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Background: Fuel cells




What is a PEM fuel cell?

= Converts chemical energy of fuel (hydrogen and oxygen)
directly into electricity

Background: Fuel cells
e What is a PEM fuel cell?

o Amult-physics” problem = (Governing reaction is “reverse electrolysis™

st o

e Our approach Anode (_) 2H2 N 4H+ _|_ 46_
Catalyst Layer Model Pt

Electrode Model CathOde ("‘) 02 —|_ 4H+ —l_ 46_ E— QHQO

= The proton exchange membrane (PEM) lies at the “heart”
of the fuell cell:
0 consists of a thin (50—200 pm) polymer sheet — Nafion™
0 permits only protons and water to pass through
0 prevents reactants combining (potentially explosively) in
gaseous form

= No pollution, produces only water as a by-product

m Efficiency =~ 50%: much higher than other energy sources
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What is a PEM fuel cell? (2)

ELECTRIC CIRCUIT

Background: Fuel cells {40% — £0% Efficiency)
e What is a PEM fuel cell?

e A “multi-physics” problem
e Fuel cell modelling

e Previous work

e Our approach

Fuel Hy (Hydrogen) ] Ei kx| Sl O (Dxygen) from Air
Catalyst Layer Model i

Electrode Model

Heat (§57C)
Water ar Air Cooled

Flgaw Field Plale L Flawwr Field Plape

Cas Diffusion Electrode {Anode) Gas Diffusion Electrode {Cathode)

Catalyst Catalyst

Protan Exchange Membrane

Source: Ballard Power Systems
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A “multi-physics” problem

Fuel cells are incredibly complicated devices, involving:

it PE vl col = transport of mass, momentum and heat

e A “multi-physics” problem

o Fuel cell modellin . . . . .

: Proous vt = multiphase (gas / liquid) flow in porous media
e Our approach

Catalyst Layer Mode = phase change (condensation / evaporation)

Electrode Model

= conductive charge transport (electrons)

= membranes transport (protons and water)
= catalyzed reaction chemistry

= |nterfacial phenomena

» “nonstandard” materials (graphite, polymer membranes,
Platinum, Teflon, etc.) with composite, anisotropic,
multiscale structure
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Fuel cell modelling

This talk is a survey of modelling and computational issues

e What is a PEM fuel cell?

« A‘muliphysics prolem arising in two components of the PEM fuel cell:

e Previous work
« Our approach 1. transport and reaction in catalyst layers

Catalyst Layer Model

2. multiphase transport in porous electrodes

Electrode Model
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Previous work

The vast majority of previous work on simulating fuel cells:

¢t PEN i cel? = uses “standard” fluid solvers (often commercial CFD codes)
« Fuel ell modeling — Sivertsen & Dijilali (2004) , Hu et al. (2004), Femlab

" ourepeset = 2D/3D geometry, restricted to very small regions of the cell

Catalyst Layer Model

Electrode Model = makes major, and sometimes guestionable, simplifying
assumptions (isothermal, multiphase “mist”)
— Um & Wang (2004) , Van Zee et al. (2001)

= no in-depth analysis of the underlying equations, few
analytical solutions

= |ittle attention paid to fast, robust numerical solvers, that are
tailored specifically to fuel cells

m unsuitable for stack level simulations
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Our approach

As mathematicians and numerical analysts in this field, we're
o A“mult-physics” problem breaking new ground by focusing on:

o Fuel cell modelling

e Previous work

= deriving simpler models which take advantage of scale
Catalyst Layer Model separation and dimensional reduction

Electrode Model

= using analytical solutions to justify simplifications and
validate results

m developing fast and robust solvers for component parts, and
then coupling them together in sensible ways

Our eventual aim is a comprehensive and efficient stack-level
model

[ See papersat http://ww. mat h. ubc. ca/ ~wett on/ nmsc |
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Catalyst Layer Model




Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Results

e Summary

e Future work

Electrode Model

ICSC — Nanjing, June 4-8, 2005

Limiting currents

= One indicator of PEMFC performance is the polarization
curve — a plot of voltage (V) vs. current density (/)

U
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Source: Williams et al. (2004)
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Limiting currents

= One indicator of PEMFC performance is the polarization

Background: Fuel cels curve — a plot of voltage (V') vs. current density (1)
Catalyst Layer Model
e Limiting currents U
e Catalyst layer structure 10
e Model assumptions
e Geometry € 0.8
e Governing equations g
e Adsorption kinetics .% 0.6
e Solution algorithm >
e Results é 0.4
e Summary "3
! =
e Future work \ 5 0.2
‘| {c)
Electrode Model | I 0.0 . r - '
/ 0 500 1000 1500 2000
Limiti ng current Curent Density (nu!u'l.:mzj

Source: Williams et al. (2004)

» Performance is improved by pushing the “knee” outwards

= Limiting current is attributed to a variety of sources in
electrodes and catalyst — Cutlip (1975) , Springer et al. (1993) ,
Kulikovsky (2004)
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Catalyst layer structure

Agglomerate structure: ~ TEM (18,400 x)
Nafion (ionomer), Carbon, e
and Platinum

Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Results

e Summary

e Future work

Electrode Model

......

Source: von Spakovsky (2003)
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Catalyst layer structure

Agglomerate structure: Idealized view
Naflon (Ionomer), Carbon, polymer membrane
and Platinum

Background: Fuel cells

Catalyst Layer Model
e Limiting currents /
e Catalyst layer structure Pt, I\“ .
particles ‘ primary gas pore

e Model assumptions
e Geometry

e Governing equations
e Adsorption kinetics
e Solution algorithm

e Results

e Summary

e Future work

Electrode Model

carbon
grains

gas diffusion electrode (GDE
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Catalyst layer structure

Agglomerate structure: Idealized view
Naflon (Ionomer), Carbon, polymer membrane
and Platinum

Background: Fuel cells

Catalyst Layer Model

e Limiting currents

Reaction occurs only at Q0

e Model assumptions

e Geometry |0Cat|0nS Where the three

e Governing equations

« Adsorpton Kinetics meet (a materials science
e Solution algorithm Ch al | e n g e I)

e Results
e Summary
e Future work

Electrode Model

carbon
grains

gas diffusion electrode (GDE
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Catalyst layer structure

Agglomerate structure: Idealized view
Naflon (Ionomer), Carbon, polymer membrane
and Platinum

Background: Fuel cells

Catalyst Layer Model

e Limiting currents

Reaction occurs only at - Q®

n . particles
= eomam locations where the three

e Governing equations

« Adsorpton Kinetics meet (a materials science
e Solution algorithm Ch al | e n g e I)

e Results
e Summary
e Future work

Eectrode Model Possible limiting mechanisms in
the cathode catalyst layer:

] diffusion in membrane phase
I . : carbon
[1 diffusion in macro-pores grains

[1 diffusion in nano-pores
(not shown)

[1 water flooding the catalyst

gas diffusion electrode (GDE
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Results

e Summary

e Future work

Electrode Model
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Model assumptions

Mechanism: O, diffuses through gas pores, dissolves in
Nafion phase, and diffuses to active catalyst sites

Primary assumption: The reaction is locally self-limiting due
to O, adsorption kinetics

= No electron transport limitations or membrane potential
losses

= No convective gas transport (Fickian diffusion only)
= Membrane phase water content is constant

= All Pt surface area is available to react

= Steady state
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Geometry

A simplified, rectangular geometry:

Background: Fuel cells

= y is the distance along a pore (y ~ 107° m)

Catalyst Layer Model
e Limiting currents

« Catalystlayer siructure = ¢ is “burial depth” of reaction sites (€ ~ 1078 m)
e Model assumptions
- -
e Governing equations u Scale Separatlon Wlth S << y — a 1+1D m0d9|
e Adsorption kinetics
e Solution algorithm
e Results “ Fa
e Summary w (@) +
e Future work 02 2 HSO
0, H.O
Electrode Model =L
Air Pore Ozl HO
O, — HO o, Nafion and Carbon
O, | o l with distributed Pt
(o) 2
2
H,O
Oo,—>»
0 |
2 0, 0O,
T T T HO
y=0 >
&=0 &
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Background: Fuel cells

Catalyst Layer Model
Limiting currents
e Catalyst layer structure
e Model assumptions
e Geometry
Governing equations

e Adsorption kinetics
e Solution algorithm
e Results

e Summary

e Future work

Electrode Model
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Governing equations

The primary unknowns are:

Co,p(y)
Co,a (ya £)

n(y)
P(y)

i(y,§)
Tavg(y)

pore O, concentration (mol /m?)

dissolved O, concentration in agglomerate (mol /m?)
(H = Henry’s constant)

cathode overpotential (V)
membrane phase electric potential (1),

U—o(y) =E, —n(y)

(potentials taken independent of £ since £ < )

local (volumetric) current density (A/m?)

average current density (A/m?)
Iavg fo ?J f d§
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics
e Solution algorithm
e Results

e Summary

e Future work

Electrode Model
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Governing equations (2)

Three nonlinear DE’s in C, ,,(y), C, 4(y, &) and n(y):

0 9Co,a | _
~ g (D75 ) = -

d dCo p \ _

__eqal d
RT dy

(b.c.) -

i
AF

g
4F

LY
F

(O in agglomerate)
(O5 in pore)

(electric potential)
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics
e Solution algorithm
e Results

e Summary

e Future work

Electrode Model
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Governing equations (2)
Three nonlinear DE’s in C, ,,(y), C, 4(y, &) and n(y):

_a% (Hpm%) = — 7= (O, in agglomerate)

dCo Iav 1
—5pdily (D dy’p) = —1F (O In pore)
_e;%c%Fd%J <D+C+%> = _% (electric potential)

Using relationships for ¢(y) and Iag(y):

o(y) =nly) +U — E,

o 0C0,a(y, 0
Tagl) = [ i€ dg = - = —aPmD,, T D)
0 73
the last two equations reduce to
d*C,, 0C, 4(y,0) d*n 0C, 4(y,0)
T o e T
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Solution algorithm

e Results

e Summary

e Future work

Electrode Model
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Adsorption kinetics

Local current density : is determined by reaction kinetics . ..

Let 6(z,t) denote the local fraction of Pt surface covered by Os:

do '
C.. " =k HCyu(1—0) —k_C..0 — —
dt ~ W Y N —

4F
—~—~

reaction

adsorption desorption

Set 4 = ( (steady state) and i = r,f0e~ " (Butler-Volmer):

EyHC, qroe™ e

— —
" T kL HC o + k_C,, + (ro/AF)e—oen

(+)

So the limiting current density IS ijijm = lim ¢ =4Fk.HC, 4

17— —00
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Solution algorithm

e Results

e Summary

e Future work

Electrode Model
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Adsorption kinetics

Local current density : is determined by reaction kinetics . ..

Let 6(z,t) denote the local fraction of Pt surface covered by Os:

do :
CPt - — k+HCO’a(1 - 9) - k_CPtH —_ L
dt 20— X 4F
adsorption desorption r(;:/ti-(:n

Set 4 = ( (steady state) and i = r,0e~“" (Butler-Volmer):

EyHC, qroe™ e

— —
" T kL HC o + k_C,, + (ro/AF)e—oen

(+)

So the limiting current density IS ijijm = lim ¢ =4Fk.HC, 4

17— —00

Note: With Butler-Volmer alone, ijjm, = oo
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Solution algorithm

1. Given a target current density I*, guess the cell voltage U.

2. lterate on U
(a) Solve the following 1D BVP’s C, ,,(y) and n(y):

Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure 2
d CO,p _ aCOaa(y7 O)

e Model assumptions

d? 0C, o(y,0
and 2 — 09 ’aéy )

e Geometr — _0-1 —
° govern:n); equations dy2 af dy2
e Adsorption kinetics

ey (b) Determine the agglomerate concentration C, ,(y, &):
; oummeny = Solve a 1D BVP in ¢ at each y-location:

e Future work

Electrode Model 82 CO’CL B Z
02 AFHD,,

= Use the current iterate for C, ,(y) as the boundary
condition for C, ,(y, 0).

(c) Update ¢ and I,.
(d) If |Iag — I*| > TOL, then update U & return to step 2a.
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Summary

e Future work

Electrode Model
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Results: Base case

Computation time: 20 s for a 20 x 20 grid

Through plane distance, y

U=062V

x10° Fraction of max. cyrrent(

U=008V

U=0.62) x10° Fraction of max. current (U=0.08)

10

10

4 6
Burial depthg

Through plane distance, y

4

x 10
Polarization Curve
1 T T T
0.8
0 0.6
=)
b
204
0.2
O L L L L L
0 0.5 1 1.5 2 25
| (Alem?)

6
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Summary

e Future work

Electrode Model
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Results: Dry membrane

Reduce membrane diffusivity D,,, by a factor of 10:

Through plane distance, y

X 10

U=062V

6 Fraction of max. current (U=0.62)

4 6
Burial depthg

x 10

U=042V

% 10° Fraction qf max. cyrrent (920'42)

=
(@]

Through plane distance, y

Polarization Curve

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

U (Volts)
o o
= Q

N
2

o
n

-o-Base

-8 -Dry membran

8 10

4 6
Burial depth& % 10°
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Summary

e Future work

Electrode Model
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Results: Narrow pore

Reduce pore size ¢, by a factor of 2:

Through plane distance, y

U=062V

X 10

-6 Fraction of max. current (U=0.62)

Burial depth £

0 2 4 6 8
x 10

Through plane distance, y

Polarization Curve

U=042V

4

U (Volts)
o o
@ e

I
=

o
o

-e—-Base

-8-Dry membrane
Narrow pore |

[V ——

x10° Fraction of max. current (U=0.42)

6

Burial depth§ % 10
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Results

e Future work

Electrode Model
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Summary

= Developed a 1+1D two-scale model for the cathode catalyst
layer, incorporating a self-limiting reaction rate

= Dead core region observed under a variety of operating

conditions

= Study catalyst utilization and optimize microstructural

properties
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Background: Fuel cells

Catalyst Layer Model

e Limiting currents

e Catalyst layer structure
e Model assumptions

e Geometry

e Governing equations

e Adsorption kinetics

e Solution algorithm

e Results

e Summary

Electrode Model
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Future work

0 liquid water

Investigate other limiting mechanisms:

0 diffusion in nanopores (multiscale pore structure)

Develop a faster iterative algorithm

Incorporate a detailed catalyst model into our unit cell model
for use in stack simulations

Include more aspects of microstructure into a continuum
(macro-scale) model

— multiscale methods
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Background: Fuel cells

Catalyst Layer Model

Electrode Model
e Gas diffusion electrode

e \Water management

e Geometry

e Governing equations

e Liquid transport

e Comparison: Groundwater
e Numerical method

e Results
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Gas diffusion electrode

= approximately 200—300 pm thick

PEM

catalys

R RRAIIIER
BT tetssterests
(Setutotetitatetetyy
oSelitetetels
Tetateterets
2585

el
atetereteTetetstete

plate 1-2 mm

The gas diffusion electrode (GDE) consists of carbon fibre
paper, sandwiched between catalyst / PEM and flow channels:

= anisotropic, fibrous porous medium

m treated with Teflon to improve water transport

Source: C. Y. Wang (2003)
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode

e \Water management

e Geometry

e Governing equations

e Liquid transport

e Comparison: Groundwater
e Numerical method

e Results
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Water management

Water management is a key and complex issue, with direct
Impact on performance:

= membrane protonic conductivity is a strong function of water
content

= |iquid water in the flow channels or porous electrodes
hinders reactant transport

= high temperature prevents water from condensing BUT
damages certain components (e.g., PEM)

m “electro-osmotic drag”: water is dragged along with protons,
from anode to cathode

= poth inlet gas streams are humidified

= Teflon is applied in electrode and catalyst to improve wetting
behaviour
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Geometry

Background: Fuel cells
H
Catalyst Layer Model TWO 2 D graphite plate
| <

Electrode Model . d f
e Gas diffusion electrode CrOSS-SeCtIOnS m
e \Water management cataly PEM
o Geometry H < [ [ << L S5
e Governing equations cathode GD
e Liquid transport o, o, L
e Comparison: Groundwater .

. graphite plate
e Numerical method
e Results W

1) Cross-channel 2) Down-the-channel
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_ Averaged cross-channel, ideal
Detailed local geometry for flow _ _
for stack simulations

channel optimization _
(scale separation)
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Governing equations

The primary unknowns are:

C gas mixture concentration (p = MC)
C,, C, oxygen and vapour concentrations

T phase-averaged temperature

S liquid saturation

The following conservation laws govern multiphase flow in cathode GDE:

(L =s)p)e+ V- (pﬁg) = —MT (gas mixture, p = MC)
(1—8)C,); + V- (C 0, + f) — 0 (oxygen)
(1 —=5)Cy)e + V- (C (79 + fv> = —I (water vapour)
[2

(peT)y + V- (pcUT — kVT) = — + hl' (energy)
)

st + V- (sUy) =T/C,y (liquid water)
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode
e \Water management

e Geometry

e Governing equations

e Liquid transport

e Comparison: Groundwater
e Numerical method

e Results
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Governing equations (2)

Constitutive equations:

i=—CD;V|—=
T—onw (2)

= K kre 7
ELL

P, = CRT
Py = P, + P.(s)

Condensation / evaporation rate:

r— { (1= 8)(Cy — Gy (T

v~ s(Cy — C*(T)),

Boundary conditions.

(Fick’s law, i = o, v)

(Darcy’s law, i = g, {)

(ideal gas law)
(capillary pressure)

), ifC, >C3*(T)
if O, < C5%(T)
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode
e \Water management

e Geometry

e Governing equations

e Liquid transport

e Comparison: Groundwater
e Numerical method

e Results
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Liquid transport

s Porous media exhibit an immobile saturation, s,

s Define a reduced saturation, s =

S_S*
1_8*

= Two key constitutive relations for GDE:

Capillary pressure
(van Genuchten)

P.(s) = A:. J(s)

J(s)

— Ac [(1 o gf)—Q . 1]1/2

L|- - -Typical

—GDE

rel

Relative permeability

krel,ﬁ (3) — 51/2

—GDE

---Typical
0.8 K
/
0.6
I/I

0.4r
0.2r

0 - L | i 4

0 5,=0.2 0.4 0.6 0.8 1
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode
e \Water management

e Geometry

e Governing equations

e Liquid transport

e Numerical method

e Results
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Comparison: Groundwater flow

= Advanced methods have been developed for multiphase
transport in groundwater flow and oil reservoir simulation

m These methods are not generally applicable to fuel cells

Groundwater Fuel cell GDE
time scales: hrsto yrs s to ms
length scales: m 1o km pum to mm
anisotropy: low high
wettability: hydrophilic hydrophobic
dominant mechanism: convection diffusion
(and convection)

= Experiments are much harder to undertake on fuel cells, and
SO0 many material properties are not known
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode
e \Water management
e Geometry

e Governing equations
e Liquid transport
e Comparison: Groundwater

e Numerical method

e Results
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Numerical method

Conservative finite volume discretization

Stiff system with time scales ranging from 10=7 s to 10? s
— use stiff solver odel1l5s in Mat | ab

Saturation equation is a degenerate diffusion equation:
st + f(s)Vs+ V- (g(s)Vs) =h(s)+T'/Cy

with g(s) = Askyer.e(s)T'(s)
—> regularize k,.; , and J KEY!

I' source terms are typically very large

Computation time: 15 mins for a 20 x 20 grid
(compare to days for a straightforward discretization)
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Background: Fuel cells

Catalyst Layer Model

Electrode Model

e Gas diffusion electrode

e \Water management

e Geometry
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Results

Cathode fed with humidified air at 70°C":
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Wettablility comparison

Results

Hydrophobic

Hydrophilic
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Future work

m EXxplain severe stiffness observed in computations (also
present in 1D through-plane GDE model)

= Develop more efficient methods based on splitting (liquid
time scale is much slower)

m |nvestigate multi-scale approaches for catalyst and PEM.

= Derive reduced 1D (semi-analytical) models — ideal for 1+1D
stack-level simulations

1D MEA model

aGD;%%%
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Future work

m EXxplain severe stiffness observed in computations (also

present in 1D through-plane GDE model)

= Develop more efficient methods based on splitting (liquid
time scale is much slower)
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Future work

m EXxplain severe stiffness observed in computations (also
present in 1D through-plane GDE model)

= Develop more efficient methods based on splitting (liquid
time scale is much slower)

m |nvestigate multi-scale approaches for catalyst and PEM.
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