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Introduction

I Hydrodynamic interactions in suspensions of
swimming organisms has been a topic of
recent interest.

I Theoretical approaches to understanding the
collective swimming have followed two paths,
microscopic and coarse-grained approach,
here we focus on the former.

I We are interested in flows at moderate
Reynolds numbers in the range from 0.1 to
100, in which both advective and diffusive
effects are present. Figure 1: Suspension of Nematodes

Immersed Boundary Method

I We have two separate meshes, one
on the fluid domain and mesh on
the structure.

I Immersed boundary method,
enables us to represent the fluid on
an Eulerian grid and the boundary
within the fluid, immersed
boundary, on a Lagrangian grid.

I The Eulerian and Lagrangian
variables are then linked by a Dirac
delta distribution. Figure 2: O: Immersed Boundary, +: Fluid gridpoints

Mathematical Formulation

I IB Formulation: Motion of the fluid is governed by incompressible Navier-Stokes
equations:

ρ
∂u
∂t

+ ρu · ∇u = µ∆u−∇p + F, (1)

∇ · u = 0, (2)

I External force F is projected onto the fluid domain using delta function.

F(x, t) =
∫

Γ
f(s, t)δ(x− χ(s, t))ds. (3)

I We need another equation to close above system, which is given by a no-slip boundary
condition on the immersed boundary points, i.e.

∂χ

∂t
= u(χ(s, t), t) =

∫
Ω

u(x, t)δ(x− χ(s, t))dx, (4)

where χ is position of swimmer(s), and s which is parameterized by s.
I Force Density: Accounting for the two types of forces, elastic and bending forces, energy

is defined:
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∫

Γ
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2
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L is the resting length of organism, and χ̃ is the target position of the organism. The
resulting force is therefore

F = −∇E. (6)
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∂
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I Let the target curvature c(s, t) = ∂2χ̃
∂s2 and χ̃(s, t) = (s, a sin(κs− ωt))

c(s, t) = (0,−κ2a sin(κs− ωt)) (8)

Numerical Method

I Fractional step IB algorithm
Step IB1: Evolve the IB position to time tn+1/2 = (n + 1/2)t
Step IB2: Calculate the fluid forcing term
Step IB3: Solve the incompressible NavierStokes equations

I Parallel Implementation
The parallelization is performed by subdividing the
rectangular domain Ωinto equally sized rectangular
partitions ΩI,J,K.Each node is allocated a single
domain partition ΩI,J,K , along with the values of
the Eulerian and Lagrangian variables contained
within it.

Figure 3: Parallel domain decomposition

Parameters Choice

I Paramter choice for single swimmer

Density Viscosity Nd Ns ∆t L Ls a
1 g/cm3 1 cP 64 128 O(10−5)s 0.4 cm 0.1cm Ls/10

Table 1: Parameters

Parameters Choice

I Reynolds number

Re =
ρLV
µ

=
ρω

µκ2

Simulations: a. swimming speed

I We simulated single organisms, to examine swimming speed variations for different
Reynolds numbers. Next, we invstigated the dynamics of double-swimmers.

Figure 4: organism speed for different Reynolds numbers, blue: single swimmer, red: double-swimmers

I For small Reynolds numbers swimming speed increases with increasing Re number.
I At Re ≈ 2 we see a drop in speed, which is the transition from small Reynolds numbers

to intermediate.
I Swimming speed improves significantly as a result of swimmers’ synchronized motion for

small Re.

Simulations: b. suspension

I We investigated the dynamics of suspension of organisms by simulating two suspensions
of 10, 32 uniformly distributed with random orientations swimmers in small and
intermediate Reynolds regimes.

I For smaller Re it is easier to identify formation of swarms. In higher Re with 10
swimmers there is no swarms identified, whereas with higher concentration of swimmers
concentrated groups are easily seen.

Figure 5: Suspension of organisms, left: 10 , right: 32

I For smaller Re it is easier to identify formation of swarms. Higher Re with 10 swimmers
there is no swarms identified, whereas with higher concentration of swimmers
concentrated groups are easily seen.

—————————————————————————————-

Future Work

I With the method at hand, it is easy to study dynamics in the presence of solid
boundaries.

I Study could be extended to investigating 3D simulations using the current software.
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