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INTRODUCTION

The “Immersed Boundary Method” was devel-
oped by Peskin [1] to simulate the flow of blood
through artificial heart valves. It has since been
extended to three dimensions [2] and applied to var-
ious other physical situations, including swimming
microorganisms [3, 4], amoeboid locomotion [5] and
plasma simulations [6], to name a few. The main
strengths of the method are its geometric flexibility
and its ability to compute realistic qualitative re-
sults in situations where complex elastic interfaces
or fibers interact with a surrounding fluid.

The heart muscle, or other immersed boundary,
1s modeled as a closely—interwoven mesh of elastic
fibers which are immersed within an incompress-
ible fluid. The fibers are neutrally buoyant and
move with the local fluid velocity, while at the same
time exerting on surrounding fluid particles an elas-
tic force which depends on the stretched state of
the fibers. The Immersed Boundary Method uses a
mixed Eulerian—Lagrangian approach to discretize
this problem. The fluid velocity and pressure are
computed on a fixed rectangular grid, while the
fibers are treated as a collection of moving points,
linked to each other by elastic “springs.”

The simplicity of the fiber representation allows
moving, internal boundaries of practically any shape
or configuration to be simulated. Furthermore, the
fact that the underlying fluid grid is regularly—
spaced means that fast fluid solvers can be applied
to solve the equations of motion. On the other
hand, the method is limited to first order accuracy
in space due to the interpolation scheme that 1s
used to transfer quantities between fluid and fiber
grid points, though some recent work by Roma [7]
uses adaptive gridding to overcome this limitation.
Immersed boundary computations have also been
demonstrated to suffer from a high degree of stiff-
ness [8]. Even though a considerable amount of work

has gone into developing improved schemes for cou-
pling the fluid and fiber motion [3, 9, 8, 7], efficient
implementations are forthcoming, and many com-
putations are still being done with explicit schemes
([4], for example).

In this paper we present an analytical technique,
based on Fourier mode analysis, which allows us to
investigate the stability of the underlying equations
of motion for immersed fibers. The results give in-
sight into the behaviour of the solution and explain
the high degree of stiffness inherent in immersed
boundary computations. The technique is extended
to the time—discrete problem, and various implicit
schemes are compared in terms of the convergence
rate of the iteration embedded in each time step,
with the analytical results backed up by computa-
tions. The eventual aim of this work 1s to develop
a more efficient implementation, using the insight
gained from our analysis to deal more effectively
with the stiffness inherent in immersed fibers.

IMMERSED FIBERS

In the remainder of this paper, we will consider a
single, 1solated fiber immersed in a two—-dimensional
fluid. Since a three—dimensional boundary is mod-
elled as a mesh of immersed fibers, we expect that
many important characteristics of the fibers will be
captured in this two dimensional model. We begin
by presenting the equations of motion for an im-
mersed fiber in two dimensions and then outline the
numerical scheme and several of its variants.

The Mathematical Formulation

Figure 1 depicts the model two-dimensional
“heart,” consisting of a fiber I' immersed within a
doubly—periodic fluid domain 2. The fiber position

is given by # = X(s,t), where s is a parametrization
of the fiber in some reference configuration.



Figure 1: The 2D model “heart,” consisting
of a fiber I' immersed in a unit square of
fluid Q. The stability analysis is performed
on a subdomain 2o, on which the fiber is
approximately flat.

The equations of motion for an incompressible
fluid with velocity @(#,t), pressure p(#,t), external
force F'(#,t), density p and viscosity u are

a—’ —
Vi =0. (1b)

The interaction between the fluid and fiber is a two—
way process that can be summarized as follows:

e The fiber exerts a force on the surrounding fluid
which is zero everywhere except on the fiber,
and so can be written in terms of a convolution
with a two-dimensional delta function §%(Z):

§HE—X(s,t))ds  (lc)
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We have taken the force density on the fiber to
be o(82X/8s?), which is analogous to succes-
sive fiber points being linked by linear springs
with spring constant ¢ and resting length zero.

e The fiber points, in turn, move at the local fluid
velocity:
ox ,
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:/ﬂﬁ(f,t)ﬁz(f—f(s,t))df (1d)

with the two forms of (1d) being equivalent.

Equations (la)-(1d) are a coupled system of
integro—partial differential equations, which we will
refer to as the “emmersed fiber problem.” The key
features of these equations (which are exploited in
the numerical method in the next section) are that
the fiber affects the fluid only through the forcing
term in the Navier—-Stokes equations, and that the
transfer between the fluid and fiber evolution equa-
tions is accomplished by the delta functions appear-

ing in (Ic) and (1d).

The Numerical Method

The Immersed Boundary Method arises naturally
from the immersed fiber problem formulated in the
previous section. We consider approximations at
equally—spaced times t, = nAt, and divide the
fluid domain Q = [0,1]? into a regular N x N lat-
tice of points with spacing h = % Then, dis-
crete approximations of fluid quantities can be writ-
ten [j[} ~ t(ih, jh,nAt) and PJ; = p(ih, jh,nAt),
for i,7 = 0,1,..., N — 1. Similarly, we discretize
the fiber at a set of N, moving points, with spac-
ing hy = N%, and define )?,? ~ f(k’hb,nAt) for
k= 0,1,...,Ny — 1 (assuming the fiber parame-
ter s takes on values between 0 and 1). A typical
fluid /fiber grid is pictured in Figure 2, from which
it 1s clear that fiber points need not coincide with
the fluid mesh points. It is here that the role of
the delta function as an interpolating function be-

tween the fluid and fiber grids becomes evident. We

\

\\

Figure 2: The fluid grid points (o) and mov-
ing fiber mesh points (+).

replace 6?(Z) in (1c) and (1d) by the discrete ap-
proximation 63 (Z) = d;(x) - d5(y), where

() = {ﬁ (L+cos(5)) ife<2h o
0 if 2> 2h,

which is chosen according to [1] to satisfy a series of
discrete compatibility conditions.

We are now in a position to formulate the dis-
crete version of the problem as a fully implicit sys-
tem of equations for the unknown solution values at
time ¢,41. To be consistent with typical immersed
boundary calculations which employ Chorin’s split—
step projection scheme [10], we use the operator P to
represent a projection onto the space of divergence—
free vector fields. Applying a Backward Euler time



discretization to the problem, we obtain
Pt =3 oDi, Xpt 6 - Kby (3a)
k
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In the Immersed Boundary Method, the convection
and diffusion terms in (3b) are not actually han-
dled in a fully implicit manner, but rather using an
alternating—direction—implicit (ADI) step to get an
intermediate velocity field, ﬁ*, which is then used
in the projection step. Here, Vj and A, are sec-
ond order centered difference approximations to the
divergence and Laplace operators, and D/%b)?k =
%(XkH — X, + )?k_l) replaces 822/352.

In practice, a scheme based on the fully implicit
equations is extremely expensive since it requires a
Newton solve for the coupled fluid—fiber equations
at each time step. Tu & Peskin [8] recognized the
necessity of handling the fiber force calculation im-
plicitly, and several different semi—implicit schemes
have since been proposed. Some of the major vari-
ants, which differ in whether the terms on the right
hand sides of (3a)—(3c) are taken at time level n or
n + 1, are listed below:

A. Fully explicit: All terms on the right hand sides
of (3a)—(3c) are taken at time ¢,. The stability
requirements on the time step for this scheme
are quite severe.

B. “Approzimate tmplicit”: This is the original
scheme proposed by Peskin [1], in which the
convection and diffusion terms in (3b) are com-
puted using an ADI step to get an intermediate
velocity U*. Only the force in (3b) is handled
implicitly, resulting in a simple fixed point iter-
ation for the fiber position. The fiber force can
then be calculated using (3a), and the scheme
proceeds as with the explicit method. There
is considerable advantage to using this scheme
because of its simplicity, but the time step re-
strictions are still severe.

C. Semi—implicit: The convection and diffusion
terms in (3b) are computed by an ADI step,
with the resulting scheme rewritten as an equa-
tion for )?ZH only. Mayo & Peskin [9] have

proposed a fixed point iteration and a precon-
ditioned conjugate gradient scheme for this ver-
sion.

D. Other variants: Rather than a split—step pro-
jection scheme (which is known to suffer from
pressure boundary layers), the velocity and
pressure can be computed simultaneously us-
ing a Stokes solver. Another possibility is to
reformulate the scheme as an iteration on the
velocity rather than X"+l We are currently
investigating both of these alternatives.

It is important to note that the simple geometry
of the fluid domain (a rectangular box with peri-
odic boundary conditions) allows the fluid equations
to be solved very efficiently (using a Fast Fourier
Transform). Therefore, the central issue in develop-
ing an efficient scheme is an appropriate choice of
coupling between the fluid and the fiber.

STABILITY AND CONVERGENCE
ANALYSIS

Immersed boundary computations are known to
require extremely small time steps for explicit and
most semi-implicit schemes [8]. As mentioned in the
previous section, much work has been done to de-
velop better implicit schemes for coupling the fluid
and fiber motion; however, there has been very little
effort put in to explaining why immersed fibers are so
hard to compute and investigating the convergence
properties of the various schemes.

Stockie & Wetton [11] analyzed the stability of the
equations of motion (1a)—(1d) using a modal analy-
sis of the solution. They showed that in addition to
Stokes’ modes, the presence of an immersed fiber in-
troduces several solution modes whose growth rates
vary by several more orders of magnitude. Conse-
quently, the fiber has some inherent stiffness, and
computations based on the immersed fiber problem
can be expected to be stiff. However, the analysis
ignores smoothing effects from replacing the delta
function by a discrete approximation. We extend
these stability results in the next section to include
smoothing effects.



Linear Stability

Consider a region such as Qg pictured in Figure 1,
where the fiber is not far from a horizontal equilib-
rium state, and introduce a small sinusoidal pertur-
bation. We can then linearize the equations and
take each dependent variable to be of the form

u(z,y,t) = eMTTU(y), (4)
while replacing the delta function by the approxi-
mation &, () from (2) with smoothing radius e. Us-
ing a symbolic algebra package such as Maple [12],
we can solve the resulting system of integro-PDE’s
and derive a dispersion relation between A and the
wavenumber « and the other parameters in the
problem (¢, o, v and p).

By restricting « to a finite range of integers [0, N]
(corresponding to the wavenumbers that can be re-
solved on an N x N grid), we can talk about the
behaviour of discrete solutions in an idealized sense.
The smoothing radius is chosen as € = 271'%, corre-
sponding to a width of two “mesh points,” with the
extra factor of 2w needed to force the solution from
(4) to have a period of 1. The sign of the quan-
tity Re(A) indicates whether or not the immersed
fiber problem is stable, and its magnitude gives an
indication of the stiffness. The first column of Ta-
ble 1 lists the analytical values for the largest growth
rates, Re(A), for N = 128 and various values of the
fiber stress, o, that are used in typical calculations.

Decay Rates Re())

o Smooth § | Computed || Exact §
1,000 -51.0 -39.2 -51.5
10,000 -81.3 -75.8 -83.9
100,000 -129.0 -119.4 -141.6
250,000 -152.9 -125.4 -175.6

Table 1: Analytical values of Re()) for so-
lution modes from the smoothed and ex-
act delta—function problems along with the
computed decay rates (N = 128).

We have implemented the Immersed Boundary
Method and computed the rate of decay of the os-
cillations for a flat fiber given a small perturbation
from equilibrium. This rate corresponds to the most
slowly decaying modes (a = 1), since the higher
wavenumber modes decay most quickly. From the
table, 1t is clear that the behaviour of the lowest
wavenumber modes is captured quite accurately by
the numerical scheme.

The final column in Table 1 presents the values of
A based on the results in [11] for the exact delta func-
tion (that is, without smoothing). Tt is clear that the
introduction of smoothing has a considerable effect
on the solution modes. By looking all modes (that is,
by varying the wavenumber over the entire allowable
range), we can determine how the smoothing of the
delta function affects the stiffness of the problem.
For ¢ = 100,000 and « € [1,128], we find for the
smoothed problem that the growth rates lie in the
range —8.3 x 10* < Re(A\) < —1.3 x 102, which indi-
cates that the problem is quite stiff. By comparing
to —8.0 x 10° < Re(A\) < —1.4 x 10? for the exact
delta function from [11], we see that even though
the problem is still stiff, it 1s much less severe for
the smoothed problem and more in line with what
1s seen in computations.

Convergence of Time—Discrete Schemes

The modal analysis outlined in the previous sec-
tion can be further extended to include the ef-
fects of time discretization in order to make con-
clusions about the convergence of various time-
stepping schemes. We will consider two schemes,
which are variants of the semi—implicit scheme C:

C1. A straightforward Crank—Nicholson—type split-
ting, with the terms on right hand sides of (3b)
and (3c) averaged at times ¢, and ¢,41.

C2. The preconditioned iteration proposed by Mayo
& Peskin [9)].

Both of these methods can be written (again with
the aid of Maple) as a fixed point iterations on the
interface position )?”"’Lk, with k& denoting the iter-
ation number:

Ain-l—l,k‘-l—l — B}Z’n-l—l,k‘ +Rn (5)

A and B are 2 x 2 matrices and R" is composed of
quantities from time level n, all depending on the
parameters At, u, p, @ and o.

If we define gpax to be the largest eigenvalue of
the matrix B~'A, then the iteration converges if
|omax| < 1, and diverges otherwise. Plots of |gmax]
for both schemes are given in Figure 3, with param-
eter values pu = p=1, ¢ = 10,000 and N = 64 and
over a range of At and « € [1,64]. Tt is clear that
the preconditioned scheme C2 converges for all plot-
ted time steps, which agrees with the unconditional
convergence result proven in [9].

On the other hand, scheme C1 converges only con-
ditionally. To test the accuracy of the predicted sta-
bility region for this method, we performed some nu-
merical experiments for which the results are sum-
marized in Table 2. The stability requirement on
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Figure 3: Convergence rate contours with
the region of instability, |gmax| > 1, shaded
(¢ =10,000, N = 64).

Maximum At
o Predicted | Computed
1,000 0.0050 0.0030
10,000 0.0014 0.0005
100,000 0.0004 0.0001
250,000 0.0002 0.00005

Table 2: Predicted and computed stability
boundaries for At in scheme C1 (N = 64).

At in computations is very sharp, which matches
with the steep contours in Figure 3(a) — that is, ei-
ther the scheme diverges; or it converges within one
or two iterations. The stability boundaries do not
match exactly, but are within an order of magnitude
of the predicted values.

We also performed several computations to ver-
ify the convergence rates for scheme C2 from Fig-
ure 3(b), and the results are summarized in Table 3.
Here, the observed convergence rates match quite

o = 10,000 o = 100,000
At Pred. | Comp. | Pred. | Comp.
0.0001 0.02 0.01 0.16 0.24
0.0005 || 0.33 0.38 0.70 0.72
0.0010 || 0.57 0.60 0.80 0.90
0.0020 || 0.74 0.77 0.85 0.97
0.0050 || 0.84 0.96 0.89 0.99

Table 3: Predicted and computed conver-
gence rates for scheme C2 (N = 64).

closely with the predicted values.
CONCLUSIONS AND FUTURE WORK

We have presented an analytical technique, based
on Fourier mode analysis, which can be used to in-
vestigate the behaviour of immersed fibers. Pre-
dicted decay rates compare well with those observed
in computations, and quantitative predictions can
be made about the effects of smoothing on the nu-
merical solution, due to the use of approximate delta
functions. To our knowledge, this is the first effort at
explaining why immersed boundary computations
are so stiff.

The analytical tool can be extended to semi-
discrete schemes (that is, discrete in time only),
thereby allowing us to make qualitative comparisons
between various iterative schemes for the immersed
fiber problem. While a great deal of work has been
done in developing new semi—implicit schemes, this
is the first time that the stability and convergence
of the various methods has been investigated ana-
lytically.

Based on the accuracy of predicted convergence
rates, we expect that our modal analysis will prove
to be a useful tool in evaluating a prior: the ef-
fectiveness of other time-stepping schemes. With
the insight we have gained about the behaviour of
immersed fibers, we hope to develop an improved
scheme that will deal more effectively with the stiff-
ness intrinsic to immersed fibers.
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