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The study of tree sap exudation, in which a (leafless) tree generates elevated stem pressure in response
to repeated daily freeze–thaw cycles, gives rise to an interesting multiscale problem involving heat and
multiphase liquid/gas transport. The pressure generationmechanism is a cellular-level process that is
governed by differential equations for sap transport through porous cell membranes, phase change, heat
transport, and generation of osmotic pressure. By assuminga periodic cellular structure based on an
appropriate reference cell, we derive an homogenized heat equation governing the global temperature on
the scale of the tree stem, with all the remaining physics relegated to equations defined on the reference
cell. We derive a corresponding strong formulation of the limit problem and use it to design an efficient
numerical solution algorithm. Numerical simulations are then performed to validate the results and draw
conclusions regarding the phenomenon of sap exudation, which is of great importance in trees such
as sugar maple and a few other related species. The particular form of our homogenized temperature
equation is obtained using periodic homogenization techniques with two-scale convergence, which we
investigate theoretically in the context of a simpler two-phase Stefan-type problem corresponding to
a periodic array of melting cylindrical ice bars with a constant thermal diffusion coefficient. For this
reduced model, we prove results on existence, uniqueness and convergence of the two-scale limit solution
in the weak form, clearly identifying the missing pieces required to extend the proofs to the fully nonlinear
sap exudation model. Numerical simulations of the reduced equations are then compared with results
from the complete sap exudation model.

Keywords: periodic homogenization; two-scale convergence; Stefanproblem; multiphase flow; phase
change.
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1. Introduction

This paper is motivated by the study of sap flow in sugar maple trees that are subject to repeated cycles
of thawing and freezing during the sap harvest season in latewinter (Ceseri & Stockie, 2013). We seek
insight into the phenomenon ofsap exudation, which refers to the generation of elevated sap pressure
within the maple stem when the tree is in a leafless state and notranspiration occurs to drive the sap
flow. Our work is based on the model derived in Ceseri & Stockie(2013) that captures the physical
processes at the microscale (i.e., at the level of individual wood cells) and includes multiphase flow of
ice/water/gas, heat transport, porous flow through cell walls, and osmosis. There is an inherent repeating
structure in sapwood at the cellular scale that lends itselfnaturally to the use of homogenization ideas
that we exploited in Graf et al. (2015) to obtain a multiscalemodel for the macroscale temperature that is
coupled to a corresponding system of equations governing the microscale cellular processes. Our main
objective in this paper is to provide a more rigorous theoretical justification for this multiscale model
by working through the details of the homogenization process and proving results regarding existence,
uniqueness and two-scale convergence.

Multiscale problems such as the one just described are characterized by geometric, material or other
features that exhibit variations on widely differing spatial scales. Many mathematical and numeri-
cal methods have been developed to capture such scale separation as well as the interactions between
physical phenomena operating on disparate scales (Engquist et al., 2005; Hornung, 1997). For prob-
lems having a periodic microstructure, a mathematical technique that has proven to be very effective is
known as periodic homogenization (Cioranescu & Donato, 1999), and more specifically the method of
two-scale convergence (Allaire, 1992; Nguetseng, 1989), which has also been extended to capture non-
periodically evolving microstructures (Peter, 2007a,b; Peter & Böhm, 2009). We are interested here in
applying two-scale convergence to analyze solutions of a Stefan-type problem that governs the dynam-
ics of the ice/water interface within individual tree cells. Locally, temperature obeys the heat equation
and is coupled with a Stefan condition that governs solid–liquid phase transitions at the interface. Many
different approaches have been developed to analyze such phase transitions, which are well-described
in Visintin (1996). With the exception of a few studies of (single-phase) water and solute transport
in plant tissues (Chavarrı́a-Krauser & Ptashnyk, 2010; Chavarrı́a-Krauser & Ptashnyk, 2013), periodic
homogenization techniques have not been applied in the context of heat or sap flow in trees.

The approach we employ in this paper has the advantage that itapplies homogenization techniques
in a straightforward manner in order to obtain an uncomplicated limit model, the simplicity of which
ensures that numerical simulations are relatively easy to perform. In particular, we define a reference
cellY that is divided into two sub-regions:Y1, where the temperature diffuses rapidly; andY2, on which
we define a second temperature field that diffuses slowly. Refer to Arbogast et al. (1990) and Peter &
Böhm (2008) for similar homogenization approaches involving slow and fast transport. One particular
challenge arising in the study of Stefan problems is that thediffusion coefficient depends on the under-
lying phases, so that heat diffuses differently in water or ice. Consequently, the diffusion coefficient
depends on temperature (or equivalently on enthalpy) so that the governing differential equation is only
quasi-linear.

Rather than attempting to analyze the sap exudation problemin its full complexity, we find it more
convenient to develop our homogenization results in the context of a simpler “reduced model” defined on
a similarly fine-structured domain wherein the cell-level processes are governed by a Stefan problem that
involves only heat transport and ice/water phase change. Inparticular, we consider a domain consisting
of a periodic array of cylindrical ice inclusions immersed in water. To handle the multiplicity of the
ice bars, we apply the technique of periodic homogenizationwith two-scale convergence established in
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Allaire (1992) and Nguetseng (1989). Several authors have previously applied homogenization to Stefan
problems, such as Bossavit & Damlamian (1981), Damlamian (1981) and Visintin (2007), where the
phase change boundary is handled by separately homogenizing an auxiliary problem. In Eck (2004) on
the other hand, an additional functionθ is introduced for an aggregate state that diffuses on a slow time
scale and with which all microscopic phase changes are properly captured. When we show existence for
the heat equation with phase transitions, we deduce a general existence result for quasi-linear parabolic
differential equations having a non-monotone nonlinearity in the diffusion operator, which is of general
interest in the context of heat transport and Stefan problems (even in a single-scale setting).

This paper is organized as follows. We begin in Section 2 by providing background material on
the physics of maple sap exudation, along with a descriptionof the governing equations at the cellular
level. A reduced model involving only melting of ice is introduced in Section 3 for the purposes of more
easily deriving the two-scale convergence results. The main analytical results on existence, a priori
estimates, two-scale convergence and uniqueness are presented in Section 4, and detailed proofs of
the key results are relegated to the Appendix. Following that, we state in Section 4.7 the strong form
of the limit problem for the reduced model, which in turn suggests a corresponding strong form of
the original sap exudation model in Section 4.8. These limitproblems lead naturally to a multiscale
numerical algorithm that is described in Section 5, after which numerical simulations of both problems
are presented and compared.

2. Mathematical model for sap exudation

Before presenting the details of the mathematical model, itis necessary to introduce some background
material on the phenomenon of sap exudation. Sugar maple trees (along with a few related species
such as red or black maple, black walnut, and birch) have a unique ability compared to other deciduous
tree species in that they exude large quantities of sap during the winter when they are in a leafless
state. Sap exudation originates from an elevated pressure in the tree stem that is generated over a period
of several days during which the air temperature oscillatesabove and below the freezing point. The
ability of maple to exude sap has intrigued tree physiologists for over a century, and various physical
and biological processes have been proposed to explain thisbehaviour (Johnson et al., 1987; Milburn
& Kallarackal, 1991; Tyree, 1995). Until recently, a significant degree of controversy existed over
the root causes of sap exudation, and the most plausible and widely-accepted explanation has been a
freeze–thaw hypothesis proposed by Milburn & O’Malley (1984). This hypothesis forms the basis of
the mathematical model for the cellular processes underlying exudation during a thawing event that
was developed by Ceseri & Stockie (2013), which was subsequently extended to capture a complete
freeze–thaw cycle by Graf et al. (2015).

2.1 Background: Tree physiology and the Milburn–O’Malley process

The Milburn–O’Malley process depends crucially on the distinctive microstructure of sapwood (or
xylem) in sugar maple trees (Acer saccharum). Wood in most deciduous tree species consists of roughly
cylindrical cells that are on the order of 1 mm in length. These cells can be classified into two main
types:vesselshaving an average radius of 20mm, which are surrounded by the much more numerous
(libriform) fiberswith a radius of approximately 3–4mm. The repeating structure of vessels and fibers is
illustrated in Figure 1a. The vessels have a significantly larger diameter and therefore comprise the main
route for sap transport between roots to leaves during the growing season, whereas the fibers are under-
stood to play a largely passive and more structural role. Under normal conditions the vessels are filled
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with sap, which is composed primarily of water but also contains as much as 2–5% sugar by weight in
species likeAcer. On the other hand, the fibers are thought to be primarily filled with gas (i.e., air). We
note that experiments exhibit small but measurable amountsof gas also being present within the vessel
sap, either as bubbles or in dissolved form.

(a) Sapwood microstructure (b) A single fiber/vessel pair

tracheid

libriform fiber

vessel
pit
parenchyma cell

100 µm
Fiber

Vessel

v

L
f

L

R

Rf

v

Figure 1. (a) A cut-away view of the sapwood (or xylem) in hardwood trees such as sugar maple, depicting the repeating mi-
crostructure of vessels surrounded by fibers (the other celltypes indicated here are ignored in our model). (b) A vessel surrounded
by Nf fibers, all depicted as circular cylinders (for simplicity,only one fiber is shown). Typical dimensions of the fiber are length
Lf = 1.0× 10−3 m and radiusRf = 3.5× 10−6 m, whereas the vessel hasLv = 5.0× 10−4 m andRv = 2.0× 10−5 m. The 2D
model reference cell introduced in what follows is based on ahorizontal cross-section through the middle of the fiber andvessel.

Milburn and O’Malley hypothesized that during late winter when daily high temperatures peak
above the freezing point, and just as evening temperatures begin to drop below zero, sap is drawn
through tiny pores in the fiber/vessel walls by capillary andadsorption forces into the gas-filled fibers
where it forms ice crystals on the inner surface of the fiber wall (top “cooling sequence” in Figure 2). As
temperatures drop further, the ice layer grows and the gas trapped inside the fiber is compressed, forming
a pressure reservoir of sorts. When temperatures rise abovefreezing again the next day, the process
reverses, with the ice layer melting and the pressurized gasdriving liquid melt-water back into the
vessel where it then (re-)pressurizes the vessel compartment (bottom “warming sequence” in Figure 2).
Milburn and O’Malley also stressed the importance of osmotic pressure in terms of maintaining the
high stem pressures actually observed in sugar maple trees.This essential role of osmosis has since
been verified experimentally by Cirelli et al. (2008) who confirmed the existence of osmotic pressure
arising from a selectively permeable membrane within the fiber/vessel wall. They showed that the cell
wall permits water to pass but prevents larger sugar molecules contained in the vessel sap from entering
the fiber, thereby introducing a significant osmotic pressure difference between the sugar-rich vessel sap
and the pure water contained in the fiber.

There are two additional physical effects not explicitly addressed by Milburn & O’Malley (1984)
that are essential in order to obtain physically-consistent results for the sap thawing process. First of
all, Ceseri & Stockie (2013) demonstrated the necessity forincluding gas bubbles suspended within the
vessel sap that permit an exchange of pressure between the vessel and fiber compartments, which would
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Figure 2. Illustration of the Milburn–O’Malley process in asingle fiber/vessel pair (adapted from Milburn & O’Malley (1984,
Fig. 7)). We focus on the “warming sequence” in the bottom row, numbered 5–8. The fiber is the large rectangular structure on
the left of each sub-image, and the vessel is the vertical channel on the right (not drawn to scale).

otherwise not be possible owing to the incompressibility ofwater. Secondly, despite the pervading be-
lief that there is no significant root pressure in maple during winter (Kramer & Boyer, 1995; Wilmot,
2011), we found to the contrary that including uptake of rootwater during the freezing process is ab-
solutely essential in order that pressure can accumulate over multiple freeze–thaw cycles (Graf et al.,
2015). Indeed, the need to include root pressure is confirmedby recent experiments (Brown, 2015) that
demonstrate the existence of root pressure in maple trees during the sap harvest season.

2.2 Microscale model for cell-level processes

The modified Milburn–O’Malley description just presented (with the exception of root pressure) was
employed by Ceseri & Stockie (2013) and Graf et al. (2015) to derive a mathematical model for cell-
level processes governing sap exudation during a thawing cycle. In this study, we study the same
problem, including the effect of the gas phase in both cell chambers (fiber and vessel), but we will
assume for the sake of simplicity that the effects of gas dissolution and nucleation are negligible. This
is the primary difference between our microscale model and that in Ceseri & Stockie (2013) and Graf
et al. (2015), on which it is based. Neglecting root pressureis a reasonable simplification because we are
only interested here in studying a single thawing event and not capturing repeated freeze–thaw cycles.

With the above assumptions in mind, we approximate the sapwood as a periodic array of square
reference cellsY pictured in Figure 3a. Each reference cell contains a circular fiber of radiusRf located
at the centre, surrounded by a vessel compartment that makesup the remainder of the cell. Because
the vessels have considerably larger diameter, we assume that on the scale of a fiber the cylindrical
geometry of the vessel can be neglected as long as we ensure that appropriate conservation principles
(for mass and energy) are maintained within the vessel. Thischoice of reference cell is obviously
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a mathematical idealization that may influence fine details of vessel transport on the microscale but
ultimately has minimal impact on the homogenized solution.

The fiber compartment is sub-divided into nested annular regions containing gas, ice and liquid, and
the outer radii of the phase interfaces are denotedsgi (for gas/ice) andsiw (for ice/water). The vessel
contains a circular gas bubble of radiusr which has no specified location but rather is included simply
to track the amount of gas for mass-conservation purposes. One additional variableU is introduced to
measure the total volume of water transferred from fiber to vessel. The region lying outside the fiber
and inside the boundary ofY represents the sugary sap-filled vessel. Note that during a thawing cycle,
we are only concerned with a vessel containing liquid sap (noice) because of the effect of freezing point
depression, which ensures that any given vessel thaws before the adjacent fiber(s). This reference cell
geometry should be contrasted with that depicted in Ceseri &Stockie (2013, Fig. 3.1).

(a) Reference cell, with ice layer (b) Reference cell, completely melted
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Figure 3. Geometry of the reference cell,Y. (a) For the sap exudation problem, the vessel compartment contains a gas bubble
with radiusr , while the circular fiber (radiusRf) contains a gas bubble (radiussgi), surrounded by an ice layer (with thickness
siw − sgi), and finally a layer of melt-water (with thicknessRf − siw ). The porous wall between fiber and vessel is denoted by a
dotted line. As ice melts, the melt-water is forced out by gaspressure through the porous fiber wall into the surrounding vessel
compartment. The total volume of melt-water transferred from fiber to vessel is denotedU . An artificial boundaryΓ is introduced
in the homogenization process to differentiate between a regionY1 (outsideΓ ) on which thermal diffusion is fast, andY2 (inside
Γ ) on which diffusion is slow. (b) After the ice has completelymelted there remains only a gas/water interface,sgw, and a single
temperature field can be used to describe the entire reference cell domainY ≡Y1.

For the moment, we will consider the four solution variablessiw , sgi, r, U as depending on timet
only, with an additional dependence of temperature on the microscale spatial variable; however, begin-
ning in Section 3 when we derive macroscale equations for thehomogenized problem, these variables
will also depend on the global spatial variablex that denotes the location of the reference cell within the
tree stem. Within a reference cell, the dynamics forsiw(t), sgi(t), r(t) andU(t) are governed by four
differential equations whose derivation can be found in Ceseri & Stockie (2013). The first is the Stefan
condition for the ice/water interface in the fiber

∂tsiw = − D(E2)

Ew−Ei
∇yT2 ·n+

∂tU
2πsiwLf , (2.1a)

whereT2(y, t) denotes the microscale temperature variable that depends on both time and the local spatial
variabley ∈ Y2 (which needs to be distinguished from the macroscale temperature variableT1(x,t)
introduced later) and∇yT2 ·n is the normal derivative at the interface. Here, the enthalpies of water and
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ice (Ew andEi , resp.) are evaluated at the freezing point,T = Tc; consequently, the differenceEw −Ei

represents the latent heat of fusion. We describe heat transport using a mixed temperature–enthalpy
formulation, in which the thermal diffusion coefficientD(E2) is written as a function of enthalpyE2(y,t).
Following Visintin (1996), we takeD to have the piecewise affine linear form

D(E) =






ki
ρi

, if E < Ei ,
ki
ρi

+ E−Ei
Ew−Ei

(
kw
ρw

− ki
ρi

)
, if Ei 6 E < Ew,

kw
ρw

, if Ew < E,

(2.1b)

whereρw, ρi are the densities of water and ice respectively, andkw, ki are the thermal conductivities.
Note thatD in this temperature–enthalpy formulation has units of Wm2/kgK and is referred to as
a thermal diffusion coefficient, to distinguish it from the more usual “thermal diffusivity” (which is
defined as the ratiok/ρc and has units of m2/s). The governing equations forT2 andE2 are discussed
later in Sections 4.7–4.8 as a result of the two-scale convergence analysis and are the solutions of the
system (4.20a–e). Note that the final term in the Stefan condition (2.1a) was neglected in Ceseri &
Stockie (2013) and serves to capture the effect on the phase interface of fiber–water volume changes
due to porous flow through the fiber/vessel wall.

The next two differential equations embody conservation ofmass in the fiber

∂tsgi = − (ρw−ρi)siw∂tsiw

sgiρi
+

ρw∂tU
2πsgiρiLf , (2.1c)

and the vessel

∂t r = −Nf∂tU
2πrLv . (2.1d)

Note that within the sapwood there are many more fibers than vessels (as depicted in Figure 1a), so that
the effect of fiber–vessel flux terms should be increased to account for the multiplicity of fibers. With
this in mind, we have multiplied appropriate fluxes by the parameterNf in (2.1d) that represents the
average number of fibers per vessel and has a typical value ofNf = 16. The final differential equation
describes water transport through the porous fiber/vessel wall in response to both hydraulic and osmotic
pressure

∂tU = −L A
Nf (pv

w − pf
w−RCsT1). (2.1e)

Here, we denote the pressure variable byp, where superscripts f/v refer to fiber/vessel and subscript
w denotes the liquid water phase. The constant parameterL is the fiber/vessel wall conductivity,A is
the wall surface area,Cs is the vessel sugar concentration, andR is the universal gas constant. Note
that becauseU is defined insideY2, we should strictly be using the microscale temperatureT2 in the
osmotic term in (2.1e), but this would lead to a significant complication in any numerical algorithm
due an additional nonlinear coupling between scales. Therefore, we have usedT1 instead, which is a
reasonable approximation because temperature variationsthroughout the reference cell are small.

Several intermediate variables have been introduced into the above equations. They are determined
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by the following algebraic relations:

pf
w = pf

g(0)

(
sgi(0)

sgi

)2

− 2σ
sgi

, (Young–Laplace equation for fiber) (2.2a)

pv
w = pv

g−
2σ
r

, (Young–Laplace equation for vessel) (2.2b)

pv
g =

ρv
gRT1

Mg
, (ideal gas law for vessel) (2.2c)

ρv
g = ρv

g(0)

(
r(0)

r

)2

. (vessel gas density) (2.2d)

All constant parameters appearing in the above equations are listed in Table 1 along with typical values.

There is one special case to consider, namely when a fiber initially containing an ice layer is above
the freezing point for long enough time that the ice melts completely. In the moment the ice layer
disappears, the reference cell geometry appears as in Figure 3b and the cell-level equations must be
modified as follows. First of all,D(E2) must change to account for the fact that there are two possible
values of thermal diffusivity, one in the region containingthe gas and another in the liquid. Furthermore,
the gas/ice and ice/water interfaces merge so that Eq. (2.1a) drops out and we identify a new fiber
gas/water interface assgw := siw ≡ sgi. This leads to the following simplified version of (2.1c)

∂tsgw =
∂tU

2πsgwLf ,

but otherwise the microscale equations (2.1)–(2.2) remainthe same.
The equations for the temperature and enthalpy variables appearing in the microscale model above

are derived in the next section in the context of a simpler problem involving only melting ice. Despite
the fact that this reduced model involves only a single microscale variable for the dynamics of the ice–
water interfacesiw (in addition to the temperature), the equations for temperature and enthalpy remain
the same, and we will show that the microscale model above is completed by Eqs. (4.20a)–(4.20e).

3. Reduced model: Melting ice bars

We now shift our attention to the macroscale problem, which captures the dynamics of thawing sap
within a cylindrical tree stem having a circular cross-section Ω . There is a clear separation of scales in
that the tree has radius on the order of tens of centimetres whereas the cell-level processes occur over
distances on the order of microns. Letx ∈ Ω represent the macroscale spatial variable andy ∈ Y the
microscale variable on the reference cell. Then, our main aim in this section is to determine equations
for the temperature and enthalpy variables not only in the reference cell,T2(y,t) andE2(y,t), but also on
the macroscale,T1(x, t) andE1(x, t).

The derivation of these equations may be simplified significantly by considering a reduced problem
that involves only ice/water phase change and leaves out allother physical processes (porous flow,
gas bubbles, surface tension, etc.). To this end, we consider a periodic array of melting “ice bars” as
pictured in Figure 4a, situated inside a slightly more general domainΩ ⊂R

d having Lipschitz boundary
that contains both water and ice in the form of circular inclusions. LetY = [0,δ ]d be areference cellthat
captures the configuration of the periodic microstructure,and for whichδ represents its actual physical
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Table 1. Constant parameter values appearing in the sap exudation model (taken from Ceseri & Stockie (2013)).

Symbol Description Value Units
Geometric parameters:

δ Side length of reference cell 4.33×10−5 m
γ = Rf +W, Radius ofΓ 7.88×10−6 m
Rf Fiber radius 3.5×10−6 m
Rv Vessel radius 2.0×10−5 m
Lf Fiber length 1.0×10−3 m
Lv Vessel length 5.0×10−4 m
V f Fiber volume= π(Rf)2Lf 3.85×10−14 m3

Vv Vessel volume= π(Rv)2Lv 6.28×10−13 m3

A Area of fiber/vessel wall= 2πRfLf 2.20×10−8 m2

W Thickness of fiber/vessel wall 4.38×10−6 m
Nf Number of fibers per vessel 16 –

Rtree Tree stem radius 0.25 m
Thermal parameters:

cw Specific heat of water 4180 J/kgK
ci Specific heat of ice 2100 J/kgK
Ew Enthalpy of water atTc 9.07×105 J/kg
Ei Enthalpy of ice atTc 5.74×105 J/kg
kw Thermal conductivity of water 0.556 W/mK
ki Thermal conductivity of ice 2.22 W/mK
ρw Density of water 1000 kg/m3

ρi Density of ice 917 kg/m3

Tc Freezing temperature for water 273.15 K
Ta Ambient temperature= Tc +10 283.15 K
α Heat transfer coefficient 10 W/m2K

Other parameters:
Mg Molar mass of air 0.029 kg/mol
R Universal gas constant 8.314 J/molK
σ Gas/liquid surface tension 0.076 kg/s2

Cs Vessel sugar concentration (2%) 58.4 mol/m3

L Hydraulic conductivity of fiber/vessel wall 5.54×10−13 m2s/kg
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size with 06 δ ≪ 1 (although we focus on dimensiond = 2, the theoretical results proven here apply
to any dimension). The reference cell is divided into two sub-domainsY1 andY2 that are separated by
a Lipschitz boundaryΓ = Y1∩Y2 as shown in Figure 4b. For simplicity, we takeΓ to be a circle of
radiusγ satisfying 0< γ < 1

2 δ . The primary feature that we exploit in our homogenization approach is
that withinY1 heat must diffuse rapidly, whereas inY2 there is a relatively slow diffusion of heat.

(a) Periodically-tiled domainΩ (b) Reference cellY for reduced model

Ω1
ε

Ω2
ε

ε

Y

Y2

Y1

Γ

Ice bar

Figure 4. Periodic microstructure of the reduced model for melting ice bars immersed in water. (a) The tree stem cross-section Ω
is tiled periodically with copies of the reference cellY, each of which is scaled to have side lengthε . The homogenization process
then takes the limit asε → 0. (b) The reference cellY for the reduced model, illustrating the decomposition intofast (Y1 andΩ 1

ε )
and slow (Y2 andΩ 2

ε ) diffusing regions, withY = Y1∪Y2∪Γ .

We next introduce a small parameter 0< ε ≪ 1 that corresponds to the size of the periodic mi-
crostructure (and must be distinguished from the physical size δ because we will eventually take
the limit asε → 0). The domainΩ may then be decomposed into threeε-dependent sub-domains:
Ω1

ε := int
⋃

k∈Zd ε(k+Y1)∩Ω (which is connected), and two disconnected components consisting of
the regionΩ2

ε :=
⋃

k∈Zd ε(k+Y2)∩Ω and the boundary curvesΓε :=
⋃

k∈Zd ε(k+Γ )∩Ω . This decom-
position is illustrated in Figure 4. To avoid technical difficulties, we assume thatΓε does not touch the
outer boundary ofΩ , so thatΓε ∩∂Ω = /0 andΩ2

ε ∩∂Ω = /0.
The major advantage of this reduced model is that the reference cell problem simplifies significantly,

with the only unknowns beingsiw and temperature. We proceed with the temperature and enthalpy
equations.

3.1 Temperature and enthalpy equations

Throughout the analytical developments of this paper, we employ what is known as the two-phase for-
mulation of the Stefan problem, in which the heat diffusion equation is posed in a mixed form involving
both temperature and enthalpy. Assuming that material properties of water and ice remain constant, the
temperatureT can be written as a piecewise linear function of enthalpyE as follows (Visintin, 1996)

T = ω̃(E) =






1
ci

E, if E < Ei ,

Tc, if Ei 6 E < Ew,

Tc +
1
cw

(E−Ew), if Ew 6 E,
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wherecw andci denote specific heats of water and ice respectively, andTc = 273.15K is the freezing
point of water (parameter values are listed in Table 2). A distinguishing feature of this temperature–
enthalpy relationship is that when temperature is equal to the freezing point, the enthalpy varies while
temperature remains constant – this behavior derives from the fact that a certain amount of energy (called
latent heat) is required to effect a change in phase from solid to liquid at the phase interface.

Because the functioñω(E) is neither differentiable nor invertible, we instead employ in our model
a regularized versionω(E) defined as

T = ω(E) =





1
ci

E, if E < Ei−,

[smooth connection], if Ei− 6 E < Ei+,

Tc−
2E− (Ei+ +Ew−)

2c∞
, if Ei+ 6 E < Ew−,

[smooth connection], if Ew− 6 E < Ew+,

Tc +
1
cw

(E−Ew+), if Ew+ 6 E,

(3.1)

which has “rounded corners” that are smoothed over the shortintervalsEi− / Ei / Ei+ andEw− / Ew /
Ew+. Note that we have also introduced a small positive slopec−1

∞ ≪ 1 within the central plateau region
nearT ≈ Tc (refer to Figure 5). These modifications ensure thatω is a continuously differentiable,
invertible and monotone increasing function of enthalpy. Incidentally, such a regularized function is
most likely a more accurate representation of what one wouldactually observe in a real physical system.
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Figure 5. Regularized temperature–enthalpy function,T = ω(E), for a generic ice/water phase change problem in which the
critical (freezing) temperature isTc = 273.15K. The zoomed-in view on the right illustrates the smoothed corners in the regular-
ization.

We now describe the solution decomposition into slow and fast diffusing variables. Let functions
T1,ε andE1,ε denote the fast-diffusing temperature and enthalpy components respectively, with both
defined on the sub-regionΩ1

ε . Similarly, letT2,ε andE2,ε denote the slowly-diffusing temperature and
enthalpy onΩ2

ε . We may then state the strong formulation of the two-phase Stefan problem as

∂tE1,ε −∇ · [D(E1,ε)∇T1,ε ] = 0 in Ω1
ε , (3.2a)

D(E1,ε)∇T1,ε ·n = −ε2D(E2,ε)∇T2,ε ·n onΓε , (3.2b)

−D(E1,ε)∇T1,ε ·n = α(T1,ε −Ta) on ∂Ω ∩∂Ω1
ε , (3.2c)
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∂tE2,ε − ε2∇ · [D(E2,ε)∇T2,ε ] = 0 in Ω2
ε , (3.2d)

E2,ε = E1,ε onΓε , (3.2e)

whereD(E) is given by (2.1b) andTa is the ambient temperature imposed on the outer domain boundary.
Note that these equations capture the phase interface location implicitly through the relationshipT =
ω(E) and no explicit Stefan-type phase interface condition is imposed.

4. Two-scale homogenization of the reduced model

It is not feasible to solve the system of equations (3.2) derived in the previous section using direct
numerical simulations owing to the presence of the microstruture withε being very small. This section
contains the primary theoretical results pertaining to an upscaling of the reduced problem which is
achieved by characterising the limit asε → 0. Lemmas and theorems are stated here, and the proofs are
relegated to the Appendix.

4.1 Weak formulation

In order to make the problem ameanable to periodic-homogenization techniques, we begin by transform-
ing Eqs. (3.2) into a weak formulation. To avoid technical difficulties, we replace the Robin boundary
condition (3.2c) by a Dirichlet conditionE1,ε = ω−1(Ta) (i.e., we consider the formal limitα → ∞)
and refer the reader to Graf & Peter (2014) for a detailed discussion. This requires first defining some
appropriate solution spaces:

V
1

ε :=
{

u∈ L2([0, tm],H 1(Ω1
ε ))∩H

1([0,tm],H 1(Ω1
ε )′) | u = 0 on∂Ω1

ε ∩∂Ω
}

,

V
2

ε :=
{

u∈ L2([0, tm],H 1(Ω2
ε ))∩H

1([0,tm],H 1(Ω2
ε )′) | u = 0 onΓε

}
,

V := L2([0, tm],H 1
0 (Ω))∩H

1([0,tm],H 1(Ω)′),

where the “primes” denote dual spaces and[0,tm] represents the time interval of interest for some fixed
tm > 0. The corresponding test spaces areV1

ε = {u∈ H 1(Ω1
ε ) | u = 0 on∂Ω1

ε ∩∂Ω}, V2
ε = H 1

0 (Ω2
ε )

andV = H 1
0 (Ω). We also need to introduce notation for inner products, with(u,v)Ωα

ε =
∫

Ωα
ε

uvdx

representing theL2-inner product with respect to space of two functions inV α
ε for α = 1,2, whereas

(u,v)Ωα
ε ,t =

∫ t
0

∫
Ωα

ε
uvdxdτ denotes that an additional time integration is performed over the interval

[0,t] with 0 6 t 6 tm. Finally, we let〈u,v〉Γε = 〈u,v〉
H

1
2 (Γε )′×H

1
2 (Γε )

denote the dual pairing onΓε . Later,

we will show thatD(E2,ε)∇T2,ε · n ∈ L2(Γε), so that we can interpret〈u,v〉Γε as
∫

Γε gεuvdS, wheregε
represents the Riemann curvature tensor.

We are now prepared to state the weak form of the heat-diffusion problem. Assuming that initial
valuesT1,ε,init = ω(E1,ε,init) andT2,ε,init = ω(E2,ε,init) are smooth, non-negative and bounded functions,
and that a Dirichlet conditionT1,ε = Ta is imposed at the outer boundary∂Ω ∩∂Ω1

ε , our goal is to find
(T1,ε ,T2,ε) ∈ (V 1

ε +Ta)× (V 2
ε +T1,ε) such that

(∂tE1,ε , ϕ)Ω1
ε
+(D(E1,ε)∇T1,ε , ∇ϕ)Ω1

ε
+ ε2〈D(E2,ε)∇T2,ε ·n, ϕ〉Γε = 0, (4.1a)

(∂tE2,ε , ψ)Ω2
ε
+(ε2D(E2,ε)∇T2,ε , ∇ψ)Ω2

ε
= 0, (4.1b)

for all ϕ ,ψ ∈V1
ε ×V2

ε . Note thatn represents the outward-pointing unit normal vector onΓε , and that
temperature and enthalpy are connected viaTα ,ε = ω(Eα ,ε), or equivalentlyEα ,ε = ω−1(Tα ,ε). We
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assume thatω−1(Ta) is positive, bounded and smooth such it can be extended to[0,tm]×Ω in H 1. We
note again in closing that slow diffusion is induced in the problem via the factorε2 multiplying terms in
Eqs. (4.1) that involve the diffusion coefficientD(E2,ε).

4.2 Transformation of the model

In this section, we apply a procedure developed by Arbogast et al. (1990) to transform the model (4.1)
by combining enthalpiesE1,ε andE2,ε into a single functionΘε defined on the wholeε-independent
domainΩ . We use the fact thatΓε is the only boundary ofΩ2

ε to obtain

〈ε2D(E2,ε)∇T2,ε ·n,ψ〉Γε = (ε2∇ · [D(E2,ε)∇T2,ε ],ψ)Ω2
ε
+(ε2D(E2,ε)∇T2,ε ,∇ψ)Ω2

ε

= (∂tE2,ε ,ψ)Ω2
ε
+(ε2D(E2,ε)∇T2,ε ,∇ψ)Ω2

ε
,

(4.2)

for all ψ ∈V. After substituting this expression into (4.1a) we obtain

(∂tE1,ε ,ϕ)Ω1
ε
+(D(E1,ε)∇T1,ε ,∇ϕ)Ω1

ε
+(∂tE2,ε ,ψ)Ω2

ε
+(ε2D(E2,ε)∇T2,ε ,∇ψ)Ω2

ε
= 0,

for all ϕ ,ψ ∈V1
ε ×V2

ε . Hence, Eqs. (4.1) have been replaced with

(∂tE1,ε + ∂tE2,ε ,ϕ)Ω +(D(E1,ε)∇T1,ε + ε2D(E2,ε)∇T2,ε ,∇ϕ)Ω = 0,

E1,ε = E2,ε onΓε ,
(4.3)

for all ϕ ∈V. We then define the functionΘε ∈ L2([0,tm],H 1(Ω)) by

Θε =

{
E1,ε in Ω1

ε ,
E2,ε in Ω2

ε ,

so that with conditions (3.2b) and (3.2e) the functionΘε is guaranteed to be continuous and weakly
differentiable. Furthermore, we defineκε = χ1,ε + ε2χ2,ε whereχi,ε for i = 1,2 are indicator functions
for Ω1

ε andΩ2
ε respectively. Solving (4.1) is then equivalent to findingΘε ∈ (V + ω−1(Ta)) such that

(∂tΘε ,ϕ)Ω +(κεD(Θε)ω ′(Θε)∇Θε ,∇ϕ)Ω = 0, (4.4)

for all ϕ ∈V, where we have used thatT1,ε = ω(E1,ε) andT2,ε = ω(E2,ε).
We perform one further transformation of (4.4) that makes the Dirichlet boundary condition homo-

geneous. To this end, we defineρε = Θε −ω−1(Ta) whereω−1(Ta) is extended continuously toΩ .
Then (4.4) is equivalent to findingρε ∈ V such that

(∂t ρε ,ϕ)Ω +(κεDω ′(ρε + ω−1(Ta))∇ρε ,∇ϕ)Ω = (−∂tω−1(Ta),ϕ)Ω , (4.5)

for all ϕ ∈V.

4.3 Existence of a weak solution

4.3.1 Theorem of existenceTo prove the existence of a solution to (4.4) for everyε > 0, we formulate
a theorem of existence, which is strongly inspired by a prooffor a related result found in a set of
unpublished lecture notes by Wolff (2016). In Theorem 4.1 weintroduce a general existence result for
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parabolic equations with non-monotone non-linearities inthe diffusion operator. The proof is based on
the Rothe method. We state the theorem next and provide the proof in Appendix A.1.

Consider the initial–boundary value problem

∂tu+
n

∑
j=1

∂xj

(
a(x,t,u)∂xj u

)
= F(x,t) in S×Ω , (4.6a)

u = 0 onS× ∂Ω , (4.6b)

u(0,x) = u0(x) in Ω , (4.6c)

with

Ω ⊂ R
n bounded Lipschitz domain, S= [0,tm], (4.7a)

a(x,t,u) : Ω ×S×R→ R Bochner-measurable inx and continuous int andu, (4.7b)

∃ 0 < λ 6 Λ < ∞ such thatλ 6 a(x,t,u) 6 Λ ∀s∈ R, for a.e.t ∈ R and a.e.x∈ Ω , (4.7c)

V = H
1

0 (Ω), V = L2(S,V), V
∗ = L2(S,V∗), (4.7d)

u0 = L2(Ω), F ∈ V
∗. (4.7e)

LEMMA 4.1 Let the conditions (4.7) be satisfied. Then

〈A(t)(u,v),w〉 =
n

∑
j=1

∫

Ω
a(x,t,u)∂xj v∂xj wdx, (4.8)

〈 f ,v〉 =

∫ T

0

∫

Ω
F(x,t)v(x,t)dxdt, (4.9)

define a family of operatorsA(t) : V ×V →V∗ and an elementf ∈ V ∗ for which the following hold:

∀ u,v∈V, for a.e.t ∈ R : ‖A(t)(u,v)‖V∗ 6 Λ‖v‖V , (4.10a)

∀ u∈V, for a.e.t ∈ R : A(t)(u, ·) : V →V∗ is linear and continuous, (4.10b)

∀ u,v∈V, for a.e.t ∈ R : 〈A(t)(u,v),v〉 > λ‖v‖2
V , (4.10c)

A : V ×V → V
∗ is the realization ofA with A (u,u) = A(t)(u,u). (4.10d)

This lemma can be proven using standard arguments as described by Dautray & Lions (2000) and
Wolff (2016). Lemma 4.1 implies that any initial value problem of the form

u′ +A (u,u) = f in V∗,

u(0) = u0,
(4.11)

which includes the problem (4.6), is well-defined.

THEOREM 4.1 Consider equation (4.6) satisfying the conditions (4.7). Then there exists at least one
solution of equation (4.11).

The proof of Theorem 4.1 is given in Appendix A.1. We apply this theorem to the reduced model
(4.5) for which the spaceV isH 1

0 (Ω), so that both solution and test space correspond toV = L2([0,tm],H 1
0 (Ω)).

We haveu0 = ρε(0) and f ≡ ∂tω−1(Ta), which is inV ∗ by assumption. The functiona corresponding
to the problem (4.5) is

a(x, t,u) = κε(x)Dω ′(u+ ω−1(Ta(t))),
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which satisfies the conditions (4.7) foru∈ V. With all conditions of Theorem 4.1 fulfilled, we obtain
the following result

COROLLARY 4.1 There exists a solution of Eq. (4.5).

4.4 A priori estimates and limit functions

Our main results on a priori estimates are stated in Lemma 4.2below, which bounds independently ofε
the functionsE1,ε andT1,ε in L2([0, tm],H 1(Ω1

ε )), and similarlyE2,ε andT2,ε in L2([0,tm],H 1(Ω2
ε )).

The proof of this Lemma is given in Appendix A.2.

LEMMA 4.2 There exists a constantC1, independent ofε, such that the solutionΘε of (4.4) (equiva-
lently, E1,ε andE2,ε of (4.3)) satisfies

‖Θε‖2
Ω +‖κε∇Θε‖2

Ω ,t = ‖E1,ε‖2
Ω1

ε
+‖∇E1,ε‖2

Ω1
ε ,t +‖E2,ε‖2

Ω2
ε
+ ε2‖∇E2,ε‖2

Ω2
ε ,t 6 C1.

Using standard results of two-scale convergence (Allaire,1992; Nguetseng, 1989; Peter & Böhm,
2008), we immediately obtain the following result.

LEMMA 4.3 There exist functionsE1,0 ∈ L2([0,tm],H 1(Ω)), Ê1,0 ∈ L2([0,tm],L2(Ω ,H 1
# (Y1))) and

E2,0 ∈ L2([0, tm],L2(Ω ,H 1
# (Y2))) such that, up to subsequences,

E1,ε
2-scale−−−−→ E1,0,

∇E1,ε
2-scale−−−−→ ∇xE1,0 + ∇yÊ1,0,

E2,ε
2-scale−−−−→ E2,0,

∇E2,ε
2-scale−−−−→ ∇yE2,0.

Note thatE1,0 is independent ofy, and we have also introduced̂E1,0 ∈ L2([0,tm],L2(Ω ,H 1
# (Y1)))

andE2,0 ∈ L2([0, tm],L2(Ω ,H 1
# (Y2))), where the subscript # denotesY-periodicity in space. The limit

of ∇E1,ε has a special form obtained in Allaire (1992) that consists of two terms: one involving a
gradient with respect to the slow variable, and a second termwith respect to the fast variable.

4.5 Identification of the two-scale limit

Owing to the nonlinear dependence of the diffusion coefficient on enthalpy in (4.5), we have not yet
been able to identify the system of equations satisfied by thelimit functions of Lemma 4.3 without
further assumptions. In order to allow the limit passage without difficulties, weassumein the remainder
of this section that the functionDω ′ in (4.5) is independent ofΘε , which makes the model linear. Note
that having strong convergence of the functionΘε in L2([0,tm],Ω) would lead to the same results. A
homogenization proof for the fully nonlinear problem is left for future work.

In order to characterize the limit functions from Lemma 4.3,we define test functions that vary on
length scales of sizeO(1) andO(ε) according to

ϕε
(
x, x

ε
)

= χ1
(

x
ε
)(

ϕ0(x)+ εϕ1
(
x, x

ε
))

+ χ2
(

x
ε
)

ϕ2(x,
x
ε ),

where(ϕ0,ϕ1,ϕ2) ∈C∞
0 (Ω)×C∞(Ω ,C∞

# (Y))×C∞(Ω ,C∞
# (Y)).
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By substitutingϕε into (4.1a) and usingχi to write the resulting integrals over the entire domainΩ ,
we obtain

∫

Ω
χ1

(
x
ε
)

∂tE1,ε(x, t)ϕε
(
x, x

ε
)

dx+

∫

Ω
χ1

(
x
ε
)

Dω ′∇E1,ε(x,t)∇ϕε
(
x, x

ε
)

dx

+

∫

Ω
χ2

(
x
ε
)

∂tE2,ε(x, t)ϕε
(
x, x

ε
)

dx+

∫

Ω
χ2

(
x
ε
)

Dω ′ε2∇E2,ε(x,t)ϕε
(
x, x

ε
)

dx = 0.

Then, taking the limit asε → 0 yields

∫

Ω×Y1
∂tE1,0(x, t)ϕ0(x)dydx+

∫

Ω×Y1
Dω ′[∇xE1,0(x,t)+ ∇yÊ1,0(x,y,t)][∇xϕ0(x)+ ∇yϕ1(x,y)]dydx

+

∫

Ω×Y2
∂tE2,0(x,y, t)ϕ2(x,y) dydx+

∫

Ω×Y2
Dω ′∇yE2,0(x,y,t)∇yϕ2(x,y)dydx = 0, (4.12)

wherey denotes the spatial variable on the reference cellY.
We are free at this point to choose any test function and so we takeϕ0 = 0 andϕ2 = 0 in Eq. (4.12).

To start with, we introduce functionsµk ∈H 1
# (Y1) in order to expresŝE1,0(x,y,t)= ∑d

k=1 ∂xkE1,0(x,t)µk(y)
in separable form. The weak formulation of the cell problem for k = 1, . . . ,d may then be expressed in
the simpler form

(ek + ∇yµk, ∇yϕ1)Y1 = 0, (4.13)

where theµk areY-periodic. Alternatively, we may takeϕ1 = 0 in Eq. (4.12) to obtain

∫

Ω×Y1
∂tE1,0(x, t)ϕ0(x)dydx+

∫

Ω×Y1
Dω ′

d

∑
k=1

∂xkE1,0(x,t)[ek + ∇yµk(y)]∇xϕ0(x)dydx

+

∫

Ω×Y2
∂tE2,0(x,y, t)ϕ2(x,y) dydx+

∫

Ω×Y2
Dω ′∇yE2,0(x,y,t)∇yϕ2(x,y) dydx = 0,

which can be rewritten in the more suggestive form

∫

Ω×Y1
∂tE1,0(x, t)ϕ0(x)dydx+

∫

Ω
Dω ′

d

∑
k,ℓ=1

∂xkE1,0(x,t)
∫

Y1
[δkℓ + ∂yℓ

µk(y)]dy∂xℓ
ϕ0(x)dx

+

∫

Ω×Y2
∂tE2,0(x,y, t)ϕ2(x,y) dydx+

∫

Ω×Y2
Dω ′∇yE2,0(x,y,t)∇yϕ2(x,y) dydx = 0. (4.14)

The diffusion term involves the factors

Πkℓ =

∫

Y1
(δkℓ + ∂yℓ

µk)dy (4.15)

for k, ℓ = 1, . . . ,d, which can be represented as a matrixΠ that multiplies the diffusion coefficientDω ′.
We then obtain from (4.12) and (4.14) the equation

|Y1|(∂tE1,0, ϕ0)Ω + (ΠDω ′∇xE1,0, ∇xϕ0)Ω + (∂tE2,0, ϕ2)Ω×Y2 + (Dω ′∇yE2,0, ∇yϕ2)Ω×Y2 = 0.
(4.16)



A TWO-SCALE STEFAN PROBLEM 17 of 35

As a final step, we obtain the limit equation forE2,0 by settingϕ0 = 0 in Eq. (4.16), and similarly for
E1,0 by settingϕ2 = 0 in Eq. (4.16), which is found using a similar transition as in (4.2). The resulting
limit equations are

|Y1|(∂tE1,0, ϕ0)Ω +(ΠDω ′∇xE1,0, ∇xϕ0)Ω + 〈Dω ′∇yE2,0, ϕ0〉Γ×Ω = 0, (4.17a)

(∂tE2,0, ϕ2)Ω×Y2 +(Dω ′∇yE2,0, ∇yϕ2)Ω×Y2 = 0, (4.17b)

for all ϕ0 ∈ H 1
0 (Ω) andϕ2 ∈ L2(Ω ,H 1

# (Y2)), whereΠ is thed×d matrix of scaling factors defined
in (4.15),E1,0 ∈ L2([0, tm],H 1(Ω)) with ω(E1,0) = Ta on ∂Ω , andE2,0 ∈ L2([0,tm],L2(Ω ,H 1

# (Y2)))
with E2,0 = E1,0 onΩ ×Γ .

To simplify notation in the remainder of the paper, we drop the zero subscripts in{T1,0,E1,0,T2,0,E2,0}
and denote them instead by{T1,E1,T2,E2}. Note again that we have only rigorously derived the limit
problem in the linear case and so we would need to prove strongconvergence of the functionΘε in
L2([0,tm],Ω) for the analysis to hold for (4.4); we will nevertheless transition back to the nonlinear
problem with an enthalpy-dependent diffusion coefficientDω ′(E), for which the corresponding limit
equations are

|Y1|(∂tE1, ϕ0)Ω +(ΠD(E1)ω ′(E1)∇xE1, ∇xϕ0)Ω +
〈
D(E2)ω ′(E2)∇yE2, ϕ0

〉
Γ×Ω = 0, (4.18a)

(∂tE2, ϕ2)Ω×Y2 +
(
D(E2)ω ′(E2)∇yE2, ∇yϕ2

)
Ω×Y2 = 0. (4.18b)

4.6 Uniqueness

The uniqueness of the solution to the nonlinear problem (4.18) subject to suitable boundary and ini-
tial conditions may be formulated compactly in terms of the following theorem, which is proven in
Appendix A.3.

THEOREM 4.2 Equations (4.18) have at most one solution given by

T1 ∈ V
1(Ω)+Ta =

(
L2(

[0, tm],H 1
0 (Ω)

)
+Ta

)
∩H

1(
[0,tm],L2(Ω)

)
,

T2 ∈ V
2(Ω ×Y2)+T1=

(
L2(

[0, tm],L2(Ω ,H 1
0 (Y2))

)
+T1

)
∩H

1(
[0,tm],L2(Ω ×Y2)

)
,

whereT1 = ω(E1) andT2 = ω(E2).

We note that the uniqueness of the limit problem implies thatalready the whole sequences of solu-
tions converge to the functions satisfying (4.18).

4.7 Strong formulation of the limit problem

We now state an equivalent strong formulation of the limit problem corresponding to the weak form
in (4.18), but with the Dirichlet condition at the outer boundary switched back to a Robin condition
again. This consists of a PDE forT1 andE1 on the macroscale domainΩ

|Y1|∂tE1−∇x · (ΠD(E1)∇xT1) =

∫

Γ
D(E2)∇yT2 ·ndS in Ω , (4.19a)

−D(E1)∇xT1 ·n = α(T1−Ta) on ∂Ω , (4.19b)

along with a second PDE forT2 andE2 on the microscale

∂tE2−∇y · (D(E2)∇yT2) = 0 onΩ ×Y2, (4.19c)

T2 = T1 onΩ ×Γ , (4.19d)



18 of 35 I. KONRAD, M. A. PETER & J. M. STOCKIE

and initial values for enthalpy that we denoteE1,init andE2,init . These two problems are coupled through
the heat flux integral term in (4.19a) and the matching condition (4.19d), both of which are enforced on
Γ . This is again thetwo-phase formulation of the Stefan problem, which contains no explicit equation
for the motion of the phase interface; instead, the interface location is captured implicitly through the
temperature–enthalpy relation

T1 = ω(E1) in Ω and T2 = ω(E2) in Ω ×Y2. (4.19e)

Under the assumption that temperature within the ice phase is constant in space during a thawing event
(Visintin, 1996), the problem (4.19) may be rewritten in an equivalentone-phase formulationthat obeys
the same macroscale problem

|Y1|∂tE1−∇x · (ΠD(E1)∇xT1) =

∫

Γ
D(E2)∇yT2 ·ndS in Ω , (4.20a)

−D(E1)∇xT1 ·n = α(T1−Ta) on ∂Ω . (4.20b)

On the reference cell, however, the ice temperature is takenequal toTc and the water temperature obeys
the following microscale equations

cw∂tT2−∇y · (D(E2)∇yT2) = 0 onΩ × Ỹ2(x,t), (4.20c)

T2 = T1 onΩ ×Γ , (4.20d)

T2 = Tc on Ω × ∂Ỹ2(x,t), (4.20e)

which are solved only on the water-filled annular regionỸ2(x,t) ⊆ Y2 lying betweenΓ and the mov-
ing phase boundarysiw(x, t). Consequently, in this one-phase formulation both the domain Ỹ2 and its
boundary∂Ỹ2 depend onx andt throughsiw . In the case of a freezing event, the ordering of the ice/water
layers is reversed in which case the water temperature is held constant atTc instead and̃Y2 corresponds
to the sub-region containing ice. Finally, rather than imposing a temperature–enthalpy relation, the
one-phase formulation fixes the temperature on the phase boundary via (4.20e) and provides an explicit
Stefan condition governing the dynamics of the phase interface

∂tsiw = − D(E2)

(Ew−Ei)
∇yT2 ·n on Ω × ∂Ỹ2(x,t). (4.20f)

The primary reason that we employ the one-phase formulationof the Stefan problem is that it makes
numerical simulations of the limit problem much more convenient. A detailed derivation of this one-
phase formulation from the corresponding two-phase formulation can be found in Visintin (1996).

4.8 Limit problem for the sap exudation model

Based on the limit problem we just derived for the reduced model using homogenization techniques,
it is now straightforward to pose the analogous limit problem for the sap exudation model. The two-
scale heat transport equations (4.20a)–(4.20e) remain identical, but the Stefan condition (4.20f) in the
reduced model is replaced by the full set of differential–algebraic equations (DAEs) (2.1)–(2.2) for the
microscale sap exudation problem.

Although we have only performed the periodic homogenization procedure on the reduced model,
there are several features of the sap exudation problem thatcan be exploited to extend our analytical
results:
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1. Presence of the gas phase:which takes the form of gas bubbles in both fiber and vessel andintro-
duces a spatial dependence in the thermal diffusion coefficient,D(E,x). Extending our analytical
results to the case whenD also depends onx would be a straightforward generalization.

2. Dissolved sugar in the vessel sap:which gives rise to an osmotic potential between fiber and
vessel that is essential for generating realistic exudation pressures. Sugar within the vessel sap
also depresses the freezing point so that the functionω in (3.1) differs between vessel and fiber.
Although we do not need to consider freezing point depression explicitly in this paper (since we
treat only a single thawing cycle) this effect could still beincorporated into the analysis, for ex-
ample by adding an extra spatial dependence inω . Alternatively, the fiber could be defined as
separate domain that is connected to the vessel via appropriate boundary conditions, thereby en-
suring that the homogenization results carry through for the sap exudation model. We have chosen
not to incorporate this effect into the analysis, although periodic homogenization has previously
been applied to Stefan problems having various functional forms forω in Bossavit & Damlamian
(1981).

3. Extension to a freezing cycle:which requires modifications only to the microscale equations in
the reference cell as outlined in Graf et al. (2015). Consequently, this extension has no effect on
the homogenization procedure.

5. Multiscale numerical simulations

5.1 Solution algorithm

We now propose a multiscale numerical solution algorithm that computes approximate solutions to both
the reduced and sap exudation models. The method is based on atime-splitting approach that alternates
in each time step between solving the microscale (referencecell) and macroscale equations, and exploits
three main approximations:

• Because of the simple form of coupling between microscale and macroscale problems that in-
volves only interfacial solution values, we propose a “frozen coefficient” splitting approach in
which variables on the microscale are advanced to the next time step by holding all macroscale
variables constant at their previous values, and vice versa.

• The multiplier matrixΠ defined in (4.13) for the thermal diffusion coefficient in themacroscale
heat equation is independent of the local temperature stateand phase interface configuration.
Consequently, the entriesΠkℓ are constants that only need to be computed once at the beginning
of a simulation.

• Both models have an inherent radial symmetry on the microscopic scale, and we restrict ourselves
here to problems that have an analogous symmetry on the macroscale. This is a natural choice for
the tree sap exudation problem since a tree stem is well-approximated by a circular cylinder with
cross-sectionΩ having radiusRtree. Consequently, all variables and governing equations are cast
in terms of a single radial coordinate labelledx or y on the macro- or microscale respectively, so
that only 1D problems need to be solved on both scales.

The spatial discretization of the governing equations is performed separately on each spatial scale:
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Macroscale heat problem:The circular domainΩ is discretized on an equally-spaced radial mesh of
M = 40 points, denotedxi = iRtree/M for i = 0,1, . . . ,M−1. Discrete values of the unknowns
T1(x, t) andE1(x, t) are defined at each mesh pointxi .

Microscale heat problem:Within each reference cellY, the portion of the domainY2(x,t) consisting of
ice will grow or shrink according to the location of the localphase boundarysiw . We therefore
employ amoving meshdiscretization wherein the annular-shaped water region inthe fiber is
discretized atm equally-spaced radial points that move in time according toy j(t) = siw(t) +
j(γ −siw(t))/m for j = 0,1, . . . ,m, where we recall thatγ is the radius of the artificial boundary
Γ . In practice, it suffices to use a coarse grid in the referencecell with m= 4 ≪ M. Discrete
values of the solution variablesT2(x,y,t) andE2(x,y,t) are then defined at each locationxi and
y j .

Recall that the temperatureT2 is treated as the primary solution variable in the microscale problem,
whereas enthalpyE1 is the primary variable in the macroscale problem. We employa method-of-lines
approach in which spatial derivatives of solution quantities in bothx andy are approximated using finite
differences. The resulting coupled system of time-dependent DAEs is then integrated in time using the
stiff ODE solverode15s (MATLAB, 2015). This solver requires absolute and relativeerror tolerances,
which we choose asAbsTol = 7e-8 andRelTol = 2e-14.

We may then summarize the multiscale numerical algorithm asfollows:

Step 1: For a single canonical reference cell having the shape of a square with a circular hole, we use
the package COMSOL Multiphysics (COMSOL, 2015) to discretize the domain, approximate
the functionsµi(y) in (4.13), and then to calculate the corresponding integrals in (4.15). This
yields precomputed constant values of the four entries in matrix Π that are used in the remainder
of the computation (in Step 3c).

Step 2: At each macroscale pointxi , set the initial value ofT2 = T2,init . Then within theith reference cell,
setE1 = E1,init at each pointy j , and initialize eithersiw for the reduced model or

{
siw ,sgi, r,U

}

for the sap exudation model. Initial values are listed in Table 2.

Step 3: At each time step, advance the solution variables as follows:

3a. SetT1 = ω(E1) andE2 = ω−1(T2).

3b. UpdateT2 by integrating the microscale heat diffusion problem (4.20c)–(4.20e) one time
step within each reference cellY2(xi ,t). The values ofT1, E1, E2 andsiw are frozen at
the previous time step.

3c. UpdateE1 by integrating the macroscale heat diffusion problem (4.20a)–(4.20b) at all grid
pointsxi . Due to radial symmetry of the reference cell, the integral in the right hand
side of (4.20a) reduces to 2πR2D(E2)∇T2 ·n whereR2 is the radius ofY2. The values
of T2 andE2 are frozen at the values computed in step 3b.

3d. Update the microscale variables within each reference cellỸ2(xi ,t) by integrating the gov-
erning differential(–algebraic) equations in time, and freezing values ofT1 andT2. Here,
the equations being solved depend on the model problem:

• For the reduced problem, include the reduced Stefan condition (4.20f) only.

• For the sap exudation problem, use the system of DAEs (2.1)–(2.2).
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Table 2. Initial values for the reduced and sap exudation models, taken from Ceseri & Stockie (2013).

Symbol Description Initial Values Units
Tinit Initial temperature Tc K
Ta Ambient temperature Tc +10 K

siw(0) = Rf 3.5×10−6 m
sgi(0) = Rf/

√
2 2.5×10−6 m

r(0) 6.0×10−6 m
U(0) 0 m3

pf
g(0) 2.0×105 N/m2

pv
g(0) 1.0×105 N/m2

pf
w(0) 9.89×104 N/m2

pv
w(0) 9.95×104 N/m2

3e. Increment the time variable and return to Step 3a.

The above algorithm must be modified slightly whenever the ice completely melts, since the loss of
the Stefan condition (4.20f) induces a change in the governing equations. At the same time, the separa-
tion of the reference cell into two sub-domainsY1 andY2 (which was required to handle the Dirichlet
condition on temperature at the phase interface) is no longer necessary and hence the temperature can
be described by the single fieldT1 that obeys (4.20a)–(4.20b) with zero right hand side, constantD, and
Π ≡ 1. This alteration to the governing equations can be triggered easily within the numerical algo-
rithm above by exploiting the “event detection” feature in Matlab’sode15s solver, signalling an event
based on a zero-crossing of the ice layer thickness,b = siw − sgw: whenb > 0, ice is still present and
the original equations are solved; whenb = 0, ice is totally melted and the modified equations just de-
scribed are solved instead (and Steps 3b and 3d are omitted).We mention in closing that although only
2D simulations are performed in this paper, our algorithm extends in a straightforward manner to 3D
stem geometries by stacking a number of 2D stem slices in series and enforcing suitable flux continuity
conditions.

5.2 Simulations of the reduced model

We begin by presenting numerical simulations of the reducedmodel wherein a periodic array of melting
ice bars fills a circular domainΩ with radiusRtree = 0.25 m. The periodic reference cellY = [0,δ ]2

depicted in Figure 4b is given a side length ofδ = 4.33× 10−5 m. Each reference cell is initialized
with an ice bar of radiussiw(0) = Rf/

√
2 surrounded by water, such that the initial volume of ice in the

reduced model and the sap exudation model is equal. The initial temperature throughout the domain
is set toT1(x,0) = T2(x,y,0) = Tinit = Tc. On the outer boundary of the domain, a Robin boundary
condition−D(E1(Rtree, t))∇xT1(Rtree, t) · n = α(T1(Rtree,t)−Ta) is imposed withTa = Tc + 10, while
a symmetry condition∂xT1(0, t) = 0 is imposed at the center of the domain. We take the size of the
artificial boundaryΓ in each reference cell to be larger than the fiber radiusRf by an amount equal
to the typical thicknessW = 4.38× 10−6 m of the vessel wall; in other words,γ = Rf +W which is
well-separated from the phase interface. Note that the system is solved in dimensional variables so that
there is no need to non-dimensionalize and hence the size of the reference cell corresponds simply to the
physical dimensionδ . All physical parameter values and initial conditions are listed in Tables 1 and 2.

Figure 6 displays a sequence of solution snapshots at selected times between 0 and 16 h that illustrate
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the spatial and temporal variations in the macroscale temperatureT1 and ice-bar radiussiw . In each plot,
the horizontal (x) axis corresponds to the radial distance measured from the center of the circular domain
Ω . As time progresses, the temperature gradually increases and penetrates the domain interior as heat
from the outer boundary diffuses inwards. In response to this rise in temperature, the ice melts and the
ice bar within each local reference cell shrinks in size. Theice bars in the outermost region melt first,
and by timet ≈ 16 h the entire domain is completely melted (i.e.,siw = 0 throughoutΩ ). The formation
of a steep thawing front that progresses from the outer boundary to the center of the domain is clearly
visible in Figure 6b. These results should be contrasted with the study in Ceseri & Stockie (2013) that
investigated only the local behaviour of the solution to thethawing model (at some fixed location on the
microscale); on the other hand, our homogenized model results illustrate the progress of the thawing
front on the macroscale, while at the same time incorporating physical processes taking place on the
microscale.

(a) Macroscale temperatureT1(x,t) (b) Local ice-bar radiussiw(x,t)
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Figure 6. Simulations of the reduced model, showingT1 andsiw as functions of the global variablex, pictured at selected times
between 0 and 16 h.

5.3 Simulations of the sap exudation model

Next we perform simulations of the sap exudation model for a tree stem with the same parameters and
boundary conditions as for the reduced model. Recall that wechose the length of the reference cell
to beδ = 4.33×10−5 m, consistent with the size of fibers and vessels in actual sapwood. The initial
temperature is again taken to beTinit = Tc throughout, with the water in the fiber initially frozen and the
vessel sap in liquid form. Recall that this initial state captures the effect of freezing point depression due
to the presence of sugar within the vessel sap; and besides setting these initial conditions, there is no
need to incorporate any concentration dependence in the freezing point for this thawing-only model. To
initiate a thawing cycle, we apply the Robin boundary condition at the outer boundary of the tree stem
as in the reduced model,−D(E1(Rtree, t))∇xT1(Rtree,t) ·n = α(T1(Rtree,t)−Ta), whereTa = Tc+10. All
other parameters and initial values specific to the sap exudation model can be found in Tables 1 and 2.

After applying the multiscale algorithm described in Section 5.1, the solutions forT1, siw andsgi, r,
U , pf

w and pv
w are illustrated in Figure 7 at a sequence of six times between0 and 1.4 h. From these

plots, it is evident that the solution dynamics for all variables are characterized by amelting frontthat
progresses through the tree from the outer boundary toward the center (from right to left in the plots)
as the warm ambient air gradually heats up the interior. Furthermore, the time required for complete
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(a) TemperatureT1 (b) Phase interfacessiw , sgi
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Figure 7. Simulations of the sap exudation model showing(x,t)-dependent solution profiles at a sequence of time points. Inall
cases, the profiles evolve from right to left (toward the center of the tree) as indicated by the arrow in (a).



24 of 35 I. KONRAD, M. A. PETER & J. M. STOCKIE

melting of the ice contained in the fibers is just under 1.4 h.
The temperature profiles vary smoothly in space as one expects from a diffusion problem, while the

other solution quantities are characterized by a steep front that propagates toward the centre of the tree
with a speed that decreases with time. The steepness of the melting front derives from the thawing of
ice and subsequent adjustment of liquid between vessels andfibers on the microscale, all of which occur
very rapidly in the instant after the temperature exceeds the freezing pointTc at any given locationx.
The reason for the gradual slowing of the melting front with time is that the heat flux naturally decreases
as the front approaches the center of the tree, which in turn leads to a speed decrease owing to the Stefan
condition.

We also observe a clear separation in time scales between theslow evolution of temperature on the
macroscale and the relatively rapid phase change and sap redistribution within fibers and vessels on the
microscale. This scale separation is easily seen by comparing Figure 7 with plots of the time evolution
of local solution variables at a fixed radial locationx = 0.15 m shown in Figure 8. The thickness of the
fiber–ice layer can be determined as the vertical distance between thesiw andsgi curves in Figure 8b,
which rapidly drops to zero as the ice melts. At the same time,melt-water is driven from fiber to vessel
by the pressure stored in the fiber gas bubble, and the pressure plot in Figure 8c clearly illustrates the
subsequent increase inpv

w that we attribute to exudation pressure. After the melting process is complete,
the vessel–liquid pressure continues to increase (although at a slow rate that is not easily visible to the
naked eye) owing to a slight expansion of gas in the fiber and vessel in response to further temperature
increase as heat continues to diffuse through the liquid phase from the outer tree surface.

(a) TemperatureT1 (b) Phase interfacessiw , sgi (c) Liquid pressurespf
w, pv
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Figure 8. Simulations of the sap exudation model, showing the time evolution of various solution components at the fixed radial
positionx = 0.15 m.

Upon more careful inspection of the gas/ice and ice/water interfaces in Figure 8b, we observe that
there is a slight time delay in the motion ofsiw relative tosgi. Indeed, the ice begins to melt at the gas/ice
interface (leading to an increase insgi) at a time that is roughly 25 s in advance of whenswi starts to
drop, which is when a water layer appears between the ice and fiber wall. This phenomenon can be
explained as follows. When melt-water first appears in a particular fiber, the gas bubble pressure is so
high that water is immediately forced out into the vessel, leaving the ice layer in contact with the fiber
wall. The gas pressure then declines until approximately 25s elapses, at which time the rate of water
melting exceeds that of the porous outflow and a water layer begins to accumulate along the fiber wall.
By this time, roughly half of the water volume contained in the fiber has been transferred into the vessel.

One of the most significant results from our sap exudation model is the prediction that vessel liq-
uid pressure increases by roughly 120kPa, which is within the range of exudation pressures actually
observed in sugar maple trees (Cirelli et al., 2008) and closely-related species such as black walnut



A TWO-SCALE STEFAN PROBLEM 25 of 35

(Améglio et al., 2001). Furthermore, simulations of multiple freeze and thaw cycles with this homoge-
nized model yield results that are consistent with controlled experiments on walnut (Graf et al., 2015).
Work is currently underway on comparing our model results toexperiment measurements of sugar maple
saplings (Brown, 2015).

Finally, we draw a comparison between the solution of the sapexudation model for temperatureT1

and ice layer thicknesssiw − sgi, and the corresponding solution variables (T1, siw) from the reduced
problem in Section 3. Although the shape of the temperature and ice interface profiles are similar, there
is a significant difference in that the melting process for the reduced problem takes over 10 times longer
than for the sap exudation problem even though the macroscopic domain and outer temperature are
the same. This discrepancy may seem at first glance to be inconsistent, but this result can be easily
explained as follows. The diffusion coefficient for the sap exudation problem is roughly 10 times higher
because of the much larger value of thermal diffusivity (k/ρc) in the gas phase (with an upper bound of
2×10−5 m2/s based on atmospheric conditions) compared with the corresponding values for ice and
water (1.2×10−6 and 1.3×10−7 m2/s respectively) which are the only phases appearing in the reduced
model.

6. Conclusions

The aim of this paper was to apply techniques from periodic homogenization to derive a multiscale
model for a multiphase flow problem arising in the context of maple sap exudation. Because of the
complexity of the physics underlying the sap exudation problem (involving liquid/ice phase change,
dissolving gas, flow through porous cell membranes, osmosisand other effects), we started by deriving
a simpler reduced model that focuses on the melting of a periodic array of ice bars. This reduced model
belongs to the class of Stefan problems, which have been well-studied in the context of homogenization
in case of fast diffusion. We prove results on existence, uniqueness and a priori estimates for the weak
form of the reduced governing equations involving fastandslow diffusion, which we then use to derive a
strong form of the homogenized limit problem in which there is a clear separation between equations for
the cellular level processes on the microscale, and heat transport on the macroscale. Our approach has
the advantage that it applies homogenization techniques ina straightforward manner in order to obtain
an uncomplicated limit model. The primary novelty of the analytical results, relative to other work
on homogenization of Stefan-type problems, derives from our directly imposing a Dirichlet condition
on temperature at the phase interface, which gives rise to a decomposition into fast and slow variables
on the sub-regionsY1 andY2 of the reference cell. A major advantage of this decomposition is that
it leads immediately to a simple and efficient numerical method based on a time-splitting approach
that exploits the scale separation in the limit equations. In particular, we are able to encapsulate all
microscale processes specific to the phase change within thereference cell domainY2, wherein the
temperature diffuses slowly. Consequently, this homogenized limit structure (and the corresponding
numerical algorithm) can be easily adapted to the sap exudation problem by simply “plugging in” the
corresponding microscale equations governing the cell-level processes. In passing, we proved a general
existence result for quasi-linear parabolic differentialequations having a non-monotone nonlinearity in
the diffusion operator. Numerical simulations are performed for both the sap exudation problem and
the reduced model, and the results are shown to be consistent, although there are significant differences
that we attribute to the absence of a gas phase in the reduced model. The homogenized limit equations
derived here have been extended elsewhere (Graf et al., 2015) to handle the freezing case, and then
applied to simulate multiple daily cycles of freeze and thawcycles; these results show an excellent
match with sap exudation experiments.
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There are several natural avenues for future work that arisefrom this study. Most notably, we would
like to fill the gap in our analytical results by extend the proofs to handle the nonlinearity arising from an
enthalpy-dependent thermal diffusion coefficient. This effort will be guided by results on other related
nonlinear problems (Kanschat-Krebs, 2015; Visintin, 2007). We also plan to extend our model to handle
the three-dimensional geometry of a cylindrical tree stem and include radial flow of sap and the effect
of gravitational pressure head on vertical transport.

A. Proofs of three main results

This appendix contains proofs of the lemmas and theorems introduced in Section 4. Throughout, we
useC or Ci to denote a generic, real, positive constant whose value maychange from line to line.

A.1 Proof of existence

THEOREM 4.1 Consider equation (4.6) satisfying the conditions (4.7). Then there exists at least one
solution of equation (4.11).

Proof.

(i) To handle the nonlinearities ofA we perform the semi-discretization

um−um−1

k
+A(mk)(um−1,um) = f m in V∗, (A.1)

for m= 1, . . . ,N, with N ∈ N, N > 2, k = tm
N , u0 = u0 and

f m =
1
k

∫

Jm

f (t)dt,

for m = 1, . . . ,N andJm = [(m− 1)k,mk]. Then fk(t) = f m on Jm for m= 1, . . . ,N. With these
conditions the existence of the semi-discrete problem (A.1) holds.

(ii) (A priori estimates) We define the functionsuk : [0,T] →V andwk : [0,T] → L2(Ω) with

uk(t) = um, (A.2a)

wk(t) = um+
t −mk

k
(um+1−um). (A.2b)

Then it holds that

‖uk−wk‖2
L2(S,L2(Ω)) 6

k
3

N

∑
m=1

‖um−um−1‖2
L2(Ω). (A.3)

For the next estimate we start with the fact that

2(a−b, a) = ‖a‖2
Ω −‖b‖2

Ω +‖a−b‖2
Ω ∀ a,b∈ L2(Ω),

which implies

‖um‖2
Ω −‖um−1‖2

Ω + ‖um− um−1‖2
Ω + 2k〈A(mk)(um−1,um),um〉V∗V = 2k〈 f m,um〉V∗V . (A.4)
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Using Hölder’s inequality we obtain that

‖um‖2
Ω −‖um−1‖2

Ω +‖um−um−1‖2
Ω +kλ‖um‖2

V 6
k
λ
‖ f m‖2

V∗ . (A.5)

Making use of the inequality

k
N

∑
m=1

‖ f m‖2
V∗ 6

∫ T

0
‖ f (t)‖2

V∗ dt, (A.6)

and then summing (A.5) overm from 1 tor 6 N yields

‖ur‖2
Ω +

r

∑
m=1

‖um−um−1‖2
Ω +kλ

r

∑
m=1

‖um‖2
V 6 ‖u0‖2 +

1
λ

∫ T

0
‖ f (t)‖2

V∗ dt. (A.7)

It then follows that

‖ur‖2
Ω 6 ‖u0‖2

Ω +
1
λ

∫ T

0
‖ f (t)‖2

V∗ dt for 1 6 r 6 N, (A.8a)

r

∑
m=1

‖um−um−1‖2
Ω 6 ‖u0‖2

Ω +
1
λ

∫ T

0
‖ f (t)‖2

V∗ dt, (A.8b)

k
r

∑
m=1

‖um‖2
V 6

1
λ
‖u0‖2

Ω +
1

λ 2

∫ T

0
‖ f (t)‖2

V∗ dt. (A.8c)

Using (A.8a) we obtain the estimates

‖uk‖L∞(S,L2(Ω)) 6 c, (A.9a)

‖wk‖L∞(S,L2(Ω)) 6 c, (A.9b)

where the constantc depends only on the right-hand side of (A.8a). Because of

∫ T

0
‖uk(t)‖2

V dt = k
N

∑
m=1

‖um‖2
V ,

it follows that

‖uk‖L2(S,V) 6 c. (A.10)

The Banach spaceL∞(S,L2(Ω)) is the dual space of the separable spaceL1(S,L2(Ω)); hence,
when taken together with the estimates (A.9) and (A.10) and the theorems of Eberlein–Shmuljan
and Banach–Alaoglu, we are guaranteed the existence of subsequences

uk ⇀ u in L2(S,V), (A.11a)

uk ⇀∗ u in L∞(S,L2(Ω)), (A.11b)

wk ⇀∗ w in L∞(S,L2(Ω)). (A.11c)

We next want to show that

u = w. (A.12)
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Using (A.3) and (A.8a) we conclude that

uk−wk → 0 in L2(S,L2(Ω)), (A.13)

so that for a subsequence

uk(t)−wk(t) → 0.

With Eqs. (A.9) we obtain that

uk−wk → 0 in L∞(S,L2(Ω)),

and hence we can rewrite (A.11c) as

wk ⇀∗ u in L∞(S,L2(Ω)).

The nonlinearity ofA requires another a priori estimate to perform the limitk → 0. From (A.3),
(4.7e) and (4.10a) we deduce that

∥∥∥∥
um−um−1

k

∥∥∥∥
V∗

6 ‖ f m‖V∗ +Λ‖um‖V . (A.14)

After that, we apply (A.6) and (A.8c) to obtain

k
N

∑
m=1

∥∥∥∥
um−um−1

k

∥∥∥∥
2

V∗
6 d < ∞, (A.15)

whered only depends on the data in (4.7e) and constantsλ andΛ . This estimate implies that

‖w′
k‖L2(S,V∗) 6 d. (A.16)

Eq. (A.11a) and the construction ofwk in (A.2a) yield

∀δ > 0 ∀k 6 δ : ‖wk‖L2(]δ ,T[,V) 6 c, (A.17)

for c independent ofδ . When taken together with (A.16), (A.13), and the theorem ofLions–Aubin,
we obtain subsequences

wk → u in L2(]δ ,T[,L2(Ω)), (A.18a)

uk−wk → 0 in L2(S,L2(Ω)), (A.18b)

uk → u in L2(]δ ,T[,L2(Ω)). (A.18c)

Then there exist a subsequence(uk), converging pointwise a.e. onS to u. Using (A.11a) and
Lebesgue’s theorem we obtain

uk → u in L2(S,L2(Ω)). (A.19)
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(iii) (Limit) We define a translation of the functionuk : [0,T] →V by

uk(t −k) := um−1 onJm for m= 1, . . . ,N, (A.20)

for Jm = [(m−1)k,mk]. Then the semi-discretization yields

w′
k(t)+A(t)(uk(t −k),uk(t)) = fk(t) for a.e.t ∈ S in V∗. (A.21)

Applying (A.21) tov ∈ V with V ∗ ⊂ L2(S,L2(Ω)) andv(T) = 0, and integrating overS using
integration by parts in the first term yields

−
∫ T

0
(v′(t) , wk(t))dt +

∫ T

0
〈A(t)(uk(t−k),uk(t)),v(t)〉dt =

∫ T

0
〈 fk(t),v(t)〉dt +(u0 , v(0)).

(A.22)

With (4.10a) and (A.11a) it holds for a subsequence that

A(·)(uk(·−k),uk(·)) ⇀ ζ in V∗. (A.23)

Taking the limit in (A.22) we obtain

−
∫ T

0
(v′(t) , u(t))dt +

∫ T

0
〈ζ (t),v(t)〉dt =

∫ T

0
〈 f (t), v(t)〉dt +(u0 , v(0)). (A.24)

With u∈ V , Eq. (A.24) andu′ ∈ V ∗ yield

u′(t)+ ζ (t) = f (t) for a.e.t ∈ S, in V∗. (A.25)

It is left to show that

A(t)(u,u) = ζ . (A.26)

We use the monotonicity ofA in the second argument and compactness from the a priori estimates
to obtain

Xk :=
∫ T

0
〈A(t)(uk(t −k),uk(t))−A(t)(uk(t −k),v(t)),uk(t)−v(t)〉dt > 0 (A.27)

for all v∈ V . Eq. (A.25) then implies
∫ T

0
〈 f (t),u(t)〉dt +

1
2
‖u0‖2

Ω − 1
2
‖u(T)‖2

Ω =

∫ T

0
〈ζ (t),u(t)〉dt, (A.28)

and from Eq. (A.21) we obtain

∫ T

0
〈w′

k(t),uk(t)〉dt +

∫ T

0
〈A(t)(uk(t − k),uk(t),uk(t)〉dt =

∫ T

0
〈 fk(t),uk(t)〉dt. (A.29)

We use the following transformation
∫ T

0
〈w′

k(t),uk(t)〉dt =

∫ T

0
〈w′

k(t),wk(t)〉dt +

∫ T

0
〈w′

k(t),uk(t)−wk(t)〉dt

=
1
2
‖uN‖2

Ω − 1
2
‖u0‖2

Ω − 1
2

N

∑
m=1

‖um−um−1‖2
Ω . (A.30)
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Eqs. (A.29) and (A.30) together lead to

∫ T

0
〈A(t)(uk(t −k),uk(t)),uk(t)〉dt

=

∫ T

0
〈 fk(t),uk(t)〉dt − 1

2
‖uN‖2

Ω +
1
2
‖u0‖2

Ω +
1
2

N

∑
m=1

‖um−um−1‖2
Ω . (A.31)

Using Eq. (A.8b), we conclude that the sum in (A.30) and (A.31) is convergent. From Eq. (A.27)
we deduce that

0 6
∫ T

0
〈 fk(t),uk(t)〉dt +

1
2
‖u0‖2

Ω − 1
2
‖uN‖2

Ω

+
1
2

N

∑
m=1

‖um−um−1‖2
Ω −

∫ T

0
〈A(t)(uk(t −k),uk(t)),v(t)〉dt

−
∫ T

0
〈A(t)(uk(t −k),v(t)),uk(t)−v(t)〉dt. (A.32)

The limit superior in (A.32) leads to

0 6
∫ T

0
〈 f (t),u(t)〉dt +

1
2
‖u0‖2

Ω − 1
2
‖u(T)‖2

Ω + γ

−
∫ T

0
〈ζ (t),v(t)〉dt −

∫ T

0
〈A(t)(u(t),v(t)),u(t)−v(t)〉dt (A.33)

where we used

lim
N→∞

inf‖uN‖2
Ω > ‖u(T)‖2

Ω (A.34)

and

uk(·−k) → u in L2(S,L2(Ω)) = L2(S×Ω). (A.35)

This last result follows from Eq. (A.19), the Lebesgue integration theory, and an application of the
Nemyzki operator. Eqs. (A.33) and (A.28) lead to

−γ 6
∫ T

0
〈ζ (t)−A(t)(u(t),v(t)),u(t)−v(t)〉dt ∀ v∈ V . (A.36)

Now we consider two cases:

(a) If the integral on the right-hand side of (A.36) is alwaysgreater or equal to 0, then letv =
u−αw with α > 0 andw∈ V . It follows that

0 6
∫ T

0
〈ζ (t)−A(t)(u(t),u(t)−αw(t)),w(t)dt ∀w∈ V . (A.37)

Using condition (4.10b), the limit passage forα → 0 is admissible and we obtain

0 6
∫ T

0
〈ζ (t)−A(t)(u(t),u(t)),w(t)〉dt ∀w∈ V , (A.38)

and with the standard linearity argument the proof is complete.
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(b) If on the other hand the right-hand side of Eq. (A.36) becomes negative, then there exists a
v∈ V and (because of continuity) a whole ballBr(v) ⊂ V such that

∫ T

0
〈ζ (t)−A(t)(u(t),v(t)),u(t)−v(t)〉 dt 6 0 ∀v∈ Br(v). (A.39)

We setv= u−w with w∈ Br(u−v), and use Eq. (A.39) and the linearity condition (4.10b) to
obtain

∫ T

0
〈ζ (t)−A(t)(u(t),u(t)−w(t)),w(t)〉dt =

∫ T

0
〈ζ (t)−A(t)(u(t),u(t)),w(t)〉dt

+
∫ T

0
〈A(t)(u(t),w(t)),w(t)〉dt 6 0. (A.40)

With Eq. (4.7c) we deduce

∫ T

0
〈ζ (t)−A(t)(u(t),u(t)),w(t)〉dt 6 0 ∀w∈ Br(u−v), (A.41)

which yields

∫ T

0
〈ζ (t)−A(t)(u(t),u(t)),αw(t)〉dt 6 0 ∀α > 0 ∀w∈ Br(u−v). (A.42)

As a result, Eq. (A.41) holds for allw ∈ V and using the standard trick of linearity, statement
(A.26) is proven.

�

A.2 Proof of a priori estimates

LEMMA 4.2 There exists a constantC1, independent ofε, such that the solutionΘε of (4.4) (equiva-
lently, E1,ε andE2,ε of (4.3)) satisfies

‖Θε‖2
Ω +‖κε∇Θε‖2

Ω ,t = ‖E1,ε‖2
Ω1

ε
+‖∇E1,ε‖2

Ω1
ε ,t +‖E2,ε‖2

Ω2
ε
+ ε2‖∇E2,ε‖2

Ω2
ε ,t 6 C1.

Proof. Begin by testing Eq. (4.5) withρε to obtain

(∂tρε ,ρε)Ω +(κεDω ′(ρε + ω−1(Ta))∇ρε ,∇ρε)Ω = (−∂tω−1(Ta),ρε)Ω .

BecauseDω ′ is bounded from below by a positive constant, we can apply thedefinition ofκε to get

(∂tρε ,ρε)Ω +min{Dω ′}‖∇ρε‖2
Ω1

ε
+min{Dω ′}‖ε∇ρε‖2

Ω2
ε

6 ‖∂tω−1(Ta)‖2
Ω +‖ρε‖2

Ω .

Then, integrating with respect to time and using the boundedness of‖ω−1(Ta)‖2
Ω , we conclude using

Gronwall’s Lemma that

1
2
‖ρε(t)‖2

Ω +min{Dω ′}‖∇ρε‖2
Ω1

ε ,t
+min{Dω ′}‖ε∇ρε‖2

Ω2
ε ,t

6 C+
1
2
‖ρε(0)‖2

Ω
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for everyt ∈ [0, tm], where we use that the initial conditions are bounded. This yields forΘε that

1
2
‖Θε(t)+ ω−1(Ta(t))‖2

Ω +min{Dω ′}‖∇Θε‖2
Ω1

ε ,t
+min{Dω ′}‖ε∇Θε‖2

Ω2
ε ,t

6 C+
1
2
‖Θε(0)+ ω−1(Ta(0))‖2

Ω ,

after which we obtain from the reverse triangle inequality that

1
2
‖Θε(t)‖2

Ω +min{Dω ′}‖∇Θε‖2
Ω1

ε ,t
+min{Dω ′}‖ε∇Θε‖2

Ω2
ε ,t

6 C+
1
2
‖Θε(0)+ ω−1(Ta(0))‖2

Ω +
1
2
‖ω−1(Ta(t))‖2

Ω .

This implies forE1,ε andE2,ε that

‖E1,ε(t)‖2
Ω1

ε
+‖E2,ε(t)‖2

Ω2
ε
+min{Dω ′}‖∇E1,ε‖2

Ω1
ε ,t

+min{Dω ′}‖ε∇E2,ε‖2
Ω2

ε ,t
6 C1,

whereC1 is a constant independent ofε. �

A.3 Proof of uniqueness theorem

THEOREM 4.2 Equations (4.18) have at most one solution given by

T1 ∈ V
1(Ω)+Ta =

(
L2(

[0, tm],H 1
0 (Ω)

)
+Ta

)
∩H

1(
[0,tm],L2(Ω)

)
,

T2 ∈ V
2(Ω ×Y2)+T1=

(
L2(

[0, tm],L2(Ω ,H 1
0 (Y2))

)
+T1

)
∩H

1(
[0,tm],L2(Ω ×Y2)

)
,

whereT1 = ω(E1) andT2 = ω(E2).

Proof. First we note that the cell problem (4.13) has a unique solution, which was proven in Hornung
(1997). Hence, we will only prove uniqueness of the macroscopic problem by assuming that there are
two solutions(E1,a,E2,a) and(E1,b,E2,b), and then showing that they are equal. To show uniqueness of
solutions to (4.18), we use the equivalent version (4.16) with nonlinear diffusion coefficient. We start by
substituting each of our solutions into (4.16), subtract the two equations, and then test with the functions
E1,a−E1,b andE2,a−E2,b:

|Y1|(∂tE1,a− ∂tE1,b, E1,a−E1,b)Ω

+(Π(Dω ′(E1,a)∇E1,a−Dω ′(E1,b)∇E1,b), ∇E1,a−∇E1,b)Ω

+(∂tE2,a− ∂tE2,b, E2,a−E2,b)Ω×Y2

+(Dω ′(E2,a)∇yE2,a−Dω ′(E2,b)∇yE2,b, ∇yE2,a−∇yE2,b)Ω×Y2 = 0.

By adding and subtracting an extra term we obtain

0 = |Y1|(∂tE1,a− ∂tE1,b, E1,a−E1,b)Ω

+(Π(Dω ′(E1,a)∇E1,a−Dω ′(E1,a)∇E1,b +Dω ′(E1,a)∇E1,b−Dω ′(E1,b)∇E1,b),

∇E1,a−∇E1,b)Ω +(∂tE2,a− ∂tE2,b, E2,a−E2,b)Ω×Y2

+(Dω ′(E2,a)∇yE2,a−Dω ′(E2,a)∇yE2,b +Dω ′(E2,a)∇yE2,b−Dω ′(E2,b)∇yE2,b,

∇yE2,a−∇yE2,b)Ω×Y2,
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which yields the following estimates

|Y1|(∂tE1,a− ∂tE1,b, E1,a−E1,b)Ω +min{‖ΠDω ′‖}‖∇E1,a−∇E1,b‖2
Ω

+(∂tE2,a− ∂tE2,b, E2,a−E2,b)Ω×Y2 +min{Dω ′}‖∇yE2,a−∇E2,b‖2
Ω×Y2

6 −((Dω ′(E1,a)−Dω ′(E1,b))∇E1,b, ∇E1,a−∇E1,b)Ω

− ((Dω ′(E2,a)−Dω ′(E2,b))∇yE2,b, ∇yE2,a−∇yE2,b)Ω×Y2

6 ‖Dω ′(E1,a)−Dω ′(E1,b)‖L∞(Ω)‖∇E1,b‖Ω‖∇E1,a−∇E1,b‖Ω

+‖Dω ′(E2,a)−Dω ′(E2,b)‖L∞(Ω×Y2)‖∇yE2,b‖Ω×Y2‖∇yE2,a−∇yE2,b‖Ω×Y2,

6 CL‖Dω ′(E1,a)−Dω ′(E1,b)‖Ω‖∇E1,b‖Ω‖∇E1,a−∇E1,b‖Ω

+CL‖Dω ′(E2,a)−Dω ′(E2,b)‖Ω×Y2‖∇yE2,b‖Ω×Y2‖∇yE2,a−∇yE2,b‖Ω×Y2,

6 CDCL‖E1,a−E1,b‖Ω‖∇E1,b‖Ω‖∇E1,a−∇E1,b‖Ω

+CDCL‖E2,a−E2,b‖Ω×Y2‖∇yE2,b‖Ω×Y2‖∇yE2,a−∇yE2,b‖Ω×Y2,

Here, we first use Hölder’s inequality; secondly thatDω ′ is bounded and greater than zero, andΩ is
bounded which implies that‖Dω(·)‖L∞(Ω) 6 CL‖Dω(·)‖Ω for a constantCL > 0; and thirdly we use
thatDω ′ is Lipschitz continuous with constantCD. Next, we apply the quadratic formula and integrate
with respect to time to get

1
2
|Y1|‖E1,a−E1,b‖2

Ω +min{‖ΠDω ′‖}‖∇E1,a−∇E1,b‖2
Ω ,t

+
1
2
‖E2,a−E2,b‖2

Ω×Y2 +min{Dω ′}‖∇yE2,a−∇E2,b‖2
Ω×Y2,t

6
CDCLλ

2

∫ tm

0
‖E1,a−E1,b‖2

Ω‖∇E1,b‖2
Ω dt +

CDCL

2λ
‖∇E1,a−∇E1,b‖2

Ω ,t

+
CDCLλ

2

∫ tm

0
‖E2,a−E2,b‖2

Ω×Y2‖∇yE2,b‖2
Ω×Y2 dt +

CDCL

2λ
‖∇yE2,a−∇yE2,b‖2

Ω×Y2,t ,

for anyλ > 0, where we have taken advantage of the fact that terms containing the initial conditions are
zero. Rearranging terms yields

1
2
|Y1|‖E1,a−E1,b‖2

Ω +

(
min{‖ΠDω ′‖}− CDCL

2λ

)
‖∇E1,a−∇E1,b‖2

Ω ,t

+
1
2
‖E2,a−E2,b‖2

Ω×Y2 +

(
min{Dω ′}− CDCL

2λ

)
‖∇yE2,a−∇E2,b‖2

Ω×Y2,t

6
CDCLλ

2

∫ tm

0
‖E1,a−E1,b‖2

Ω‖∇E1,b‖2
Ω dt +

CDCLλ
2

∫ tm

0
‖E2,a−E2,b‖2

Ω×Y2‖∇yE2,b‖2
Ω×Y2 dt.

Finally, we chooseλ large enough such that all terms on the left-hand side are positive and exploit that
‖∇E1‖2

Ω and‖∇yE2‖2
Ω are bounded, after which we can apply Gronwall’s Lemma to obtain

‖E1,a − E1,b‖2
Ω + ‖∇E1,a − ∇E1,b‖2

Ω ,t + ‖E2,a − E2,b‖2
Ω×Y2 + ‖∇yE2,a − ∇E2,b‖2

Ω×Y2,t 6 0.

Consequently,E1,a = E1,b and∇E1,a = ∇E1,b almost everywhere onΩ × [0,tm], and similarlyE2,a =
E2,b and∇E2,a = ∇E2,b almost everywhere onΩ ×Y2× [0,tm]. �
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Visintin, A. (2007) Homogenization of a doubly nonlinear Stefan-type problem.SIAM J. Math. Anal., 39(3), 987–
1017.

Wilmot, T. R. (2011) Root pressure in trees: A spring phenomenon.Farming: Journal of Northeast Agriculture.
Wolff, M. (2016) Partielle Differentialgleichungen und Sobolev-Räume. Unpublished lecture notes, Zentrum für
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