SIMULATING FLEXIBLE FIBER SUSPENSIONS USING A SCALABLE
IMMERSED BOUNDARY ALGORITHM *

JEFFREY K. WIENST AND JOHN M. STOCKIE'

Abstract. We present an approach for numerically simulating the dynamics of flexible fibers in a three-
dimensional shear flow using a scalable immersed boundary (IB) algorithm based on Guermond and Minev’s pseudo-
compressible fluid solver. The fibers are treated as one-dimensional Kirchhoff rods that resist stretching, bending,
and twisting, within the generalized IB framework. We perform a careful numerical comparison against experiments
on single fibers performed by S. G. Mason and co-workers, who categorized the fiber dynamics into several distinct
orbit classes. We show that the orbit class may be determined using a single dimensionless parameter for low
Reynolds flows. Lastly, we simulate dilute suspensions containing up to hundreds of fibers using a distributed-
memory computer cluster. These simulations serve as a stepping stone for studying more complex suspension
dynamics including non-dilute suspensions and aggregation of fibers (also known as flocculation).
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1. Introduction. The behaviour of long, flexible fibers in a suspension plays an impor-
tant role in many applications, including pulp and paper manufacture, polymer melts, and fiber-
reinforced composite materials |
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several prominent computational approaches. In Sections
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flexibility is introduced into the fiber, it undergoes a springy rotation (class IT) in which it bends
into a shallow arc as it rotates outside the horizontal plane of shear. When the fiber flexibility is
increased, it experiences significant deformations that take the form of S turns (class IITA) or snake
turns (class I1IB). Note that S turns require a high degree of initial symmetry so that snake turns
are actually far more prevalent in actual suspensions |
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and Uesaka proposed an alternative model for rigid |
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incompressible Navier—Stokes equations

0 1
(3.1) p<(;:—|—u~Vu)+Vp—uv2u+f+2v><n,
(3.2) V-u=0,
where p is the fluid density and p is the dynamic viscosity (both constants). The Eulerian force
and torque densities, f and n, are written as

(3.3) f(z,t) :/F(s,t) D, (x— X (s,t))ds and
T

(3.4) (@, 1) = / N(s,t) Doy (a — X(5,4)) ds,
T

wherein the integrals spread the Lagrangian force and torque densities, F'(s,t) and N(s,t), onto
points in the fluid. The interaction between Eulerian and Lagrangian quantities is mediated using
the smooth kernel function

o o) = Lo(2)o(2)o (%),

w w w
where
T3 =2 + 1+ 4[| — 4r?) if 0<|r| <1,
(3.6) o(r) =450 —=2r - /=-T+ 127 —42) f1< || <2,
0 if 2 < |r|.

Here, w represents an effective thickness of the rod which is set to some multiple of the fluid mesh
width h; that is, w = Ch for some integer multiple C' € Z*. Note that if w = h, the kernel ®,,(x) is
identical to the discrete delta function employed in many immersed boundary methods |
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and also penalize any stretching of the rod from its equilibrium configuration. Accordingly, the
generalized IB method can be viewed as a type of penalty method in which the rod is only approx-
imately inextensible and approximately aligned with the orthonormal triad, and the constants by,
by and b3 play the role of penalty parameters.

The final equations required to close the system are evolution equations for the rod configura-
tion and triad vectors

0X
(313) W(Svt) - U(57t)a
oD*

ot

(3.14) (s,t) = W (s, t) x D*(s,1),

where o = 1,2, 3, and U (s, t) and W (s, t) are the linear and angular velocities along the axis of the
rod respectively. These equations require that the rod translate and rotate according to the local
average linear and angular velocity of the fluid, and are interpolated in the standard IB fashion as

(3.15) U(s,t) = /u(:c,t) D, (x— X(s,t))de,

Q
(3.16) Wi(s,t) = %/V x u(x,t) Py (x — X (s,1)) de.
Q

By using the same kernel function ®,, as in (
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Configuration 1. The fiber is initially straight and is parameterized by

X (5,0) = ((eg + 1)s, 0, 0) + Xy,
D'(s,0)= (0, 1, 0),
D?(s5,0) = (0, 0, 1),
D3(s,0) = (1, 0, 0),

where 0 < s < L and ¢ is a perturbation parameter that initially stretches the fiber.
Configuration 2. The fiber is curved in the zy-plane with

= (rocos(s/ro +m), rosin(s/ro + ), 0) + Xo,
= (0,0, 1),

(cos(s/ro +7), sin(s/ro + ), 0),

= (sin(s/rg), cos(s/ro+m), 0),

where aprom < s < aerom, and o and . are constants with 0 < a3 < a, < 1. Here,
the fiber is a segment of a circle of radius ry lying in the zy-plane and having length
L = (a. — ap)7rp. Choosing a sufficiently large radius r generates fiber with small initial
curvature.

Configuration 8. Similar to Configuration 2, except that the fiber is curved in the zz-plane with

X (5,0) = ((e0 + 10) cos(s/ro), 0, (€0 +10)sin(s/r0)) + Xo,
D'(s,0) = (0, —1, 0),

D2(8,0> (cos(s/rg), 0, sin(s/rg)),

DS(S,O) (sin(s/rg + m), 0, cos(s/ro)),

where aprom < s < aerom, and «p and . are constants satisfying 0 < ap < a < 1.
For all three configurations, the rod has open ends so that boundary conditions are required at
s = 0and L. We assume that the internal force and moment vanish at the endpoints, corresponding
to F_1/2 = FrOd 12 = 0 and N“’l/2 = Nﬁ\‘,’f_l/Q = 0, which are consistent with the boundary
conditions apphed by Lim |
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When integrating the rod position and orthonormal triad vectors forward in time, we use the
predictor-corrector procedure devised by Griffith and Lim |
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TABLE 2
Numerical and physical parameter values used in rigid fiber simulations.

Parameter ‘ Symbol Value
Size of fluid domain Hy x Hy x H,  2x 3 x16h cm
Number of fluid grid points Nz X Ny x N, 256 x 64 x 16
Fluid mesh width h 1/128 cm
Fluid density p 1.0 g/cm®
Fluid viscosity L 10.0 g/(cm-s)
Speed of moving plates Utop = Ubot 8 cm/s
Shear rate G 32 st
Time step At le—5 S
Fiber length L 0.3 cm
Fiber mesh width As L/120 cm
Bending and twisting modulus (EI) a1 =as = as 0.7 dyne - cm?
Shear and stretch modulus b1 = by = b3 540 dyne - cm?
Fiber effective thickness w 0.0078125 cm
Intrinsic twist vector (K1, K2, T) (0, 0, 0)
Fiber length perturbation €0 0.001
Support of delta kernel C 4

TABLE 3

Parameter modifications for the flexible fiber simulations in Figures
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t=0.0000 t=0.3500 t=0.4400 t=0.5000 t=0.6500

(a) Rigid Orbit (x = 0.19, EI = 7.0e—1, L = 0.3)

t=0.0000 t=0.2500 t=0.3500 t=0.4000 t=0.6000

(b) Springy Orbit (x = 4.49, EI = 2.5e—2, L ~ 0.282)

t=0.0000 t=0.1500 t=0.2500 t=0.3500

09 1.0 11 1.2
X

(c) Snake Orbit (x = 37.38, EI = 3.0e—3, L ~ 0.282)

t=0.6000

1 12 —100

0.9

F1G. 2. Snapshots of fiber position and fluid vorticity in the xy-plane for a half-rotation in a rigid, springy and snake orbit. Parameter values are listed in Tables



11

1B SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS

t=0.0000 t=0.2500 t=0.3500

s 09 1 8 09 L0 LI L

OG8 09 Lo LI L2 O 0 11 12 0s 08 L0 11 12
X X X

t=0.4000 £=0.6000

0.5

0.4

0.3
>

0.2

0.1

(a) S Orbit (x = 45.00, ET = 3.0e—3, L = 0.3)
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(b) Complex Orbit (x = 119.06, EI = 1.0e—3, and L =~ 0.251)
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(c) Coiled Orbit (x = 1.125e5, EI = 1.0e—4, and L = 0.5)

F1G. 3. Snapshots of fiber position and fluid vorticity in the xy-plane for an S turn, complexr and coiled orbit. Parameter values are listed in Tables
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Fic. 4. Summary of all simulations showing the relationship between orbit class and different values of the
dimensionless flexibility x, flexural rigidity EI and drag rate Fy. Open markers denote the experimental data shown
in Table
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values of x - EI, we see that this rescaled flexibility parameter may be used to classify each orbit,
assuming that ET is constant in all experiments. However, we emphasize that since Forgacs and
Mason did not provide a value for the flexural rigidity (ET), we were unable to determine the value
of x explicitly.

TABLE 4
Experimental results obtained from Forgacs and Mason [
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Time = 0.00 Time = 0.20 Time = 0.25

Time = 0.30 Time = 0.35 Time = 0.65

Fic. 5. Snapshots of an S turn orbit for an intrinsically curved fiber with parameters in Tables
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Time = 0.00 Time = 0.15

Time = 0.35 Time = 0.40

Fi1c. 6. Snapshots of snake turn for an intrinsically curved fiber with parameters in Tables

Time = 0.25

Time = 0.60
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5.3. Multiple Flexible Fibers. For our last series of simulations, we consider an idealized
representation of a fiber suspension that permits us to employ the domain tiling techniques de-
scribed in [
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Time = 0.00

Time = 0.25

Time = 1.80
e
5

16) in Configuration 3. Parameters are

- P, =

FI1G. 7. A suspension of 256 intrinsically-curved fibers (Py

described in Section
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Fic. 8. Fluid deviation &, on two horizontal planes for the 25 fiber simulation computed in Table
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