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What is an immersed boundary?

Immersed boundary or IB:

. . . a solid, moving and/or deformable object that is
immersed within an incompressible fluid

Beating heart Particle suspension Swimming fish
(Peskin & McQueen, NYU) (H. Nishida, Kyoto Inst Tech) (A*Star, Singapore)
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Purpose

The purpose of this talk is . . .

to provide a brief overview of the immersed boundary method, both
mathematical formulation and numerial scheme.

to summarize recent advances (last 10 years) in

analysis,
algorithms,
applications and extensions.

to highlight several recent results by SFU students.

“The IB method is both a mathematical formulation
and a numerical scheme.” (Peskin, 2002)

Immersed boundary method John Stockie – SFU 4/43
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Geometry and assumptions

Ω: fluid domain, x ∈ R2

Γ: immersed boundaries,
parameterized by q ∈ R (fiber)
or q ∈ R2 (region)

Ω

Γ
2

Γ3

Γ1

Fundamental principle: Effect of solid structures can be captured by
distributing appropriate forces onto the fluid.

Three main assumptions: (for simplicity, easily relaxed)

Rectangular 2D domain with doubly periodic boundary conditions.

IBs have zero mass and are permeated by fluid (neutrally buoyant).

Fluid is incompressible.

Immersed boundary method John Stockie – SFU 8/43
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Governing equations

Variables: u(x, t) = velocity, p(x, t) = pressure

X(q, t) = IB position, F(q, t) = IB force density

Parameters: ρ = density, µ = viscosity

Incompressible Navier-Stokes equations:

ρ
∂u

∂t
+ ρu · ∇u = µ∇2u−∇p + f

∇ · u = 0

IB elastic force (IB → fluid):

f(x, t) =

∫
Γ

F(q, t) δ(x− X(q, t)) dq “force spreading”

IB evolution equation (fluid → IB): no-slip condition

∂X

∂t
=

∫
Ω

u(x, t) δ(x− X(q, t)) dx “velocity interpolation”

Fluid-structure interaction is mediated by delta functions!

Immersed boundary method John Stockie – SFU 9/43
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Elastic forces

The heart of any IB model is the elastic force density F(q, t):

IB configuration X(q, t) determines the stressed elastic state.

Formulate in terms of an elastic energy functional E [X].

Principle of virtual work: F = −℘E

℘X
(Fréchet derivative).

Simple case: Elastic fiber with
tension T (q, t), tangent vector τττ(q):

F =
∂

∂q
(Tτττ) with τττ =

Xq

|Xq|

Even simpler: Hookean springs, zero
rest-length, T (q) = σ|Xq|:

F =
∂2X

∂q2
(linear)

Source: Guy & Hartenstine

Immersed boundary method John Stockie – SFU 10/43
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Other types of forces

Resistance to bending
Resistance to torque in flexible rods
“Tether” points for solid boundaries or other objects with an
imposed location or motion
Active contractile forces (e.g., muscles)
Attraction/repulsion due to adhesion, contact or lubrication
Electrochemical forces in ionic solutions
Thermal fluctuations in microscale systems

Source: Rejniak (2007)

Immersed boundary method John Stockie – SFU 11/43
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Alternate formulation: Jump conditions

Solve Navier-Stokes equations away from Γ (where f = 0):

ρ
∂u

∂t
+ ρu · ∇u = µ∇2u−∇p

∇ · u = 0
on Ω \ Γ

Eliminate delta functions and singular force term in favour of jumps
across Γ:

JuK = 0

JpK =
F · n
|Xq|

µτττ ·
s

∂u

∂n

{
= −F · τττ

|Xq|
References: Peskin & Printz (1993), Lai & Li (2001)

This “jump formulation” is the basis for the Immersed Interface Method
(LeVeque & Li, 1994), (Li & Ito, 2006) MS-{We,Th}-∗-26

Immersed boundary method John Stockie – SFU 12/43
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Dual philosophy

“Original” IB method:

Ideally suited to biofluid problems with dynamically deforming
structures.

External boundaries are not so important – commonly assume an
infinite or periodic fluid domain.

When rigid boundaries or objects are present, treat them as
“tethered” IBs with a very large elastic stiffness.

“Direct (or discrete) forcing” IB method: (Mittal & Iaccarino, 2005)

Originally developed for IBs that are either stationary or have a
prescribed motion, Ub.

Idea: apply a fictitious body force whose sole purpose is to bring the
velocity to Ub.

Much more common in the engineering literature.

Our focus is on the first class of problems . . .

Immersed boundary method John Stockie – SFU 13/43
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Spatial discretization

Fluid domain Ω is divided into a rectangular grid xi, j = (ih, jh) with
cells of size h × h.
Immersed boundary Γ is discretized at Lagrangian points X`(t) that
move relative to the underlying fluid grid.

i,j

X

h
x

l

Simple case:
IB points connected

by springs

Immersed boundary method John Stockie – SFU 15/43
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Algorithm outline
Replace delta function by a smooth
regularization δh(x) = dh(x) dh(y)

e.g., dh(x) =
1

4h

(
1 + cos

(πx

2h

))
Then, within each time step:

1 Compute discrete “spring” forces, Fn
`

2 Approximate force spreading integral:

fn
i, j =

∑
`

Fn
` δh(xi, j − Xn

`) · hb

3 Step velocity/pressure using your
“favourite” fluid solver → un+1

i, j , pn+1
i, j

4 Update IB configuration:

Xn+1
` = Xn

` + ∆t
∑
i, j

un+1
i, j δh(xi, j − Xn

`) · h2

+2h
 0 

x
-2h-2h

 0 

y

+2h

1/4h2

0

z
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Pros and cons

Advantages:

Flexible: handles complex IBs with nearly arbitrary elastic forcing.

Simple: explicit algorithm on a fixed Cartesian mesh is very easy to
implement.

Robust: relatively insensitive to changes in geometry, IB forcing,
fluid properties, etc.

Disadvantages:

Numerical stiffness: can be severe owing to large elastic forces.

Nonlinearity and non-locality: make implementing an implicit solver
extremely difficult.

First-order: accuracy drops near the IB because interpolated fluid
velocity field (∂X

∂t ) is not div-free. (Newren, 2007 thesis)

Immersed boundary method John Stockie – SFU 17/43
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Applications in biology and engineering
Biology:

blood in heart and arteries: Peskin–McQueen, Griffith, Fogelson, Glowinski

cilia and flagella: Fauci, Dillon, Kim–Lim–Peskin

cell growth and locomotion: Bottino, Dillon, Rejniak, Strychalski–Guy,
Vanderlei–Feng–Keshet

swimming organisms: Fauci, Miller, Bhalla, Lushi–Peskin, Guy, Khatri

vesicles and membrane transport: Huang, Kim–Lai

viscoelastic biofluids: Chrispell, Strychalski–Guy, Devendran

cochlear dynamics: Peskin–LeVeque–Lax, Beyer, Givelberg, Edom, Ko–JS

biofilms: Klapper, Dillon–Fauci, Bortz et al., Sudarsan–Ghosh–JS

aerodynamics and flying: Miller, Zhao

Engineering:
particle suspensions: Fauci, Pan–Glowinski,
Wang–Layton, Breugem, Ghosh–JS

parachutes and flags: Kim–Peskin, Zhu

foams: Kim–Lai–Peskin

electrohydrodynamics: Bhalla et al.

fishing nets: Takagi et al.

Speakers in this and
related sessions:

Invited Tu 11:10

MS-{We,Th}-∗-26
MS-We-D-55

Immersed boundary method John Stockie – SFU 19/43
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Seminal reference

Peskin has posted lecture notes and code at

http://www.math.nyu.edu/faculty/peskin/ib lecture notes

Immersed boundary method John Stockie – SFU 20/43
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Analytical results

Rigorous derivation of IB formulation from first principles:
Peskin (2002, 2011 notes)

Analysis of numerical stiffness, stability and time-step restrictions:
Gong, Huang & Lu (2008), Hou & Shi (2008),
Boffi, Gastaldi & Heltai (2007)

Proof of pointwise and Lp convergence in u and p for Stokes flow
with stationary IB: Mori & Liu (2008–2014) (beautiful!)

Stability analysis for internally-forced spherical membranes:
Ko & JS (2015)

Regularized delta functions: Bringley (2008 thesis), Liu & Mori
(2012), Hosseini et al. (2015), Bao et al. (2015), . . .

Immersed boundary method John Stockie – SFU 22/43
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Parametrically-forced oscillations in spherical membranes

Ko & JS, SIAM J. Appl. Math., submitted, arXiv:1411.1345

Extends earlier work on parametric resonance for
internally-forced 2D membranes by
Cortez et al. (2004).

Aims also to explain instabilities in 3D
computations of Maitre & Cottet (2006).

Take linear elastic membrane with periodic forcing:

F(X, t) = σ(1 + 2τ sin(ωt))∆SX

Look for a Floquet series solution in vector spherical harmonics:

u(r , θ, φ, t) = eγt
∞X

n=−∞

e int
“
ur

n(r)Ym,k + uΨ
n (r)ΨΨΨm,k + uΦ

n (r)ΦΦΦm,k

”
and similarly for p and X.

Immersed boundary method John Stockie – SFU 23/43
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Stability results

Finding neutrally stable solutions (Re γ = 0) reduces to a large
eigenvalue problem.
Plotting stability regions in parameter space clearly identifies
unstable modes.
IB simulations verify that instabilities occur for the same parameters.

Stability boundaries, τ 6 1
2

Unstable 4-mode

Unstable

Stable

σ

Immersed boundary method John Stockie – SFU 24/43
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Algorithm improvements and extensions

Adaptive mesh refinement yields practical second-order accuracy:
Griffith et al. (2007)

Various approaches to reducing volume conservation errors:
Newren (2007), Griffith (2012), Li et al. (2012)

Implicit treatment of the IB evolution equation:
Mori & Peskin (2008), Newren et al. (2008), Hou & Shi (2008),
Guy & Philip (2012) – multigrid

Lattice-Boltzmann fluid solver: Crowl & Fogelson (2010),
Hao & Zhu (2010)

Finite element formulation: Boffi, Gastaldi & Heltai (2004–),
Griffith & Luo (2014)

IB benchmark problems: Roy, Heltai & Costanzo (2015)

Other closely related methods:

regularized Stokeslets: Cortez, Olson, Huang
embedded boundary method: Stein, Guy & Thomases (2015)
. . .

Immersed boundary method John Stockie – SFU 26/43
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Parallel implementations

IBAMR: Griffith et al. (2009) + very active user group

Titanium: Givelberg & Yelick (2006)

Direct-forcing IB method on GPUs: Layton et al. (2011)

Pseudo-compressible fluid solver for distributed-memory clusters:
Wiens & JS (2015)

Immersed boundary method John Stockie – SFU 27/43
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An (optimally) scalable parallel IB solver
Wiens & JS, J. Comput. Phys., 281:917–941, 2015

Pseudo-compressibility method (Guermond & Minev, 2011):
Navier-Stokes solve reduces to tridiagonal linear systems.
Use parallel domain decomposition, exploit rectangular geometry,
communicate IB data between subdomains via ghost cells.
Extensively tested on a variety of “standard” 2D/3D problems.
Numerical simulations demonstrate exceptional parallel scaling and
near optimal efficiency (EP = T1

PTP
on P processors)

16 32 64 128 256
T

P
10-4

10-2

100

N=256

N=128FFT
Ours

P
16 32 64 128 256

E
P

0

0.5

1
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Two examples of illustrations
Jellyfish swimming (2D)
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8

16

24

32
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Flexible fiber suspension (3D)

Wiens & JS, Comput. Meth. Appl. Mech. Eng. 290:1–18, 2015

. . . it’s possible to simulate suspensions of 100’s to 1000’s of objects!
Immersed boundary method John Stockie – SFU 29/43
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Extensions to the IB formulation

The IB formuation has been extended to handle much more than just the
simple massless elastic membrane problem:

Massive boundaries using penalty IB method (Kim & Peskin, 2007)
or D’Alembert force (Mori & Peskin, 2008)

Porous boundaries: Kim & Peskin (2006), JS (2009)

Generalized IB method for torque in flexible rods: Lim et al. (2008)

Membrane transport and osmosis: Atzberger & Peskin (2006),
Huang et al. (2009), Gong, Gong & Huang (2014)

Stochastic IB method: Atzberger, Kramer & Peskin (2007, 2008)

Variable density and viscosity fluids: Fai et al. (2013, 2014)

Arbitary linearly elastic materials: Mori & Peskin (2009)

Immersed boundary method John Stockie – SFU 31/43



Overview Analytical advances Algorithmic advances Extensions and applications Closing remarks

Gravitational settling in particle suspensions

Rigid particles in suspension settle due to gravity,
interacting in complex ways with each other and
with surrounding walls.

Pairs of particles undergo
drafting–kissing–tumbling (DKT).

This problem has been very well-studied in both
experimentally numerically.

Wang et al.
(2014)
←−

Münster et al.
(2012)
−→

Immersed boundary method John Stockie – SFU 32/43
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IB simulations of sedimentation

Ghosh & JS, Commun. Comput. Phys., 18(2):380-416, 2015

We aim to perform IB simulations that reproduce observed DKT
dynamics and wall-particle interactions.
Added mass incorporated using a D’Alembert forcing approach.

0 0.5
0

0.5

1

1.5

2

2.5

3

t = 0.5 s

t = 0 s

t = 1.5 s

t = 1 s

t = 2 s

t = 2.5 s

Drafting/kissing Tumbling

Ongoing work: extension to irregular, deformable particles.

Immersed boundary method John Stockie – SFU 33/43
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The “active” cochlea

The cochlea or inner ear is capable of amplifying very weak signals
and fine-tuning over an enormous frequency range.

The basilar membrane (BM) is immersed in fluid and has been
well-studied with IB methods. (LeVeque, Peskin & Lax, 1985, 1988)

Outer hair cells (OHC) oscillate in response to sound, and in turn
modulate the BM elastic stiffness. (Mammano & Ashmore, 1993)

BM cross-section Cochlea unrolled

Immersed boundary method John Stockie – SFU 34/43
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Parametric forcing: A new mechanism?

Ko & JS, SIAM J. Appl. Math, 75(3):1065-1089, 2015

We hypothesize that parametric resonance, driven by OHC
oscillations, may contribute to cochlear function.
Using a simple 2D BM geometry (below) we show that:

a Floquet stability analysis yields resonant modes of oscillation
within the parameter range relevant to human hearing.
numerical simulations produce travelling wave solutions that are
similar to those observed in passive BM models.

2D BM model Resonance occurs for τ ≤ 1
2

τ

 0  L 

Γscala vestibuli

scala tympani

Immersed boundary method John Stockie – SFU 35/43
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A flurry of recent activity

There has been a very rapid growth in recent study of IB problems:

Immersed boundary method John Stockie – SFU 37/43
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Progress on many fronts

Most of the research challenges identified in Peskin’s Acta Numerica
paper in 2002 have been met:

implicit and semi-implicit versions of the IB method, and associated
stability analysis

adaptive mesh refinement

second order accuracy for “thick” elastic shells, but still not for thin
membranes

several approaches for obtaining better volume conservation

parallel implementations

variable viscosity and anisotropic viscoelastic materials

convergence proof for the IB method

turbulent flows (handled in the direct-forcing framework)

Immersed boundary method John Stockie – SFU 38/43
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Opportunities

Extend Mori’s convergence proof to Navier–Stokes with a moving
boundary.

Fluid structure interaction coupled with other physical processes

Multiscale numerical approaches

Other algorithmic improvements

Many more applications in biology, engineering, . . .

Immersed boundary method John Stockie – SFU 39/43
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Thank-you!

http://www.math.sfu.ca/∼stockie

Immersed boundary method John Stockie – SFU 40/43

http://www.math.sfu.ca/~stockie


Overview Analytical advances Algorithmic advances Extensions and applications Closing remarks

References I

I L. J. Fauci and R. Dillon.
Biofluidmechanics of reproduction.
Annual Review of Fluid Mechanics, 38:371–394, 2006.

I S. Ghosh and J. M. Stockie.
Numerical simulations of particle sedimentation using the immersed boundary method.
Communications in Computational Physics, 18(2):380–416, 2015.

I B. Hosseini, N. Nigam, and J. M. Stockie.
On regularizations of the delta distribution.
Journal of Computational Physics, Jan. 2015.
Under revision, arXiv:1412.4139 [math.NA].

I W. Ko and J. M. Stockie.
An immersed boundary model of the cochlea with parametric forcing.
SIAM Journal on Applied Mathematics, 75(3):1065–1089, 2015.

I W. Ko and J. M. Stockie.
Parametric resonance in spherical immersed elastic shells.
SIAM Journal on Applied Mathematics, Apr. 2015.
Submitted, arXiv:1411.1345 [physics.flu-dyn].

I M.-C. Lai and Z. Li.
A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an
immersed moving membrane.
Applied Mathematics Letters, 14:149–154, 2001.

Immersed boundary method John Stockie – SFU 41/43



Overview Analytical advances Algorithmic advances Extensions and applications Closing remarks

References II

I R. J. LeVeque and Z. Li.
The immersed interface method for elliptic equations with discontinuous coefficients and
singular sources.
SIAM Journal on Numerical Analysis, 31(3):1019–1044, 1994.

I Z. Li and K. Ito.
The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and
Irregular Domains, volume 33 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, PA, 2006.

I R. Mittal and G. Iaccarino.
Immersed boundary methods.
Annual Review of Fluid Mechanics, 37:239–261, 2005.

I C. S. Peskin.
The immersed boundary method.
Acta Numerica, 11:1–39, 2002.

I C. S. Peskin and B. F. Printz.
Improved volume conservation in the computation of flows with immersed elastic boundaries.
Journal of Computational Physics, 105:33–46, 1993.

I S. Roy, L. Heltai, and F. Costanzo.
Benchmarking the immersed finite element method for fluid-structure interaction problems.
Computers and Mathematics with Applications, 69(10):1167–1188, 2015.

Immersed boundary method John Stockie – SFU 42/43



Overview Analytical advances Algorithmic advances Extensions and applications Closing remarks

References III

I J. K. Wiens and J. M. Stockie.
An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver.
Journal of Computational Physics, 281:917–941, 2015.

I J. K. Wiens and J. M. Stockie.
Simulating flexible fiber suspensions using a scalable immersed boundary algorithm.
Computer Methods in Applied Mechanics and Engineering, 290:1–18, 2015.

Immersed boundary method John Stockie – SFU 43/43


	
	
	Overview of the Immersed Boundary Method
	Mathematical formulation
	Numerical scheme
	Applications in biology and engineering

	Recent advances: Analysis of IB problems
	Recent advances: Algorithmic improvements, parallel computing
	Recent advances: Extensions and applications
	Closing remarks
	

