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Motivation: Sedimentation in applications

Sedimentation is the settling of particles un-
der the influence of gravity:

Biofilm dynamics.

Marine organisms: algae, jellyfish.

Industrial processes: wood pulp fibers,
crystal precipitation, mine tailings.

Natural phenomena: hailstorms,
sediment transport in rivers and lakes.

Tea leaves in a teacup.
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Previous work on sedimentation

Gravitational settling of particle suspensions has been studied extensively
in the literature using

mathematical analysis,

experiments,

numerical simulations.

IB Simulations of Gravitational Settling John Stockie – Simon Fraser University 6/33



Gravitational settling Immersed boundaries with mass Simulations of settling cylinders Conclusions

Analytical solutions

Stokes’ law (1851): in a creeping flow
of infinite extent, balancing gravity and
drag forces yields settling velocity for a
sphere in 3D:

Vs =
gD2(ρp − ρf )

18µ

where D = diameter, µ = viscosity.

Analogous result can be derived for a
2D circular particle (infinite cylinder)
=⇒ a nonlinear equation in Vs .

An overview of more recent analytical
results can be found in Guazzelli &
Morris (2012).

Source: Wikipedia.

IB Simulations of Gravitational Settling John Stockie – Simon Fraser University 7/33



Gravitational settling Immersed boundaries with mass Simulations of settling cylinders Conclusions

Experimental results

An enormous experimental literature exists owing to the importance
of sedimentation in industrial and other applications.
[Davis & Acrivos, 1985]

Of particular interest to us are estimates of wall-corrected settling
velocity for a particle in a channel of width W :

Ṽs =
Vs

λ(k)
where k =

D

W

and λ(k) is a fitted correction factor.

For example, Faxén’s (1946) experiments yield

λ(k) ≈ −4π

0.9157 + ln(k)− 1.724k2 + 1.730k4 − 2.406k6 + 4.591k8
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Numerical simulations

Many authors have simulated 2D and 3D suspension flows
numerically using:

finite element method,
lattice-Boltzmann method,
boundary element method,
. . .

IB method has been applied to gravitational settling of

rigid fibers [Wang & Layton, 2009]

suspensions of swimming algal cells
[Hopkins & Fauci, 2002]

Direct-forcing IB approach has also been applied to
sedimentation [Uhlmann, 2005] [Wang, Fan & Luo, 2008]

[Breugem, 2012]

However, there has not yet been an extensive validation of
the IB method for particulate flows with settling.
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Aims of this study

Sedimentation is very well-studied for rigid particles such as spheres,
ellipsoids, fibers, . . .

For simplicity, we consider spherical particles that are only slightly

heavier than the suspending fluid:
ρp − ρf

ρf
� 1.

We develop a very general numerical approach and validate it using
results for rigid particles.

Our long-term aim is to simulate sedimentation of both rigid and
deformable particles. Hence, the need for the IB method!
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Problem geometry

Γp: Particle, diameter D

Γw : Walls, separated by W

Ω: Fluid domain, size Lx × Ly

Periodic boundary conditions
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Governing equations

Variables: u(x, t) = velocity, p(x, t) = pressure, X(s, t) = IB position

Parameters: ρf = fluid density, ρp = particle density, µ = viscosity

Incompressible Navier-Stokes equations: (Boussinesq approximation, ρp ' ρf )

ρf
∂u

∂t
+ ρf u · ∇u = µ∇2u−∇p + fIB + fG

∇ · u = 0

IB evolution equation:

∂X

∂t
=

∫
Ω

u(x, t) δ(x− X(s, t)) dx

IB elastic force:

fIB(x, t) =

∫
Γw,p

FIB(s, t) δ(x− X(s, t)) ds
(specify discrete

FIB later)

Gravitational settling term:

fG(x, t) = −
[
0
g

] ∫
Γp

(ρp − ρf ) δ(x− X(s, t)) ds
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Immersed boundary method

We apply a straightforward discretization of the IB problem using:

centered finite differences in space,

cosine approximation for delta function,

ADI for diffusion and advection terms,

explicit treatment of IB force and settling terms,

split-step projection scheme, with an FFT solve for the pressure
Poisson equation.

Details are in Ghosh & JS [arxiv:1304.0804, 2013].
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Discrete IB force for the walls

The stationary walls are divided into Nw equally-spaced tether points
with fixed locations

Yw
` =

[
(Lx ±W )/2, `Ly/Nw

]
for ` = 1, 2, . . . ,Nw

Each wall IB point X`(t) is connected to the corresponding tether
point by a stiff spring with force density

Fw
` (t) = σw (Yw

` − X`(t))

The force integral approximation involves a length scaling factor:

fi,j =
Nw∑
`=1

Fw
` δh(xi,j − X`)

Ly

Nw
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Discrete IB force for the particle

“Uniform” triangulation of particle with
nodes X`(t) for ` = 1, 2, . . . , Np.

Following Alpkvist & Klapper (2007),
edges generate spring forces with

Fp
` = σp

NpX
m=1

I`,m 6=0

I`,m
d`,m

d`,m
(d`,m(0)− d`,m)

d`,m(t) = X`(t)− Xm(t)

d`,m = |d`,m|
I`,m = [ 0/1 incidence matrix ]

Force integral is scaled by an area factor:

fi,j =

NpX
`=1

Fp
` δh(xi,j − X`)

πD2

4Np| {z }
4 area

[Hopkins & Fauci, 2002]

Particle triangulation
with Np = 2015 nodes.
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Single particle: Comparison to wall-corrected Ṽs

For small ∆ρ = ρp − ρf , the settling velocity Vs approaches Faxén’s
(1946) result as the channel length Ly increases:
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Single particle: Varying particle size

Wall-corrected Ṽs formulas are only valid for small k = W /D.
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Our simulations

Our simulations demonstrate physically reasonable behaviour as k → 1.
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Single particle: Released off-center

At Reynolds number Re = 4.9, a single
particle released off-center migrates
toward the centerline.

Hydrodynamic forces between the
particle and the walls are in balance.

0 0.2
1.4

1.6

1.8

2

2.2

2.4

2.6

t = 0 s

t = 2 s

t = 2.5 s

t = 3 s

t = 3.5 s

t = 0.5 s

t = 1 s

t = 1.5 s

t = 4 s

IB Simulations of Gravitational Settling John Stockie – Simon Fraser University 20/33



Gravitational settling Immersed boundaries with mass Simulations of settling cylinders Conclusions

Simulations of two particles

Consider two initial configurations, centered and off-center, with particles
separated by a distance 2D:

2D

W

trailing  particle

leading  particle

W

2D
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Two particles at low Re: Drafting and kissing

At low Reynolds number (Re = 3), the particles approach each other
(draft) and nearly touch (kiss):
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Two particles at Re = 80: DKT behaviour

At higher Reynolds number (Re = 80), the particles undergo a tumbling
motion after drafting and kissing:
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Two particles at Re = 80: DKT behaviour (cont’d)
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Results match qualitatively with FEM simulations of Feng, Hu & Joseph (1994).

[Video]
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Two particles at Re = 47, off-center

More interesting behaviour arises at an intermediate Reynolds number
(Re = 47) for two particles released off-center:
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Closing remarks

We developed a 2D immersed boundary method that handles
gravitational settling in the presence of walls.

Computed settling velocities match with experiments.

More complicated two-particle dynamics are consistent with
simulations of Feng, Hu & Joseph (1994).

IB Simulations of Gravitational Settling John Stockie – Simon Fraser University 27/33



Gravitational settling Immersed boundaries with mass Simulations of settling cylinders Conclusions

Current and future work

Study settling of deformable, non-spherical particles.

Investigate applications to:

biofilm floc deformation,
flexible fiber suspensions,
jellyfish swimming dynamics.

Simulate large numbers of particles using Wiens’ parallel IB algorithm.
[Wiens & JS, submitted to J. Comput. Phys., arXiv:1305.3976, 2013]

Biofilms Flexible fibers Jellyfish in 2D
(MSU Bozeman) (M. Shelley, NYU, 2004) (Jeff Wiens, 3:00 Wed)
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Thank-you!

http://www.math.sfu.ca/∼stockie
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