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Background: Moving mesh PDE’s
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Moving mesh method

■ x = physical coordinate, ξ = computational coordinate

■ One-to-one mapping: x(ξ, t), ξ ∈ [0, 1]

■ Monitor function: M(x, t) > 0

■ Equidistribution Principle (EP, integral form):

∫ x(ξ,t)

0

M(x′, t) dx′ = ξ θ(t) where θ(t) =

∫ 1

0

M(x′, t) dx′

■ Equidistribution Principle (EP, differential form):

∂

∂ξ

(

M
∂x

∂ξ

)

= 0
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Moving mesh PDE’s

Huang, Ren & Russell (1994):

■ Equidistribution Principle

∂

∂ξ

[

M(x(ξ, t), t)
∂

∂ξ
x(ξ, t)

]

= 0

■ Introduce a relaxation time τ

∂

∂ξ

[

M(x(ξ, t + τ ), t + τ )
∂

∂ξ
x(ξ, t + τ )

]

= 0

■ Expand in Taylor series:

(MMPDE4)
∂

∂ξ

(

M
∂ẋ

∂ξ

)

= −
1

τ

∂

∂ξ

(

M
∂x

∂ξ

)

(MMPDE6)
∂2ẋ

∂ξ2
= −

1

τ

∂

∂ξ

(

M
∂x

∂ξ

)
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∂ẋ

∂ξ

)

= −
1

τ

∂

∂ξ

(

M
∂x

∂ξ

)

(MMPDE6)
∂2ẋ
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Mesh relaxation time

■ While a large effort has been expended on developing better
monitor functions, almost no attention has been paid to the
choice of τ

■ τ is identified as an important parameter BUT it’s

◆ always taken to be constant

◆ tuned by trial-and-error for a given problem

■ τ can be interpreted in several ways:

◆ a relaxation time for the mesh to satistfy the EP

◆ temporal smoothing

◆ a damping factor – Adjerid & Flaherty (1986)

◆ a delay factor – Furzeland et al. (1990)
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Mesh relaxation time (2)

In practice, the choice of τ is a trade-off:

■ τ must be large enough to avoid oscillations in the mesh
(stability)

■ τ must be small enough that mesh can respond to changes
in the solution (accuracy)

accuracy stiffness / cost

small τ increased more stiff / higher cost

large τ decreased less stiff / lower cost
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Basic idea
■ For problems with complex behaviour (esp. time variations

on fast and slow scales) choosing a single constant value of
τ seems inappropriate

■ Instead, we want

mesh time scale ≈ solution time scale

■ Examples:

a. blow-up: initial rapid motion of mesh points – Budd,
Huang & Russell (1996)

b. moving fronts: with variable front speed – JS, Mackenzie &
Russell (2001)

c. Gierer-Meinhardt: very slow spike motion, with rapid,
spontaneous changes – Iron & Ward (2002)

Aim: Increase accuracy and efficiency by varying τ(t)
throughout a computation
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Blow-up problems
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A simple blow-up model

■ One of the simplest models for blow-up is (for p > 1)

ut = uxx + up subject to
u(0, t) = u(1, t) = 0

u(x, 0) = u0(x)

■ The solution “blows up” at x = x∗ and t = t∗ if:

u(x∗, t) → ∞ as t → t∗

and u(x, t) → u(x, t∗) < ∞ if x 6= x∗

■ There is a similarity solution with asymptotic behaviour

u(x, t) −→ ββ(t∗ − t)−β

(

1 +
µ2

4pβ

)−β

as t → t∗

where β = 1
p−1 and µ is the ignition kernel

– Bebernes & Bricher (1992)
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Moving mesh calculations of blow-up

Budd, Huang & Russell (1996):

■ Used the MMPDE approach to compute self-similar
solutions (fixed mesh calculations are pointless!)

■ Derived the monitor M = up−1 needed to capture
self-similarity

■ With p = 2 and N = 40 points:

MMPDE6, τ = 10−5 MMPDE6, τ = 10−1 MMPDE4, τ = 10−5
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Moving mesh calculations of blow-up (2)

MMPDE6, τ = 10−5 MMPDE6, τ = 10−1 MMPDE4, τ = 10−5
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Provided τ is taken small enough (e.g., τ = 10−5):

■ both the computed solution and mesh capture self-similarity

■ blow-up behaviour can be computed accurately
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Choice of τ

Some insight is afforded by a scaling argument in BHR’96:

■ The solution and monitor satisfy:

u ∼ (t∗ − t)β and M = up−1 ∼ (t∗ − t)

■ The mesh has a natural timescale:

Tmesh = O(τ) (for MMPDE4)
Tmesh = O( τ

M
) ∼ τ(t∗ − t) (for MMPDE6)

■ Conclude: MMPDE6 with τ = 10−5 (constant) allows the
mesh to evolve even for t close to t∗, but MMPDE4 does not
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Choice of τ

Some insight is afforded by a scaling argument in BHR’96:

■ The solution and monitor satisfy:

u ∼ (t∗ − t)β and M = up−1 ∼ (t∗ − t)

■ The mesh has a natural timescale:

Tmesh = O(τ) (for MMPDE4)
Tmesh = O( τ

M
) ∼ τ(t∗ − t) (for MMPDE6)

■ Conclude: MMPDE6 with τ = 10−5 (constant) allows the
mesh to evolve even for t close to t∗, but MMPDE4 does not

Our claim: τ need not always be so small (i.e., the mesh
equation is unnecessarily stiff). A more sensible choice is:

τ = τo max
x

M with τo � 1
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Numerical simulations
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Variable τ results

■ Take p = 2, MMPDE6, MOL + DASSL

■ τ(t) = τo max
x

M , force τ ∈ [10−8, 10−1]

■ Compare to simulation with constant τ = 10−8

Variable τ results demonstrate:

■ CPU time is reduced by at least
a factor of three

■ max
x

u is at least 3 orders of

magnitude larger (computes
further into blow-up)

■ t∗ is computed more accurately
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Variable τ results (2)

With N = 200 points:

τ = 10−8 τ variable

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

ξ

u
/
u

m
a

x

t∗ − t
x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

ξ

u
/
u

m
a

x

t∗ − t
x

0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

PSfrag replacements
ξ

u/umax

t∗
−

t

x 0 0.2 0.4 0.6 0.8 1
10

−10

10
−8

10
−6

10
−4

10
−2

PSfrag replacements
ξ

u/umax

t∗
−

t

x



Adaptivity and Beyond – Vancouver, August 3–5, 2005 On the mesh relaxation time in the moving mesh method - p. 18

Variable τ results (3)

Summary of results:

■ τ needs to be small only during the time leading up to
blow-up, as mesh points race into the peak

■ For t closer to t∗, it’s sufficient to take τ = τmax = 0.1

■ Variable τ improves both accuracy and efficiency, but leads
to a slight loss of self-similarity
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More severe blow-up (p = 5)

τ = 10−8 τ variable
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■ Non-physical oscillations appear in constant τ results, but
not with variable τ

■ Similar improvement in efficiency

■ Variable τ results show a more significant deviation from
self-similarity
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Conclusions

■ Choosing mesh relaxation parameter τ constant is not
optimal

■ Significant improvements in accuracy and cost can be
obtained by varying τ sensibly for blow-up problems

■ We need another approach for calculating τ adaptively in
general situations
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Future work

■ Determine a more general form of τ(t) which is robust and
applicable to other problems
– see Hyman & Larrouturou (1989), W. Huang (2001)

■ More extensive studies involving other PDE’s

■ Analytical investigation, going back to the EP
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