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Abstract. We apply the immersed boundary (or IB) method to simulate deformation and de-
tachment of a periodic array of wall-bounded biofilm colonies in response to a linear shear
flow. The biofilm material is represented as a network of Hookean springs that are placed
along the edges of a triangulation of the biofilm region. The interfacial shear stress, lift and
drag forces acting on the biofilm colony are computed by using fluid stress jump method
developed by Williams, Fauci and Gaver [Disc. Contin. Dyn. Sys. B 11(2):519–540, 2009], with
a modified version of their exclusion filter. Our detachment criterion is based on the novel
concept of an averaged equivalent continuum stress tensor defined at each IB point in the
biofilm which is then used to determine a corresponding von Mises yield stress; wherever
this yield stress exceeds a given critical threshold the connections to that node are severed,
thereby signalling the onset of a detachment event. In order to capture the deformation and
detachment behaviour of a biofilm colony at different stages of growth, we consider a family
of four biofilm shapes with varying aspect ratio. Our numerical simulations focus on the be-
haviour of weak biofilms (with relatively low yield stress threshold) and investigate features
of the fluid-structure interaction such as locations of maximum shear and increased drag. The
most important conclusion of this work is that the commonly employed detachment strategy
in biofilm models based only on interfacial shear stress can lead to incorrect or inaccurate
results when applied to the study of shear induced detachment of weak biofilms. Our de-
tachment strategy based on equivalent continuum stresses provides a unified and consistent
IB framework that handles both sloughing and erosion modes of biofilm detachment, and is
consistent with strategies employed in many other continuum based biofilm models.
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1 Introduction

The subject of this work is the flow-induced deformation of a biofilm colony, which is a meso-
scale collection of bacterial cells held together by an extracellular polymeric network (EPS) that
is secreted by the cells. The dimensions of a biofilm colony can be anywhere from tens to hun-
dreds of microns, whereas the size of an individual bacterial cell making up the colony is on
the order of 1–5 microns; our focus is on continuum models that treat the biofilm as a viscoelas-
tic solid continuum rather than incorporating the dynamics of individual bacteria. The flow-
induced deformations of the biofilm colony affect the fluid dynamic forces acting on it, and
thereby also alter both the extent and the mode of detachment (i.e., sloughing or erosion) that
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may be experienced by the biofilm. We are particularly interested in understanding whether
biofilm colonies gain any protection against detachment when they are in close proximity to
other colonies. To this end, our aim is to develop a robust numerical method for simulating the
interaction between a biofilm colony and the surrounding fluid that is capable of capturing the
different modes of biofilm detachment.

Our approach is based on the immersed boundary (or IB) method, in which the biofilm
continuum is replaced by a network of Hookean springs. Although the IB method has already
been used by several authors for studying biofilm deformation and detachment [1, 26], our
approach of computing an equivalent continuum stress at each IB node is markedly different
and using it to initiate detachment provides us with a way of handling detachment in a manner
that is consistent with other continuum mechanics based models such as [13].

1.1 Bacterial biofilms

Bacterial biofilms are aggregations of microbes that grow on surfaces in an aqueous environ-
ment. They form when bacterial cells suspended in the fluid attach themselves to a surface and
begin producing an extracellular polymeric substance in which the growing bacteria cells em-
bed themselves. Biofilms play contrasting roles depending on the scenarios in which they are
encountered: in waste-water treatment [39] and environmental engineering they play a helpful
role; whereas biofilms encountered on medical devices or food-processing equipment can be
detrimental in the sense that they cause infections [9] or compromise food safety [48].

In these and other applications, biofilms experience vastly different physical conditions
(temperature and pH), hydrodynamics (ranging from creeping to turbulent flow) and chemi-
cal environments (rich or sparse in nutrients, or saturated with antibiotics). Their adaptability
to diverse conditions is believed to derive at least in part from the mechanical and chemical
protection provided by the gel-like EPS layer. It is important from an engineering standpoint
to understand the mechanical properties of biofilms so that we can devise effective methods
for not only enhancing biofilm growth and survival but also removing them from surfaces.
Consequently, over the past 10 years significant effort has been expended to develop novel
rheological methods for measuring mechanical properties of biofilms [25]. Such experiments
have typically arrived at different conclusions on how to characterize biofilms, with some con-
cluding that they behave as elastic [40] or viscoelastic solids [28], while others liken biofilms to
viscoelastic fluids [55]. Furthermore, even within the same material class, measured material
parameter values can vary over a fairly wide range. The general consensus is that biofilms
behave as (visco-)elastic solids when the applied fluid shear stress is at or near the stresses at
which the biofilm was grown, while at higher values of shear stress the biofilm can yield and
behave as a viscoelastic fluid. In this paper, we restrict ourselves to the low shear stress case
and model the biofilm mechanically as a viscoelastic solid embedded within a viscous fluid.

1.2 Mathematical models of biofilm growth, deformation and detachment

Mathematical models for simulating biofilm growth must take into account a wide range of
mechanistic and other dynamical processes, including growth and death of bacteria, attach-
ment of cells to the substratum, transport of solutes (nutrients, metabolic products, antibiotics)
within the surrounding fluid and the biofilm itself, reaction kinetics, and removal of bacte-
rial cells as clusters (sloughing) or as individual cells (erosion) when the biofilm EPS matrix
weakens in response to fluid shear or chemical treatments. The earliest models developed in
the 1980’s [29, 61] assumed that the biofilm is one-dimensional, while many subsequent mod-
elling efforts have attempted to capture the 2D or 3D morphology that develops during biofilm
growth processes. The treatment of the hydrodynamics and its interaction with the biofilm has
received varying degrees of treatment in these models, ranging from some models that con-
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sider biofilm transport processes in isolation and use a specified nutrient concentration bound-
ary layer thickness at the biofilm-fluid interface, whereas other models perform full fluid flow
and nutrient transport calculations with or without incorporating fluid-structure interaction
effects. A variety of approaches have been developed to model the growth and spreading of
the biomass, including individual-based models [32], cellular automata [64], continuum mod-
els [2, 13, 30] and phase field models [67]. An exhaustive review of the different modeling
approaches can be found in the article [60] and performance benchmark comparisons are avail-
able in [14].

Among the more complete models are those that capture multi-dimensional growth and
fluid flow [13,15,16,44], although the role played by hydrodynamics in inducing biofilm defor-
mation and detachment has most often received only ad hoc or approximate treatment. These
approximations are aimed at capturing the solid mechanics governing the dynamics of the de-
forming biofilm while simplifying as much as possible the complex fluid flow that surrounds
it. The first attempt at solving the solid mechanics problem inside the biofilm and using it to
initiate detachment was in [44] where the biofilm was treated as a linearly elastic material and a
von Mises yield stress criterion was used to initiate detachment; however, this work neglected
the effects of biofilm deformation. In contrast, the particle-based biofilm model in [65] ignored
the fluid and proposed a method for initiating detachment using a detachment speed function
that is based on the normal velocity of the biofilm-fluid interface. A similar approach has been
used in [49], which includes the effects of both biofilm growth and flow by employing a detach-
ment speed that depends on the interfacial shear stress. This approach to initiating detachment
rests on the assumption that regions where the interfacial shear stress is highest correspond to
locations where the biofilm strain is also high.

One of the aims of the current study is to verify the validity of this last assumption by
considering a full fluid-structure interaction simulation that is capable of determining stresses
in both fluid and biofilm. We do not explicitly model biofilm growth but rather mimic the
effects of growth by considering a family of biofilm colony shapes of different aspect ratio,
where each colony size corresponds to a different instant of time during the growth of the
same colony. In each case, we investigate how the deformation affects both the mode and the
extent of biofilm detachment. This is in contrast with other approaches [13, 44] where the solid
mechanics are simulated but any deformations of the biofilm are neglected.

1.3 Fluid-structure interaction in biofilms

During the last several years, significant progress has been made in the study of fluid-structure
interaction (FSI) in biofilms, driven by the increased availability of experimental data on biofilm
mechanical properties and the motivation to understand the role they play in biofilm survival.
Most FSI studies neglect biofilm growth by taking advantage of a natural separation of time
scales, in that growth processes are very slow in relation to fluid motion and biofilm deforma-
tion. More recently, a phase field method has been applied successfully in 2D [34] and 3D [47]
to simulate biofilm growth coupled with deformation arising from interaction with the sur-
rounding flowing fluid treating the biofilm continuum as a multiphase polymeric gel. With
the exception of these two works, the most common approach in the biofilm FSI literature
combines a Lagrangian discretization of the biofilm with an Arbitrary Lagrangian Eulerian (or
ALE) formulation for the fluid. The first study of this kind appeared in [54] where they stud-
ied the deformation of a 2D hemispherical biofilm colony placed in a turbulent flow using the
ANSYS commercial software package. More recently [53], a similar ALE approach was used
to study flow-induced oscillations of 2D biofilm streamers and their effect on mass transfer.
A more realistic 3D biofilm model was studied in [7] that used sliced 3D confocal laser scan-
ning microscopy data to construct the colony shapes, and employed a nonlinear hyper-elastic
constitutive model that accommodates detachment based on a von Mises yield stress criterion.
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The aforementioned approaches have the advantage of being well-established in the liter-
ature and capable of easily incorporating experimental parameters that measure biofilm rhe-
ology. The primary disadvantage is their high computational cost and algorithmic complex-
ity that result from needing to constantly re-mesh the fluid domain as the biofilm colony de-
forms. Moreover, this re-meshing cost increases enormously if detachment is incorporated in
the model.

Motivated by the desire to develop a simpler and more efficient computational approach,
Alpkvist and Klapper [1] proposed an alternate FSI strategy based on the immersed boundary
(or IB) method in which the biofilm is discretized at a set of moving Lagrangian points. These
IB points move relative to an underlying fixed Cartesian grid on which the fluid equations are
solved. The elastic properties of the biofilm are captured by distributing forces onto the fluid
that derive from a network of Hookean springs joining the IB points. An incompressible fluid
pervades both fluid and biofilm regions and the biofilm inherits the density and viscosity of the
surrounding fluid, so that the biofilm is actually a visco-elastic composite material consisting
of elastic spring forces and fluid viscous forces. This approach has the clear advantage that no
re-meshing of the fluid grid is required. To illustrate the versatility of their approach, Alpkvist
and Klapper simulated the deformation of both 2D and 3D biofilm structures, while also in-
corporating a simple detachment criterion based on cutting individual springs when they are
stretched beyond a critical length. We remark that other IB models for biofilms were developed
prior to [1], namely the work of Dillon and collaborators [10, 11]; however, these authors were
concerned with slow flow and the dynamics of individual bacterial cells aggregating and set-
tling on the substratum, and hence the results are relevant to different phenomena occurring
on much smaller spatial scales and at much earlier stages of biofilm formation.

A number of other IB approaches have since appeared, such as [57] who performed 3D sim-
ulations of biofilm deformation, comparing Hookean (elastic, spring-only) and Kelvin-Voigt
(visco-elastic, spring plus dashpot) models for the biofilm material. Using a parametric study
of spring stiffness and damping coefficient and comparisons with experiments, they estab-
lished that realistic biofilm deformation behaviour can be obtained using the IB method. More
recently, Hammond et al. [26] developed more detailed 2D and 3D IB models for fragmentation
of a biofilm colony in which the location of actual bacterial cells from 3D images was used to
determine coordinates of IB points. They employed a similar spring network and detachment
strategy as in [1], but they allowed the density of the biofilm to differ from that of the fluid, and
in subsequent work [27] also extended their approach to handle variable viscosity.

Despite the increasing popularity of the IB method in biofilm FSI studies, two main chal-
lenges remain to be addressed before the method is capable of simulating realistic biofilm de-
formation and detachment. The first relates to connecting values of the IB spring parameters
(elastic stiffness and damping coefficients) to actual biofilm material properties. Despite the
parametric study in [57] that showed it was possible to determine suitable parameters for given
biofilm colony shape and IB spring network topology, there remains as yet no a priori method
for determining IB parameters for a given biofilm.

The second challenge relates to initiating detachment in the IB framework in a way that is
consistent with other more established continuum-mechanics-based biofilm studies mentioned
in Section 1.2. Whereas IB methods have so far used strain in any given spring as a measure for
initiating detachment, this is not a true measure of strain in the continuum mechanics context.
Indeed, Hammond et al. [26] demonstrated that when using spring strain as a detachment
criterion the resulting biofilm shape is sensitive to the critical strain parameter, and so it is
unclear how to choose this parameter to match a given set of biofilm mechanical properties.
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1.4 Objectives and outline

In this paper, we aim to address the challenges identified at the end of the preceding section by
developing an immersed boundary approach for simulating biofilms that is capable of captur-
ing realistic deformation and detachment behaviours. We begin with a 2D IB model inspired
by that of Alpkvist and Klapper [1], and extend this work guided by two main objectives. Our
first objective is to develop a novel approach for initiating biofilm detachment that is consis-
tent with methods employed in biofilm models using continuum mechanics based calculations
to enact detachment. In this way, we can retain the simpler spring network representation of
the biofilm continuum and the advantages it offers, while also implementing a more physically
realistic criterion for detachment. Our second major objective is to investigate the effect of flow-
induced deformation on both the mechanical stability and mode of detachment experienced by
weak biofilm structures having realistic shapes that resemble those grown under mass transfer
limited conditions. This will allow us to better understand such fundamental questions as how
flow-induced deformation affects the forces acting on biofilms, and how spatial clustering of
biofilm colonies can shield them from detachment by reducing the hydrodynamic shear forces.

Our modelling approach incorporates the work done in several previous computational
studies of two-dimensional biofilms in [52,66] wherein we investigated the fluid shear-induced
detachment forces (drag and lift) acting on rigid biofilm colonies that are both uniformly and
non-uniformly spaced. In contrast to these earlier studies that were restricted to values of
shear rate exceeding 10 cm/s, we focus in this paper on more flexible weak biofilm colonies
immersed in a slower shear flow having shear rate less than 1 cm/s.

The organization of the remainder of this paper is as follows. In Section 2, we define the
problem geometry and parameters, and describe the governing equations and corresponding
numerical scheme for our basic IB model framework. Section 3 contains the novel biofilm-
related aspects of our IB model where we derive our approach for calculating fluid shear stress
along the biofilm-colony fluid interface and from that the drag/lift forces acting on the biofilm
colony. In Section 3.1 we describe how we implement a modified version of the exclusion filter
devised by Williams et al. in [63] for accurately approximating interfacial shear stresses on
curved immersed boundaries, and then in Section 3.2 we describe how we adopt the concept
of a continuum stress around each IB node in the biofilm material. Section 3.3 discusses how
these quantities are used to obtain a more realistic detachment criterion for biofilm colonies
in the IB context. Finally, in Section 4 we perform a number of numerical tests that validate
our numerical approach and also demonstrate the advantage of our IB model for simulating
realistic deformation and detachment events in fluid shear-induced biofilm dynamics.

2 Immersed boundary (IB) method

The IB method is both a mathematical formulation and a numerical method for simulating
the complex interaction between a deformable solid material and a surrounding fluid. The
approach dates back to work of Peskin [42] who originally developed the approach to simu-
late blood flow interacting with heart muscle, and more recent theoretical and computational
developments are summarized nicely in the review paper [43]. The IB approach has been ap-
plied extensively to the study FSI in bio-fluid mechanics, including such problems as amoeboid
locomotion [8], platelet aggregation [19], and sperm motility [18].

The IB method is a mixed Eulerian-Lagrangian approach wherein the fluid equations are
discretized on a fixed, rectangular (Eulerian) mesh whereas the elastic structure is defined by
a set of (Lagrangian) IB points that move relative to the underlying fluid mesh as the structure
deforms. The effect of the immersed boundary on the fluid is represented using a singular
source term in the fluid momentum equations, which is distributed onto the underlying fluid
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grid by writing it as the convolution of an elastic force density with a regularized delta function.

2.1 Problem geometry

A diagram of the problem domain is given in Fig. 1, which depicts shape of a biofilm colony
encountered during different stages of growth. The domain is delimited by two horizontal
walls separated by a distance H, where the bottom wall (serving as the biofilm substrate) is
held stationary while the top wall moves horizontally with constant velocity Uwall. The domain
is filled with a viscous, incompressible fluid so that in the absence of biofilm, the top wall will
generate a flow that over time approaches a steady-state corresponding to linear (planar) shear
with shear rate G=Uwall/H.

Figure 1: The problem domain consisting of a stationary bottom wall (e-f) separated by a distance H from a top
wall (g-h) that moves at velocity (Uwall,0). Biofilm colonies of width Wb and increasing height represent shapes at
different stages of growth. The walls are treated with IB points and the whole flow region is embedded in a slightly
larger computational domain (abcd) that is periodic in both x and y.

Biofilm colonies having identical shape and size are placed along the bottom wall with a
uniform spacing of Db between adjacent colonies. In order to simulate biofilms at different
growth stages occuring under mass transfer limited conditions, we select four representative
biofilm shapes with increasing aspect ratio that have fixed width but increasing height. Mo-
tivated by shapes at early stages of growth observed in experiments [12, 31] and 3D simula-
tions [13, 15, 30, 67], we choose an idealized biofilm shape described by the equation

(
x

Wb/2

)n1

+

(
y

Hb

)n2

=1 with n1,n2>0 and y!0, (2.1)

which is half of a super-ellipse with width Wb and height Hb. In the case when n1=n2=2, Eq. (2.1)
reduces to half of a regular ellipse, while further constraining Wb=2Hb yields a semi-circle with
radius Hb.

We believe that this choice is a reasonable parameterization of the typical finger-like shapes
that dominate earlier stages of biofilm growth, in contrast with later stages that exhibit a classi-
cal mushroom-shaped colony having an ellipsoidal head on top of a thin cylindrical stem. For the
purpose of this study, we take values of n1=n2 =2.5 and Wb =50 µm, and select a sequence of
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three initial shapes with Hb=25, 50 and 75 µm respectively. In addition, we consider two other
shapes: a semi-circle with diameter 40 µm (that is, n1 = n2 = 2, Wb = 40 µm and Hb = 20 µm);
and an irregular mushroom-like structure with Wb ≈ 60 µm and Hb ≈ 280 µm, whose shape is
extracted from figures in [1]. The latter mushroom shape is the tallest biofilm colony depicted
in Fig. 1 and is chosen to illustrate the effectiveness of the detachment criteria developed in this
study by direct comparisons with the results from [1, 26].

Rather than imposing wall boundary conditions directly on the fluid, we simplify the fluid
solver by treating the top and bottom walls using immersed boundaries and embed the prob-
lem domain inside a slightly larger fluid domain denoted by dashed lines in Fig. 1. Because we
are interested in studying repeating arrays of biofilms colonies, periodic boundary conditions
are imposed in both the x and y directions so that the computational domain is Ω=[0,W]×[0,H]
with W=Wb+Db (labeled abcd in the figure), and it contains a single biofilm colony.

2.2 Governing equations

The domain Ω is filled with a Newtonian incompressible fluid having constant density ρ (g/cm3)
and dynamic viscosity µ (g/cms). Denote the infinitesimally thin immersed boundaries rep-
resenting the fixed bottom wall and moving top wall by Γbot and Γtop respectively, and let Γbio

represent the solid elastic structure corresponding to the biofilm colony. Note that Γbio is ac-
tually a composite material that consists of the elastic force-generating material and fluid that
co-exist within the same region. We also assume for the purposes of this study that the biofilm
is neutrally buoyant and has the same density as the fluid (although it is straightforward to
extend the IB approach to deal with variable density problems [22, 26]). The fluid is therefore
governed at all points x=(x,y)∈Ω by the incompressible Navier-Stokes equations

ρ
∂u

∂t
+ρu·∇u=−∇p+µ∇2u+f, (2.2)

∇·u=0, (2.3)

where u(x,t) (cm/s) is the fluid velocity and p(x,t) is pressure (g/cms2).
The effect of the solid boundaries on the fluid is encompassed in the fluid forcing term

f, which we consider next. Assume that the configuration of the solid material making up
both channel walls and biofilm is described by a function X(q,t), where q is a generalized
(dimensionless) parameterization that is either a scalar (q= s) in the case of the walls Γbot and
Γtop, or else a vector (q=(r,s)) for a solid region like Γbio. The IB force in both cases is specified
in terms of a discrete network of IB points connected by springs, and more detail on the precise
form of these spring-force connections for walls and biofilm is provided later in Sections 2.4
and 2.5. Assume that the force generated by any deformed configuration can be described by
an IB force density function F(X(q,t) depending on the current stretched configuration of the
spring network. Then the fluid force f may be determined by spreading the force density at IB
points onto the fluid using a delta function convolution

f(x,t)=
∫

Γ
F(X,t) δ(x−X(q,t))dq, (2.4)

where δ(x)= δ(x)δ(y) is the Cartesian product of two 1D Dirac delta functions and Γ= Γbio∪
Γtop∪Γbot represents the set of all immersed boundaries.

The final equation required to close the system is an evolution equation for the immersed
boundaries, which we assume move with the same velocity as the surrounding fluid

∂X

∂t
=
∫

Ω
u(x,t)δ(x−X(q,t)dx. (2.5)

This is simply another way of stating the no-slip condition for a deformable boundary at loca-
tion X(q,t).
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2.3 Numerical algorithm

We now describe the basic numerical algorithm for solving Eqs. (2.2)–(2.5), which is a semi-
implicit scheme very similar to the one employed in [50]. The fluid domain Ω is discretized
on a regular Cartesian mesh with coordinates xij =(xi,yj)= (ihx, jhy) for i= 0,1,.. . ,Nx and j=
0,1,.. .,Ny, where hx=W/Nx and hy=H/Ny are constant grid spacings in the x and y directions
(and we assume for simplicity that hx=hy). The time interval of interest [0,T] is likewise divided
into a sequence of Nt equally-spaced points denoted tn=n∆t for n=0,1,.. .,Nt, where ∆t=T/Nt

is the time step. Let the discrete values of the velocity and pressure be denoted by un
ij and

pn
ij respectively. Suppose that the immersed boundary is described by a set of Nb IB points

whose locations at any time tn are given by Xn
ℓ
=(Xn

ℓ
,Yn

ℓ
) for ℓ=1,2... ,Nb. The corresponding

force densities are denoted by Fn
ℓ
, with the precise specification of the immersed boundary

discretization and force density calculation Fn
ℓ

being given in the the following two sections.

We now describe our algorithm for updating fluid grid quantities un
ij and pn

ij and the IB

configuration Xn
ℓ

from time tn to time tn+1. The algorithm proceeds in four main steps:

Step 1: Compute the force density Fn
ℓ

based on the current IB configuration Xn
ℓ

as described in
Section 2.5.

Step 2: Spread the force density onto fluid grid points using a discrete representation of the
delta-function convolution in Eq. (2.4)

fn
ij =

Nb

∑
ℓ=1

Fn
ℓ δh(xij−Xn

ℓ )A, (2.6)

where δh(x) is a regularized delta function given by

δh(x)=
1

hxhy
φ

(
x

hx

)
φ

(
y

hy

)
, (2.7)

with

φ(r)=

{
1
4

(
1+cos(πr

2 )
)

, if |r|"2,

0, otherwise.
(2.8)

The scaling factor A has units of length for forces generated by the 1D wall interfaces
(for which (2.6) approximates a line integral) whereas A has units of area for the 2D
biofilm region. To ensure that Eq. (2.6) is a consistent representation of the corresponding
integrals under grid refinement, A is inversely proportional to the number of IB points.
Details on the precise expression used for A in each case are provided in Section 2.5.

Step 3: Integrate the Navier-Stokes equations using Chorin’s split-step projection scheme:

a. Compute an intermediate velocity u
(1)
ij by updating the velocity only for the contri-

bution from the IB elastic force:

ρ

⎛

⎝
u
(1)
ij −un

ij

∆t

⎞

⎠= fn
ij. (2.9)
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b. Compute intermediate velocities u
(2)
ij and u

(3)
ij by applying convection and diffusion

terms using an alternating direction implicit (ADI) approach:

ρ

⎛

⎝
u
(2)
ij −u

(1)
ij

∆t
+un

ijD
0
xu

(2)
ij

⎞

⎠=µD+
x D−

x u
(2)
ij , (2.10)

ρ

⎛

⎝
u
(3)
ij −u

(2)
ij

∆t
+un

ijD
0
yu

(3)
ij

⎞

⎠=µD+
x D−

x u
(3)
ij . (2.11)

The operators D+
x and D−

x refer to the standard first-order forward and backward
difference approximations of the x-derivative, and D0

x is the standard second-order
centered difference approximation. Analogous definitions apply for the y-derivative
approximations D+

y , D−
y and D0

y. Equations (2.10) and (2.11) thus represent periodic
tridiagonal linear systems for the intermediate velocities.

c. Project the intermediate velocity u
(3)
ij onto the space of divergence-free vector fields

by first solving a Poisson equation for the pressure pn+1
ij

∇h ·∇h pn+1
ij =

ρ

∆t
∇hu

(3)
ij , (2.12)

where ∇h = (D0
x,D0

y) is a centered approximation of the gradient operator and the
discrete Laplacian ∇h ·∇h yields a wide finite difference stencil that spans four grid
points in each direction as described in [50]. Because of the periodic boundary con-
ditions, the pressure Poisson equation is solved most efficiently using a fast Fourier
transform (FFT). Finally, the velocity projection is completed via the correction

un+1
ij =u

(3)
ij −

∆t

ρ
∇h pij. (2.13)

Step 4: Evolve the immersed boundary to time tn+1 using

Xn+1
ℓ

=Xn
ℓ+∆t∑

i,j

un+1
ij δh(xij−Xn

ℓ )hxhy. (2.14)

The IB algorithm explained above is first-order accurate in both time and space. Despite the
use of second-order differences for spatial derivatives, the spatial accuracy reduces to first order
owing to the particular choice of interpolation used for spreading the fluid velocity onto the
immersed boundary [37].

This algorithm has the advantage that it is simple and easy to code, although it suffers
from a fairly strict stability restriction on the time step owing to the explicit treatment of the IB
forcing term in Step 1 of the algorithm. We implement the above algorithm using MATLAB®,
and when that is combined with the extra cost of implementing a realistic detachment criterion
(see details Section 3.3) our approach is restricted to fairly short-time simulations. The scope of
this paper is therefore limited to the study of biofilm deformation and detachment in the early
stages up until a quasi-steady biofilm configuration in reached. Any full-scale implementation
of the detachment criteria described in this study would therefore benefit from a more efficient
IB implementation such as the fully implicit approach in [38] or one of the parallel approaches
developed in either [24] or [62].
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2.4 Discrete representation of walls and biofilm

In this section, we describe the discretization of the immersed boundaries (walls and biofilm)
in terms of a network of IB points connected by springs. Section 2.5 will then provide details
of the force density calculations based on this discrete IB configuration.

We begin with the horizontal walls at locations y=0 and H (labeled e-f and g-h in Fig. 1) that
are each replaced by a 1D periodic array of IB points stretching across the domain. Adjacent
wall points are not explicitly connected to each other, but instead each IB point is connected
by a very stiff spring to a corresponding tether or target point that initially occupies the same
position as the IB point. The tether forces generated by these springs constrain the IB points to
remain close to their target locations and hence mimic a solid wall. The initial IB point spacing
hwall is chosen so that hwall <

1
2 max(hx,hy), which helps to control numerical errors that would

otherwise lead to significant leakage of fluid between IB points [43].

Next we consider the discrete representation of the biofilm colony, which is obtained by
triangulating the biofilm region, placing IB points at the nodal locations, and constructing a
network of Hookean springs corresponding to the edges in the triangulation. The spring stiff-
ness is chosen to approximate the elastic properties of an actual biofilm material. The biofilm
is attached to the lower wall by connecting points along the bottom of the colony to a corre-
sponding wall IB point with a stiff spring, where each pair of points initially occupies the same
location. To ensure that such a spring network mimics a mechanically isotropic biofilm, we use
an initial triangulation that has approximately uniform shape and size of the elements. For this
purpose, we use the open-source MATLAB package DistMesh of Persson and Strang [41]. The
average spacing between biofilm IB points is initially chosen to be roughly equal to one-third of
the fluid grid spacing. This choice is motivated by Vo et al. [57] and ensures that the convective
flow inside the biofilm is negligible, so that the biofilm acts as an impermeable material. Nev-
ertheless, we note that during the course of our biofilm simulations as the biofilm deforms and
IB points reach their maximum separation, it is possible for portions of the biofilm colony to
experience a small apparent permeability. We will return to this point when devising a method
for approximating the interfacial shear stress in Section 3.1.

Fig. 2 depicts triangulations of two initial biofilm shapes used in this study, one a super-
ellipse with height Hb =75 µm, and the other a mushroom-shaped biofilm colony with height
Hb ≈ 280 µm. A coarser mesh is depicted than what is actually used so that the shape and
distribution of triangles are evident. IB simulations with a super-ellipse show that the sharp
90 degree corners at the intersection between the biofilm colony periphery and the bottom wall
cause localized discontinuities in the slope of the biofilm colony-fluid interface to develop at
these locations as the biofilm colony begins to deform. We believe this is due to the corner-
type singularities appearing in the fluid that are communicated to the immersed structure via
delta function interpolation. In actual biofilms, such sharp corners seldom occur and so we
instead smooth out the corners using a quarter-circular curve or fillet. As depicted in Fig. 2(a),
the size of the fillet is kept small so as to minimize its influence on either the biofilm or the
corresponding elastic forces.

2.5 Discrete force density calculation

As indicated earlier, the force density function consists of contributions from two classes of im-
mersed boundaries: horizontal rigid walls (Fwall) and elastic deformable biofilm regions (Fbio).
The force contribution in both cases is calculated using a discrete specification that is defined
in terms of the current configuration of IB points in either walls or biofilm.
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(a) Super-ellipse shape, with filleted corners at the wall. (b) Mushroom shape.

✻

❄

75 µm

✻

❄

280 µm

Figure 2: Quasi-uniform triangulations generated by DistMesh for: (a) a super-elliptical biofilm colony with height
Hb=75µm and mean edge length 1.5 µm; and (b) a taller mushroom-shaped colony with mean edge length 4 µm.

2.5.1 Top and bottom wall forces

The discrete wall force arising at any given wall IB point is determined from the stretched state
of the spring of zero resting length that connects it to the corresponding tether point, yielding
a force density

Fn
wall,ℓ=κwall (X

n
wall,ℓ−Xn

teth,ℓ), (2.15)

where κwall (g/cm2 s2) is the spring stiffness, and Xn
wall,ℓ and Xn

teth,ℓ are the coordinates of the
wall at tether points at time level n. For the stationary bottom wall all tether points are fixed in
time, whereas the top wall tether points move with a given constant velocity (Uwall,0) accord-
ing to

Xn+1
teth,ℓ=Xn

teth,ℓ+(Uwall,0)∆t mod(W,H), (2.16)

where the “modulo” operator ensures that IB points remain inside the domain by imposing the
periodic boundary condition in the horizontal direction. By choosing κwall sufficiently large,
we ensure that the wall IB points do not deviate significantly from their tether point locations
throughout a simulation. For both sets of wall IB points, we set the integral scaling factor in
Eq. (2.6) equal to the tether point spacing, A=hwall .

2.5.2 Biofilm forces

The force density at an IB point within the biofilm region is determined by summing up the
elastic force contributions coming from all springs connected to that node in the triangulation.
Any given spring link is identified by an index pair ℓ,m corresponding to two IB points with
coordinates Xn

ℓ
and Xn

m. The elastic force density contribution at node ℓ due to spring ℓ,m acts
in the direction of the vector dn

ℓm = Xn
ℓ
−Xn

m joining nodes ℓ and m. By denoting the resting
length of this spring d0

ℓm, the force density Fn
bio,ℓ at node ℓ owing to all springs attached to that

node can be written as [1]

Fn
bio,ℓ=

κbio

d0

Nb

∑
m=1

Iℓm
dn
ℓm

dn
ℓm

(dn
ℓm−d0

ℓm)

d0
ℓm

, (2.17)



12

where κbio is the spring stiffness coefficient (g/cms2), d0 is the average spring resting length
and dℓm = ∥dℓm∥. The symbol Iℓm is a square connectivity matrix of dimension Nb×Nb whose
entries are either 1 or 0 depending on whether or not nodes ℓ and m are connected. Implicit in
this notation is the fact that the summation is only done over pairs of nodes that are connected
by an edge in the network. The scaling factor A in Eq. (2.6) for the biofilm force spreading term
is taken equal to the average area of a triangle in the biofilm at its rest state, which is equal to the
total initial area divided by Nb (and hence has units of cm2). Finally, following the arguments
of Alpkvist and Klapper [1], we can ensure that the biofilm deformation is independent of grid
refinement by scaling the spring stiffness value with the nodal mean distance d0 and setting
κ̃bio =κbio/d0.

3 Interfacial shear stress, drag and lift forces, and detachment

3.1 Computing forces on the biofilm-fluid interface

Determining the forces acting on a biofilm colony as it deforms in response to fluid shear is of
fundamental importance in this study. The most common global measures of hydrodynamic
force in such FSI simulations are the drag and lift force. In addition, we are interested in cal-
culating the local interfacial shear stress along the biofilm-fluid interface, owing to its essential
role in determining both the mode and extent of biofilm colony detachment. Drag and lift forces
are typically calculated in the IB framework by summing the corresponding components of the
IB force along the interface [22, 33]. Instead, we follow the approach of Williams, Fauci and
Gaver [63] (which we refer from this point on as WFG) wherein the traction force is first calcu-
lated from the interfacial shear stress and then integrated along the biofilm-fluid interface. Our
aim in this section is therefore to first obtain an expression for interfacial shear stress, and then
to derive expressions for the drag and lift forces.

Evaluating interfacial stress in the IB framework is complicated not only by the diffuse
nature of immersed boundaries owing to regularized IB forces, but also because of the spatial
averaging inherent in the velocity no-slip boundary condition. If not handled appropriately,
both of these steps can introduce large errors in interfacial shear stress. This issue was studied
by WFG [63] who proposed two methods for calculating the tangential interfacial shear stress
based on the equation

t·[σ]·n
︸ ︷︷ ︸

Jump in FS

=−
t·F

| ∂X
∂s |︸ ︷︷ ︸

WS

. (3.1)

Here, X(s,t) is a parametric representation of the biofilm-fluid interface, n= ∂X
∂s /| ∂X

∂s | is the unit
normal vector (directed outward from the biofilm into the surrounding fluid), t is the counter-
clockwise tangent vector, σ=−p1+µ(∇u+∇uT) is the fluid stress tensor, and square brackets
[·] denote the jump in a quantity across the interface. WFG proposed evaluating the tangential
stress using either side of Eq. (3.1): the left hand side requires calculating the jump in fluid
stress across the biofilm-fluid interface, and so is referred to as the FS method; whereas the right
hand side involves local IB force densities, and is called the wall stress or WS method. WFG
performed IB simulations of 2D Poiseuille flow in a channel, with and without obstructions,
and drew the following conclusions about the relative merits of these two methods:

• On a curved boundary, the WS method over-estimates shear stress in comparison with
the FS method.

• In order to maximize accuracy with the FS method, the fluid shear stress associated with
an IB point on the interface should be evaluated at a point located inside the domain,
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directed along the normal vector and separated from the boundary by a distance equal to
the fluid grid spacing. The fluid grid cell within which this point falls is called the interpo-
lation box because it defines a set of 4 fluid grid points that will be used for interpolating
the stress.

• For a curved immersed boundary, the estimate for shear stress at certain IB points can
be adversely affected when the boundary intersects the interpolation box and a portion
of the interpolation box lies outside the fluid region. Therefore, only those stresses de-
termined using interpolation boxes that lie entirely on one side of the interface should
be included, and for this purpose WFG designed an exclusion filter that omits any such
unwanted stress contributions.

We implemented the WFG exclusion filter approach and found that while it works well for
the simple immersed boundaries considered in [63], the accuracy of the shear stress calcula-
tion degrades for the highly curved interfaces that are so common in biofilm applications. We
therefore developed a modified version of the exclusion filter mentioned above that handles
highly curved boundaries in a robust fashion.

We begin by explaining the WFG exclusion filter in reference to Fig. 3, which depicts the
IB points Xint

ℓ
for ℓ= 1,2,.. . ,Nint lying along a biofilm-fluid interface, ordered in the counter-

clockwise direction. For each IB point, the outward unit normal nℓ is computed using a local
cubic Lagrange interpolation procedure as explained in [68]. We then identify two points that
will be used to evaluate the stress, XEout

ℓ =Xint
ℓ
+hxnℓ and XEin

ℓ =Xint
ℓ
−hxnℓ, which lie on either

side of the interface located a distance hx along the outward/inward normals from Xint, respec-
tively (assuming here that hx = hy). The interpolation boxes or fluid grid cells in which these

two evaluation points XEout
ℓ and XEin

ℓ lie are denoted abcd and a′b ′c ′d′, and their respective
centroids by XCout

ℓ and XCin
ℓ . Then, we calculate the minimum distance from the biofilm-fluid

Biofilm 

Fluid 

n 

t 

anti-clockwise 

a 

c 

b 

d 

a' 

c' 

b' 

d' 

(a) 

(b) ( c ) 

Figure 3: (a) The exclusion filter uses fluid grid cells abcd and a ′b ′c′d ′ as the two interpolation boxes, determined by
extending an IB point along the outward and inward normals. For the sake of clarity, IB points lying inside the biofilm
are not shown here. Distances from the interpolation box to the IB can be calculated in two ways as shown in the
inserts: (b) measured from the centroid of the interpolation box, or (c) measured as the shortest distance from the
edges.

interface to the centroids of the two interpolation boxes (referring to Fig. 3(b)):

MDout
ℓ =min

m

(
Dout

ℓm

)
and MDin

ℓ =min
m

(
Din

ℓm

)
, (3.2)
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where m ranges over 1,2,.. . ,Nint, and Dout
ℓm and Din

ℓm represent the distance between IB point m
and the centroid of the two interpolation boxes associated with the ℓth IB point.

The main principle behind the WFG exclusion filter [63] is to base stress calculations only
on those points that are most representative of the fluid flow around the biofilm colony, first
by excluding interpolation boxes that are cut by the interface, and second by choosing stress
evaluation points XE that are as far from the interface as possible (so that they are least affected
by the regularized IB force). To this end, we identify IB points ℓ for which MDℓ has a local
maximum, while also requiring that no interpolation box be used for more than one stress
calculation.

As mentioned above, when this WFG filter is applied to biofilms with highly curved in-
terfaces, the accuracy of the stress approximation degrades. One cause of this degradation is
that certain portions of the interface may end up with few IB points included, leading to poor
resolution. To address this problem, we propose a modification of the WFG exclusion filter
that is implemented in Algorithm 1 for stresses on the outer (fluid) side of the interface; only
minor changes are required for stresses on the inner (biofilm) side. This new filter makes the
following three modifications to the basic WFG exclusion filter:

• In step 8, check whether each interpolation box is cut by the biofilm-fluid interface.

• In step 11, compute the minimum distance between the biofilm-fluid interface and the
edges of the interpolation box abcd as shown in Fig. 3(c), rather than the centroid in the
original filter. This provides additional resolution by differentiating between nearby IB
points that are equidistant from the centroid, since points are not equally-spaced from
the edges of the box (compare Figs. 3(b,c)). The minimum distance calculation from the
edge of an interpolation box is performed using a fast and elegant algorithm from [4] that
introduces no significant additional cost.

• In step 18, the strong local maximum criterion is relaxed and we instead introduce a new
user-specified filtering parameter ϵmin. This change ensures (for an appropriate choice
of ϵmin) that we retain some IB points that would otherwise have been rejected by the
original WFG filter.

After executing Algorithm 1, we obtain a list of IB points at which fluid stress tensor compo-
nents can be estimated inside corresponding interpolation boxes. We first determine approx-
imations of the velocity derivatives at the corners of each interpolation box using one-sided
second-order differences, where the points included in the difference stencils are chosen to lie
entirely inside (or outside) the biofilm colony as determined by the unit normal to the inter-
face. We then take the velocity derivatives and pressures, and apply bicubic interpolation [45]
to determine corresponding values at the stress evaluation point, which are then combined to
obtain the stress tensor components, σ11, σ22 and σ12 = σ21. In most cases, the set of IB points
selected for computing the stress tensor components inside and outside the biofilm colony are
different; therefore, computing stress jumps requires that stresses be interpolated onto points in
each set. We may then obtain all necessary values of the the stress jump [σ] and the tangential
component of the interfacial shear stress, t·[σ]·n. Finally, the drag and lift forces are computed
by integrating the jump in shear stress along the biofilm-fluid interface using

(
fD

fL

)
=
∫
(n1,n2)·

(
[σ11] [σ12]
[σ21] [σ22]

)
dS. (3.3)

3.2 Computing the averaged equivalent continuum stress inside the biofilm

In our IB model, the biofilm continuum is replaced by a network of discrete springs wherein
the elastic restoring forces arising from stretched/compressed springs take the place of stress
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Algorithm 1 Modified WFG exclusion filter, which determines a list of IB points (pt list) and
interpolation boxes (box list) for stress calculations.

1: for all interface IB points Xint
ℓ

do
2: Compute the outward unit normal nℓ.
3: Locate the evaluation point XEout

ℓ =Xint
ℓ
+hxnℓ.

4: Identify the interpolation box abcd corresponding to the fluid cell containing XEout
ℓ .

5: Add abcd to the sorted list box list and remove duplicates.
6: end for
7: for all interpolation boxes abcd∈ box list do
8: if abcd is intersected by any of the Nint−1 line segments comprising the biofilm-fluid

interface then
9: Remove abcd from box list.

10: else
11: Determine the minimum distance MDout

ℓ
from the edges of box abcd to the biofilm-fluid

interface, and the corresponding IB point ℓ.
12: Store MDout

ℓ
and abcd in the data structure for IB point ℓ.

13: end if
14: end for
15: Initialize pt list to contain a list of all interface IB points.
16: for all Xℓ∈ pt list do
17: Let abcd be the interpolation box corresponding to Xℓ.
18: if either of the neighbouring IB points ℓ±1 has the same interpolation box abcd

or the minimum distance MDℓ<ϵmin then
19: Remove Xℓ from pt list.
20: end if
21: end for
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and strain in an real elastic continuum. The most natural way to simulate biofilm detachment
within such a spring network representation is to cut any spring links for which the local strain
exceeds a critical value, as explained in [1, 27]. However, this approach suffers from several
drawbacks. First of all, the force resulting from stretching or contraction of a 1D spring element
cannot accurately capture the actual strain in an elastic continuum and consequently there is no
direct way to determine a critical spring strain threshold based on measured biofilm mechani-
cal properties. This contrasts markedly with other approaches such as [7, 13, 44] that discretize
the solid mechanics equations directly and employ a more physically realistic von Mises yield
stress criterion to initiate detachment. In addition, there is no reliable way in the spring net-
work approach to determine spring parameters so as to ensure that different triangulations
exhibit similar detachment dynamics under the same flow conditions.

In order to bridge this gap between continuum mechanics-based biofilm models and the
discrete IB spring-based model, we introduce the notion of a stress tensor defined at each node
in the network. This is accomplished by assuming that there is an equivalent continuum rep-
resentative elementary area or REA surrounding each node, within which we compute an av-
erage value of the stress tensor components in terms of the spring forces acting on that node.
The primary motivation for this definition comes from the Discrete Element Method (DEM) for
computing microstructural stress in a granular medium [5, 20]. In the DEM, the dynamics of a
granular medium are determined by treating each grain separately and solving the governing
force balance equations under the combined action of grain contact forces, body forces and ex-
ternal forces. In place of grains we have IB points, and our Hookean spring connections replace
the contact forces between the grains.

3.2.1 Constructing the REA around each IB point

In contrast with DEM simulations of granular media that identify an REA with a Voronoi cell
constructed from a Delaunay triangulation [5], we employ instead a control volume finite el-
ement method construction [59] that is based on a (non-Delaunay) triangulation generated by
DistMesh [41]. For each biofilm point labelled I in the triangulation, the corresponding REA
is constructed by joining with straight lines the centroids of all surrounding triangles to the
mid-points of the corresponding edges (springs) emanating from node I as depicted in Fig. 4.
If there are m springs connected to node I, then the corresponding REA is a polygon with 2m
sides. By this construction, we note that the area A of the REA around a node (which is required
for calculating the stress tensor later in Eq. (3.12)) is one-third of the total area of all triangles
surrounding the node. This REA construction extends in a straightforward manner to volumes
in three dimensions.

3.2.2 Computing the equivalent continuum stress tensor

Consider the REA surrounding a point XI in the triangulation, pictured as a dashed polygonal
region in Fig. 4. Denote the REA and its boundary by P and ∂P respectively, and let A refer
to the area of P . Suppose that an equivalent continuum material occupies the REA, with stress
field having Cartesian components σ

eq
ij for i, j=1,2. Then the average stress over P is

σ
eq
ij =

1

A

∫∫

P
σ

eq
ij dA, (3.4)

which can be manipulated to obtain

σ
eq
ij =

1

A

∫∫

P
σ

eq
kj xi,k dA=

1

A

∫∫

P

[
(σeq

kj xi),k−xi σ
eq
kj,k

]
dA,

where the subscript “,k” denotes a k-component derivative and the Einstein summation con-
vention is assumed for repeated indices. The divergence theorem may then be applied to the
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Figure 4: The representative elementary area (REA) surrounding IB node I corresponds to the polygonal region P
(shown using dashed lines) connecting the centroids (a,b,c,d,e) of the surrounding triangles to mid-points (j,k,l,m,n)
of the edges emanating from node I.

first term to get

σ
eq
ij =

1

A

(∮

∂P
σ

eq
kj xink dS−

∫∫

P
xi σ

eq
kj,k dA

)
. (3.5)

Now consider the two types of force that can act on the REA: a surface traction force Tj(x)
that acts at points on the REA boundary, and a body force gj(x) acting at interior points. Im-
posing a force balance on the boundary yields

σ
eq
ij ni(x)=Tj(x) (3.6)

at points x∈∂P , where ni denotes the outward-pointing unit normal vector to ∂P . We note here
that the convention in solid mechanics is to use the inward normal (which ensures compressive
stresses are positive), however we break this convention for the sake of consistency with rest of
the text. Balancing forces in the interior of the REA gives

σ
eq
ij,i + ρgj =ρaj, (3.7)

where aj is the j–component of acceleration. Substituting Eqs. (3.6)–(3.7) into (3.5) then yields

σ
eq
ij =

1

A

(∮

∂P
xiTj dS +

∫∫

P
ρxi(gj−aj)dA

)
. (3.8)

We now introduce notation for IB nodes Xα, α= J,K,L,M,N, that are immediate neighbors
of node I in the triangulation shown in Fig. 4, along with corresponding edge vectors Eβ for
β= j,k,l,m,n directed outward along springs (with Ej =XJ−XI when β= j, for example). The
edge mid-points are then denoted by Zβ =XI+Eβ/2, with corresponding spring forces Fβ. If
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we associate the boundary traction force T(x) for x ∈ ∂P with the spring forces Fβ, then the
boundary integral term in (3.8) may be rewritten in component form as

∮

∂P
xiTj dS= ∑

β∈∂P

Z
β
i F

β
j . (3.9)

Substituting this expression into (3.8) yields

σ
eq
ij =

1

A

(

∑
β∈∂P

Z
β
i F

β
j +

∫∫

P
ρxi(gj−aj)dA

)

. (3.10)

We assume in this paper that the biofilm is neutrally buoyant and that the equivalent contin-
uum stress is computed in a steady-state configuration for which inertial forces are negligible;
consequently, the integral term in Eq. (3.10) is zero. The remaining summation term can be
further simplified by substituting Zβ =XI+Eβ/2 and using the equilibrium condition

XI
i ∑

β∈∂P

F
β
j =0, (3.11)

to obtain
(

σ
eq
ij

)

I
=

1

2A ∑
β∈∂P

E
β
i F

β
j . (3.12)

We note that this averaged equivalent continuum stress tensor is guaranteed to be symmet-
ric (σ

eq
ij = σ

eq
ji ), which should be contrasted with the analogous derivation for granular media

where the DEM approach leads to a non-symmetric stress tensor owing to contact forces with
a nonzero moment about grain centers [5]. This does not happen in our IB spring network
because elastic spring forces always act along lines connecting IB points and hence do not gen-
erate any such moments.

For our choice of polygonal REA around node I, the area A in (3.12) is equal to one-third of
the total area of all triangles surrounding the node. If we apply our stress calculation method to
a biofilm that only deforms and experiences no detachment, the number of springs connected
to each node is constant and a simple data structure can be used to store the information needed

to compute stress. Furthermore, the area A and edge vector components E
β
i are easily updated

using the current IB node coordinates. However, in the more complicated case with detach-
ment, extra geometric information must be stored along with the IB point data; for example,
we must keep track of the changing number springs connecting each IB node as well as the
number of active triangles around each node. The necessary changes to the code and data
structures are straightforward, and the added computational cost is negligible in comparison
to that for the IB algorithm.

3.3 Biofilm detachment criterion

As mentioned earlier, we handle biofilm detachment using a yield stress criterion from the
von Mises stress theory, which is one of many approaches used to model failure of a duc-
tile material subjected to external loading [3]. The von Mises yield stress criterion has been
employed successfully in the context of biofilm modeling [7, 13, 44], even though the biofilm
composite (composed of cells, EPS and fluid) is not strictly a ductile material. In two dimen-
sions, the von Mises yield stress at any IB point inside the biofilm region can be expressed in
terms of the averaged equivalent continuum stress tensor components in Eq. (3.12) as

(σvon)
2=(σeq

11)
2−σ

eq
11σ

eq
22+(σeq

22)
2+3(σeq

12)
2. (3.13)
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The value of σvon is then compared to some threshold yield stress, which is a measure of the
biofilm cohesive strength. If σvon exceeds the threshold, then detachment is initiated by sever-
ing all springs connecting it to neighbouring IB points. This should be contrasted with other
approaches based on edge strain [1, 27], wherein springs are cut individually based on some
threshold strain value and an IB point is only detached from the colony when all springs con-
nected to it are severed.

The detachment process in the case of biofilms is complicated somewhat by the fact that
yield strength varies throughout the biofilm colony. For example, the strength with which
the base of the biofilm colony adheres to the substratum, which we call the biofilm adhe-
sive strength Σadh, is several orders of magnitude larger than the cohesive strength of the bulk
biofilm material. Furthermore, the bulk cohesive strength also varies since the portion of the
colony nearest the biofilm-fluid interface has a stress threshold Σext

coh that is significantly smaller
than the value Σint

coh in the interior. Consequently, we have three threshold values satisfying
Σext

coh<Σint
coh<Σadh, which leads to a natural separation of the biofilm into three zones – substra-

tum, interface and interior.
With this in mind, we propose the following detachment strategy. First, for any given IB

point Xℓ we calculate the shortest distance from point ℓ to the substratum and to the biofilm-
fluid interface, denoted by Dsub

ℓ
and Dext

ℓ
respectively. We then select a yield stress criterion to

be imposed by determining which zone the IB point belongs to:

Zone 1: consists of all IB points near the substratum that satisfy Dsub
ℓ

" ϵsub, where ϵsub is a
user-specified parameter. In this case, the point detaches whenever σvon !Σadh.

Zone 2: consists of any of remaining IB points near the biofilm-fluid interface that satisfy Dext
ℓ
"

ϵext. Here, the point detaches when σvon!Σext
coh.

Zone 3: consists of all remaining interior biofilm points, which detach if σvon!Σint
coh.

Calculating the distance Dsub
ℓ

is trivial because the bottom wall in our numerical simulations is
parallel to the x–axis. However, the calculation of Dext

ℓ
is more involved owing to the irregular

biofilm shape and also because the colony deforms in time, hence requiring that Dext
ℓ

be recal-
culated in each time step. Therefore, care must be taken in order to design an efficient algorithm
for estimating Dext

ℓ
; for this purpose we employ a finite element-based signed distance function

for triangles developed in [17], which is an extension of the fast marching method. The cost
of this algorithm can be optimized by only calculating the distance function at IB points lying
within a narrow band near the interface. As an illustration, Fig. 5 shows sample contour plots
of Dext

ℓ
for two different biofilm colony shapes.

The treatment of biofilm detachment is performed after completing Step 1 (the force calcu-
lation step) in the immersed boundary algorithm. The steps in the yield stress based detach-
ment process are summarized in Algorithm 2. We note that in the implementation outlined
here, we make use of three integer arrays of “status flags” – named * STATUS with * = INODE,

ISPRING, ITRI – one each for IB nodes, springs and triangles. These flags are set to either 0 or
1 depending on whether the status is detached or active, respectively.

4 Numerical simulations

4.1 Model parameters

Table 1 summarizes all parameter values used in our numerical simulations of biofilm–fluid
interaction. The parameters are separated naturally into the following categories:

• Biofilm geometry: We took four different biofilm colony shapes, one a semi-circle of radius
20µm and width Wb =40 (labeled SEMI20), and three (semi-)super-ellipses having width
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Figure 5: Contours of the distance function Dext
ℓ

(labels in cm) from any given IB point to the biofilm-fluid interface,
computed using the algorithm in [17]. Two biofilm colonies are shown near steady-state: (a) the elliptical configuration
SUP75, and (b) a mushroom-shaped colony.

Algorithm 2 Biofilm detachment algorithm based on equivalent continuum stress and the
von Mises yield stress criterion.

1: For each IB node ℓ, compute the distance from the substratum, Dsub
ℓ

.
2: Identify IB nodes ℓ that lie on the interface, and assign Dext

ℓ
=0 there.

3: At all remaining IB nodes, compute the distance function Dext
ℓ

using the algorithm in [17].
4: for all IB nodes Xℓ that are active (with INODE STATUS = 1) do
5: Compute the REA area A as the sum of areas of all active triangles (with ITRI STATUS =

1) neighbouring node ℓ.
6: Use all active springs (with ISPRING STATUS = 1) to calculate the equivalent continuum

stress components σ
eq
ij from Eq. (3.12).

7: Compute the von Mises yield stress σvon using Eq. (3.13).
8: if Dsub

ℓ
"ϵsub then

9: Let THRESHOLD = Σadh.
10: else if Dext

ℓ
"ϵext then

11: Let THRESHOLD = Σext
coh.

12: else
13: Let THRESHOLD = Σint

coh.
14: end if
15: if σvon ! THRESHOLD then
16: Let INODE STATUS = 0 (detached).
17: For each spring adjacent to this node, set ISPRING STATUS = 0.
18: Use INODE STATUS and ISPRING STATUS to update the status of the triangle associated

with the detached node to inactive (ITRI STATUS = 0).
19: end if
20: end for
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Table 1: Parameter values for the various numerical test cases.
Description Values

Fluid domain:
Domain height H=3×Hb

Colony spacing Db=50, 150, 250, 400µm(Wb,3Wb,5Wb,8Wb)
Biofilm shape (width and height):

Semi-circle: Wb =40µm, Hb =20µm (SEMI20)
Super-ellipse: Wb =50µm, Hb =25µm (SUP25)

Wb =50µm, Hb =50µm (SUP50)
Wb =50µm, Hb =75µm (SUP75)

Fluid/biofilm grid:
Fluid grid spacings hx =hy =0.5µm (SEMI20, SUP25)

hx =hy =0.75µm (SUP50, SUP75)
IB wall point spacing hwall =

1
4 min(hx, hy)

Biofilm spring rest-length d0=0.15µm (SEMI20, SUP25)
d0=0.225µm (SUP50, SUP75)

Fluid/biofilm material properties:
Fluid density ρ=1.0g/cm3

Fluid viscosity µ=0.01g/cms
Shear rate G=0.625s−1

Biofilm spring stiffness κbio =0.75d0, 7.5d0, 75d0 g/cm2 s2

Wall spring stiffness κwall =105 g/cm2 s2

Wb=50µm and height Hb=25, 50 and 75µm (labeled SUP25, SUP50, SUP75 respectively).
These dimensions are representative of typical biofilm colonies and also capture a range
of aspect ratios observed in early stages of biofilm colony growth.

• Fluid domain: The vertical spacing H between top and bottom channel walls is set to
triple the height of the biofilm colony (H = 3Hb) in order to minimize boundary effects.
Simulations reveal that at our results are relatively insensitive to changes in H. The width
of the fluid domain is Wb+Db, and values of Db =Wb, 3Wb, 5Wb and 8Wb were used to
study the effect of colony spacing.

• Fluid grid: We chose relatively small values of fluid grid spacing hx and hy that permit
accurate resolution of the biofilm colony. In particular, we aimed to ensure that recir-
culating eddies arising from flow separation are well captured. A constant time step of
∆t=10−5 s was used in all simulations.

• Biofilm grid: The mean spacing d0 between biofilm IB points was chosen to satisfy d0 "
1
3 min(hx, hy) as in [57] so as to avoid numerical errors due to leakage of fluid between
IB points. This value of d0 is provided to the DistMesh code as a measure of average
edge length for the biofilm triangulation; for example, the SUP75 biofilm colony with
d0=0.225µm yields a triangulation with 81,449 IB nodes and 222,659 edges.

• Fluid material properties: We take fluid parameters consistent with water: ρ = 1 g/cm3

and µ= 0.01 g/cms. The shear rate was set to G= 0.625 s−1 for all simulations, which is
high enough to induce large deformations in weak biofilm colonies while also attaining
a steady state over a relatively short time period (roughly 2–8 s). This shear rate corre-
sponds to a Reynolds number Re=ρGW2

b /µ=1.5625×10−3 for the case Wb=50µm, where
we have used the width of the biofilm colony as a length scale.
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• Biofilm material properties: To mimic weak biofilms with varying mechanical strength, we
choose several values of the IB spring stiffness corresponding to κ̃bio = 0.75, 7.5 and 75,
where we recall that κ̃bio = κbio/d0. The wall spring stiffness κwall = 105 is chosen much
larger so that wall points do not move appreciably.

In summary, we consider four different biofilm shapes, four colony spacings and three values
of the spring constant, corresponding to a total of 48 simulations with a single value of shear
rate G=0.625s−1.

4.2 Model validation: Channel with a rigid bump

Before applying our immersed boundary algorithm to the biofilm test cases outlined in the pre-
vious section, we first validate our numerical approach using a simpler set-up consisting of a
rectangular channel containing a rigid semi-circular bump on the bottom wall. The same prob-
lem was considered in Williams et al. [63] as an illustration of their exclusion filter approach
for interfacial stress calculation.

X/L
0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6

Fillet (R/10)Fillet (R/10) 9R/10

(b)

L

y=H/2
2H

y=3H/2

xy
(a)

Zoomed view in (b)

Figure 6: (a) Computational domain for the channel flow with a rigid bump. The fluid domain is a box of size L×2H
containing two parallel, horizontal walls at height y= H

2 and 3H
2 . Attached to the bottom wall is a filleted (smoothed)

semi-circular bump. The flow is driven from left to right through the central channel by imposing a constant (positive)
fluid body force. (b) Zoomed view of the semi-circular obstruction.

The problem geometry is shown in Fig. 6, consisting of a channel of width H constructed
from two parallel horizontal walls along y= H

2 and y= 3H
2 . The channel is embedded within a

larger rectangular fluid domain of size L×2H and periodic boundary conditions are imposed
the outer boundaries. A constant fluid body force fB(x)=(∆P/L,0) is applied at each fluid grid
point inside the channel, which in the absence of any obstruction would generate a parabolic
Poiseuille flow with pressure difference ∆P across the channel from left to right. However, an
obstruction is introduced within the channel consisting of an immersed boundary in the shape



23

of a semi-circle of radius 9R
10 and centered at ( L

2 , H
2 +

R
10). The corners connecting the bump to

the bottom wall are smoothed using quarter-circular fillets with radius R
10 as shown in Fig. 6(b)

that serve to regularize the IB shape and avoid flow irregularities near sharp corners.

The channel walls and semi-circular obstruction are represented using IB points, each of
which is connected by a single spring to a tether point that is fixed in space, and the spring
stiffness is chosen large enough that the IB points do not move appreciably. The spacing hwall

between adjacent IB points is chosen so that hwall "
1
2 min(hx, hy), which aims to minimize any

numerical errors arising from leakage of fluid across the immersed boundaries.

We choose parameter values the same as in [63], namely H = 0.1 m, L= 0.8 m, R= 0.05 m,
∆P/L =−105 kg/m2, µ = 25 kg/ms, ρ = 1 kg/m3 and κ = 109 kg/m2 s2. In contrast with the
CGS units used in the rest of this paper, we employ MKS units in this section only for ease
of comparison with the results in [63]. The fluid domain is discretized on a uniform grid of
512×128 points and we use a constant time step ∆t = 0.16ρh2

wall /µ. The Reynolds number
based on channel height is Re= ρ∆PH3/(8µ2L)≈0.02, which indicates that inertial effects are
negligible and permits us to make comparisons with the Stokes flow solution from Gaver and
Kute [21].

(a) (b)

Figure 7: (a) Dimensionless interfacial shear stress computed along a semi-circular obstruction in a channel. For
comparison, results are included from another IB approach [63] and the boundary element method [21]. (b) Close-up
view near the apex of the bump where shear stress attains a maximum.

The computed interfacial shear stress, non-dimensionalized by ∆P, is shown in Fig. 7(a)
along the central portion of the bottom wall including the semi-circular bump. Results are
presented for two values of the exclusion filter parameter, ϵmin = 0.15hx and 0.4hx . Also in-
cluded in this figure are numerical results computed with two other methods, namely the
WFG method with an FS-based exclusion filter [63], and the boundary element computations
of Gaver and Kute [21]. The results from our revised exclusion filter are within approximately
5% of WFG’s results, with the differences most pronounced on either side of the crest of the
bump (see Fig. 7(b)). The correspondence with WFG’s results improves as ϵmin increases from
0.15hx to 0.4hx , which can be explained as follows: even though the number of IB points re-
tained by the filter decreases with increasing ϵmin, the quality of those points is high because
they are separated further from the smearing effects of the interface.

A non-dimensional flow rate can be computed by integrating the computed velocity verti-
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cally along the channel inlet

Q=
12µL

H3∆P

∫ y= 3
2 H

y= 1
2 H

u(0,y)dy, (4.1)

yielding a value of Q=0.554 that agrees exactly with the result of WFG [63] for the same grid
resolution. We also compute the dimensionless drag

f ∗D =
L

RH∆P

∫

Γ
T1 dS, (4.2)

where T1 is the x–component of the traction force and Γ represents the portion of the bottom
wall corresponding to the semi-circular bump. Our simulations yield f ∗D =4.662 and 5.195 for
filter parameters ϵmin = 0.15hx and 0.40hx respectively, which should be compared with the
WFG result of 5.617. This discrepancy of 7–17% is acceptable in view of the increased flexibility
we gain from our modified filter in terms of being able to compute stress along strongly-curved
biofilm interfaces.

4.3 Simulating biofilm deformation: Flow structure and forces

In this section, we investigate the response of deformable biofilm colonies to a shear flow by
studying the effect of changes in various parameters on the biofilm shape, flow structure, hy-
drodynamic drag and interfacial shear stress.

(a)

Undeformed
Db = 50 µm
Db = 150 µm
Db = 250 µm
Db = 400 µm

(b)

Undeformed
Db = 50 µm
Db= 150 µm
Db= 250 µm
Db= 400 µm

Figure 8: Initial (undeformed) and steady-state (deformed) biofilm shapes with κ̃bio = 0.75 as the spacing between
colonies Db is varied. (a) Test cases SEMI20 and SUP25. (b) Test cases SUP50 and SUP75.

We begin by varying the inter-colony spacing Db for the four initial colony shapes SEMI20,
SUP25, SUP50, SUP75. Fig. 8 depicts the initial and final (steady-state) biofilm profiles for val-
ues of Db lying between 50 and 400µm, holding the stiffness parameter κ̃bio=0.75. The extent of
the deformation clearly increases as the biofilm height is increased, with the largest deforma-
tions occurring for the SUP75 colony. This behaviour is physically reasonable because longer
structures are not only more flexible but also extend further into the shear flow where they
experience a higher flow velocity. The extent of deformation also increases with the spacing
parameter Db, which is to be expected since the shear flow is more able to impinge between
colonies having a greater separation.

Note that our simulated biofilm colonies appear to simply shear to the right without ex-
hibiting any of the elongation or vertical lifting that is observed in the numerical simulations of
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Vo et al. [57, 58]. This discrepancy can be attributed to several sources: (a) Vo et al. used differ-
ent colony shapes having a sinusoidal profile that is much taller (corresponding to H=180µm);
(b) their spring stiffness is roughly 100 times larger than ours; and (c) they also considered a
much faster flow corresponding to Re=230 (based on hydraulic diameter of the square capil-
lary reactor as length scale) whereas we have Re= ρGW2

b /µ≈ 10−3 (based on a much shorter
length scale Wb corresponding to the biofilm width). It was also suggested in [58] that a signif-
icant contributor to elongation from lifting at high enough Reynolds number is inertial effects
arising from biofilm deformation as well as the nature of the flow surrounding the colony.

k bio/d0 = 75
k bio/d0 = 7.5
k bio/d0= 0.75

Figure 9: Final (steady state) biofilm shapes for different values of κ̃bio and constant colony spacing Db=250µm. The
super-ellipse test cases SUP25, SUP50 and SUP75 are shown.

We next investigate the effect of changes in the spring stiffness on the steady-state defor-
mation, taking values of κ̃bio = 0.75, 7.5 and 75 for three different initial colony shapes while
holding Db=250µm constant. Fig. 9 depicts the final deformed shapes from which we observe
that at the lowest shear rate, even a relatively modest value of biofilm stiffness κ̃bio ≈7.5 is suf-
ficient to resist deformation. Indeed, it is only when stiffness is reduced to κ̃bio =0.75 that any
significant bending of the biofilm colony occurs.

The drag force acting on the biofilm at steady state is then computed for all of simulations
above. Fig. 10 plots the drag force in each case as a function of colony spacing Db. Here, the
drag force has been non-dimensionalized using f ∗D = fD/(µGWb), where the reference value
µGWb can be thought of as the force exerted by a linear shear flow with shear rate G acting on
a very thin biofilm colony with Hb ≪Wb. The corresponding lift force is not shown because
lift is much smaller than drag (by at least a factor of 10), not to mention that lift force is much
less affected by changes in colony spacing. We observe from Fig. 10 that f ∗D is an increasing
function of Db, with the rate of increase being largest for the weakest biofilms having κ̃bio=0.75.
In particular, as Db increases from 50 to 400 µm, the drag force increases by a factor of 50% for
cases SUP25 and SUP50, with the largest colony in SUP75 exhibiting a roughly 100% increase in
drag. These results should be contrasted with the simulations of rigid biofilms in [52] where the
drag force was non-monotonic, attaining a local minimum at some intermediate value of Db.
Because the drag fails to level out at the upper end of the range Wb"Db"8Wb considered here,
we would have to explore significantly larger values of colony separation in order to obtain
results consistent with an isolated biofilm colony. Because a much larger domain size would be
required, we have not investigated this high-Db regime for reasons of high computational cost.

Another observation is that for stiffer biofilms (κ̃bio =7.5 and 75) organized into the closest-
spaced colonies (Db = 50 µm), the drag force increases by at most 20% as the colony height
increases from SEMI20 to SUP75, whereas the drag on the weaker biofilms (κ̃bio=0.75) increases
by more than 50%. This should be contrasted with the widest-spaced colonies (Db = 400 µm)
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Figure 10: Variation of dimensionless drag force f ∗D (at steady state) with colony spacing Db. Curves are shown for
four different initial colony shapes and for κ̃bio =0.75, 75.

where the drag increase for stiff biofilms is roughly 100% and over 150% for weak biofilms.
In the latter case, the majority of the drag increase occurs when the biofilm height increases
from 50 to 75 µm, which cannot be accounted for by the increase in colony surface area alone
(i.e., perimeter in 2D). We therefore conclude that biofilm colonies may be able to grow into tall
structures even if they are weak mechanically because of the protection they gain from having
other colonies in close spatial proximity.

More insight into the causes and extent of fluid-induced deformation can be derived by
visualizing the flow structure using path-lines or fluid particle trajectories. Fig. 11 depicts
four path-line plots for the SUP75 case, corresponding to biofilms that are weak/stiff (with
κ̃bio = 0.75, 75) and spaced closely/widely (Db = 50, 400). For the stiffer biofilm, the flow
over the widest-spaced colony in Fig. 11(d) clearly exhibits flow separation both upstream
and downstream of the colony. As the spacing between the stiff biofilm colonies is reduced,
the up/downstream eddies merge to form a single large eddy as pictured in Fig. 11(c), which
is similar to what has been observed in numerical simulations of rigid biofilms at high shear
rates [52, 66].

In the case of a weak biofilm, the eddy structure and dynamics are more interesting. In
narrow-spaced colonies (Db = 50) the deflection of the weak biofilm causes the single eddy
located between the neighbouring colonies to become distorted and “climb” the upstream face
as seen in Fig. 11(a). For more widely-spaced colonies (Db = 400) with two distinct eddies
present, the increased deformation in the weak biofilm causes the upstream eddy to shrink
while the downstream eddy grows, as shown in Fig. 11(b).

We remark that for the weak biofilms in Figs. 11(a,b), path-lines clearly traverse the interior
of the colony which corresponds to a very slow flow (slower by several orders of magnitude
than the flow outside the biofilm region). The spring network making up our simulated biofilm
therefore behaves like a porous medium, which has a very small permeability [51] that can be
attributed to small volume conservation errors that are well-studied in the context of the IB
method [23]. The porous flow is so small that it has minimal effect on the biofilm deformation



27

(a) Db =50µm, κ̃bio=0.75 (b) Db =400µm, κ̃bio =0.75

(c) Db =50µm, κ̃bio =75 (d) Db =400µm, κ̃bio=75

Figure 11: Pathlines for SUP75 showing the flow structure and biofilm deformation as a function of stiffness and colony
separation.
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or the flow, but it cannot be ignored when computing shear stress along the interface using
the FS method described earlier in Section 3.1. The porosity is particularly important along
portions of the biofilm–fluid interface that experience flow separation adjacent to recirculating
eddies on the upstream and downstream faces of the colony. The effect of the weak porous flow
inside the biofilm colony is accounted for in the FS method by including its contribution to the
jump term in Eq. 3.1. This requires performing the filtering operation twice: once to select IB
points suitable for calculating the fluid stress component outside the biofilm colony, and second
time for the stress inside. As mentioned earlier in Section 3.1, different IB points are selected
for the stress calculations inside and outside the biofilm colony, necessitating an interpolation
between the two sets of IB points. This is in contrast with the stress calculations of WFG [63],
where the interior flow was assumed to be weak and its contribution to the interfacial stress
was neglected. This assumption did not affect their calculated interfacial shear stress, since
there was no flow separation at the low Reynolds numbers they considered.

To conclude this section, we investigate the interfacial shear stress distribution along the
biofilm-fluid interface, which is depicted in Fig. 12 for weak/stiff biofilms (κ̃bio =0.75, 75) that
are closely/widely spaced (Db=50 and 400µm). The shear stress is plotted against the IB point
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Figure 12: Dimensionless interfacial shear stress plotted as a function of IB point index, numbered from left to right
along the biofilm-fluid interface. Results are shown for cases SEMI20, SUP25, SUP50 and SUP75, with two values of
colony spacing (Db =50, 400µm) and two stiffness values (κ̃bio =0.75, 75).
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index numbered from left to right along the interface (note that the total number of IB points
increases with the size of the colony). In all cases, the shear stress is non-dimensionalized using
the reference value µG, which corresponds to the steady uniform shear flow that would occur
in the absence of any obstacle. We adopt a sign convention that assumes stress is positive when
the flow adjacent to the biofilm-fluid interface is in the same direction as the primary channel
flow (i.e., from left to right). A zero shear stress indicates a point where flow separates and a
recirculating eddy attaches to the biofilm surface.

For each test case depicted in Figs. 12(a)–(d) there are four curves, which can be separated
into two pairs having similar shape: one pair corresponding to weak biofilms with high shear
stress, and the second to stiff biofilms with low shear stress. Within each pair of curves, in-
creasing the colony spacing from 50 to 400 µm causes the maximum shear stress to increase but
leaves the general shape of the stress curve unchanged; however, there is a slight downstream
shift of the location of the maximum stress for the three super-ellipse cases SUPNN.

In summary, these results indicate that both the magnitude of the shear stress and its varia-
tion along the interface can change significantly when the biofilm colony deforms. We will see
next that this has important implications for biofilm detachment.

4.4 Simulating biofilm detachment using equivalent continuum stress

To demonstrate the effectiveness of our equivalent continuum stress-based detachment strat-
egy, we now consider a different colony shape pictured in Fig. 1. This mushroom-shaped
colony features wide head and base sections connected by a relatively narrow stem. The reason
for using this shape is two-fold: first, these long and thin structures are more realistic especially
during the advanced stages of deformation just before a detachment event; and second, that it
allows comparison with other IB studies of biofilm deformation and detachment that use sim-
ilar mushroom shapes [1, 27]. Based on solid mechanics principles and experimental evidence,
we know that when such an elongated colony is subjected to a sufficiently strong shear flow, it
will rupture at a location inside the narrow stem region where the cross-sectional area is small-
est. Consequently, this scenario serves as a simple validation of our detachment algorithm.

The precise mushroom shape used in our simulations is extracted digitally from [1, Fig. 3a]
which in turn was taken from experimental images. We use the following values of the physical
and geometric parameters: H=300µm, Db=240µm, hx =hy =5µm, d0=1.25µm, G=0.625s−1

and κ̃bio = 15. As before, DistMesh is used to triangulate the initial biofilm region, yielding a
total of 6155 IB nodes connected by 6500 edges (springs). In the remainder of this section, we
present results using two different detachment strategies: the first based on spring strain; and
the second based on equivalent averaged continuum stress. In particular, we aim to identify
the drawbacks of the strain-based approach that in turn highlight the advantages of our new
equivalent averaged continuum stress approach developed in Section 3.

4.4.1 Spring strain-based detachment

We start by considering a detachment strategy based on spring strain, εℓm=dℓm/d0
ℓm−1, where

dℓm represents the length of a spring and d0
ℓm is the corresponding unstressed (or resting) length.

The central parameter in this detachment model is the critical strain, εmax, beyond which the
spring will break. Other studies employing a similar detachment criterion [1, 27] have used
εmax ≡ 1, which coincides with detachment occuring when a spring is stretched to twice its
resting length. The reason for this choice of critical strain was not justified, even though it is
evident on physical grounds that εmax should not be constant but rather depend on the strength
of the biofilm matrix (which in our IB model is expressed by κ̃bio).

As an illustration of strain-based detachment, we simulate flow over the mushroom-shaped
biofilm using the parameters indicated above. Fig. 13(a) depicts the resulting biofilm config-
uration at four equally-spaced times between t= 0 and 1 s. Unlike the SUPNN (super-ellipse
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shaped) test cases, we have not simulated the mushroom shaped colony for long enough time
to reach a quasi-steady state. Up to time t = 1 s, the mushroom shaped colony exhibits con-
tinuous deformation characterized by a near-constant IB point displacement velocity of ap-
proximately 60 µm/s (not shown in the figure). Fig. 13(b) shows the edges in the deformed
triangulation after 0.75 seconds, colored according to the local strain value. For the sake of
clarity, we have only shown the edges with strain greater than 0.1 (where positive strain cor-
responds to a spring that is stretched relative to the resting configuration). Clearly, the base of
the colony near the substratum experiences the highest strain, with values near 0.5. The next
highest edge strains (between 0.25 and 0.5) occur in sizable portions of the head and base as
well as a few points near the midsection of the stem region, which can be seen in the zoomed
view in Fig. 13(c). An alternate view of the stem is shown in Fig. 14(a), with the edges having
negative strain colored green, while edges with strain greater than 0.25 are colored magenta
(and all other edges shown in black). The high strain (magenta) edges are clearly aligned along
the long axis of the colony, whereas those experiencing compression (negative strain, green)
are aligned at an angle of 45–60 degrees to the main colony axis.

We now illustrate a critical drawback of the spring strain-based detachment methodology
that has not received attention in earlier biofilm IB studies [1, 27]. We assume that detach-
ment is initiated after 0.75 s of deformation and apply a critical strain threshold of εmax =0.25
that is significantly lower than the value 1.0 used in these other studies. Performing a single
detachment step yields the modified spring network shown in Fig. 14(b) (noting that in an ac-
tual detachment scenario, these springs would be severed gradually over time instead of all at
once). On comparing Figs. 14(a) and Fig. 14(b), we see that the edge connectivity around many
IB nodes in the stem has been altered so that there are now a significant number of rectangular
elements in the place of triangles. Based on the work of Lloyd et al. [35] we know that two
spring networks, one built of triangles and the other with rectangles, (but otherwise having the
same edge length and spring stiffness) will approximate equivalent elastic continua that have
different Young’s modulus. Therefore, the spring cutting operation we just performed has ef-
fectively introduced an instantaneous change in the local mechanical stiffness of the biofilm,
which is clearly undesirable and hence is a major disadvantage of the spring strain-based de-
tachment strategy.

4.4.2 Equivalent continuum stress-based detachment

We next apply the equivalent continuum stress-based detachment strategy to the same prob-
lem. The stress tensor components are computed using Eq. (3.12) after which the von Mises
yield stress is computed at each IB node using Eq. (3.13). Fig. 15 displays the von Mises stress
value inside the biofilm region at four time instants during its deformation, where we only
color those points with stress above the threshold 5 dyne/cm2. The von Mises stress has rela-
tively low values throughout most of the colony except in three areas: the stem region, near the
base where the colony attaches to the substratum, and in portions of the biofilm-fluid interface
that are subject to large fluid shear. The von Mises stress is discontinuous as well as noisy,
which is consistent with other numerical simulations of microstructural stress inside granular
materials [6, 20]. However, we emphasize that this behaviour is in stark contrast with the ap-
parently smooth von Mises stress field obtained by Towler et al. [54] for a simpler biofilm shape
using a finite element simulation.

We make no attempt here to draw any explicit correspondence between results from the
strain- and stress-based detachment strategies because the spring strain-based threshold pa-
rameter εmax cannot be translated into a von Mises yield stress value. However, we can still
compare the two by simulating detachment for the equivalent continuum stress methodology
using the same parameters. This time, we initiate detachment after 0.25 s of deformation and
choose the two distance threshold parameters ϵsub = ϵext = 2 µm (refer to Section 3.3). This
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Figure 13: (a) Deformation of the mushroom-shaped biofilm colony at various times in the interval t∈[0,1]s. (b) Edges
colored according to strain at t=0.75s. (c) zoomed view showing edges inside dotted box in (b).
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Figure 14: (a) Edges in the stem region inside the dotted box in Fig. 13(b). Magenta identifies edges with strain above
0.25 and green indicates negative strain, while all other edges are colored black. (b) Spring connectivity after cutting
all edges with strain greater than 0.25 at t=0.75s.
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Figure 15: Von Mises stress inside the deformed biofilm at a sequence of times. For purpose of clarity, only points
where the stress exceeds 5dyne/cm2 are colored.
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divides the mushroom shaped colony into three zones: in zone 1 near the substratum, the ad-
hesive strength is Σadh=10 dyne/cm2; for zone 2 near the biofilm-fluid interface, the interfacial
cohesive strength is Σext

coh = 0.1 dyne/cm2; and for zone 3 in the interior, the cohesive strength
is Σint

coh = 2.5 dyne/cm2. Based on these parameter values, Fig. 16 depicts those IB points that
will be severed according to the local value of von Mises stress, with the red points indicating
detachment in zone 2, while the green points corresponding to detachment in zones 1 and 3.
From this figure it is clear that two regions within the colony neck experience complete rup-
ture, which is in agreement with what one would expect from solid mechanics. Furthermore,
the detachment criterion is active along the entire biofilm-fluid interface, which corresponds to
an erosion process.
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Figure 16: Points where detachment occurs in the biofilm colony at time t= 0.25 s (zoomed-in view on the right).
Detachment parameters are ϵsub= ϵext=2, Σadh=10, Σint

coh=2.5 and Σext
coh=0.1.

In summary, our new detachment strategy based on equivalent continuum stress provides
an unambiguous method for performing biofilm detachment that is also consistent with meth-
ods employed by other continuum biofilm models. The detachment of any IB point proceeds
by cutting of all springs attached to it so that the topology of the spring network remains trian-
gular, thereby avoiding a major disadvantage of the spring strain-based detachment strategy.
However, this approach does introduce some additional computational work in each time step
for evaluating the equivalent continuum stress and distance functions at each IB node, not to
mention maintaining all of the relevant data structures.

4.5 Biofilm deformation and internal stress

This section presents a final series of simulations that study the biofilm stress distribution in
more detail and draw specific conclusions regarding the various modes of detachment (slough-
ing or erosion). We also provide evidence that questions the validity of another class of detach-
ment models based on a detachment speed function.

The steady-state von Mises stress for the SEMI20 and SUP75 simulations from the previous
section are depicted in Fig. 17 for two values of biofilm spacing, Db = 50 and 400 µm. In all
cases, the stress is lowest in the interior of the biofilm and largest along the biofilm-fluid and
biofilm-wall interfaces, with the absolute maxima occurring on the wall near the leading and
trailing corners. We also observe that the proportion of the biofilm experiencing high von Mises
stresses increases as the spacing parameter Db increases, which is consistent with the results
from Section 4.3. Finally, the stresses experienced in a long, thin colony such as SUP75 are
significantly larger (note the increase in the colormap scale by a factor of 10 for plots in the
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bottom row in Fig. 17).

(a) SEMI20, Db =50 (b) SEMI20, Db =400

(c) SUP75, Db =50 (d) SUP75, Db =400

Figure 17: Von Mises yield stress at steady state for cases SEMI20 and SUP75, with κ̃bio = 0.75 and Db = 50 and
400µm. For ease of visualization, only IB points with stress above a threshold of 0.050 dyne/cm2 in (a) and (b) and
0.20 dyne/cm2 in (c) and (d) are shown.

The corresponding plots of von Mises stress along the bottom edge of the colony are shown
in Figs. 18(a,b) from which it is clear that the stress peaks at the up/downstream corners. These
plots actually terminate a short distance away (5–8 IB points) from the corners because the
stress maxima at the corners is 8 to 10 times the value in the interior. We do the same for
the stress along the biofilm-fluid interface in Figs. 18(c,d), from which we see that the interfa-
cial shear stress attains a local maximum near the biofilm tip where the fluid shearing force is
largest. On comparing the stress plots for the wall and biofilm-fluid interfaces, it is clear that
increasing the colony spacing Db has a much more pronounced effect on the biofilm-fluid inter-
face than on the wall stresses. We conclude from these results that for widely-spaced colonies,
detachment is more likely to occur by surface erosion than by sloughing from the substratum.
This behavior is to be expected since we have used a relatively large value of the spring stiff-
ness connecting the wall and biofilm (compared to the value inside the biofilm). However, if
we were to use a lower value to mimic weak wall attachment then we could capture the compe-
tition between surface erosion and sloughing modes of detachment, with the dominant mode
being determined by the relative sizes of the adhesive (Σadh) and exterior cohesive (Σext

coh) stress
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Figure 18: Von Mises yield stress adjacent to the wall (a,b) and on the biofilm-fluid interface (c,d) for the same
simulations as in Fig. 17.
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thresholds.
Upon closer investigation of the plots in Fig. 17(c,d), we note that for case SEMI20 the

von Mises stress increases along the entire exposed biofilm surface as Db increases, whereas
in case SUP75 only the left face experiences an increase. This suggests that surface erosion is
more uniform for circular colonies, whereas long thin colonies will tend to erode only along
the upstream face. Based on this result, and the fact that von Mises stresses are much larger for
SUP75, it seems reasonable to suppose that the enhanced surface erosion observed in elongated
colonies could be a precursor to formation of streamers that are observed in experiments at low
Reynolds number [46,56]. An in-depth investigation of streamer formation is beyond the scope
of this work but could form the basis for an interesting future study based on our IB model.

Additional insight can be gained by comparing plots of interfacial shear stress computed
earlier in Figs. 12(a,d) (with κ̃bio = 0.75) with the corresponding von Mises stress curves for
the same biofilm colonies in Figs. 18(c,d). For the SEMI20 case, the interfacial fluid stress and
von Mises stress curves have the same general shape along the central portion, with the main
difference being that the von Mises stress increases towards the corners whereas the interfacial
shear stress does not. For the elongated colony in SUP75, both stresses are asymmetric about
the colony apex (near IB point 360) and although both experience a rapid decrease to the right
(downstream) of the apex, the upstream behaviour is very different. In particular, the interfacial
fluid stress increases gradually on the left toward the apex, while the von Mises stress sustains
a relatively large value on the left with a more rapid rise to the maximum.

These differences just mentioned point to an important error in another commonly-used
detachment approximation based on a detachment speed function. In this approach, rather than
explicitly solving the continuum equations for mechanically-induced detachment, they account
for these effects instead by specifying a local speed at which the biofilm-fluid interface recedes
into the biofilm [36,65]. For example, this detachment speed function may depend on the local
interfacial shear stress [13] or interfacial curvature [65]. Based on the IB results above in which
significant differences occur between fluid shear stress and von Mises stress along the biofilm-
fluid interface, it is clear that even for a reasonably stiff biofilm a detachment speed function
depending on interfacial shear stress is incapable of correctly capturing detachment dynamics
at all points along the interface. It is possible that an alternate speed function could be found
that accounts for the variation in von Mises stress along the interface that has been identified
in this study and so this would be an worthwhile subject for further study.

As a further illustration of the detachment process, Fig. 19 shows the portion of the biofilm
that will detach at steady state for cases SUP25, SUP50 and SUP75 with κ̃bio =0.75 and Db =50
or 400 µm. The remaining parameters in the detachment algorithm from Section 3.3 are ϵsub =
ϵext = 2 µm, Σext

coh = 0.1 dyne/cm2, Σint
coh = 1 dyne/cm2 and Σadh = 5 dyne/cm2. In practice, the

removal of IB points by detachment will alter the forces acting on the colony, which in turn
induces further deformation; this process repeats until no further detachment is possible. Sim-
ulations implementing this alternating detachment/deformation process were conducted for a
few selected cases; however, the time step limitation in our IB algorithm (∆t≈10−5 s) precluded
integrating the solution over the long time intervals required. Consequently, the scope of this
work is restricted to introducing the equivalent continuum stress based detachment strategy
and validating the results on a range of colony shapes. Efforts to develop a more efficient
implementation for a complete deformation and detachment strategy are currently underway
with a more efficient IB algorithm and will form the basis for a future publication.

5 Conclusions

We employed a 2D immersed boundary method to simulate the deformation of a periodic array
of uniformly-spaced, wall-bounded, weak biofilm colonies in response to a linear shear flow.
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(a) SUP25, Db =50µm (b) SUP25, Db =400µm

(c) SUP50, Db =50µm (d) SUP50, Db =400µm

(e) SUP75, Db =50µm (f) SUP75, Db =400µm

Figure 19: Plots indicating the portion of the biofilm colony (at steady state) that will detach for cases SUP25, SUP50
and SUP75 with κ̃bio=0.75. Sub-figures (a,c,e) have colony spacing Db=50µm, while (b,d,f) have Db=400µm. Other
parameters: ϵsub= ϵext=2µm, Σext

coh=0.1dyne/cm2, Σint
coh=1dyne/cm2 and Σadh=5dyne/cm2.

In order to capture different stages of biofilm growth under mass transfer-limited conditions,
we chose a family of biofilms having the same generic shape (sections of a super-ellipse) but
with increasing aspect ratios (fixed width, increasing height). Actual biofilm colonies behave
mechanically like viscoelastic solids and we mimic this behaviour by replacing the biofilm with
a network of Hookean springs corresponding to the edges in a quasi-uniform triangulation of
the colony.

We began by performing a parametric study that investigated the effect of colony spacing
and spring stiffness on the drag/lift forces and interfacial shear stress acting on the biofilms.
The main results of this parametric study can be summarized as follows:

• Varying spring constant: At low shear rates, colonies with even a moderate spring stiff-
ness of κ̃bio!10 are able of resisting large deformation forces. Weak biofilm colonies with
κ̃bio " 1 experience increased drag and larger deformations with a maximum displace-
ment in the 10’s of microns. These larger deformations are accompanied by a change in
the interfacial shear stress profile wherein stress increases along the upstream face and
decreases downstream.

• Varying colony spacing: For low to moderate biofilm stiffness (κ̃bio<10) reducing the colony
spacing from 400 to 50 µm reduces the drag by as much as 50-100%, accompanied by a
change in the shear stress profile along the biofilm-fluid interface. The interfacial shear
stress in colonies with large aspect ratio (SUP75) differs significantly from ones with small
aspect ratio (SEMI20).

• Varying colony shape: It is possible for biofilm colonies to grow into tall structures with
large aspect ratio even if they are weak mechanically (κ̃bio < 10) owing to the protection
from surface erosion afforded by being in close spatial proximity to other colonies. We
believe that this result will carry through to 3D (although to a lesser degree) and this is
an issue that we plan to investigate further in a future study.
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We also developed a new method for initiating biofilm detachment using averaged equiv-
alent continuum stress, which we implemented within our IB framework. We overcame prob-
lems encountered in other spring strain based detachment strategies such as in [27] and [1].
The following conclusions can be drawn regarding detachment:

• Variation in von Mises stress: Increasing the spacing between colonies leads to an increased
tendency for surface erosion instead of sloughing from the wall. Based on the von Mises
stress along the biofilm-fluid interface, we concluded that semi-circular biofilm colonies
will undergo roughly uniform surface erosion, while colonies with larger aspect ratios
erode predominantly along the upstream face.

• Correlation between fluid stress and von Mises stress: The fluid stress and von Mises yield
stress along the biofilm-fluid interface differ substantially. We conclude that biofilm dy-
namics based on a detachment speed function approach [13,36] (where detachment speed
is a function only of local interfacial fluid stress) cannot capture the actual detachment
behaviour resulting from excessive straining. This highlights the importance of using
detachment strategies that accurately capture the biofilm mechanics.

The main advantage of our detachment algorithm is that it provides a uniform framework
for handling biofilm deformation, surface erosion and sloughing through the use of a contin-
uum mechanics-based detachment model that employs measured biofilm mechanical proper-
ties. The primary disadvantage of our approach as implemented herein is the high computa-
tional cost; in particular, the small time step required for stability reasons combines with the
extra work of simulating detachment to make long-time computations of simultaneous defor-
mation and detachment impractical. We emphasize that this is not a limitation of the immersed
boundary approach, but rather our specific implementation that uses a simple explicit time-
stepping strategy. We conclude therefore that the full potential of our detachment algorithm
can only be realized in combination with either a (semi-)implicit time-stepping approach or an
efficient parallel implementation (such as [62]), which will be the subject of future work.
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