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Section 5x. ODEs and COVID-19
What do (ordinary) differential equations (ODEs) and COVID-19 have in common?

• Like many other physical and biological systems, the spread of an infectious
disease can be described mathematically

. . . as functions of time
• Rates of change – rates of contact, infection, spread, recovery, etc. – can be

described using
::::::::::::::::::::::::::::
time derivatives =⇒ leads naturally to differential equations

• Models of disease transmission are used to study, treat and manage epidemics:

∗ by health agencies to minimize infections and optimize healthcare delivery
∗ by drug companies to develop new drugs or treatment strategies
∗ by news agencies to explain these issues to the public

. . . and we’ve all heard lots about the importance of “
:::::::::::::::::::::::::::::::::::
flattening the curve” by

“
::::::::::::::::::::::::::::::
social distancing”!
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Warning
• What I’ll describe is only a “toy model” for epidemics that has

∗ many hidden assumptions
∗ many approximations
∗ several unknown parameters

• It can reproduce some (not all) realistic behaviours qualitatively

• BUT to make accurate predictions or reliable health-related decisions requires a
real disease expert who is also intimately familiar with the mathematical models
. . . and that’s

::::::::::::::::
definitely not me!!
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Ordinary Differential Equations (ODEs)
Text
ch.5• ODE’s are equations that involve:

∗ a continuous function u(t) of a single variable t, and
∗ any of its derivatives du

dt
, d2u

dt2
, . . .

• We will focus on first-order, ordinary differential equations having the form

du

dt
= f(t, u)

∗ first-order because only first derivatives are involved, AND
∗ ordinary because u(t) depends on t only, so u′ is an “ordinary” derivative.

Aim: To solve the initial value problem (IVP) consisting of an ODE and an initial
condition:

du

dt
= f(t, u) for 0 6 t 6 tmax, subject to u(0) = u0

Examples: du
dt

= au du
dt

= au(1 − u) du
dt

= cos(t) + u2

1+u2

exponential logistic equation . . . and anything else
growth/decay you can think of

(you have likely seen ODEs already in 152/155/158 or MATH 310 or . . . )
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Example 1: A Simple ODE IVP
Consider the first-order ODE initial value problem:

u′ = tu −
t3

3
for 0 6 t 6

[tmax]

2.25 with u(0) =
[u0]

0.5

• This problem has exact solution u(t) =
4 + 2t2 − et2/2

6
• Verify by substituting:

LHS = u′

=
4t − tet2/2

6

RHS = t

(
4 + 2t2 − et2/2

6

)
−

t3

3

=
4t − tet2/2

6

IC = u(0) =
4 + 2(0)2 − e0

6

= 0.5

IVPs: Think of t as time so that
only t > 0 makes sense
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Euler’s Method
Text
§5.2• Partition time 0 6 t 6 tmax into n intervals of equal length h = tmax

n
with

tj = jh for j = 1, 2, ... , n − 1 =⇒ t0 = 0 and tn = tmax

• h is usually called the time step, even if t is not time

• Evaluate the ODE u′ = f(t, u) at t = t0, replacing u′ with a
:::::::::::::::::::::::::::::::::
forward difference

approximation:

u(t1) − u(t0)

h
≈ f(t0, u(t0)) =⇒ u(t1) = u0 + h f(t0, u(t0))

• Simplify notation: u(tj) → uj for j = 0, 1, 2, ... , n:

u1 = u0 + h f(t0, u0)

u2 = u1 + h f(t1, u1)
...

uj+1 = uj + h f(tj, uj) [ a step-by-step algorithm! ]

=⇒ called the “Forward Euler Method” just or “Euler’s Method”
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Example 1b: Apply Euler’s Method
Return to Example 1:

u′ = tu −
t3

3︸ ︷︷ ︸
f(t,u)

with 0 6 t 6 2.25

u(0) = 0.5

Take h = 0.25 and organize calcula-
tions in tabular form . . .

exact abs. error
j tj uj f(tj, uj) u(tj) |uj − u(tj)|
0 0.00 0.500000 0.000000 0.500000 —
1 0.25 0.500000 0.119792 0.515543 0.015543
2 0.50 0.529948 0.223307 0.561142 0.031194
3 0.75 0.585775 0.298706 0.633369 0.047594
4 1.00 0.660451 0.327118 0.725213 0.064762
5 1.25 0.742231 0.276747 0.823467 0.081236
6 1.50 0.811417 0.092126 0.903297 0.091880
7 1.75 0.834449 -0.326173 0.916841 0.082392
8 2.00 0.752906 -1.160855 0.768491 0.015585
9 2.25 0.462692 -2.755818 0.259299 0.203393

0 0.5 1 1.5 2

t

0

0.2

0.4

0.6

0.8

1

u
(t

)

Exact

Euler (h=0.25)

Euler (h=0.125)

Euler (h=0.0625)

MATLAB: odeex1b.m on Canvas
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MATLAB Code for Euler’s Method
This is a condensed version of the MATLAB code odeex1b.m:

f = @(t,u) t.*u - t.ˆ3/3; % RHS function for u’=f(t,u)

tmax= 2.25; % end time
nt = 9; % # steps
h = tmax / nt;% time-step
t = [0 : h : tmax];
u = zeros(1,nt+1);
u(1)= 0.5; % initial value u(0)

% Forward Euler time-stepping loop
for j = 1 : nt,

u(j+1) = u(j) + h * f(t(j), u(j));
end

% Plot the computed solution
plot(t, u, ’ro’)
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COVID-19 in the News
Plots like the ones below are ubiquitous in the news right now:

SOURCE: Globe & Mail, 16 March 2020
https://tinyurl.com/vr4dy2g

The Late Show with Stephen Colbert
17 March 2020

Where do they come from?
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Modelling Disease Transmission with ODEs
• A common mathematical model for disease transmission is the SEIR model

• Population is divided into “compartments” (fractions of population) that vary
with time

S(t) = Susceptible

E(t) = Exposed

I(t) = Infectious

R(t) = Recovered

Transfer between compartments:

S E I R
βI α γ

with S + E + I + R = 1 =⇒ total population remains constant!

• The rates of change of each fraction are determined by rate / transfer laws:

∗ Interactions between people in two compartments (x, y) occur with probabil-
ity proportional to x ∗ y

∗ Suppose interactions cause a transfer from x → y. Then the rate of transfer
= ±(const) ∗ x ∗ y

=⇒
dx

dt
= −αxy and

dy

dt
= +αxy [ “conservation of people” ]

∗ Simpler transfers x → y with no interactions obey a simpler rate law

=⇒
dx

dt
= −αx and

dy

dt
= +αx



5x. ODEs and COVID-19 MACM 316 11/21

SEIR Transmission Steps
Step 1: Susceptibles become exposed (S → E) due to S/I interactions at

a
:::::::::::::::::::::::::
contact rate β:

dS

dt
= − βSI

Step 2: Susceptibles become exposed (S → E) at same rate β and
exposeds become infectious (E → I) at an

::::::::::::::::::::::::::::
infection rate α:

dE

dt
= + βSI − αE α = 1 / (average incubation period)

Step 3: Exposeds become infectious (E → I) and infectious people also
recover (I → R) at a

:::::::::::::::::::::::::::
recovery rate γ:

dI

dt
= + αE − γI γ = 1 / (average infectious period)

Step 4: Infectious become recovered (I → R):

dR

dt
= + γI

• So far . . . no-one dies from the virus

• That’s unrealistic BUT the death rate
is small

S E I R
βI α γ
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Vector Form
• Define the solution as a vector function

~u(t) =


u1(t)
u2(t)
u3(t)
u4(t)

 =


S(t)
E(t)
I(t)
R(t)


• Rewrite the system of four ODEs as in vector form d~u

dt
=~f(~u):

dS
dt

dE
dt

dI
dt

dR
dt

 =


−βSI

βSI − αE

αE − γI

γI

 =⇒
d~u

dt
=


−βu1u3

βu1u3 − αu2

αu2 − γu3

γu3

 =~f(~u)

• Euler’s method is applied component-wise to systems of ODEs



5x. ODEs and COVID-19 MACM 316 13/21

Model Parameters for COVID-19
We start with some very rough estimates of the parameters:

• Rate of incubation: α = 0.2 [ incubation period of 5 days ]

• Average S/I contact rate: β = 1.75

• Rate of recovery: γ = 0.5 [ infectious period is 2 days ]

• Reproduction number: R0 = β/γ = 3.5

• Total population: N0 =10,000

• Initial values: ~u(0) = [1 − 1/N0, 0, 1/N0, 0] [ start with one infectious person ]

[ Based on literature cited in

Christian Hubbs’ blog post ]
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Euler Code for SEIR Model
MATLAB: covid19.m on Canvas

alpha = 0.2; % incubation period (5 days)
beta = 1.75; % average contact rate
gamma = 0.5; % 1/gamma is mean infectious period (2 days)
R0 = beta/gamma; % reproduction number

% Normalized population with S+E+I+R = 1.
N0 = 10000; % initial population, one person infectious
u0 = [1-1/N0, 0, 1/N0, 0]; % initial values with sum(u0)=1

% RHS function for the SEIR ODE with u=[S,E,I,R]
f = @(u) [ -beta*u(1)*u(3), beta*u(1)*u(3)-alpha*u(2), ...

alpha*u(2)-gamma*u(3), gamma*u(3) ];

dt = 0.1;
t = [0 : dt : 100]’;
nt = length(t)-1;
u = zeros(nt+1, 4);
u(1,:) = u0; % initialize SEIR values

% Euler time-stepping loop
for k = 1 : nt,

u(k+1,:) = u(k,:) + dt * f(u(k,:));
end
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Play Around!
Original parameters Decrease γ : 0.5 → 0.05

(5-day incubation & 2-day infectious period) (20-day infectious period)

Decrease α : 0.2 → 0.05
(20-day incubation period) BOTH: α = γ = 0.05
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Exponential Growth of Infections . . . Initially!
• Early stages of an epidemic exhibit exponential growth

• Infections must eventually slow down (population is finite)

• BUT predicting / identifying the turn-around or inflection point is difficult

Key Question: Where on the infection curve are we sitting NOW?

https://www.worldometers.info/coronavirus

Excellent video by minutephysics:

“How to tell if we’re beating COVID-19”

https://youtu.be/54XLXg4fYsc
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When is the Infection Slowing Down?

It can be difficult to identify
when the exponential growth
is starting to turn around



5x. ODEs and COVID-19 MACM 316 18/21

Reproduction Number R0
A common measure of

::::::::::::::::::::::::::
how infectious a disease is:

• R0 = β/γ is the expected number of cases resulting from one infectious case
in a population where everyone is susceptible to infection

• Basic theoretical results:

∗ If R0 > 1, the infection can spread in a population
∗ If R0 < 1, the infection dies out naturally
∗ The larger R0 is, the harder it is to control an epidemic

• R0 can’t be determined from data – it’s estimated from SEIR model simulations

• Compare the estimate of R0 ≈ 3.5 for COVID-19 to past epidemics:
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Importance of Social Distancing
• Social distancing is being promoted as an effective measure to control the

COVID-19 virus by reducing the S/I contact rate β [ same effect as reducing R0 = β/γ ]

• Mimic social distancing by replacing β → ρβ =⇒ simulate with ρ = 1.0, 0.8, 0.6

⇐⇒



5x. ODEs and COVID-19 MACM 316 20/21

Reality is Much More Complicated
Many other effects can be added to such models that increase complexity:

• deaths and births =⇒ S + E + I + R 6= 1

• maternally inherited immunity at birth =⇒ MSEIR model

• age-structured population =⇒ different contact / infection / recovery / death rates

• time-varying transmission =⇒ parameters depend on t

• effects of hospitalization / treatment / vaccination

• differences in geography and national response =⇒ add spatial dependence

• political response to (and politicization of) results of disease models!!
“Coronavirus modelers factor in new public health risk: Accusations their work is a hoax”

Washington Post, March 27, 2020
https://tinyurl.com/sd439w5
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