
1An Interactive Course in Numerical Methods for the EarthSciencesSusan E. AllenDepartment of Earth and Ocean Sciences, University of British Columbia, Vancouver,British Columbia, CanadaJohn M. StockieDepartment of Mathematics, University of British Columbia, Vancouver, BritishColumbia, CanadaPhilip H. AustinAtmospheric Sciences Programme, Department of Geography, University of BritishColumbia, Vancouver, British Columbia, Canada

Short title:

2Abstract.Physical oceanography and atmospheric science are becoming more and moredependent on numerical simulation, modelling, and computationally intensive dataanalysis. Traditionally, our students received a strong background in mathematics,physics and the Earth sciences but little background in modelling. They arrive witha variety of backgrounds but require a hands-on acquaintance with a wide range ofpractical numerical methods fairly early in their graduate education. We have writtena self-paced, computer-based course at the �rst year graduate/last year undergraduatelevel on numerical modelling for Earth Science students. The course is Web-based withexplanations, interactive examples, and codes available on-line. Students are required toinvestigate numerical solutions and modify existing skeleton code. Upon completing thecourse they have an understanding of the properties of numerical schemes and a set ofnumerical tools directly relevant to their research.

31. IntroductionMany researchers in physical oceanography or atmospheric science will at sometime employ computer simulations in their work. The computer codes used to modelphysical processes in the atmosphere and oceans are typically large and complex due tothe corresponding complexity of the underlying mathematical models. It is a di�cultand time-consuming process to write such code entirely from scratch; in fact, it isnot necessary to do so, since many reliable and multipurpose numerical libraries areavailable that allow the scientist to avoid some of the tricky computational detailsand concentrate on the implementation of the physical model. Nevertheless, it isvery important that researchers using these codes have a sound understanding of theproperties and behaviour of the underlying numerical schemes. Critical thinking skillsare required to make the appropriate choice of model and parameters and to judge theresulting model output.Graduate students arriving at the University of British Columbia to begin researchin the Earth sciences have a broad range of scienti�c backgrounds and computerexperience. Undergraduate degrees are typically in physics, mathematics, chemistry,biology or geography, and exposure to numerical computing ranges from zero in manycases to some students (Ph.D. transfers from physics departments, for example) whomay be relatively sophisticated computer users. At UBC, students can take third andfourth year courses in numerical methods using MatlabTM as the programming language,or a graduate-level mathematics course with an emphasis on the theory behind thealgorithms.Over the past �ve years, two of us (SEA and PHA) have spent many hoursinformally tutoring graduate students on the practical use of numerical methods tosolve Earth sciences research problems. We saw the need to supplement the standarduniversity courses by teaching basic numerical methods for ordinary and partialdi�erential equations, while at the same time providing concrete experience with large,

4multi-purpose numerical libraries to solve real problems. At the end of our supplementalcourse, we hoped that the students would not only be comfortable with fundamentalissues like discretisation, accuracy, and stability, but also have a set of numerical toolsthat were directly relevant to their thesis research, along with pro�ciency in the use ofthe Unix operating system and some idea of how to write robust numerical programs.In this article, we describe our implementation of a self-paced course designedto meet these objectives using the World Wide Web1. In Section 2 we provide someadditional background on the course objectives and discuss the design decisions madeto implement the course. Section 3 gives details on the topics covered and software usedduring the �rst (1995-1996) year of the course. In Section 4 we discuss student responseas well as additions and changes introduced for the 1996-1997 academic year. Section 5outlines future plans.2. Course ObjectivesBefore describing how the real course was implemented, it is useful to list thecharacteristics of our ideal course. We believe that such a course should:1. Be self-paced to accommodate the wide range of backgrounds of incoming graduatestudents;2. Provide an introduction to the most common numerical techniques, with emphasison techniques we have found useful in our own work; and3. Teach students how to organise projects, debug code, and visualise results. Table 1.In addition to these three main points, we also gave high priority to implementingthe course using public domain software. A list of the software mentioned in this article1A brief glossary of Internet terms is included at the end of the article

5is given in Table 1. Using public domain software has the advantage of acquaintingstudents with useful software archives such as Netlib (home of Lapack and FFTpack),while letting them read cleanly written, well-organised source code (itself a usefulteaching tool). It also permits motivated students to work on the course on their homecomputers, and frees funds so that almost all development money can be used to hiretalented students on co-operative work terms to develop new lab modules. An additionalobjective of the project was to provide these student interns, who would in large partwrite both the software and the lab descriptions, with a challenging and rewardingexperience learning and teaching numerical methods.It was important that the tools used by the students and the environment theyworked in closely matched our research computing environment. Half of the students'course grade would come from an independent project, and we hoped that this project(selected in consultation with the students' advisors) would be directly applicable tothe students' research. Less obviously, two of us (SEA and PHA) had to steal time forcourse development from normal teaching and research. This is much easier if there is aclose connection between the course software and our own research tools.As a part of our third objective (organisation, debugging, and visualisation), wedecided to provide a brief introduction to the idea of object-oriented programming, bothbecause languages like C++ and Java are gradually becoming more popular withinthe scienti�c community, and because the new perspective o�ered by object-orientedprogramming forces even experienced student programmers to ask useful questionsabout the organisation of computer programs. As part of the course, students would berequired to modify or extend existing C++ classes (for example to change the numericalsolution technique from Euler to Runge-Kutta). Informal instructor demonstrationscould include the use of a source code debugger and object browser, and mundanebut practical tips on the use of make�les and the revision control system. Two othersigni�cant practical advantages to the choice of C++ were the availability of a free

6compiler and debugger (GNU gcc and gdb), and access to engineering and computerscience co-op students with several years of C++ programming experience.3. Course structure and implementation Table 2.We proposed the idea of a self-paced Web course to the University administrationin the fall of 1994 and were given $Can 28,475 through the UBC Teaching and LearningEnhancement Fund. The grant paid the salary of a graduate student supervisor (JMS)and three additional students for the four summer months of 1995. By the end of thesummer, the group had produced eight, self-paced Web modules. Table 2 itemises thetopics in each module. The �rst two labs can be done directly from the Web pageusing standard CGI (Common Gateway Interface) scripts written in the Perl5 scriptinglanguage. Lab 3 introduces the students to Octave, a free Matlab clone written inC++ that uses Lapack linear algebra routines. Beginning in Lab 4 students are askedto modify and run C++ programs that solve ordinary and partial di�erential equations.By the time the students reach Lab 8, they have had an introduction to explicit andimplicit schemes and to choosing staggered grids. A subset of the objectives for the labsis given in Table 3. Table 3.Each lab module is a self-contained HTML document including all the requisitebackground material, examples, and written and programmed exercises. The materialis highly cross-referenced, making full use of hypertext links in HTML to reference otherlabs, program code and other documents on the Internet.Typically, the student is introduced to a particular numerical technique �rst byway of an interactive example, where they can play with the input parameters for aproblem and observe the numerical results displayed in graphical format. Next, thestudent writes his or her own program, usually by modifying an existing skeleton codein order to investigate the numerical issues more deeply. Figure 1.Some of the features of the labs are demonstrated in Figure 1, which is a typical

7Web page (as viewed from within the Netscape Navigator). This particular page istaken from Lab #3, and shows hyperlinked equations, a problem and the \navigationpanel" which appears at the top and bottom of every page. It includes, in order fromleft to right, links to the \previous," \up" and \next" sectional units; the lab table ofcontents; a glossary; a searchable index; and a mail button to send e-mail to the courseadministrator. The \eye" icon transfers the student to an interactive demonstration,Figure 2, while a \computer" icon would transfer the reader to technical details in anappendix, which enhances the self-documenting nature of the labs. Figure 2.Figure 2 shows the interactive demonstration referenced by the problem in Figure 1.The top of the page repeats the problem. The lower section allows the student tospecify three parameters of the system. Figure 3 shows the result obtained after thedemonstration has been run. Two graphs are shown and further down the page (onlypartially shown here) are the numerical values of the variables at the �nal time step.To answer the problem, students run the demonstration with various parameters. Thegraphs allow the students to verify that the system has reached a steady state. Figure 3.The labs are numbered consecutively, but need not be taught in the exact ordergiven. A suggested ordering of the material is given in Figure 4, from which it is clearthat the labs divide nicely into two streams, one concerned with ODE's and the otherwith PDE's. It is also straightforward to create additional labs, and to modify orextend existing ones, using a \lab template" document, making the course exible andextensible. Figure 4.4. The Course TrialAs the course is self-paced and web-based, there are no formal lectures. Thestudents taking the course work on their own: read the material either on a computer,or more often, on a paper print-out of the lab, work through the interactive examples ona computer and prepare their solutions to the assigned problems. Most students work

8on their research supervisor's computer. However, for some students it is necessary toaccess remotely the instructor's machines to use software that is not locally available.Although most of the work is done on their own, students have the opportunity tointeract in a number of ways with the instructors and the other students. There isa weekly informal meeting. Most of these meetings are question and answer periodsbut two to three times each term, one of the instructors presents a mini-lecture tosupplement the course material. There is an electronic mailing list where students askquestions and post di�culties they are having. All students meet one on one with theinstructors at some point. In addition, students help each other either through theirown informal groups or through an instructor's suggestion. The last part of the course isa term project, selected in consultation with the instructors and the student's researchsupervisor.The course was �rst o�ered during the academic year 1995{96 to a group ofnine graduate students. The course was originally intended to be a single-semester(four-month) o�ering. However, the length of time required for some of the lab exercises(particularly from Labs 7 & 8) together with the project pushed the course into a fulltwo semesters of work for most students. The student projects have been of uniformlyhigh quality, written in C, Matlab, and C++ . They include a �nite di�erence modelfor ripple formation in a sandy stream bed, a model of ice intrusion into sand beds, anda �nite di�erence solution of a seismic travel time problem.A questionnaire was distributed to the participants at the end of the academicyear to solicit opinions on the course. Overall, the response was very positive. Moststudents had a favourable opinion of the self-paced nature of the course, though this wastempered by comments that it was exactly this that caused them to take so much timeto �nish the assigned work. Students reacted favourably to the hypertext presentationof the course material and examples, but were also quite glad to have the option ofproducing an identical hardcopy that they could annotate. The major complaint was

9that the labs (particularly the later ones) were too long.We were encouraged enough by our �rst-year experience to apply for additionalfunding through the British Columbia Innovation Fund to support two students toextend and modify the labs during the summer of 1996. The C++ code was streamlinedto remove some of the class hierarchies, general documentation and examples wereadded, and preliminary versions of new labs dealing with Fourier transforms, ux-conserved advection, and non-linear optimisation were written. These optional labs willprovide additional choices for students who don't need the detailed treatment of thequasi-geostrophic model provided in Lab 8.This fall we are testing a new fourth-year undergraduate version of the course.It has shorter exercises, well-de�ned weekly assignments and �xed due dates. Theproject portion of the course will also be shorter, and speci�c project suggestions areavailable to help students get past the initial project planning stage. Undergraduatesmeet with the graduate students in the weekly discussion sessions, and participate inthe graduate course mail-list discussions. The �rst-year computer language used in theUBC computer science department is C++ , so in this sense the undergraduates may bebetter prepared than graduate students arriving with a background in Pascal or Fortran.5. DiscussionOur �rst venture into Web-based instruction has met the objectives we set forourselves in the winter of 1995. We were particularly impressed by the undergraduatestudent interns hired to develop the lab modules; their productivity allowed us to extendthe scope of the course substantially beyond our initial objectives, and they proved tobe patient teachers as we learned C++ by watching them program. We are also pleasedthat project work by the �rst class of students has directly bene�ted student research(and in at least one case, will be submitted to a peer-reviewed publication).The rapid evolution of the Internet has meant that we now have several more free

10alternatives to C++ and Octave, including languages such as Python, Java, F, andElf90 that run on Windows95 as well as Unix. Further undergraduate expansion of thecourse will require this kind of portability, as we place our Web-materials in UBC'sdrop-in computer labs and on students' home PCs. Windows95 ports are also underwayfor the C++ compiler and debugger, as well as all of the other Unix tools we use.We plan to continue to expand the topic coverage, as other faculty members use ourtemplate examples to develop Web-modules for topics that interest them. Our decisionto use free software also means that the course, including code, all software tools, anda free version of the Unix operating system (Linux), can be distributed to students forthe cost of a blank CDROM.A more detailed discussion of the lab templates, the software and hardwarerequirements for our labs, and access to the labs themselves are available at http://www.geog.ubc.ca/numeric. Readers are invited to forward comments/questions tous at numerical_methods@geog.ubc.ca. We would be interested in sharing experienceswith others who are beginning to explore instruction via the Internet.GlossaryCGI: (Common Gateway Interface) A protocol for communicating between programsand the hypertext viewer.hypertext: A collection of electronic documents (text, images, audio, video, etc.)which are joined together by \hyperlinks." The links in a hypertext documentcan be read in any order, as compared to normal text which is meant to be readsequentially, left to right, top to bottom.hyperlink: A link to another document or �le that appears in a hypertext document.HTML: Hypertext Markup Language, used to display documents on the Web. Itconsists of normal text, along with embedded codes or \tags" which tell a Web

11browser how to display the text and how to link to other documents.Web: (World Wide Web) An Internet based information retrieval system based onhypertext.Acknowledgments.The course was developed through grants from the UBC Teaching and LearningEnhancement Fund and the Innovation fund of the British Columbia Ministry of Education,Skills, and Training. Programming and writing of the labs was done by Peter Gorniak, CarmenGuo, Ken Wong, Lin Yang and Grace Yung as well as by the authors. The authors thankVincent Kujula, Jim Mintha and Joseph Tam for technical support. We are grateful for thereviewers' comments, which improved the clarity of the text.Susan E. Allen, Department of Earth and Ocean Sciences, 6339 Stores Rd, Universityof British Columbia, Vancouver, B.C. V6T 1Z4 CANADA (email: allen@eos.ubc.ca)John M. Stockie, Department of Mathematics, 1984 Mathematics Road, University ofBritish Columbia, Vancouver, B.C. V6T 1Z2 CANADA (email: stockie@math.ubc.ca)Philip H. Austin, Atmospheric Sciences Programme, #217 Geography, 1984 WestMall, University of British Columbia, Vancouver, B.C. V6T 1Z2 CANADA (email:phil@geog.ubc.ca)Received October 20, 1996
Submitted to Bull. Amer. Met. Soc., 96/10/18This manuscript was prepared with AGU's LATEX macros v4, with the extensionpackage `AGU++' by P. W. Daly, version 1.5a from 1996/10/09.

12Figure CaptionsFigure 1. A sample lab page taken from Laboratory #5.Figure 2. The Lab #5 interactive demonstration on Daisywold steady states.Figure 3. Results from a run of the steady state interactive example.Figure 4. Suggested ordering of material. The arrows indicate which labs are requiredfor following labs.

13TablesSoftware package Trademark/copyright holder Web siteMatlab The MathWorks, Inc. www.mathworks.comLAPACK, FFTPACK Public Domain www.netlib.orgUnix X/Open Company xoweb.xopen.orgJava Sun Microsystems Inc. java.sun.comPerl Free Software Foundation, Inc. (FSF) www.perl.com/perlgcc, gdb FSF www.gnu.ai.mit.eduNetscape Navigator Netscape Communications Corp. www.netscape.comOctave FSF www.che.wisc.edu/octaveWindows 95 Microsoft Corp. www.microsoft.comPython Stichting Mathematisch Centrum www.python.orgElf90 Lahey Computer Systems, Inc. www.lahey.comF Imagine1, Inc. www.imagine1.com/imagine1Table 1. A list of the software mentioned in this article, its copyright owner and a sourcelocation on the Web.

14Lab Topic Tool1 Discretisation CGI examples2 Accuracy and Stability CGI examples3 Linear Algebra Octave/Lapack4 Adaptive Runge-Kutta I C++5 Adaptive Runge-Kutta II C++6 The Lorenz Equations C++7 Partial Di�erential Equations Octave, C++8 Quasi-Geostrophic Model C++Table 2. Eight initial instructional modules, with the main programming tools used foreach lab

15Objective LabDiscretise a continuous problem 1De�ne accuracy and stability 2Quantify error in terms of order 2Use a linear algebra package to invert matrices, �nd eigenvalues etc. 3Program in C++ using the mv++ class libraries 4Use a Runge-Kutta method 4Implement adaptive step-size control 5Describe some of the e�ects of nonlinearity in ODE's including chaos 6Explain the usefulness of staggered grids for PDE's 7State the CFL condition on explicit scheme stability 7Implement relaxation 8Describe nonlinear instability and a method to remove it 8Table 3. Examples of objectives for speci�c labs.

16Figures

Figure 1. A sample lab page taken from Laboratory #5.

17

Figure 2. The Lab #5 interactive demonstration on Daisywold steady states.

18

Figure 3. Results from a run of the steady state interactive example.

19

Lab 2: Intro to

Numerical Methods:

Accuracy &

Stability

Difference Methods

for PDE’s

Lab 8:
Implicit Scheme for

the QG Equations
Lab 3:

Linear Algebra

Lab 4:

Runge-Kutta

Methods

Lab 5: Adaptive

Time-stepping &

Daisy World

Lab 6:

Lorenz

Equations

Numerical Methods:

Discretization

Lab 1: Intro to

Lab 7: Finite

Figure 4. Suggested ordering of material. The arrows indicate which labs are requiredfor following labs.

