions) act as initial conditions for the respective diffusion equations.

Exercise 3. Derive Eqs. (3.4) and (3.5) from (2.5), using the change of variables in Eq. (3.1) and
assuming a separable solution of the form (3.3).

3.1. Solution using Laplace transforms. There are many methods that can be used for solving
problems (3.4) and (3.5). We choose here to use Laplace transforms because this approach is most easily
extended to deal with more general boundary conditions (which we’ll see later in Section 3.6).

We begin with the problem for a(r, y) in Eqs. (3.4) and take the Laplace transform of the PDE in r
to get

ρâ− a(0, y) =
∂2â

∂y2
,

where â(ρ, y) := Lr{a(r, y)} =
∫∞
0

e−ρr a(r, y) dr, and ρ is the transform variable. Applying the source
boundary condition (3.4b), we obtain the following ODE for â

∂2â

∂y2
− ρâ = −δ(y).

Next, take the Laplace transform in y

η2ˆ̂a− ηâ(ρ, 0)− ∂â

∂y
(ρ, 0)− ρˆ̂a = −1,

where ˆ̂a(ρ, η) := Ly{â(ρ, y)} =
∫∞
0

e−ηy â(ρ, y) dy and η is the transform variable. For the moment, we
restrict ourselves to values of 0 6 y < ∞, but we will see shortly that symmetry permits the solution to
be extended over the entire range −∞ < y < ∞. This last equation can be solved to obtain

ˆ̂a(ρ, η) =
ηc1 + c2

η2 − ρ
,

where we have defined c1 = â(ρ, 0) and c2 = ∂yâ(ρ, 0)−1. We then apply the inverse transform in η to get

â(ρ, y) = c1 cosh(
√

ρy)− c2√
ρ

sinh(
√

ρy)

=
c1

2

(
e
√

ρy + e−
√

ρy
)
− c2

2
√

ρ

(
e
√

ρy − e−
√

ρy
)

.

In order that â → 0 as y →∞, it is necessary that c1 = c2/
√

ρ after which the above formula for â reduces
to

â(ρ, y) =
c2√
ρ

e−
√

ρy.

Assuming for the moment that c2 is independent of ρ, we may apply the inverse transform in ρ to get
a(r, y) = (c2/

√
πr) exp(−y2/4r). Making use of the delta function identity δ(y) = limr→0 exp(−y2/4r)/

√
4πr,

we then find that c2 = 1
2 is in fact a constant and that

a(r, y) =
1√
4πr

e−y2/4r. (3.6)

We have so far restricted ourselves to 0 6 y < ∞ in order to apply the Laplace transforms. However, the
original problem as stated in Eqs. (3.4) clearly has even symmetry about y = 0, and since the solution (3.6)
is also an even function then it possible to simply extend the domain of validity for a(r, y) to y ∈ (−∞,∞).
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We now move on to the solution of Eqs. (3.5) for b(ρ, z) and apply the Laplace transform in r of the
PDE to get

∂2b̂

∂z2
− ρb̂ = −δ(z −H),

where b̂(ρ, z) := Lr{b(r, z)}. Taking the Laplace transform in z and defining ˆ̂
b(ρ, ζ) := Lz{b̂(ρ, z)}, we

find that

ζ2ˆ̂b− ζb̂(ρ, 0)− ∂b̂

∂z
(ρ, 0)− ρ

ˆ̂
b = −e−ζH .

After applying the transformed Neumann boundary condition ∂z b̂(ρ, 0) = 0, we can solve for

ˆ̂
b(ρ, ζ) =

ζb̂(ρ, 0)− e−ζH

ζ2 − ρ

and apply the inverse transform in ζ to obtain

b̂(ρ, z) = b̂(ρ, 0) cosh(
√

ρz)− 1
√

ρ
sinh(

√
ρ(z −H)).

We then impose the condition that b̂ → 0 as z → ∞, which means that b̂(ρ, 0) = exp(−√ρH)/
√

ρ and
hence

b̂(ρ, z) =
1

2
√

ρ

(
e−
√

ρ(z−H) + e−
√

ρ(z+H)
)

.

Finally, applying the inverse transform in ρ yields

b(r, z) =
1√
4πr

(
e−(z−H)2/4r + e−(z+H)2/4r

)
. (3.7)

The contaminant concentration can now be found by substituting Eqs. (3.6) and (3.7) into (3.3):

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
. (3.8)

This equation is commonly referred to as the Gaussian plume solution for the advection-diffusion equation,
owing to the fact that the exponential dependence on both y and z is similar to that of a Gaussian type
function. The exponential character of the solution in y and z is clearly depicted in the concentration
profiles shown in Fig. 2.1. We mention in conclusion that identical expressions for a and b can be found
using other approaches based on inifinite series and Fourier transform techniques [12], as well as similarity
methods [24, p. 144].

Exercise 4. Integrate Eq. (3.8) in y and so derive a simpler cross-wind averaged solution that depends
on x and z only. This is a formula that is used very commonly by practitioners for regulatory applications;
see [1, 14] for example.

3.2. Alternate derivation using Green’s functions. The Gaussian plume solution (3.8) can also
be derived using a Green’s function approach, which we briefly outline next. More details on the derivation
of Green’s functions can be found in the classic PDE books by Carslaw and Jaeger [4, Ch. 14] and Crank
[6].

To this end, the solution to the problem (3.4) can be written a(r, y) =
∫∞
−∞ δ(η)Ga(r, y; 0, η) dη, where

the Green’s function or fundamental solution is

Ga(r, y; ρ, η) =
1√

4π(r − ρ)
exp

(
− (y − η)2

4(r − ρ)

)
.
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The solution for b(r, z) is slightly more complicated because of the Neumann boundary condition, which
suggests extending the problem on the half-interval z > 0 to the entire real line and then applying the
method of images. The Green’s function for this modified problem is

Gb(r, z; ρ, ζ) =
1√

4π(r − ρ)

[
exp

(
− (z − ζ)2

4(r − ρ)

)
+ exp

(
− (z + ζ)2

4(r − ρ)

)]
,

in terms of which the solution may be written as b(r, z) =
∫∞
−∞ δ(ζ−H) Gb(r, z; 0, ζ) dζ. A straightforward

evaluation of the two integrals for a(r, y) and b(r, z) yields expressions that are identical to the ones
obtained using Laplace transforms in the previous section.

3.3. Plume properties: Constant and variable diffusivity. In this section, we discuss the
specification of the eddy diffusion coefficient K(x), which is extremely important in applications. It is
standard practice in the atmospheric science literature to replace the variable r in Eq. (3.8) with the
closely-related expression

σ2(x) =
2
u

∫ x

0

K(ξ) dξ = 2r, (3.9)

which is commonly referred to as the standard deviation of the (Gaussian) concentration distribution.
These σ coefficients are much easier to determine experimentally than the eddy diffusivities. A variety
of functional forms have been proposed for σ2, with one of the most common being a simple power law
σ2(x) = axb [31]. Experimental measurements have been used to estimate the coefficients a and b under
a variety of atmospheric conditions, and typical values are shown in Table 3.1. This type of dependence
of σ on downwind distance can be justified by noting that as one moves further from a source, the plume
becomes broader and hence σ must increase (refer to Fig. 2.1).

It is interesting to point out a common inconsistency in the way that the Gaussian plume model is
applied both in the literature and in many regulatory applications. According to the definition of σ, the
eddy diffusivity can be written in the form K(x) = 1

2 u∂xσ2. If we consider the special case when K is
constant then σ2 = 2Kx/u, which means that σ ∝ x1/2. Even when the experimentally-measured values of
standard deviation follow a power law relationship, they typically do not correspond to an exponent b = 1

2 ;
in fact, experiments suggest that b > 0.70 under most conditions. Nevertheless, it is common practice to
determine the eddy diffusivity by way of the formula K(x) = uσ2/2x, where σ2(x) is given by a power
law or other experimentally-determined fit. This inconsistency is discussed in more detail by Llewelyn
[20], and will come into play in Section 3.6 where incorporating the effects of settling and deposition of
contaminant particles yields a solution that requires specifying both σ2 and K.

For the sake of simplicity, we assume in the remainder of this section that K is constant so that
Eq. (3.1) can be integrated to obtain r = Kx/u. In order to understand the typical behaviour of the
plume solution (3.8), we then consider two cases where either the source is located on the ground (H = 0)
or else slightly elevated above ground level (H = 2). Values of the remaining physical parameters are taken
to be Q = 1, u = 1 and K = 1, and the concentrations for the two source heights are displayed as contour
plots in Figs. 3.1 and 3.2 respectively. For both values of H, the left-hand contour plot demonstrates that
the maximum value of concentration occurs at the same position (0, 0,H) as the source, and that the
contaminant is swept downwind from there into an elongated “plume” shape. The right hand plot in each
figure depicts the concentration in the plane z = 0, and shows that the peak ground-level concentration
occurs at the origin when H = 0 (Fig. 3.1) or else is shifted to a location further downwind when the
source is elevated (Fig. 3.2).

A slightly simpler expression for the ground-level concentration can be obtained by setting z = 0 in
the concentration solution, yielding

C(x, y, 0) =
Q

2πKx
exp

(
−u(y2 + H2)

4Kx

)
. (3.10)
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(a) Vertical cross-section (y = 0) (b) Horizontal cross-section (z = 0)

Fig. 3.1. Contour plots of concentration C(x, y, z) for a source at ground level (H = 0): (left) in the vertical plane
y = 0; (right) in the horizontal plane z = 0. The location of the contaminant source is indicated by a red square.

(a) Vertical cross-section (y = 0) (b) Horizontal cross-section (z = 0)

Fig. 3.2. Contour plots of concentration C(x, y, z) for an elevated source (H = 2), but otherwise the same as Fig. 3.1.
The location of the peak ground-level concentration is marked on the right with a black circle.

We observe that when the source is elevated (H > 0), the concentration attains a maximum value of
Cmax = 2Q/(πuH2e) at the downstream location xmax = uH2/(4K) along the plume centerline y = 0
(indicated by a black circle in Fig. 3.2(b)).

It is worthwhile noticing that in the limit of vanishing velocity

lim
u→0+

C(x, y, z) =
Q

2πKx
, (3.11)

which seemingly contradicts a common perception in the literature that the Gaussian plume solution
breaks down when u = 0 [2, 14, 33, 40]. The reason for this confusion is that the plume solution is most
often written in terms of the variable r as in Eq. (3.8), and so can appear to have a singularity as u → 0
if the dependence of r on velocity via r = 1

u

∫ x

0
K(ξ) dξ is forgotten.

Nevertheless, it is essential to remember that the Gaussian plume solution only makes physical sense
when the wind velocity is non-zero because of Assumption A5 which neglected the diffusion term in the
x-direction relative to the advection term. When u = 0, the advection term vanishes and the concentration
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is governed instead by the steady diffusion equation (or Poisson equation)

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2
= −Q

K
δ(x)δ(y)δ(z −H),

which has the following solution on the half-space x > 0:

C(x, y, z) =
Q

4πK

(
1√

x2 + y2 + (z −H)2
+

1√
x2 + y2 + (z + H)2

)
. (3.12)

Notice that this result only holds when K is a constant, because ∂x(K∂xC) 6= K∂2
xC if K depends on x.

The steady state profile (3.12) has asymptotic behaviour C ∼ Q/(2πKx) as x →∞, which is identical to
that for the zero-velocity limit (3.11) of the Gaussian plume solution.

A more common approach for dealing with very low or calm winds is to approximate the plume by
a series of Gaussian puffs which are solutions to the time-dependent advection-diffusion equation having
a delta-function source of the form δ(x)δ(y)δ(z − H)δ(t). This puff solution is then integrated in time
yielding an expression that can be used whether or not winds are calm. An example of the puff solution
for an instantaneous release at t = 0 is given in Section 3.5.6, and more details can be found in [20, 28].

3.4. Application: Emissions from multiple sources. We now apply the Gaussian plume solution
to a simplified version of an actual emissions scenario studied in [22], wherein a zinc smelting operation
has four major sources that release zinc particles into the atmosphere. The sources have locations ~Xs =
(Xs, Ys,Hs) and emission rate Qs for s = 1, . . . , 4, and are depicted in Fig. 3.3 by the points labelled S1
to S4. The positive x–axis is aligned with the primary wind direction and the heights and emission rates
for each source are listed in Table 3.1. The contribution to the contaminant concentration at any point
(x, y, z) in space that derives from an individual source Ss is then given by the Gaussian plume solution,
which we denote by C(x′s, y

′
s, z;Qs,Hs). Here we have defined shifted coordinates

x′ = x−Xs, and y′ = y − Ys,

so that the source location corresponds to x′s = y′s = 0 for each s. The total concentration resulting from
all four sources is simply given by the sum

C
T
(x, y, z) =

4∑
s=1

C(x′s, y
′
s, z;Qs,Hs).

In Fig. 3.3, we present two concentration contour plots for the individual sources S1 and S2, and a
third plot with S3 and S4 displayed together. The superposition of all four sources is shown separately
in Fig. 3.4. The largest ground-level concentration appears downwind from source S1, with weaker peaks
occuring downwind of S2. It is interesting to note that even though S2 has by far the largest emission rate,
it makes a smaller contribution to the ground-level concentration because it is at a much higher elevation.
The weaker sources at S3 and S4 have a relatively small effect on the total concentration. The code that
generates these plots is provided as three separate Matlab files:

• setparams.m: assigns all values of the physical and numerical parameters.
• gplume.m: calculates the concentration using the Gaussian plume solution.
• forward.m: main program that calculates the concentration and plots the results (it calls setparams

and gplume).
Exercise 5. Redo the forward calculation of Figs. 3.3 and 3.4 by adding noise to the source emission

rates of magnitude (a) ±10%; (b) ±20%. Compare the results and indicate the relative influence of noise
on your computed concentrations.

3.5. A menagerie of plume solutions. In this section, we present a number of other Gaussian
plume type solutions that generalize the expression for concentration derived in Section 3 by modifying
either the boundary conditions, emission source type, or eddy diffusivities.

10



Table 3.1
Parameter values used in the Gaussian plume model, based on the zinc smelter studied in [22].

Parameter Symbol Value Units
Wind speed u 5 m/s
Stack heights Hs [15, 35, 15, 15] m
Emission rates Qs [1.1, 2.5, 1.6, 1.6]× 10−3 kg/s
Diffusion parameter a 0.33 m2−b

Diffusion parameter b 0.86 –
Settling velocity wset 2.7× 10−3 m/s
Deposition velocity wdep 5× 10−3 m/s
Viscosity of air µ 1.8× 10−5 kg/m s
Gravitational acceleration g 9.8 m/s2

Particle density ρ 3500 kg/m3

Particle radius R 2.5× 10−6 m

Fig. 3.3. Ground-level concentration (in mg/m3) for the individual sources: S1 (top), S2 (middle), S3/S4 (bottom).

3.5.1. Anisotropic eddy diffusivities. When the eddy diffusion coefficients Ky and Kz are not
equal, then it is helpful to define the parameters ry,z(x) = 1

u

∫ x

0
Ky,z(ξ) dξ. Using these definitions and

working through the same steps as before, we find that

C(x, y, z) =
Q

4πu
√

ryrz
exp

(
− y2

4ry

) [
exp

(
− (z −H)2

4rz

)
+ exp

(
− (z + H)2

4rz

)]
, (3.13)

which clearly reduces to Eq. (3.8) when ry = rz.
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Fig. 3.4. Total ground-level concentration (in mg/m3) for all four sources combined.

3.5.2. Perfectly absorbing ground. When the reflecting boundary condition (2.5d) is replaced by
a perfectly absorbing condition at the ground, c(r, y, 0) = 0, then a slight modification of the method of
images for the derivation of b(r, z) yields

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
− exp

(
− (z + H)2

4r

)]
. (3.14)

3.5.3. Inversion layer. In the atmospheric boundary layer, the air temperature most often decreases
with increasing altitude. However there are situations where an inversion occurs, which corresponds to a
layer in which the temperature increases with altitude and hence is stable and resistant to vertical mixing.
These inversion layers act as reflecting boundaries and are notorious for trapping smog above cities such
as Los Angeles and Mexico City [44]. If we replace the condition at infinity c(r, y,∞) = 0 with a Neumann
boundary condition K ∂zc(r, y,D) = 0 corresponding to an inversion layer at height D above the ground,
then the solution can be written as an infinite series of the form

c(r, y, z) =
Q

uD
√

πr
exp

(
−y2

4r

) [
1
2

+
∞∑

n=1

cos
(nπz

D

)
cos
(

nπH

D

)
exp

(
−
(nπ

D

)2

r

)]
.

For a more detailed discussion of the solution of this problem, refer to [31] or [38, Ex. 4.1(b)].

3.5.4. Line sources. A common application of atmospheric dispersion models is in the estimation
of vehicle emissions from cars driving along busy highways, which can be approximated as continuous line
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sources. If a road is very long and straight and runs perpendicular to the wind direction, then the road can
be approximated by a linear source of infinite length along the y-axis, which corresponds to the boundary
condition c(0, y, z) = (Q

L
/u)δ(z). The quantity Q

L
[kg/m s] is a constant emission rate per unit length of

road, and must be distinguished from the emission rate parameter Q that we have been using so far. The
solution to the advection-diffusion equation with this new boundary condition is

c(r, y, z) =
Q

L

2πur
exp

(
−z2

4r

)∫ ∞

−∞
exp

(
−y2

4r

)
dy =

Q
L√
πu

exp
(
−z2

4r

)
. (3.15)

Notice that we have taken H = 0 here since roads are located at ground level.
A more realistic scenario than the road of infinite extent is a road of finite length L, which can be

modelled using a boundary condition of the form c(0, y, z) = (Q
L
/u)δ(z) when |y| 6 1

2L, and c(0, y, z) = 0
otherwise. The solution to this problem takes the form [7]

c(r, y, z) =
Q

L

2u
√

πr
exp

(
−z2

4r

) [
erf
(

y + L/2
2
√

r

)
− erf

(
y − L/2

2
√

r

)]
, (3.16)

where erf(x) = 2π−1/2
∫ x

0
e−ξ2

dξ is the error function. A detailed discussion of line source emission
modelling can be found in [26].

3.5.5. Height-dependent parameters. In many applications, the contaminant plume may extend
a significant distance above the ground and it is therefore important to take into account the vertical
structure of the atmosphere. The wind speed and diffusion coefficients are then taken to be functions of
the vertical coordinate, with the most common form being the power laws [19]

u(z) = uoz
α, Ky(x, z) = ky(x)zβ , and Kz(xf, z) = kz(x)zβ . (3.17)

By defining functions ry,z = 1
uo

∫ x

0
ky,z(ξ) dξ as in Section 3.5.1, the following expression can be derived

for concentration

C(x, y, z) =
Q

2uo
√

πry
exp

(
− y2

4ry

)
(zH)(1−β)/2

λrz
exp

(
−zλ + Hλ

λ2rz

)
I−ν

(
2(zH)λ/2

λ2rz

)
, (3.18)

where λ = 2 + α− β, ν = (1− β)/λ, and I−ν is the modified Bessel function of the first kind of order −ν.
It is possible to show (see Exercise 6) that Eq. (3.18) reduces to (3.13) in the case when α = β = 0.

Exercise 6. Use the Bessel function identity I−1/2(x) = (2/πx)1/2 cosh(x) to show that Eq. (3.18)
reduces to (3.13) in the case when the wind velocity is constant and eddy diffusivities are functions of x
only.

Exercise 7. (Adapted from Tayler, pp. 197-198, [38]) Consider a simplified version of the problem
from Section 3.5.5 obeying the reduced-dimensional PDE u(z) ∂xC̄ = ∂z(K(z)∂zC̄) in terms of the cross-
wind averaged concentration C̄(x, z) =

∫∞
−∞ C(x, y, z) dy. Assume that the height-dependent parameters

have the simpler form u(z) = zα and K(z) = Kz(z) = zβ for α and β positive constants, and take the
source height H = 1. Perform the change of variables z = sp and C̄(x, z) = sν C(x, s), and hence show
that the Laplace transform Ĉ = Lx{C} of the new dependent variable obeys

d2Ĉ
ds2

+
1
s

dĈ
ds

−
(

ξp2 +
ν2

s2

)
Ĉ = −pδ(s− 1),

where ξ is the transform variable, λ = 2 + α− β, ν = (1− β)/λ, and p = 2/λ. Determine the solution in
terms of Bessel functions with an imaginary argument, and discuss the special case λ = 0. Finally, show
that Eq. (3.18) is identical to your Bessel function solution when uo = kz = 1 and the concentration is
averaged cross-wind (in the y–direction).

13



3.5.6. Gaussian puff: Instantaneous and time-varying sources. All situations considered so
far assume that the source emits contaminant continuously in time and at a constant rate. There are
many applications in which the emissions are either nearly instantaneous (occuring over a relatively short
time interval), or are intermittent or time-varying. A common approach to dealing with these problems
is to take the time-dependent advection-diffusion equation (including the time-derivative term on the left
hand side of (2.5a)) and consider an instantaneous puff of contaminant released at time t = 0. The source
boundary condition is therefore replaced with

c(0, y, z, t) =
Q

T

u
δ(y)δ(z −H)δ(t), (3.19)

where Q
T

[kg] represents the total amount of contaminant emitted (note the difference between the physical
units of Q and Q

T
). The solution can be derived using an approach similar to that we applied in Section 3.1

to obtain [1, 20]

c(r, y, z, t) =
Q

T

8(πr)3/2
exp

(
− (x− ut)2 + y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)]
, (3.20)

which is typically referred to as the Gaussian puff solution. To deal with a time-varying source, one simply
needs to evaluate an appropriate integral (or sum) of puff solutions in time.

Exercise 8. Show that the superposition of an infinite sequence of Gaussian puffs in time yields the
same concentration profile as the Gaussian plume. In other words, integrate the puff formula (3.20) over
the time interval t ∈ [0,∞) and compare with the plume solution (3.8).

3.5.7. Other generalizations. Many other variations of the Gaussian plume solution have been
derived for different emissions scenarios. For example, the line source solution can be integrated to obtain
sources of strip, area and volume type [5, 35]. Others have considered horizontal diffusion coefficients that
depend on other variables such as wind speed [27]. Lin and Hildemann [18] provide an extensive summary
of various plume type solutions that are available in the literature.

Exercise 9. (Adapted from [1, p. 218]) Emissions from burning agricultural waste may be treated as
a line source of 200 m in length that emits organic matter into the air at a rate of 0.5 g/m s. The wind is
steady and uni-directional and blows with a velocity of 2.5 m/s, directed perpendicular to the line source.
Estimate the average ground-level concentrations of organic material at distances of 500 m and 5000 m
downwind from the source and along the plume centerline. Assume that the dispersion coefficient takes
the form r(x) = axb with a = 0.16, b = 0.70, and x is measured in m. Compare the solution for the line
source with a simpler (but rougher) estimate based on replacing the line source with an equivalent point
source of strength 100 g/s (which is simply the product of the strength of the line source and its length).
Discuss your results.

3.6. Deposition and settling: The Ermak solution. In many practical situations, contaminant
particles are more massive than air and so they tend to settle out of the atmosphere at a well-defined rate
known as the settling velocity, wset [m/s]. For spherical particles of uniform size, the settling velocity can
be approximated using Stokes’ law, wset = 2ρgR2/(9µ), where ρ is the particle density [kg/m3], R is the
particle radius [m], µ is the dynamic viscosity of air [kg/m s], and g is the gravitational acceleration [m/s2].
To incorporate the effect of settling, we supplement the advection velocity with a vertical component,
~u = (u, 0,−wset), which means that the advection-diffusion equation (3.2) becomes

∂c

∂r
− wset

K

∂c

∂z
=

∂2c

∂y2
+

∂2c

∂z2
. (3.21)

In addition to vertical settling within the atmosphere, observations suggest that taking a no-flux
condition at the ground surface is not a reasonable approximation; instead, some portion of particles that
reach the surface actually deposit on the ground and are absorbed. Experimental measurements suggest
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that the vertical flux of contaminant particles at the surface is proportional to the surface concentration
and so may be written as (

K
∂c

∂z
+ wsetc

)∣∣∣∣
z=0

= wdepc|z=0 , (3.22)

where wdep [m/s] is the so-called deposition velocity.
The earliest analytical solution to the Gaussian plume equations with deposition was derived in [34];

however, Ermak [8] was the first to consider pollutant dispersion with both deposition and settling. Ermak
applied Laplace transform methods to Eqs. (3.21), (2.5d) and (3.22) and obtained the solution

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

)
exp

(
−wset (z −H)

2K
− w2

set r

4K2

)
×
[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z + H)2

4r

)
− 2wo

√
πr

K
exp

(
wo(z + H)

K
+

w2
o r

K2

)
erfc

(
z + H

2
√

r
+

wo
√

r

K

)]
, (3.23)

where wo := wdep − 1
2wset and erfc(x) = 1 − erf(x) is the complementary error function. This is a

generalization of the Gaussian plume solution which clearly reduces to Eq. (3.8) when wset = wdep = 0.
The most detailed derivation of the Ermak solution using transform methods can be found in [42,

pp. 358-361] in the context of a general discussion of diffusion problems with radiation boundary conditions.
The deposition-settling problem was also studied by Fisher and McQueen [9] for the case of constant
diffusivity, and they derived a number of the corresponding properties that we discussed in Section 3.3.
Llewelyn [20] solved a time-dependent version of the atmospheric dispersion problem and showed that
his solution reduces asymptotically to Ermak’s at steady state. An alternative derivation using complex
variable techniques was used by McKay et al. [23] for the problem with deposition but no settling.
Interestingly, similar solutions have been derived for other problems arising for example in diffusion of
ligand molecules in a protein matrix [25].

Exercise 10. Consider Ermak’s formula for the contaminant concentration (Eq. (5) from [8]) and
show that it is dimensionally inconsistent. Hence, identify and correct two typographical errors in Ermak’s
original formula. Show that the corrected Ermak formula is identical to our Eq. (3.23) by replacing his
σ2

y = σ2
z = 2r and relabeling other parameters appropriately.

Exercise 11. Derive the Ermak solution for Eqs. (3.21), (3.22), (2.5b) and (2.5c) by looking for a
separable solution of the form

c(r, y, z) =
Q

u
a(r, y) b(r, z) exp

[
−wset(z −H)

2K
− w2

setr

4K2

]
.

This substitution replaces Eq. (3.3) and the extra exponential factor is specially chosen so as to eliminate the
gravitational settling term in the PDE. The resulting initial-boundary value problem for a is identical, while
that for b differs on in replacing the Neumann boundary condition a radiation condition ∂zb = wob/K;
hence, the only difference here is in the Laplace transform solution for b. Show that your solution is
identical to Eq. (3.23). Hint: Some guidance on using Laplace transforms to solve the diffusion equation
with a radiation boundary condition can be found in [4, Sec. 14.2(II)]

Exercise 12. Generalize Eq. (3.23) to the case where the diffusivities Ky(x) and Kz(x) are not equal.
This is case actually considered by Ermak, and an outline of his derivation can be found in the Appendix
of [8].

Exercise 13. Modify the Matlab code from Section 3.4 to calculate concentrations using Ermak’s
solution for the case Ky(x) 6= Kz(x) that you derived in Exercise 12. Compute the ground-level concentra-
tion using values of wset and wdep in Table 3.1 and compare your results to those found using the standard
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plume solution in Fig. 3.4 on a rectangle of dimensions [0, 100] × [−50, 50]. Compute the absolute and
relative difference between the two solutions at each point on the ground (on a 100 × 100 equally spaced
grid) and comment on where the largest disrepancies lie. Because the differences between the two solutions
will be quite small owing to the relative small values of the physical parameters wset and wdep, we suggest
you repeat this calculation using values of wset and wdep 10 times larger and then observe how the solu-
tions differ. Finally, modify the code so as to calculate the amount (in g) of zinc deposited at each of the
receptors listed in the setparams.m file (with locations given by recept.{x,y,z}) over a time period of
30 days.

4. Inverse problem: Source identification. We are now ready to tackle the problem we originally
set out to solve, namely that of determining a contaminant source emission rate for a given a set of
measurements on the ground. In an actual emissions scenarios there are usually other complicating factors
such as multiple receptors, multiple sources, and time-varying wind velocities; in what follows, we will
introduce these compliciations one at a time.

4.1. Single source, multiple receptors. We begin by first writing an expression for the vertical
flux of contaminant at a given location ~x = (x, y, z) due to a source Q at location ~X = (X, Y,H). The
deposition flux [kg/m2 s] is simply the product of the local concentration and the deposition velocity

wdep C(x′, y′, z;Q,H) := wdep Qp(~x; ~X,U).

Here, we have made use of the notation (x′, y′) = (x − X, y − Y ) introduced in Section 3.4 and also
introduced a new function p that makes explicit the linear dependence of this expression on the emission
rate Q.

Suppose now that measurements are made by accumulating the contaminant in a sequence of Nr

dustfall jars or receptors, located at positions ~x = ~ξr = (ξr, ηr, hr) for r = 1, 2, . . . , Nr. Each receptor
is a cylindrical container with an opening having cross-sectional area A [m2], and the contaminant is
sampled over a time period of duration T [s], which is typically on the order of weeks in order that the
receptors accumulate measurable quantities of contaminant particles. Then the mass of contaminant in
[kg] deposited at the rth receptor can be written as

Dr = AT (flux ) = wdepATQp(~ξr; ~X,U). (4.1)

If we then consider the full set of Nr receptor measurements, this represents a system of Nr linear equations
in the single unknown emission rate Q. In particular, if Nr = 1 then the problem has a unique solution
for Q; otherwise (Nr > 1) the system is overdetermined and there is no unique solution in general.

If we keep in mind that the Gaussian plume dispersion model is only an approximation of the real
world and that deposition measurements are subject to significant experimental errors, then it makes sense
to search for a solution that minimizes some measure of the error between experimental data and the plume
model prediction. In particular, minimizing an error measure corresponding to the root mean square of
the difference leads directly to the well-known method of linear least squares, which is the approach we
advocate here. In practice, some care must be taken to select both the number and location of receptors
in order to obtain an accurate approximation of the emission rate.

We now present a specific example of an emissions scenario at a zinc smelter in Trail, British Columbia,
Canada, which is a simplified version of the problem introduced in Section 3.4 and studied in detail in the
paper [22]. We consider a single source S1 and nine receptors R1–R9, where the locations of the source
and receptors are given explicitly in the Matlab file setparams.m. The layout of sources/receptors is also
depicted in Fig. 4.1. Assume that the wind is constant in time, blowing at a constant speed of 5 m/s and
directed along the positive x–axis. Take the mass of zinc deposited in the nine receptors over a one-month
period to be

~D = [8.4, 68, 33, 4.2, 11, 8.2, 2.9, 2.2, 0.93] mg.
Finally, assume the receptors are cylindrical glass jars of diameter 16 cm, so that the mouth of each jar
has area A ≈ 0.02 m2.
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Fig. 4.1. Aerial photo of a zinc smelter site (Teck-Cominco Ltd. in Trail, BC, Canada) indicating the location of each
source Ss (red circles) and receptor Rr (green triangles). The size of the area depicted is roughly 1600 × 800 m.

Based on the above description and the parameters in setparams.m, we employ Matlab’s lsqlin
function to solve the corresponding linear least squares problem, which reduces to four linear equations
for a single emission rate Q. Using the Matlab routine inverse1.m, we obtain the estimate Q ≈ 169 T/yr
which incidentally is within an order of magnitude of the estimates of total zinc emissions computed in
[22] using a much more careful analysis. This is a surprisingly accurate result if one takes into account
that the actual problem has four emissions sources (S1–S4) at different locations and includes additional
physical constraints on the variables, not to mention the errors that are inherent in the Gaussian plume
model.

Exercise 14. Substitute the estimate Q determined from the example above into the Ermak solution
(3.23) and determine the corresponding deposition values (in kg) at each of the 9 receptor locations.
Compare your results with the measured data (be careful!) and explain the discrepancy at the first four
receptors, R1–R4. Redo the inverse and forward calculations by omitting these four receptors, and discuss
your results. Hint: It may help to answer this question in combination with Exercise 15.

4.2. Multiple sources and receptors. We now generalize the problem from the previous section
by considering the situation where there are Nr receptor measurements, but instead of a single source
there are now Ns > 1 sources of contaminant with emission rate Qs and location ~Xs = (Xs, Ys,Hs) for
s = 1, 2, . . . , Ns. The total mass of contaminant deposited in the rth receptor is simply the sum of the
contributions from each source, so that

Dr = wdepAT

Ns∑
s=1

Qs p(~ξr; ~Xs, U). (4.2)

In contrast with the previous section, this problem represents a system of Nr linear equations in Ns

unknowns, which is solvable provided that Nr > Ns – this is a practical restriction since there are usually
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many more measurements than emission sources. We can rewrite Eqs. (4.2) more compactly in the form

~D = P ~Q, (4.3)

where ~D and ~Q are vectors (of length r and s respectively) that contain the depositions and emission rates,
and P is an Nr ×Ns matrix with entries

Prs = wdepAT p(~ξr; ~Xs, U). (4.4)

For a given deposition values ~D, this system is solvable by the method of least squares because Nr > Ns.
Exercise 15. Repeat Exercise 14 but this time include all four zinc sources S1–S4 in the least squares

inversion process. Compare and contrast your results.

4.3. Time-varying, unidirectional wind. We have so far taken the wind to be constant over the
time period of interest, but this is clearly not a reasonable assumption in most real emissions scenarios
where the wind speed and direction can vary significantly throughout the day. Suppose therefore that the
wind is allowed to be time-dependent but that only the speed U(t) varies while the direction remains fixed;
this type of behaviour might correspond to a long, straight valley with relatively level floor and steep sides
that funnel the wind in a direction parallel to the valley walls.

The total time T is then divided into Nt sub-intervals of length ∆t = T/Nt. Care must be taken in
the choice of time interval ∆t, which should be short enough to capture the most significant variations in
wind speed, and yet long enough that any emissions released within that subinterval have time to reach a
steady-state distribution (which incidentally relates to one of the main assumptions in the Gaussian plume
model). In many atmospheric dispersion handbooks or manuals as well as studies in the literature, one
encounters the “rule of thumb” that a time interval of ∆t = 10 min is usually appropriate. For the site
pictured in Fig. 4.1, and assuming an average sustained wind speed of roughly 3–5 m/s, any contaminant
plume released from one of the four sources will be advected by a distance of several kilometers downwind,
which extends well outside the domain of interest. Consequently, it is reasonable in this situation to assume
that the air flow is uniform and steady state within each time interval of duration ∆t.

If we orient the coordinate axes so that the x–axis is aligned with the prevailing wind direction, then
the total amount of zinc deposited at a receptor location ~ξr may be written as

Dr = wdepA∆t

Ns∑
s=1

Qs

Nt∑
n=1

p(~ξr; ~Xs, U
n), (4.5)

where Un = U(n∆t).

4.4. Wind with varying time and direction. When the direction of the wind varies in time, the
Ermak solution in Eq. (3.23) can only be applied if a new set of transformed coordinates (x′s, y

′
s) is defined

for each source s that not only translates the source location to the origin, but also rotate the coordinates
so that the transformed x-axis is aligned parallel with the wind velocity. To this end, we generalize the
coordinate transformation from Section 3.4 and define(

x′s
y′s

)
= R−θ

(
x−Xs

y − Ys

)
, (4.6)

where θ corresponds to the angle that the wind direction vector makes with the original x-axis (measured
counter-clockwise) and R−θ is the 2× 2 matrix that rotates vectors through an angle −θ in the x, y-plane
(see Figure 4.2). The resulting coordinates have an x′s–axis that is aligned with the wind direction.

We close this section by mentioning that the derivation of the Gaussian plume solution used above is
similar to that of Calder [3], who considered the problem of multiple-source estimation in a time-varying
wind with a rotated coordinate system aligned with the wind direction. The main difference between
Calder’s work and ours is that he provided a general theoretical framework for the source estimation
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Fig. 4.2. Relationship between the original coordinates (x, y) and transformed coordinates (x′, y′) for a point source at
location (X, Y ), in a wind having speed U and direction angle θ.

problem that avoided providing any specific Gaussian plume approximation for the advection–diffusion
equation. Finally, we point out the work of Hogan et al. [15] who estimated both location and emission
rate for a single source using exactly four concentration measurements, and showed that the solution could
be found exactly given synthetic data (that is, data computed directly from the forward solution with no
noise). Of course, real data always contain a significant degree of error, which is why we are advocating
an approach such as the least squares method outlined here.

Exercise 16. Generalize your Matlab code from Example 15 to handle a wind velocity whose direction
and magnitude vary with time. You should make use of the wind measurements in the file wind.mat that
can be read in using the command “ read wind” after which you will have access to a structure variable
called wind containing the following members:

wind.time – time of wind measurement (s),
wind.vel – wind speed (m/s),
wind.dir – wind direction (radians ccw from north).

Each structure member is a vector of length 4320 whose entries correspond to wind data measured at
10-minute intervals over a 30-day period.

5. Conclusions. In this paper, we have provided a detailed look at the basic mathematics behind
atmospheric dispersion modelling, based on Gaussian plume approximations to the advection–diffusion
equation with a continuous point source. Using techniques from Green’s functions and Laplace transforms,
we derive various plume solutions based on a number of physically-relevant simplifying assumptions. The
results are illustrated using examples from atmospheric contaminant transport in realistic emission sce-
narios with real data. We also discuss the inverse source estimation problem, in which multiple source
emission rates are estimated from a number of ground-level contaminant measurements. This last problem
is nice application of the method of least squares to the solution of overdetermined linear systems. A large
number of exercises provide many opportunities for students to investigate the problem in more detail, and
suggestions are provided throughout on extensions that permit educators to explore the material further
in undergraduate classes on mathematical modelling, partial differential equations or numerical analysis.
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