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Abstract

The transport of three gas species;, Oy, H2O and Ns,
through the cathode of a proton exchange membrane
(PEM) fuel cell is studied numerically. The diffusion of
the individual species is modeled via the Maxwell-Stefan
equations, coupled with appropriate conservation equa-
tions. Two mechanisms are assumed for the internal en-
ergy sources in the system: a volumetric heat source due
the electrical current flowing through the cathode; and
heat flow toward the cathode at cathode-membrane inter-
face due to the exothermic chemical reaction at this inter-
face, in which water is generated. The governing equations
of the unsteady fluid motion are written in fully conserva-
tive form, and consist of the following: (i) three equations
for the mass conservation of the species; (ii) the momen-
tum equation for the mixture, which is approximated us-
ing Darcy’s Law for flow in porous media; and (iii) an
energy equation, written in a form that has enthalpy as
the dependent variable.

1 Introduction

Zero emission power generation has always been the ideal
goal of people in the power generation community. One
approach to achieve this goal is via proton exchange mem-
brane (PEM) fuel cells, which in principle combine oxygen
and hydrogen gas in a reaction that generates electrical
current, producing only water as a byproduct. A PEM fuel
cell consists of two electrodes, the anode (hydrogen supply
source) and the cathode (oxygen supply source), between
which is sandwiched a polymer membrane, usually con-
sisting of Nafion®. The interfaces between the electrodes
and membrane are impregnated with a platinum catalyst,
as depicted in Fig. 1.

A great deal of recent research has appeared in the liter-
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Figure 1: A schematic picture of a proton exchange membrane

(PEM) fuel cell.

ature on modeling of transport processes in PEM fuel cells.
The vast majority of work (for example, [2], [7], and [11])
has focused on mass transport and it is only more recently
that more complete models including heat transport and
condensation have appeared (see [3], [6], and [10]).

The present work is part of an ongoing effort to carefully
model individual elements of the PEM fuel cell, with a par-
ticular focus on simulation of the flow of gas in the porous
electrodes. The transport of two species in both anode
and cathode was studied in [5], and this work was ex-
tended in [8] to handle three species, with (1,2, 3) = (Ha,
H20, CO3) in the anode and (1,2,3) = (O3, H;O, N3) in
the cathode. These two previous papers assumed isother-
mal conditions prevailed in the flow domain, whereas an
extension of the model to temperature-dependent flows re-
cently appeared in [1], in which the multi-species diffusion



was governed by Fick’s Law and temperature was used as
the dependent variable in the energy equation.

In this paper, we present a model for gas transport in
the cathode that is similar to that developed in [1], except
that the full Maxwell-Stefan equations are used for diffu-
sion and enthalpy is used as the independent variable in
the energy equation. Our motivation for using enthalpy
is that it is a more appropriate quantity for capturing the
physics of condensation, which will play an important role
in future modeling efforts. First, we validate the numerical
model against two test cases: (i) isothermal, three-species
flow, and (ii) temperature-dependent two-species flow (for
comparison to [1]). Finally, the temperature-dependent
algorithm is applied to a three-species flow. In the present
work, there is no liquid water, but regions of possible con-
densation can be identified by considering locations where
the partial pressure of HoO exceeds the steam saturation
pressure at the mixture temperature.

2 Mathematical Modeling

2.1 Governing Equations

The governing equations for unsteady flow of a gas mixture
composed of three species, (1,2,3) = O3, H20 and No, are
described here. Three equations for the mass conservation
of the species are required, along with momentum and en-
ergy equations for the mixture. The momentum equation
is approximated by Darcy’s Law for flow in porous media,
and the energy equation is written in terms of enthalpy in
order to simplify future extension of this work to include
water condensation.

The conservation equation for the mixture mass can be
written as:

dp

SV [h7] =0, (1)

where p and V are the mixture density and velocity. For
species 1 and 2, the conservation equations are:
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where C7 and (' indicate species molar concentration,
and Ny and N3 represent the total species fluxes (advec-
tive + diffusive). It is important to note that the molar
diffusive fluxes fl and _J; are measured relative to the
mass-averaged velocity V.

A simplified form of the momentum equation, Darcy’s
Law for porous media, is assumed to hold in the porous
electrode:

7=_Lyp, (4)
ept
where g is the mixture viscosity, and K (permeability)
and e (porosity) are characteristics of the porous media.
The energy equation can be written in terms of total
enthalpy, H = h + V72 as:
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where we are operating under low speed conditions in
which the work of shear stress can be ignored. The source
term arises from two effects, conductive heat flux, diffusive
enthalpy fluxes for the multi-species gas mixture, and so
can be written as

pH —P) + v.[px?H}:—vqwr i (5)

3
§=—kVT+Y hiji=—rkVI+

i=1

(6)

ﬁ'Mw
—
=1

The specific enthalpy of species i is denoted by h;, and the
mass diffusion flux relative to the mass averaged velocity
by _]Z = pZ(VZ V) where where V; is the velocity of species
?, v (as noted before) is the mass averaged mixture veloc-
ity, and hence (V; — ‘7) is the species i diffusion velocity.
The second form of the diffusive enthalpy term in Eqn. 6
can be derived by making use of the definitions hi = = Mih;
for the molar specific enthalpy and J; = C; (Vi — V) for
the molar diffusive flux relative to the mass-averaged ve-
locity. In Eqn. 5, ¢s 18 a volumetric heat source arising
from ohmic heat generation

. i
s = ; (7)

where ¢ 1s the electrical current density in the electrode
and o is the electrical conductivity.

For flow in fuel cells, speeds are relatively low and so
the kinetic energy is several orders of magnitude smaller
than the static enthalpy term. Therefore, H can be ap-
proximated as H = h + V72 & h, where
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with M being the mixture molecular weight and Y; the
species mole fraction determined by

Ya=1-Y) — Y. (9)



Assuming that all species obey the perfect gas law, in
which specific heats can be taken constant near the oper-
ating temperature, we then have

[Ylépl + YZCP2 + Y3ép3] T
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If we also ignore the second term in Eqn. 6, corresponding
to the diffusive enthalpy flux of species, then the energy
equation for low speed cases becomes

;2
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To close the system of equations, we assume that the mix-
ture obeys the ideal gas law

P =CRyT, (12)
where Ry is the universal gas constant. The mixture and
species concentrations are related via

3
p:Zpk :ClM1+CZMZ+M3C3a (13)
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where C3 = [C' — C; — O] or
C= [p+(M3—M1) 01—1—(M3—M2) Cz]/Mg (14)

The auxiliary equations needed to determine the diffu-
sive fluxes, J; and J;, are explained in the next section.

2.2 Diffusive Fluxes

The diffusive fluxes, J;, are often derived in a simplified
form based on Fick’s law, which 1s strictly valid only for
mixtures containing two species [9]. A more appropri-
ate model for multi-species diffusion i1s obtained using the
Maxwell-Stefan equations [9]:
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where C is the mixture concentration, D is the matrix
of Maxwell-Stefan diffusivities, and J_Z‘ are the molar dif-
fusive fluxes relative to the mole-averaged velocity. The
components of D depend on the usual binary diffusivities,
Ajqs, Aqz, and Asg, via the relationships

Dy = Az (VA +(1-Y1) A1) /S,

D12 = Y1As3(A13—Ag2)/S,

Doy = YA13(As3— Ag2) /S,

Dss = Agg(YoAq3+ (1 —Y2) Aqs) /S, (16)

where
S =Y1As+ YoA13+ Y3As. (17)

The diffusive fluxes based on mole- and mass-averaged ve-
locities, i.e. J* and JZ, are connected via the following
relationship [9]
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where the components of the conversion matrix .S are
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where 0y = 1if bk =1, and dpy = 0if k £ L.
Combining Eqns. 15 and 18 yields
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The final diffusivity matrix D is scaled by a factor of ¢*°
0.636, known as a Bruggeman correction, in order to take
in to account the resistance to diffusion due to the porous
medium.

2.3 Discretization of Governing Equations
We now take the velocity from Darcy’s Law,
- K
V=— = VP=-ByVP (22)
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and substitute into Eqns. 1, 2, 3, and 11, which yields

dp

L=V (pByVP), (23)
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The above equations are discretized using a cell-vertex
finite volume approach, in which all flow parameters are
stored at cell vertices. This approach allows us to locate



nodes on the boundaries of the computational domain. In
the description that follows, we represent a typical tempo-
ral derivative term by 9Q/dt, and spatial derivatives by
OF /Ox, where F is of the form F = A(0B/0x) in all cases.
Time derivatives are integrated using a first order explicit
scheme, while spatial derivatives are discretized via second
order centered differences, suitable for the diffusion terms:

(aF)vk:L[FE—FW], (27)

En x

where Fg, and Fy are the numerical fluxes at the East
(E) and West (W) faces of a control volume surrounding
node (j,k). Fg and Fy are determined from

1
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and similarly for the y-derivative terms.

2.4 Boundary Conditions

For the following discussion of boundary conditions, refer
to Fig. 1. At boundary locations (I), the wall is assumed to
be impermeable. That is, J{ = JY =0, and v = 0, where
J and v represent flux and velocity components in vertical
direction. The heat flux conducted through this boundary
is determined by an equivalent convective heat flux from
the coolant, written as k(97 /dy) = KW (T —TW), where
KTVY 1s an equivalent convective heat transfer coefficient
between the electrode and coolant, and Ty is the coolant
temperature.

At open channel boundary (IT), the gas pressure is set
equal to the channel pressure, P = P. The diffusive fluxes
at this boundary are assumed to obey a mass flux condi-
tion of the form N ~ J! = ri(Cyx — Cy), for k = 1,2,
where rf is the convective mass transfer coefficient for
species k. Ignoring advective terms in the energy equation
at this boundary, the energy balance is approximated by
k(8T /dy) = K& (T —T), where K& is the convective heat
transfer coefficient in the channel and 7T is the (constant)
channel temperature.

At the catalyst boundary (IIT), species 1 (O2) is as-
sumed to obey the mass flux condition N{ ~ J{ =
ri(C — Co), where rg is the convective mass transfer
coeflicient, and C 1s the concentration at the membrane,
usually taken equal to be zero. Water vapor (species 2)
is generated at this boundary at the rate of two moles of
water for each mole of oxygen that crosses the cathode-
catalyst boundary; hence, NJ = —2N7. The inert gas
component, species 3 (N2), cannot penetrate the mem-
brane which is impermeable to gas, and so Ny = 0. A
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Figure 2: Computational domain, consisting of a 2D slice
through the cathode over a pair of flow channels.

heat flux arises at this boundary due to the heat of re-
action, and hence x(91'/dy) = 2N{h,, where h, is the
enthalpy of formation of water in gas form.

At side boundaries (IV), periodic boundary conditions
are specified.

3 Results and Discussions

3.1 Numerical Validation

In this section, we present three simulations of gas trans-
port in a fuel cell cathode: the first two for the purposes of
numerical validation of the model versus previous results;
and the final one being a full three-species non-isothermal
computation.

3.1.1 Three Species Isothermal Computation

The first validating test case we perform relates to isother-
mal flow of a three species (1,2,3) = (02, H20,N3) mix-
ture in the cathode, governed by Eqns. 23-25, in order to
compare with the results reported in Stockie et al. [8]. In
this paper, the governing equations were discretized us-
ing a method of lines approach, and resulting system of
ordinary differential equations were integrated implicitly
using the stiff ODE solver of DASSL.

The computational domain is depicted in Fig. 2, and the
parameters, taken from [8], are as follows: permeability
(K = 1078 em?), porosity (e = 0.74), viscosity (p = 2.24 x
10=% g/(cm . s)), binary diffusivities (A2 = 0.124, Ay3 =
0.104, and Asz = 0.123 em?/s), channel pressure (P =
1.0 x 10° dyne/em?), species mole fractions in the channel
(Y1 =0.21, Y, = 0.10, and Y3 = 69), channel temperature
(T = 346.15°K ), and mass transfer coefficients (rj = r3 =
10 em/s and rg = 0.8 em/s).
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Figure 3: Comparison of molar fluxes at the top boundary for
species (1,2) = (Oz, H20) with the results in [8].
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Figure 4: Comparison of computed mole fractions at the cat-
alyst boundary for species (1,2,3) = (O2,H20,Nz) with the
results in [8].

CATALYST

01lr
0.075 POSSIBLE CONDENSING REGIONS
|
0.05 |- 1 i
E Vil
20025 P<1 d<1
>
0 0, H,0, N, 0, H,0, N,
-0.025
1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

X [em]

Figure 5: Regions of possible condensation predicted by the
model, assuming isothermal conditions.

Figs. 3 and 4 displays the results of the present com-
putation in terms of the steady-state oxygen and water
fluxes at the catalyst layer (i.e., the top boundary). The
difference in molar fluxes at the peaks or valleys differ by
at most 7.1%. The agreement in mole fractions is consid-
erably better, lying within about 1%.

In the present computation, neither phase change nor
condensation is modeled. However, the regions in which
condensation are likely to occur can still be estimated as
follows. Condensation occurs at the dew point, where the
partial pressure of water vapor, P,, reaches the saturation
pressure at the mixture temperature, i.e. P, /P, (T) — 1.
With this in mind, we define a new parameter called the
relative humidity, ® = P,/P_,,(T), where the saturation
pressure P_, is determined as in Appendix A. ® < 1 rep-
resents dry regions, and while ® cannot exceed 1 in an
actual condensation problem, we identify regions in which
condensation is occurring by ® > 1 in the present dry
computations.

Under usual fuel cell operating conditions, liquid water
is known to be generated, but the exact location where
condensation occurs is unknown. If water condenses on or
near the catalyst layer (where the product H2O enters the
cathode), then pockets of water may collect which could
potentially narrow the channels through which oxygen gas
is supplied to the catalyst. In turn, these pockets of water
could restrict or interrupt the supply of oxygen to the
catalyst and thereby degrade fuel cell performance. As a
result, management of liquid water is of prime importance
in fuel cells, and identifying the locus ® = 1 is a first step
in locating potential problem situations.

Fig. 5 shows the condensation pockets predicted by the
isothermal simulation, which occur at the catalyst bound-
ary. Clearly, the supply of reactant gases are not cut off in
this case, but there is a potential for performance degrada-
tion if excessive water is generated in these pockets, which
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Figure 6: Fuel cell used by Bradean et al. [1].

could cause regions of the catalyst to be starved of oxygen.

3.1.2 Two Species Non-Isothermal Computation

In the remaining two simulations, we consider the full set
of governing equations, including the energy equation 26.
This section deals with a non-isothermal computation of
two-species flow (i.e. Oz, H20) in the cathode, corre-
sponding to an example considered by Bradean et al. [1].
In their computation, the governing equations were writ-
ten in steady form, and a pressure-based scheme due to
[4] is employed to iterate on the solution until conver-
gence is obtained. Furthermore, a single-channel geometry
was studied (see Fig. 6). It should also be noted that in
their computations, the two-species mixture was assumed
to obey Fick’s Law; our model, on the other hand, has
three gas species modeled by the Maxwell-Stefan, and so
we have set the concentration of the third species, N, to
zero for comparison purposes.

The problem parameters used in this case are as fol-
lows: permeability (K = 1078 em?), porosity (e = 0.74),
viscosity (= 2.24 x 107* g/(cm . s)), effective dif-
fusivity (D = 0.08 em?/s)*, effective thermal conduc-
tivity (k = 4. x 10° erg/(s ecm °K)), specific heat
of the mixture (C, = 2. x 10" erg/(g °K)), chan-
nel pressure (P = 1.1 x 10° dyne/cm?), mass fraction
of Oy (po,/p = 0.71)7, channel and coolant tempera-

tures (I' = T" = 353.15°K), channel mass transfer
coefficient (rl = 800 em/s), channel convective heat
transfer coefficient (K& = 1.5 x 10* erg/(s em? °K)),
equivalent convective heat transfer coefficient in graphite
(KW = 1.1 x 107 erg/(s em? °K)), heat of reaction

(hy = 1.36 x 1012 erg/mol), and mass transfer coefficient

*Based on binary diffusivity values of Aj5 = 0.124, A3 = 0.104,
and Asz = 0.123 em? /5.

tThe channel mass fractions were converted to equivalent mole
fractions of Y7 = 0.58, Y5 = 0.42, and Y3 = 0.
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Figure 7: Comparison of temperature distribution at the cat-
alyst boundary (the top boundary) with the results in [1].

at the catalyst (rg = 0.3 em/s).

The numerical results for this example are displayed in
Figs. 7 and 8. The computed temperatures agree to within
approximately 0.6° K and the location of the condensation
region depicted in Fig. 8 also matches very well with the
results reported in [1].

3.2 Three Species Non-Isothermal Computation

In this section, we present simulations of a full three-
species non-isothermal flow, and compare the results to an
equivalent isothermal calculation. The problem parame-

ters used in this non-isothermal case are: x = 0.677 x
10%erg/(em s °K), Cpo,s Cpryor Cpy, respectively =

2.97 x 108, 3.39 x 10%, and 2.91 x 10® erg/(mol.°K),
K& = 15 x 10° erg/(s em? °K), K¥ = 1.1 x
107 erg/(s em? °K), TW = 346.15°K, h, = 2.418 x
10*2 erg/mol, i = 1.0 amp/cm?, and ¢ = 7.273 x
107> amp? s/(erg em). The rest of parameters were sim-
ilar to the test case of Section 3.1.1.

The ® = 1 contour in Fig. 9 shows that the electrode
remains almost totally dry except for a small pocket of
condensation that appears at the bottom boundary above
the landing area (the solid wall region separating the two
channels). This prediction runs contrary to the results
from the isothermal case, in which condensing pockets ap-
pear along the top boundary (see Figs. 5 and 9). This sig-
nificant change in the location of the condensing regions
highlights the importance of solving the energy equation
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Figure 9: Region of possible condensation predicted by the
present three species non-isothermal computation with two
channel.

along with the other transport equations.

The two sets of results are compared in Fig. 10 along
horizontal cross-sections at both the upper and lower
boundaries. Figures 10-a, and b show the distribution of
the relative humidity, @, along the top and bottom bound-
aries, where ® = P,/P_, and P, is given by Eqn. 30.
Uniform temperature in the isothermal case corresponds
to a constant value of saturation pressure. In the non-
isothermal case, the temperature field is perturbed via two
sources: (i) heat source terms, arising from ¢, in the en-
ergy equation; and (ii) the heat of reaction at the catalyst
boundary which enters the electrode from the top bound-
ary. The heat of reaction requires that the temperature at
the catalyst boundary be the highest along any horizon-
tal cross-section, as evidenced in Fig. 10-f. Furthermore,
a maximum temperature variation of about 8.0°K was
obtained along the vertical cross-section at mid-channel
(z = 0.25 cm). While this temperature variation seems
somewhat large in view of the 0.5 mm thickness of the
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Figure 10: Comparison of three-species isothermal (left) and
non-isothermal (right) computations.

electrode. A milder temperature variation could be ob-
tained, for example, by choosing a material with higher
thermal conductivity. A test case has been performed us-
ing a k = 4 x 10° erg/(em s °K) (about 6 times larger
thermal conductivity) and a temperature variation of less



than 1.0°K was obtained across the electrode. These re-
sults are not included in here because of space limitations.

We can also use the results of Fig. 10 to explain why
the condensing regions migrate from the upper catalyst
boundary to the bottom boundary. In Fig. 10-f, the tem-
perature variation along the vertical cross section z =
0.5 em is approximately 5.0° K, which translates into a rise
of AP, = 6.21 x 10* dyne/em? (or about 17% of local
saturation pressure). This AP_, is the main reason that
the @ decreases as we move upward through the electrode
above the landing area. It is noted that the main varia-
tion in @ is due to P__,, because of the similarity between
mole fraction (Y2) and mixture pressure (P) between the
isothermal and non-isothermal cases (see Figs. 10-c, d, i,
and j).

4 Conclusion

A mathematical model is presented for simulating isother-
mal flow of three gas species (O3, HoO and Na) in the
cathode of a proton exchange membrane fuel cell. The
three transport equations for the three species are aug-
mented by an energy equation in order to determine the
temperature variations in the electrode. Regions of pos-
sible condensation are obtained using this model by mon-
itoring the over-saturated regions. We demonstrate that
only slight variations in temperature throughout the do-
main (of about 5.0°K) can significantly change the loca-
tion of regions of condensing gas.

The energy equation is written in terms of enthalpy as
the dependent variable, which will be an important issue
in future studies that focus on careful modeling of conden-
sation and liquid water management.
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Appendix A

The saturation pressure for steam, within a temperature
range of T'=[40, 160]°C, is determined from the following
polynomial of degree 5 in terms of dyne/cm?:

P (T)=aT? +bT* +cT? +dT* +eT+ f, (30)
where
a=T79E -6, b=+1.06E—2, c=—9.84F—1

d=1.13E+2, e=—343E+3, f=+6.60F+4

Thermodynamic data is taken from steam thermodynamic
data and fitted using a fifth-order, least squares polyno-
mial approximation.
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