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Background: Moving mesh PDE’s




Moving mesh method

m ¢ = physical coordinate, ¢ = computational coordinate

= One-to-one mapping: z(&,t), £ € [0, 1]

Monitor function: M (x,t) > 0

Equidistribution Principle (EP, integral form):
x(&,t) 1
/ Mz’ t)dx’ = £0(t) where 0(t) = / M (', t) dx’
0 0

= Equidistribution Principle (EP, differential form):

0 ox
O (Ma—g) !
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Moving mesh PDE’s

Huang, Ren & Russell (1994):

= Equidistribution Principle

0

0
8_€ M(x(&,1),1) 8—555(5’?5) _ 0
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Moving mesh PDE’s

Huang, Ren & Russell (1994):
= Equidistribution Principle

0 0
8_§ [M(Z(f,t),t) 8_§x(€’t>] —0

m |[ntroduce a relaxation time 7

0

0
8—§ [M(az(f,t—l—T),t—l—T) 8—§x<§’t+7—>] =0
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Moving mesh PDE’s

Huang, Ren & Russell (1994):
= Equidistribution Principle

0

)
- [M<x<f,t>,t> a—fx@,w] 0

m |[ntroduce a relaxation time 7

0

0
8—§ [M(az(f,t—l—T),t—l—T) 8—€x(§,t—|—7)] =0

= Expand in Taylor series:

0 ox 1 0 Ox
omPoE) g (5 ) = - 7 g (Ve )

02 10 ([ O
(MMPDES) 5 = 7o (Ma—€>
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Mesh relaxation time

= While a large effort has been expended on developing better
monitor functions, almost no attention has been paid to the
choice of 7

= 7 |s identified as an important parameter BUT it's

0 always taken to be constant

0 tuned by trial-and-error for a given problem

= 7 can be interpreted in several ways:

0 a relaxation time for the mesh to satistfy the EP
0 temporal smoothing
0 a damping factor — Adjerid & Flaherty (1986)

0 a delay factor — Furzeland et al. (1990)
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Mesh relaxation time (2)

In practice, the choice of 7 is a trade-off:

= 7 must be large enough to avoid oscillations in the mesh
(stability)

= 7 must be small enough that mesh can respond to changes
In the solution (accuracy)

Adaptivity and Beyond — Vancouver, August 3-5, 2005

accuracy stiffness / cost
small = || increased | more stiff / higher cost
large T || decreased | less stiff / lower cost
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Basic idea

= For problems with complex behaviour (esp. time variations
on fast and slow scales) choosing a single constant value of
T Seems inappropriate

m |nstead, we want
mesh time scale =~ solution time scale

= Examples:

a. blow-up: initial rapid motion of mesh points — Budd,
Huang & Russell (1996)

b. moving fronts: with variable front speed — JS, Mackenzie &
Russell (2001)

c. Gierer-Meinhardt: very slow spike motion, with rapid,
spontaneous changes — Iron & Ward (2002)

Aim: Increase accuracy and efficiency by varying 7(t)
throughout a computation
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Blow-up problems




A simple blow-up model

= One of the simplest models for blow-up is (for p > 1)

u(0,t) =u(l,t) =0

Up = Ugy + UP subject to
! o ) u(z,0) = ug(x)
= The solution “blows up” at x = «z* and t = t* If:

u(z*,t) - o0 ast—t"

and u(z,t) — u(z,t™) <oo ifx#a"

= There is a similarity solution with asymptotic behaviour

2\ P
w(z,t) — BP(* —1)=P (1 n 4’;75) ast — t*

where ( = ﬁ and p is the ignition kernel

— Bebernes & Bricher (1992)
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Moving mesh calculations of blow-up

Budd, Huang & Russell (1996):.

m Used the MMPDE approach to compute self-similar
solutions (fixed mesh calculations are pointless!)

= Derived the monitor M = u?~! needed to capture
self-similarity

m With p =2 and N = 40 points:

MMPDEG6, + = 10~ ° MMPDES6, + = 101 MMPDE4, r = 10~°

1
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Moving mesh calculations of blow-up (2)

MMPDES6, 7 = 10—° MMPDES6, 7 = 10~1 MMPDE4, 7 = 10—°

~30™
% 10°
+
10°
~10| X X X X ~10| X X X -10| X X X X
1075 02 04 o 06 0.8 1 1075 02 04 o 06 10, 02 04 o 06 0.8 1

Provided 7 is taken small enough (e.g., 7 = 107°):

= poth the computed solution and mesh capture self-similarity

= pblow-up behaviour can be computed accurately
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Choice of T

Some insight is afforded by a scaling argument in BHR'96:
= The solution and monitor satisfy:
u~ (t"—t)P and M=ul"t~ (t*" 1)

m The mesh has a natural timescale:

Trnesh = O(T) (for MMPDEA4)
Lrnesn = O(57) ~ 7(t* — 1) (for MMPDES®)

= Conclude: MMPDEG6 with 7 = 10~ (constant) allows the
mesh to evolve even for ¢ close to t*, but MMPDE4 does not
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Choice of T

Some insight is afforded by a scaling argument in BHR'96:
= The solution and monitor satisfy:
u~ (" —t)? and M =uP"t ~ (" —1)

m The mesh has a natural timescale:

Tesh = O(T) (for MMPDEA4)
Trnesh = O(77) ~ T(t* —t) (for MMPDE®)

= Conclude: MMPDEG6 with 7 = 10~ (constant) allows the
mesh to evolve even for ¢ close to ¢*, but MMPDE4 does not

Our claim: 7 need not always be so small (i.e., the mesh
equation is unnecessarily stiff). A more sensible choice is:

T =T, max M with 7, < 1
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Numerical simulations




Variable 7 results

= Take p = 2, MMPDEG6, MOL + DASSL

» 7(t) =7, max M, forcer e [1078,107!]

= Compare to simulation with constant 7 = 10~°

Variable 7 results demonstrate:

0.082440 —e—‘t _1‘ &
. . . ¢ -#-tau variable |
= CPU time is reduced by at least o Seccany
a factor of three B o
‘. | ,
= maxu iS at least 3 orders of R
X 0.082435%
magnitude larger (computes 0os2438
further into blOW-Up) 0 160" 200 300 400 500 600

= {* IS computed more accurately
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Variable 7 results (2)

With N = 200 points:

=108 T variable
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Variable 7 results (3)

Summary of results:

= 7 needs to be small only during the time leading up to
blow-up, as mesh points race into the peak

m [or ¢ closer to t*, it's sufficient to take 7 = 7,42 = 0.1

= Variable 7 improves both accuracy and efficiency, but leads
to a slight loss of self-similarity
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More severe blow-up (p = 5)

+=10"8 T variable
1 1
0.8
<t
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J o4
3
N—r
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0 & | | | | N C ’ o d | | h N ~
0 0.2 0.4 5 0.6 0.8 1 0 0.2 0.4 é_ 0.6 0.8 1

= Non-physical oscillations appear in constant = results, but
not with variable 7

= Similar improvement in efficiency

= Variable 7 results show a more significant deviation from
self-similarity
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Conclusions

= Choosing mesh relaxation parameter = constant is not
optimal

= Significant improvements in accuracy and cost can be
obtained by varying 7 sensibly for blow-up problems

= \We need another approach for calculating = adaptively in
general situations
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Future work

= Determine a more general form of 7(¢) which is robust and

applicable to other problems
— see Hyman & Larrouturou (1989), W. Huang (2001)

= More extensive studies involving other PDE’s

= Analytical investigation, going back to the EP
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