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The study of tree sap exudation, in which a (leafless) treergées elevated stem pressure in response
to repeated daily freeze—thaw cycles, gives rise to andstigrg multiscale problem involving heat and
multiphase liquid/gas transport. The pressure generatiechanism is a cellular-level process that is
governed by differential equations for sap transport tghoporous cell membranes, phase change, heat
transport, and generation of osmotic pressure. By assumipgriodic cellular structure based on an
appropriate reference cell, we derive an homogenized lyg@tien governing the global temperature on
the scale of the tree stem, with all the remaining physiegakd to equations defined on the reference
cell. We derive a corresponding strong formulation of theitliproblem and use it to design an efficient
numerical solution algorithm. Numerical simulations drert performed to validate the results and draw
conclusions regarding the phenomenon of sap exudatiorghwikiof great importance in trees such
as sugar maple and a few other related species. The partfoata of our homogenized temperature
equation is obtained using periodic homogenization tephes with two-scale convergence, which we
investigate theoretically in the context of a simpler twmape Stefan-type problem corresponding to
a periodic array of melting cylindrical ice bars with a cargtthermal diffusion coefficient. For this
reduced model, we prove results on existence, uniquendssoamergence of the two-scale limit solution
inthe weak form, clearly identifying the missing piecesuiegd to extend the proofs to the fully nonlinear
sap exudation model. Numerical simulations of the reducpatons are then compared with results
from the complete sap exudation model.

Keywords periodic homogenization; two-scale convergence; Stefablem; multiphase flow; phase
change.
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1. Introduction

This paper is motivated by the study of sap flow in sugar mapkstthat are subject to repeated cycles
of thawing and freezing during the sap harvest season imfiater (Ceseri & Stockie, 2013). We seek
insight into the phenomenon shp exudationwhich refers to the generation of elevated sap pressure
within the maple stem when the tree is in a leafless state arnithnspiration occurs to drive the sap
flow. Our work is based on the model derived in Ceseri & Sto¢R@13) that captures the physical
processes at the microscale (i.e., at the level of inditidiead cells) and includes multiphase flow of
ice/water/gas, heat transport, porous flow through celsyahd osmosis. There is an inherent repeating
structure in sapwood at the cellular scale that lends itsatifirally to the use of homogenization ideas
that we exploited in Graf et al. (2015) to obtain a multiscatedel for the macroscale temperature that is
coupled to a corresponding system of equations governangiibroscale cellular processes. Our main
objective in this paper is to provide a more rigorous thecagfustification for this multiscale model
by working through the details of the homogenization pre@sd proving results regarding existence,
uniqueness and two-scale convergence.

Multiscale problems such as the one just described are cieaized by geometric, material or other
features that exhibit variations on widely differing spatcales. Many mathematical and numeri-
cal methods have been developed to capture such scale ts@pasawell as the interactions between
physical phenomena operating on disparate scales (Engguds, 2005; Hornung, 1997). For prob-
lems having a periodic microstructure, a mathematicalregre that has proven to be very effective is
known as periodic homogenization (Cioranescu & Donato91.98nd more specifically the method of
two-scale convergence (Allaire, 1992; Nguetseng, 198Richvhas also been extended to capture non-
periodically evolving microstructures (Peter, 2007agtelP & Bohm, 2009). We are interested here in
applying two-scale convergence to analyze solutions oéfa8ttype problem that governs the dynam-
ics of the ice/water interface within individual tree cellsocally, temperature obeys the heat equation
and is coupled with a Stefan condition that governs soliglitl phase transitions at the interface. Many
different approaches have been developed to analyze sade ptansitions, which are well-described
in Visintin (1996). With the exception of a few studies ofngle-phase) water and solute transport
in plant tissues (Chavarria-Krauser & Ptashnyk, 2010v@tréa-Krauser & Ptashnyk, 2013), periodic
homogenization techniques have not been applied in thexoot heat or sap flow in trees.

The approach we employ in this paper has the advantage #qgblies homogenization techniques
in a straightforward manner in order to obtain an uncomiddimit model, the simplicity of which
ensures that numerical simulations are relatively easyetopm. In particular, we define a reference
cellY that is divided into two sub-region¥?, where the temperature diffuses rapidly; &ffdon which
we define a second temperature field that diffuses slowlyeiRefArbogast et al. (1990) and Peter &
Bohm (2008) for similar homogenization approaches invaslow and fast transport. One particular
challenge arising in the study of Stefan problems is thadtfiesion coefficient depends on the under-
lying phases, so that heat diffuses differently in watercer. iConsequently, the diffusion coefficient
depends on temperature (or equivalently on enthalpy) gdttbayoverning differential equation is only
quasi-linear.

Rather than attempting to analyze the sap exudation proiolés full complexity, we find it more
convenientto develop our homogenization results in théestiof a simpler “reduced model” defined on
a similarly fine-structured domain wherein the cell-levelgesses are governed by a Stefan problem that
involves only heat transport and ice/water phase changegarticular, we consider a domain consisting
of a periodic array of cylindrical ice inclusions immersedwater. To handle the multiplicity of the
ice bars, we apply the technique of periodic homogenizatitimtwo-scale convergence established in



A TWO-SCALE STEFAN PROBLEM 30f 35

Allaire (1992) and Nguetseng (1989). Several authors heagqusly applied homogenization to Stefan
problems, such as Bossavit & Damlamian (1981), Damlami&1}1and Visintin (2007), where the
phase change boundary is handled by separately homoggaiziauxiliary problem. In Eck (2004) on
the other hand, an additional functiéris introduced for an aggregate state that diffuses on a shoev t
scale and with which all microscopic phase changes are gyogptured. When we show existence for
the heat equation with phase transitions, we deduce a dexétence result for quasi-linear parabolic
differential equations having a non-monotone nonlingénithe diffusion operator, which is of general
interest in the context of heat transport and Stefan probl@wen in a single-scale setting).

This paper is organized as follows. We begin in Section 2 loyiging background material on
the physics of maple sap exudation, along with a descrififdhe governing equations at the cellular
level. A reduced model involving only melting of ice is inthaced in Section 3 for the purposes of more
easily deriving the two-scale convergence results. Thenraaalytical results on existence, a priori
estimates, two-scale convergence and uniqueness arafg@se Section 4, and detailed proofs of
the key results are relegated to the Appendix. Following, tiva state in Section 4.7 the strong form
of the limit problem for the reduced model, which in turn seg@ a corresponding strong form of
the original sap exudation model in Section 4.8. These lpribblems lead naturally to a multiscale
numerical algorithm that is described in Section 5, afteicwimumerical simulations of both problems
are presented and compared.

2. Mathematical model for sap exudation

Before presenting the details of the mathematical moded,riecessary to introduce some background
material on the phenomenon of sap exudation. Sugar magms (edong with a few related species
such as red or black maple, black walnut, and birch) have guerability compared to other deciduous
tree species in that they exude large quantities of sap glihi@ winter when they are in a leafless
state. Sap exudation originates from an elevated presstine iree stem that is generated over a period
of several days during which the air temperature oscillates/e and below the freezing point. The
ability of maple to exude sap has intrigued tree physiolsdisr over a century, and various physical
and biological processes have been proposed to explaibéhimviour (Johnson et al., 1987; Milburn
& Kallarackal, 1991; Tyree, 1995). Until recently, a sigoéfnt degree of controversy existed over
the root causes of sap exudation, and the most plausible mfedyvaccepted explanation has been a
freeze—thaw hypothesis proposed by Milburn & O’Malley (428This hypothesis forms the basis of
the mathematical model for the cellular processes undaweylgkudation during a thawing event that
was developed by Ceseri & Stockie (2013), which was subsglyuextended to capture a complete
freeze—thaw cycle by Graf et al. (2015).

2.1 Background: Tree physiology and the Milburn—O’Malley pees

The Milburn—O’Malley process depends crucially on theidigtve microstructure of sapwood (or
xylem) in sugar maple treeé¢er saccharum Wood in most deciduous tree species consists of roughly
cylindrical cells that are on the order of 1 mm in length. Téheslls can be classified into two main
types: vesselsaving an average radius of 2én, which are surrounded by the much more numerous
(libriform) fiberswith a radius of approximately 3—+m. The repeating structure of vessels and fibers is
illustrated in Figure 1a. The vessels have a significantlydediameter and therefore comprise the main
route for sap transport between roots to leaves during theigg season, whereas the fibers are under-
stood to play a largely passive and more structural role.ddndrmal conditions the vessels are filled
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with sap, which is composed primarily of water but also cor#@as much as 2-5% sugar by weight in
species likeAcer. On the other hand, the fibers are thought to be primarilydfiliéth gas (i.e., air). We
note that experiments exhibit small but measurable amaimgas also being present within the vessel
sap, either as bubbles or in dissolved form.

(a) Sapwood microstructure (b) A single fiber/vessel pair

M tracheid M parenchyma cell
M libriform fiber o pit
M vessel

Figure 1. (a) A cut-away view of the sapwood (or xylem) in leodd trees such as sugar maple, depicting the repeating mi-
crostructure of vessels surrounded by fibers (the othetygrdk indicated here are ignored in our model). (b) A vessebanded
by N fibers, all depicted as circular cylinders (for simplicioply one fiber is shown). Typical dimensions of the fiber argjta
L =1.0x 1073 m and radiuR’ = 3.5 x 10~% m, whereas the vessel ha$ = 5.0 x 10~ m andR’ = 2.0 x 10~° m. The 2D
model reference cell introduced in what follows is based borizontal cross-section through the middle of the fibereesbel.

Milburn and O’Malley hypothesized that during late wintehen daily high temperatures peak
above the freezing point, and just as evening temperategs o drop below zero, sap is drawn
through tiny pores in the fiber/vessel walls by capillary addorption forces into the gas-filled fibers
where it forms ice crystals on the inner surface of the fibdr (i@ “cooling sequence” in Figure 2). As
temperatures drop further, the ice layer grows and the gppéd inside the fiber is compressed, forming
a pressure reservoir of sorts. When temperatures rise dbeezng again the next day, the process
reverses, with the ice layer melting and the pressurizeddgasg liquid melt-water back into the
vessel where it then (re-)pressurizes the vessel compatr{imettom “warming sequence” in Figure 2).
Milburn and O’Malley also stressed the importance of osmptessure in terms of maintaining the
high stem pressures actually observed in sugar maple tigds.essential role of osmosis has since
been verified experimentally by Cirelli et al. (2008) who fioned the existence of osmotic pressure
arising from a selectively permeable membrane within therfiessel wall. They showed that the cell
wall permits water to pass but prevents larger sugar masadntained in the vessel sap from entering
the fiber, thereby introducing a significant osmotic presslifference between the sugar-rich vessel sap
and the pure water contained in the fiber.

There are two additional physical effects not explicithdegssed by Milburn & O’Malley (1984)
that are essential in order to obtain physically-conststesults for the sap thawing process. First of
all, Ceseri & Stockie (2013) demonstrated the necessitinfduding gas bubbles suspended within the
vessel sap that permit an exchange of pressure betweenrsted wad fiber compartments, which would
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Figure 2. lllustration of the Milburn—O’Malley process insangle fiber/vessel pair (adapted from Milburn & O’Malley9g4,
Fig. 7)). We focus on the “warming sequence” in the bottom, nownbered 5-8. The fiber is the large rectangular structure o
the left of each sub-image, and the vessel is the verticairian the right (not drawn to scale).

otherwise not be possible owing to the incompressibilityater. Secondly, despite the pervading be-
lief that there is no significant root pressure in maple dyrinnter (Kramer & Boyer, 1995; Wilmot,
2011), we found to the contrary that including uptake of nwater during the freezing process is ab-
solutely essential in order that pressure can accumulaeroultiple freeze—thaw cycles (Graf et al.,
2015). Indeed, the need to include root pressure is confibpedcent experiments (Brown, 2015) that
demonstrate the existence of root pressure in maple treggydbe sap harvest season.

2.2 Microscale model for cell-level processes

The modified Milburn—O’Malley description just presentadtl the exception of root pressure) was
employed by Ceseri & Stockie (2013) and Graf et al. (2015)anve a mathematical model for cell-
level processes governing sap exudation during a thawiege.cyin this study, we study the same
problem, including the effect of the gas phase in both cedinchers (fiber and vessel), but we will
assume for the sake of simplicity that the effects of gasotliti®n and nucleation are negligible. This
is the primary difference between our microscale model Aatih Ceseri & Stockie (2013) and Graf
etal. (2015), on which itis based. Neglecting root pressuageasonable simplification because we are
only interested here in studying a single thawing event ari¢apturing repeated freeze—thaw cycles.
With the above assumptions in mind, we approximate the sagvas a periodic array of square
reference cell¥ pictured in Figure 3a. Each reference cell contains a ardiber of radiusk’ located
at the centre, surrounded by a vessel compartment that nugkdse remainder of the cell. Because
the vessels have considerably larger diameter, we asswuaherihthe scale of a fiber the cylindrical
geometry of the vessel can be neglected as long as we enstii@itropriate conservation principles
(for mass and energy) are maintained within the vessel. dlnisce of reference cell is obviously
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a mathematical idealization that may influence fine detdilgessel transport on the microscale but
ultimately has minimal impact on the homogenized solution.

The fiber compartment is sub-divided into nested annulaonsgcontaining gas, ice and liquid, and
the outer radii of the phase interfaces are denegje(for gas/ice) ands,, (for ice/water). The vessel
contains a circular gas bubble of radiugshich has no specified location but rather is included simply
to track the amount of gas for mass-conservation purposes.a@ditional variabl&) is introduced to
measure the total volume of water transferred from fiber &s&k The region lying outside the fiber
and inside the boundary &f represents the sugary sap-filled vessel. Note that durihgwing cycle,
we are only concerned with a vessel containing liquid sapg@because of the effect of freezing point
depression, which ensures that any given vessel thawsebferadjacent fiber(s). This reference cell
geometry should be contrasted with that depicted in Ces&tiakie (2013, Fig. 3.1).

(a) Reference cell, with ice layer (b) Reference cell, completely melted

«—pvessel vessel

fiber

Yl

L ING

Y Y

Figure 3. Geometry of the reference cél, (a) For the sap exudation problem, the vessel compartnoerthios a gas bubble
with radiusr, while the circular fiber (radiu&’) contains a gas bubble (radigg), surrounded by an ice layer (with thickness
Sw — Sgi), and finally a layer of melt-water (with thickne&S — s,y). The porous wall between fiber and vessel is denoted by a
dotted line. As ice melts, the melt-water is forced out by gssure through the porous fiber wall into the surroundexsel
compartment. The total volume of melt-water transferrednffiber to vessel is denotétl An artificial boundary” is introduced

in the homogenization process to differentiate betweemiamer® (outsidel”) on which thermal diffusion is fast, an (inside

") on which diffusion is slow. (b) After the ice has completefelted there remains only a gas/water interfagg, and a single
temperature field can be used to describe the entire refeasticdomainy = Y.

For the moment, we will consider the four solution varialsgs sy, r, U as depending on time
only, with an additional dependence of temperature on tleeascale spatial variable; however, begin-
ning in Section 3 when we derive macroscale equations fontimogenized problem, these variables
will also depend on the global spatial variakithat denotes the location of the reference cell within the
tree stem. Within a reference cell, the dynamicssgft), si(t), r(t) andU(t) are governed by four
differential equations whose derivation can be found ine@ie® Stockie (2013). The first is the Stefan
condition for the ice/water interface in the fiber

D(Ez) U

OyTo-n 2.1a
Ew—E y 12 +2T[$W|_f7 ( )

OiSw = —

whereT,(y,t) denotes the microscale temperature variable that depertutstio time and the local spatial
variabley € Y2 (which needs to be distinguished from the macroscale temtyer variableT; (x,t)
introduced later) andly T - n is the normal derivative at the interface. Here, the entaalpf water and
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ice (Ew andE;, resp.) are evaluated at the freezing poing: T¢; consequently, the differend®, — E;
represents the latent heat of fusion. We describe heatpwaingsing a mixed temperature—enthalpy
formulation, in which the thermal diffusion coefficieD{E,) is written as a function of enthalfs(y,t).
Following Visintin (1996), we tak® to have the piecewise affine linear form

g if E <E;,
L EE (ke K e
D(E) = %+m (mw - %), if B <E < Ew, (2.1b)
%’ if Ew <E,

wherepy, p; are the densities of water and ice respectively, lapnds; are the thermal conductivities.
Note thatD in this temperature—enthalpy formulation has units of ¥kgK and is referred to as
a thermal diffusion coefficient, to distinguish it from theora usual “thermal diffusivity” (which is
defined as the ratik/pc and has units of Rys). The governing equations &5 andE; are discussed
later in Sections 4.7—-4.8 as a result of the two-scale cgevere analysis and are the solutions of the
system (4.20a—e). Note that the final term in the Stefan tiomd{2.1a) was neglected in Ceseri &
Stockie (2013) and serves to capture the effect on the phéedace of fiber—water volume changes
due to porous flow through the fiber/vessel wall.

The next two differential equations embody conservatiomass in the fiber

(Pw — Pi)Sw Ot Sw N pwoU

SyiPi 2msgipiL" (2.1¢)

OSgi = —

and the vessel

NfaU

=Sy

(2.1d)

Note that within the sapwood there are many more fibers thesele (as depicted in Figure 1a), so that
the effect of fiber—vessel flux terms should be increasedd¢owatt for the multiplicity of fibers. With
this in mind, we have multiplied appropriate fluxes by theapaeterN in (2.1d) that represents the
average number of fibers per vessel and has a typical valNé-ef16. The final differential equation
describes water transport through the porous fiber/vesakimresponse to both hydraulic and osmotic
pressure

LA
U =~ (ply — Py — #CsTa). (2.1e)

Here, we denote the pressure variableghwhere superscripts f/v refer to fiber/vessel and subscript
w denotes the liquid water phase. The constant paran¥étirthe fiber/vessel wall conductivity is
the wall surface are&s is the vessel sugar concentration, a##ds the universal gas constant. Note
that becaus® is defined insider?, we should strictly be using the microscale temperalyria the
osmotic term in (2.1e), but this would lead to a significantpdication in any numerical algorithm
due an additional nonlinear coupling between scales. Thierewe have used; instead, which is a
reasonable approximation because temperature variatiomgghout the reference cell are small.
Several intermediate variables have been introducedlitabove equations. They are determined
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by the following algebraic relations:

pl, = pg(O) <Sg'?(lo)> i — %, (Young-Laplace equation for fiber) (2.2a)
Pw = Py — ZTa, (Young-Laplace equation for vessel) (2.2b)
Py = pe’/'\ZTl, (ideal gas law for vessel) (2.2¢)
pg = Py (0) (r(r_O)) 2. (vessel gas density) (2.2d)

All constant parameters appearing in the above equatienssted in Table 1 along with typical values.

There is one special case to consider, namely when a fib&llypitontaining an ice layer is above
the freezing point for long enough time that the ice melts pletely. In the moment the ice layer
disappears, the reference cell geometry appears as ineFjuand the cell-level equations must be
modified as follows. First of allD(E,) must change to account for the fact that there are two pessibl
values of thermal diffusivity, one in the region containthg gas and another in the liquid. Furthermore,
the gas/ice and ice/water interfaces merge so that Eq.)(@rbas out and we identify a new fiber
gas/water interface &gy := sw = Syi. This leads to the following simplified version of (2.1c)

au

dsngm,

but otherwise the microscale equations (2.1)—(2.2) reftharsame.

The equations for the temperature and enthalpy variablgsaang in the microscale model above
are derived in the next section in the context of a simpleblem involving only melting ice. Despite
the fact that this reduced model involves only a single nscate variable for the dynamics of the ice—
water interfaces,, (in addition to the temperature), the equations for tentpeeaand enthalpy remain
the same, and we will show that the microscale model abovenpteted by Eqgs. (4.20a)—(4.20e).

3. Reduced model: Méeltingicebars

We now shift our attention to the macroscale problem, whigptares the dynamics of thawing sap
within a cylindrical tree stem having a circular cross-gett). There is a clear separation of scales in
that the tree has radius on the order of tens of centimetreseak the cell-level processes occur over
distances on the order of microns. bet Q represent the macroscale spatial variable yarady the
microscale variable on the reference cell. Then, our mamiaithis section is to determine equations
for the temperature and enthalpy variables not only in tfereace cellT,(y,t) andEx(y,t), but also on
the macroscal€dl; (x,t) andE;(xt).

The derivation of these equations may be simplified signifigeby considering a reduced problem
that involves only ice/water phase change and leaves ouitladr physical processes (porous flow,
gas bubbles, surface tension, etc.). To this end, we canaigeriodic array of melting “ice bars” as
pictured in Figure 4a, situated inside a slightly more gah#omainQ ¢ RY having Lipschitz boundary
that contains both water and ice in the form of circular is@uas. Let = [0, 5]¢ be areference celthat
captures the configuration of the periodic microstructanel for whichd represents its actual physical
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Table 1. Constant parameter values appearing in the saptixuanodel (taken from Ceseri & Stockie (2013)).

Symbol Description Value Units
Geometric parameters:
o Side length of reference cell 3Bx10°° m
vy =R +W, Radius ofl" 7.88x 106 m
[ Fiber radius Hx10° m
R Vessel radius Dx10° m
Lf Fiber length 10x 1073 m
LV Vessel length BHx104 m
Ve Fiber volume= m(R")2Lf 3.85x 1014 m?3
A Vessel volume= ri(RY)?LY 6.28x 10713 m3
A Area of fiber/vessel wak= 2rRL 2.20x 1078 m?
W Thickness of fiber/vessel wall 88x 106 m
Nf Number of fibers per vessel 16 -
Riree Tree stem radius 0.25 m
Thermal parameters:
Cw Specific heat of water 4180 /KgK
Ci Specific heat of ice 2100 /BgK
Ew Enthalpy of water al, 9.07x 10° J/kg
E Enthalpy of ice afl; 5.74x 10° J/kg
Kw Thermal conductivity of water 856 W/mK
ki Thermal conductivity of ice 22 W/mK
Pw Density of water 1000 kgm?®
o Density of ice 917 kgm?3
Te Freezing temperature for water 273.15 K
Ta Ambient temperature- To+ 10 283.15 K
a Heat transfer coefficient 10 Wi?K
Other parameters:
My Molar mass of air 0.029 kamol
4 Universal gas constant 8.314 /ndolK
g Gas/liquid surface tension 0.076 p5)
Cs Vessel sugar concentration (2%) 58.4 yio?
< Hydraulic conductivity of fiber/vessel wall 54x 10713 m?s/kg
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size with 0< 8 <« 1 (although we focus on dimensiah= 2, the theoretical results proven here apply
to any dimension). The reference cell is divided into two-gomainsy® andY? that are separated by
a Lipschitz boundary” = Y1 NY? as shown in Figure 4b. For simplicity, we taKeto be a circle of
radiusy satisfying 0< y < % 0. The primary feature that we exploit in our homogenizatippraach is
that withinY? heat must diffuse rapidly, whereas\YR there is a relatively slow diffusion of heat.

(a) Periodically-tiled domai (b) Reference cel for reduced model

Yl

Figure 4. Periodic microstructure of the reduced model feltimg ice bars immersed in water. (a) The tree stem crostiese?

is tiled periodically with copies of the reference célleach of which is scaled to have side lengtfThe homogenization process
then takes the limit as — 0. (b) The reference ce¥i for the reduced model, illustrating the decomposition fat (Y* andQ})
and slow ¥? and Q?) diffusing regions, witty = Y:UY2UT .

We next introduce a small parametekQs < 1 that corresponds to the size of the periodic mi-
crostructure (and must be distinguished from the physiza & because we will eventually take
the limit ase — 0). The domainQ may then be decomposed into threelependent sub-domains:
QL= iNtUyez0 €(k+ Y1) NQ (which is connected), and two disconnected componentsstimgsof
the regionQZ := Jy.za €(k+Y?)NQ and the boundary curvés := [, €(k+ )N Q. This decom-
position is illustrated in Figure 4. To avoid technical diffities, we assume th&g does not touch the
outer boundary of2, so thatl; NdQ =0 andQ§ NnoQ =0.

The major advantage of this reduced model is that the reeregll problem simplifies significantly,
with the only unknowns being,, and temperature. We proceed with the temperature and pgthal
equations.

3.1 Temperature and enthalpy equations

Throughout the analytical developments of this paper, wpleynwhat is known as the two-phase for-
mulation of the Stefan problem, in which the heat diffusignation is posed in a mixed form involving
both temperature and enthalpy. Assuming that materialgstigs of water and ice remain constant, the
temperaturd can be written as a piecewise linear function of enth&ms follows (Visintin, 1996)

1 .
—E, if E<Ej,
Ci
T=&(E) = Te. if E < E < Ea,
1

Tc—i—a(E—EW), if Ew < E,
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wherec,, andc; denote specific heats of water and ice respectively,Tard 273 15K is the freezing
point of water (parameter values are listed in Table 2). Aimtislishing feature of this temperature—
enthalpy relationship is that when temperature is equdiedrieezing point, the enthalpy varies while
temperature remains constant — this behavior derives fnerfact that a certain amount of energy (called
latent heat) is required to effect a change in phase frord soliquid at the phase interface.

Because the functiow(E) is neither differentiable nor invertible, we instead enyglo our model
a regularized versiow(E) defined as

1 .
—E, if E<E_,
Ci
[smooth connection] if 5 <E<E,,
2E — (E; Ew_ .
T=wE)={ Tc— (2';: W ), if B, <E <Ew_, (3.1)
[smooth connection] if En— <E < Ewy,
1 .
Te+ a(E_EW+); if Ews <E,

which has “rounded corners” that are smoothed over the 8itervalsE;_ < E S Ei; andEy- SEw S
Ew.. Note that we have also introduced a small positive stgde< 1 within the central plateau region
nearT =~ T; (refer to Figure 5). These modifications ensure &t a continuously differentiable,
invertible and monotone increasing function of enthalpycidentally, such a regularized function is
most likely a more accurate representation of what one wactiglally observe in a real physical system.

40 273

£ <270
3 300 é

= \ £ 265
g S
2 200 1 2
[ o

qu ﬂé_ 260
3
© 100 2

255

% 2 4 6 8 10 12 14 2 54 56 58 6 6.2
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Figure 5. Regularized temperature—enthalpy functibn; w(E), for a generic ice/water phase change problem in which the
critical (freezing) temperature 1§ = 27315K. The zoomed-in view on the right illustrates the smoothet@ in the regular-
ization.

We now describe the solution decomposition into slow antiddiising variables. Let functions
Ti¢ andEy ¢ denote the fast-diffusing temperature and enthalpy compisnrespectively, with both
defined on the sub-regia@d}. Similarly, letT,. andE, . denote the slowly-diffusing temperature and
enthalpy onQ2. We may then state the strong formulation of the two-phastaBtproblem as

GE1e—0-[D(Ere)0Tie] =0  inQ}, (3.2a)
D(E1¢)0Tye-n=—&?D(Eze)0Te-n  oN/lg, (3.2b)
—D(Ee)0Tie-n=0a(Tie—Ta) 0ndQNIQL (3.2¢)
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OEpe — €20 [D(Eze)0Toe] =0  in Q2 (3.2d)
Exe=Eie onlg, (3.2e)

whereD(E) is given by (2.1b) andy is the ambient temperature imposed on the outer domain laoynd
Note that these equations capture the phase interfaceédodatplicitly through the relationshif =
w(E) and no explicit Stefan-type phase interface condition jsased.

4. Two-scale homogenization of the reduced model

It is not feasible to solve the system of equations (3.2)veerin the previous section using direct
numerical simulations owing to the presence of the micubste withe being very small. This section
contains the primary theoretical results pertaining to pacaling of the reduced problem which is
achieved by characterising the limitas— 0. Lemmas and theorems are stated here, and the proofs are
relegated to the Appendix.

4.1 Weak formulation

In order to make the problem ameanable to periodic-homagéon techniques, we begin by transform-
ing Egs. (3.2) into a weak formulation. To avoid technicdiclilties, we replace the Robin boundary
condition (3.2c¢) by a Dirichlet conditioB; ¢ = w 1(T,) (i.e., we consider the formal limitr — o)
and refer the reader to Graf & Peter (2014) for a detailedudision. This requires first defining some
appropriate solution spaces:

V= {ue LA([0,tm], 21(Q1) N ([0,tm)], 2
¥ = {ue LA([0,tm], #1(QE)) N A ([0,tm], 2
V= LZ([Ovtm]v%l(Q)) m%l([o’tm]’%l(g),)v

Q) lu=00ndQ;noQ},

Q%)) |u=0o0onl;},

where the “primes” denote dual spaces éth,| represents the time interval of interest for some fixed
tm > 0. The corresponding test spaces\fe= {uc #1(Q}l) |u=00n0QlNaQ}, V2 =7 (Q2?)
andV = Q). We also need to introduce notation for inner products, WiLv) oo = [g Uvdx
representing th&2-inner product with respect to space of two functions/jfl for a = 1,2, whereas
(UV)ga t = s Jog uvdxdr denotes that an additional time integration is performeet dke interval

[0,t] with 0 <t < tm. Finally, we let(u,v)r, = (u,v) 1 1 denote the dual pairing diz. Later,
H2 () xH2(Ig)

we will show thatD(Ez¢)0To¢-n € LZ(FS), so that we can interprét, v)r, asfrs geuvdS, wheregg
represents the Riemann curvature tensor.

We are now prepared to state the weak form of the heat-diffugioblem. Assuming that initial
valuesTy ¢ init = W(E1¢init) andTo ¢ init = W(E2¢ init) are smooth, non-negative and bounded functions,
and that a Dirichlet conditiofi; ¢ = Ta is imposed at the outer boundaty2 N 0951, our goal is to find
(Tie, Toe) € (Y +Ta) x (#2+Tie) such that

(&g, $)o2 + (D(Ere)ITie, 09) o1 +€*(D(Ee) UTog -1, h)r, =0, (4.1a)
(GEz2e, W)z + (6°D(Eze)UTae, )z =0, (4.1b)

for all ¢, € V} x V2. Note thatn represents the outward-pointing unit normal vectofgrand that
temperature and enthalpy are connectedTyig = w(Eq¢), or equivalentlyEq s = w1(Tae). We
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assume thaw~1(Ty) is positive, bounded and smooth such it can be extend@ttg x Q in 71 We
note again in closing that slow diffusion is induced in thelgem via the factog? multiplying terms in
Egs. (4.1) that involve the diffusion coefficieD{E, ).

4.2 Transformation of the model

In this section, we apply a procedure developed by Arbogaat €1990) to transform the model (4.1)
by combining enthalpieg; . andE; ¢ into a single functior®, defined on the whole-independent
domainQ. We use the fact thaf, is the only boundary of2? to obtain

(€?D(E2e)0Tae - N, @)1, = (20 [D(Eze) UTae], W) g2 + (6°D(Eze) OToe, ) 2

(4.2)
= (AE2.s, W) gz + (6°D(Eze) UTze, OY) 2,
for all ¢ € V. After substituting this expression into (4.1a) we obtain
(GE1e:9) 0z + (D(Eve)ITie, 09) 01 + (4Eze, ) gz + (6°D(Eze) UTze, OW) gz = 0,
forall ¢, € V} x V2. Hence, Egs. (4.1) have been replaced with
(4E1e +Eze.9) + (D(Ere)UTre + €°D(Eze) UT2e, U)o =0, 4.3)

Eie=Ex. oOnNlg,

for all ¢ € V. We then define the functio®; € L2([0,tm],#%(Q)) by

e o E]_’g |n Qg‘,
€7 | Eze inQ2

so that with conditions (3.2b) and (3.2e) the funct®snis guaranteed to be continuous and weakly
differentiable. Furthermore, we defire = x1.¢ + szxg,g wherey; ¢ fori = 1,2 are indicator functions
for Q} andQ? respectively. Solving (4.1) is then equivalent to find®ge (¥ + w*(T,)) such that

(%Oe, ¢)a + (KeD(O;) ' (Oe) 0O, O ) o =0, (4.4)

for all ¢ €V, where we have used thdt, = w(E1¢) andTo e = w(Ep).

We perform one further transformation of (4.4) that makesDirichlet boundary condition homo-
geneous. To this end, we defipg = ©; — w1(T,) wherew1(Ty) is extended continuously t@.
Then (4.4) is equivalent to findinge € ¥ such that

(GPs, $)a + (KeDW (pe + @0 *(Ta)) Dpe, 09) 0 = (—Gw *(Ta), §)a, (4.5)

forall ¢ € V.

4.3 Existence of a weak solution

4.3.1 Theorem of existenceTo prove the existence of a solution to (4.4) for every 0, we formulate
a theorem of existence, which is strongly inspired by a pffoofa related result found in a set of
unpublished lecture notes by Wolff (2016). In Theorem 4.limteduce a general existence result for
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parabolic equations with non-monotone non-linearitieth@ndiffusion operator. The proof is based on
the Rothe method. We state the theorem next and provide tioé iprAppendix A.1.
Consider the initial-boundary value problem

n
du+ Yy dy (a(xt,u)dgu) =F(xt)  inSxQ, (4.6a)
=1
u=0 onSx dQ, (4.6b)
u(0,x) = up(x) in Q, (4.6¢)
with
Q cR" bounded Lipschitzdomain  S= [0, tm], (4.7a)
a(x,t,u): Q x SxR— R Bochner-measurable inand continuous i andu, (4.7b)
F0< A <A <oosuchthat <a(xt,u) <A VseR, foraetcRandaexe Q, (4.7¢)
V=ug(Q), ¥=L%SV), ¥ =L%SV"), (4.7d)
u=L%Q), Fev" (4.7¢)
LEMMA 4.1 Let the conditions (4.7) be satisfied. Then
n
(A(t)(u,v),w) = Z / a(xt, u) dy, vy wdx, (4.8)
=170
T
(,v) :/ / F(x,t)v(x,t) dxt, (4.9)
0 JQ
define a family of operator&(t) : V x V — V* and an element € #* for which the following hold:
VuveV, foraeteR: [JAL)(UV)|v <AV, (4.10a)
YueV, foraeteR: A(t)(u,-):V —V*islinear and continuoys (4.10b)
vuveV, foraeteR: (Alt)(uv),v) > A|v|Z, (4.10c)
o VXY =V is the realization oA with .7 (u,u) = A(t)(u, u). (4.10d)

This lemma can be proven using standard arguments as dsgs@ybDautray & Lions (2000) and
Wolff (2016). Lemma 4.1 implies that any initial value prebi of the form

U +.7(u,u) = f inV*,
u(0) = up,

which includes the problem (4.6), is well-defined.

(4.11)

THEOREM 4.1 Consider equation (4.6) satisfying the conditions)(4Then there exists at least one
solution of equation (4.11).

The proof of Theorem 4.1 is given in Appendix A.1. We applysttiieorem to the reduced model
(4.5) for which the spaceé is /7! (Q), so that both solution and test space correspondteL?([0,tm], 75 (Q)).
We haveup = p:(0) andf = gw*(Ta), which is in#* by assumption. The functicacorresponding
to the problem (4.5) is

a(x,t,u) = Ke(X) D' (U4 w 1(Ta(t))),
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which satisfies the conditions (4.7) farc V. With all conditions of Theorem 4.1 fulfilled, we obtain
the following result

COROLLARY 4.1 There exists a solution of Eq. (4.5).

4.4 A priori estimates and limit functions

Our main results on a priori estimates are stated in Lemmbel@®v, which bounds independently of
the functionsE; . and Ty ¢ in L2([0,tm], 71(Q})), and similarlyE, . and T in L2([0,tm], #1(Q2)).
The proof of this Lemma is given in Appendix A.2.

LEMMA 4.2 There exists a consta@t, independent o€, such that the solutio®; of (4.4) (equiva-
lently, E; . andE, ¢ of (4.3)) satisfies

2 2
Gl + [|KeOOe | ¢ = ||Enel

2 2
o1 T IIPELelgp ¢ + 1Bzl

2 2 2

Using standard results of two-scale convergence (Alldig92; Nguetseng, 1989; Peter & Bohm,
2008), we immediately obtain the following result.

LEMMA 4.3 There exist function&; o € L%([0,tm],#%(Q)), E10 € L2([0,tm],L%(Q,.2(Y))) and
Ez0 € L2([0,tm], L2(Q, 2} (Y?))) such that, up to subsequences,

OE1 ¢ _2rscale, OxEq 0+ OyE1o,

2-scale
Exe —— Eop,

2-scal
OEze % OyEap.

Note thatE; o is independent of, and we have also introducéd € L([0,tm], L2(Q, 22(Y1)))
andEz o € L2([0,tm],L%(Q, 7(Y?))), where the subscript # denotésperiodicity in space. The limit
of 0E; ¢ has a special form obtained in Allaire (1992) that considtsmo terms: one involving a
gradient with respect to the slow variable, and a second tétimrespect to the fast variable.

4.5 |dentification of the two-scale limit

Owing to the nonlinear dependence of the diffusion coeffic@ enthalpy in (4.5), we have not yet
been able to identify the system of equations satisfied byithie functions of Lemma 4.3 without
further assumptions. In order to allow the limit passagéeuit difficulties, weassumeén the remainder
of this section that the functioR«’ in (4.5) is independent @., which makes the model linear. Note
that having strong convergence of the funct®nin L?([0,ty], Q) would lead to the same results. A
homogenization proof for the fully nonlinear problem i liefr future work.

In order to characterize the limit functions from Lemma 4@, define test functions that vary on
length scales of siz&(1) andO(¢) according to

de (X, %) = X1(2) (do(X) + €01 (%, 3)) + X2 (%) d2(x, 2),
where(o, ¢1,¢2) € Cy'(Q) x C*(Q,C2(Y)) x C*(Q,CZ(Y)).
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By substitutingg, into (4.1a) and using; to write the resulting integrals over the entire dom@in
we obtain

/x1 %) GE1e(xt) e (%, % dX+/X1 %) D' OEL¢(x,t) O (x, %) dx
"‘/QXZ z dEZ.s(Xat)‘ps (X,g dX—f—/QXZ()g() DCUISZDEZ.S(Xat)‘PS (Xé) dx=0.

Then, taking the limit ag — 0 yields

/Q GE10(Xt)¢o(x dde+/ @/ [OxEx0(%,t) + OyEx 0(x, ¥, 1)][Oxpo(X) + Oya (x, y)] dyax
+ / GEz0(X,Y,t)p2(x,y) dydx+ / Do/ TyEz (%Y, 1) Oya(x,y) dydx =0, (4.12)
QxY?2 QxY2
wherey denotes the spatial variable on the referencetell
We are free at this point to choose any test function and s@akesy = 0 and¢, = 0 in Eq. (4.12).
To start with, we introduce functions € #*(Y?) in order to expres&y o(x,y,t) = T8, 3 E1.0(%,t) ti(y)

in separable form. The weak formulation of the cell problemkf=1,...,d may then be expressed in
the simpler form

(& + Oyk, Dy¢1)yr =0, (4.13)
where theuy areY-periodic. Alternatively, we may takg; = 0 in Eq. (4.12) to obtain
d
/ A E10(X,t)do(x) dydx+/ D&’ Yy E10(X,t)[ex+ Oykk(y)] Oxo(x) dydx
QxYl QxYl s}

+ / G Ez0(X,Y,t)d2(x,y) dydx+ / Dw'OyEz (%, y,t) Oyda(x,y) dydx = 0,
QxY? QxY2

which can be rewritten in the more suggestive form

d
| aEsa(xtgo(dyax+ | D 5 OxErolx) ] 116+ 8y, baly)] @y a ol ox

+ /Q L2 GE20(X,Y, 1) $2(x,y) dydx+ /Q v Dw'OyEz o(X,y,t)Oyd2(x,y) dydx = 0. (4.14)
The diffusion term involves the factors
Mo = [ (@ + 310y (4.15)

fork,/=1,...,d, which can be represented as a mafifixhat multiplies the diffusion coefficiemaw'.
We then obtain from (4.12) and (4.14) the equation

IY(&E1o, $o)a + (MDW TxEro, Oxdo)a + (&Ez0, $2)qy2 + (D@ OyEzo, Oyd2)g.y2 = O.
(4.16)
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As a final step, we obtain the limit equation 5o by settinggo = 0 in Eq. (4.16), and similarly for
E10 by setting¢, = 0 in Eq. (4.16), which is found using a similar transition a4.2). The resulting
limit equations are

IYY[(&E1o, $0)a + (MDW OxE1 0, Oxo)a + (D@ DyEzo, $o)rxa =0, (4.17a)
(&E20, 92)0,y2 + (D' OyEz o, Oyd2) g ,y2 =0, (4.17b)

for all go € S1(Q) and¢, € L2(Q,.71(Y?)), wherelT is thed x d matrix of scaling factors defined
in (4.15),E1 0 € L2([0,tm], #71(Q)) with w(E10) = Ta0ndQ, andEzp € L2([0,tm], L2(Q, 51 (Y?)))
with Epo=Ejo0nQ xI.

To simplify notation in the remainder of the paper, we drapzbro subscripts i{iT1 o, E1.0, T2.0, E2.0}
and denote them instead ¥Y¥1,E1, To,E>}. Note again that we have only rigorously derived the limit
problem in the linear case and so we would need to prove sitongergence of the functio®; in
L2([0,tm], Q) for the analysis to hold for (4.4); we will nevertheless sition back to the nonlinear
problem with an enthalpy-dependent diffusion coefficiBia (E), for which the corresponding limit
equations are

IYY(GEx, do)o + (MD(E1)w (E1)TkEr, Dxdo)a + (D(E2)w' (E2)yEa, o), o =0,  (4.18d)
(d E, ¢2)Q><y2 + (D(Ez)(})’(Ez) DyEz, Dy¢2)QxY2 =0. (4.18b)

4.6 Unigueness

The uniqueness of the solution to the nonlinear problem8jstibject to suitable boundary and ini-
tial conditions may be formulated compactly in terms of tb#ofving theorem, which is proven in
Appendix A.3.

THEOREM4.2 Equations (4.18) have at most one solution given by

TeVYQ)+Ta  =(L2([0tm], 41(Q)) + Ta) N2 ([0,tm],L%(Q))

T, € 7%(Q x Y?) + To= (L2 ([0,tm], L2(Q, 545" (Y?))) + T1) N2 ([0,tm], L2(Q x Y?)) ,
whereT; = w(E;) andT, = w(Ey).

We note that the uniqueness of the limit problem implies &hatady the whole sequences of solu-
tions converge to the functions satisfying (4.18).

4.7 Strong formulation of the limit problem

We now state an equivalent strong formulation of the limiitgem corresponding to the weak form
in (4.18), but with the Dirichlet condition at the outer balany switched back to a Robin condition
again. This consists of a PDE for andE; on the macroscale domai

|Y1|c9tE1 —Ox- (MD(E1)OxTy) = / D(E2)0yT2-ndS in Q, (4.19a)
r
—D(E1)OxTi-n=a(T1 —Ty) onoQ, (4.19b)
along with a second PDE fds andE, on the microscale

AE; — Oy (D(Ez)0yT2) =00nQ x Y2, (4.19c)
T,=T1 onQ x I, (4.19d)
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and initial values for enthalpy that we den@gnir andE jnit. These two problems are coupled through
the heat flux integral term in (4.19a) and the matching caoi.19d), both of which are enforced on
[". This is again théwo-phase formulation of the Stefan problestich contains no explicit equation
for the motion of the phase interface; instead, the interfacation is captured implicitly through the
temperature—enthalpy relation

Ti=w(E)inQ and To=w(E) inQxY2 (4.19¢)

Under the assumption that temperature within the ice plsasenstant in space during a thawing event
(Visintin, 1996), the problem (4.19) may be rewritten in guigalentone-phase formulatiothat obeys
the same macroscale problem

|Yl|0tE1—DX-(I'ID(E1)|]XT1):/I_D(Ez)DyTg-ndS in Q, (4.20a)

—D(E1)OxTi-n=0a(T1 —Ta) onoQ. (4.20b)

On the reference cell, however, the ice temperature is ta§gaal toT; and the water temperature obeys
the following microscale equations

cwdTo—Oy- (D(E2)TyT2) =0 onQ x Y2(xt), (4.20c)
To=T onQ xrI, (4.20d)
T,=Tc onQ xadY?(xt), (4.20e)

which are solved only on the water-filled annular reg‘T@r@x,t) C Y2 lying between™ and the mov-
ing phase boundars;, (x,t). Consequently, in this one-phase formulation both the dorvia and its
boundandY? depend ox andt throughs,,. In the case of a freezing event, the ordering of the icefwate
layers is reversed in which case the water temperaturedscoeistant al; instead and/2 corresponds

to the sub-region containing ice. Finally, rather than isipg a temperature—enthalpy relation, the
one-phase formulation fixes the temperature on the phaselbopvia (4.20e) and provides an explicit
Stefan condition governing the dynamics of the phase iaterf

D(Ez)
(EW - Ei)
The primary reason that we employ the one-phase formulafidne Stefan problem is that it makes

numerical simulations of the limit problem much more coriean A detailed derivation of this one-
phase formulation from the corresponding two-phase foatirh can be found in Visintin (1996).

Gsw = — OyT2-n onQ x aY%(xt). (4.20f)

4.8 Limit problem for the sap exudation model

Based on the limit problem we just derived for the reduced ehading homogenization techniques,
it is now straightforward to pose the analogous limit probl®r the sap exudation model. The two-
scale heat transport equations (4.20a)—(4.20e) remaiiddé but the Stefan condition (4.20f) in the
reduced model is replaced by the full set of differentiageblraic equations (DAESs) (2.1)—(2.2) for the
microscale sap exudation problem.

Although we have only performed the periodic homogenizegioocedure on the reduced model,
there are several features of the sap exudation problencdmabe exploited to extend our analytical
results:
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1. Presence of the gas phasehich takes the form of gas bubbles in both fiber and vesseirdarat
duces a spatial dependence in the thermal diffusion cosffid (E, x). Extending our analytical
results to the case whéhalso depends oxwould be a straightforward generalization.

2. Dissolved sugar in the vessel saghich gives rise to an osmotic potential between fiber and
vessel that is essential for generating realistic exudgiir@ssures. Sugar within the vessel sap
also depresses the freezing point so that the funetiam (3.1) differs between vessel and fiber.
Although we do not need to consider freezing point depressiplicitly in this paper (since we
treat only a single thawing cycle) this effect could stillineorporated into the analysis, for ex-
ample by adding an extra spatial dependenca.inAlternatively, the fiber could be defined as
separate domain that is connected to the vessel via apatejpoundary conditions, thereby en-
suring that the homogenization results carry through festp exudation model. We have chosen
not to incorporate this effect into the analysis, althoughquic homogenization has previously
been applied to Stefan problems having various functiavah$ forw in Bossavit & Damlamian
(1981).

3. Extension to a freezing cyclevhich requires modifications only to the microscale equrtim
the reference cell as outlined in Graf et al. (2015). Coneatly, this extension has no effect on
the homogenization procedure.

5. Multiscale numerical smulations
5.1 Solution algorithm

We now propose a multiscale numerical solution algorithat tomputes approximate solutions to both
the reduced and sap exudation models. The method is baseihoersplitting approach that alternates

in each time step between solving the microscale (refereglfeand macroscale equations, and exploits
three main approximations:

e Because of the simple form of coupling between microscateraacroscale problems that in-
volves only interfacial solution values, we propose a “&ozoefficient” splitting approach in
which variables on the microscale are advanced to the rmagt$iep by holding all macroscale
variables constant at their previous values, and vice versa

e The multiplier matrix/1 defined in (4.13) for the thermal diffusion coefficient in thh@croscale
heat equation is independent of the local temperature atadephase interface configuration.
Consequently, the entrid$,, are constants that only need to be computed once at the leginn
of a simulation.

e Both models have an inherent radial symmetry on the micsszale, and we restrict ourselves
here to problems that have an analogous symmetry on the stabeo This is a natural choice for
the tree sap exudation problem since a tree stem is welbappated by a circular cylinder with
cross-sectio2 having radiusxyee. Consequently, all variables and governing equationsast ¢
in terms of a single radial coordinate labelbedr y on the macro- or microscale respectively, so
that only 1D problems need to be solved on both scales.

The spatial discretization of the governing equations ifopmed separately on each spatial scale:
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Macroscale heat problemThe circular domain? is discretized on an equally-spaced radial mesh of
M = 40 points, denotes = iRyee/M fori =0,1,...,M — 1. Discrete values of the unknowns
Ti(x,t) andE;(x,t) are defined at each mesh paint

Microscale heat problemwithin each reference ce¥l, the portion of the domai¥?(x,t) consisting of
ice will grow or shrink according to the location of the logdlase boundarsy,. We therefore
employ amoving mesldiscretization wherein the annular-shaped water regiahénfiber is
discretized am equally-spaced radial points that move in time according;to) = sw(t) +
i(y—sw(t))/mfor j=0,1,...,m, where we recall thatis the radius of the artificial boundary
. In practice, it suffices to use a coarse grid in the refereetievith m= 4 <« M. Discrete
values of the solution variablds(x,y,t) andEx(x,y,t) are then defined at each locatigrand

Yij-

Recall that the temperatuie is treated as the primary solution variable in the micresgabblem,
whereas enthalpl; is the primary variable in the macroscale problem. We emplayethod-of-lines
approach in which spatial derivatives of solution quagsiin bothx andy are approximated using finite
differences. The resulting coupled system of time-depenidAEs is then integrated in time using the
stiff ODE solverode15s (MATLAB, 2015). This solver requires absolute and relagveor tolerances,
which we choose adbsTol = 7e-8 andRel Tol = 2e-14.

We may then summarize the multiscale numerical algorithfiolésvs:

Step 1: For a single canonical reference cell having the shape ofiarsgwith a circular hole, we use
the package COMSOL Multiphysics (COMSOL, 2015) to disaeethe domain, approximate
the functionsu;(y) in (4.13), and then to calculate the corresponding integre(4.15). This
yields precomputed constant values of the four entries imixn& that are used in the remainder
of the computation (in Step 3c).

Step 2. At each macroscale poirt, set the initial value of, = T, . Then within theth reference cell,
setE; = Eq jnit at each poiny;, and initialize eithesy, for the reduced model o[rsw,sgi, r,U}
for the sap exudation model. Initial values are listed inl@&h

Step 3. At each time step, advance the solution variables as follows

3a. SetT; = w(E;) andE; = w ().

3b. UpdateT, by integrating the microscale heat diffusion problem (4)204.20e) one time
step within each reference c#f(x;,t). The values off;, E;, E; ands,, are frozen at
the previous time step.

3c. UpdateE; by integrating the macroscale heat diffusion problem (4)20t.20b) at all grid
pointsx;. Due to radial symmetry of the reference cell, the integnahie right hand
side of (4.20a) reduces ta®®;D(E,)0T, - n whereRy is the radius olv2. The values
of T, andE; are frozen at the values computed in step 3b.

3d. Update the microscale variables within each referencé?éeid;,t) by integrating the gov-
erning differential(—algebraic) equations in time, arekfring values of; andT,. Here,
the equations being solved depend on the model problem:
e For the reduced problem, include the reduced Stefan condii.20f) only.
e For the sap exudation problem, use the system of DAES (2 2)(
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Table 2. Initial values for the reduced and sap exudationaispthken from Ceseri & Stockie (2013).

Symbol Description Initial Values Units
Tinit Initial temperature Te K
Ta Ambient temperature Tc+10 K
Sw(0) =R 35x10°6 m
i(0) =R /V2 25x10°° m
r(0) 6.0x 1076 m
u(0) 0 m
p§(0) 2.0x10° N/m?
pY(0) 1.0x 10° N/m?
pfv(O) 9.89x 10 N/m?
pY,(0) 9.95x 10 N/m?

3e. Increment the time variable and return to Step 3a.

The above algorithm must be modified slightly whenever teecmmpletely melts, since the loss of
the Stefan condition (4.20f) induces a change in the gomgrequations. At the same time, the separa-
tion of the reference cell into two sub-domaiisandY? (which was required to handle the Dirichlet
condition on temperature at the phase interface) is no longeessary and hence the temperature can
be described by the single field that obeys (4.20a)—(4.20b) with zero right hand side, @&, and
T = 1. This alteration to the governing equations can be triggi@asily within the numerical algo-
rithm above by exploiting the “event detection” feature iatfldb’'sode15s solver, signalling an event
based on a zero-crossing of the ice layer thickness sy — syw: Wwhenb > 0, ice is still present and
the original equations are solved; whiee- O, ice is totally melted and the modified equations just de-
scribed are solved instead (and Steps 3b and 3d are omittednention in closing that although only
2D simulations are performed in this paper, our algorithiteees in a straightforward manner to 3D
stem geometries by stacking a number of 2D stem slices iassand enforcing suitable flux continuity
conditions.

5.2 Simulations of the reduced model

We begin by presenting numerical simulations of the redueedel wherein a periodic array of melting
ice bars fills a circular domai® with radiusRyee = 0.25 m. The periodic reference cll= [0, 6]2
depicted in Figure 4b is given a side lengthd# 4.33x 10°° m. Each reference cell is initialized
with an ice bar of radiusy, (0) = R’ /+/2 surrounded by water, such that the initial volume of icehia t
reduced model and the sap exudation model is equal. Thelitéinperature throughout the domain
is set toT1(x,0) = To(x,y,0) = Tinit = Te. On the outer boundary of the domain, a Robin boundary
condition —D(E1 (Ryee t)) OxT1(Riree, t) - N = o (T1(Riree, t) — Ta) is imposed withT; = T¢ + 10, while
a symmetry conditiorkT1(0,t) = O is imposed at the center of the domain. We take the size of the
artificial boundaryl” in each reference cell to be larger than the fiber radfuby an amount equal
to the typical thicknessV = 4.38x 10-% m of the vessel wall; in other wordy,= R +W which is
well-separated from the phase interface. Note that thesys solved in dimensional variables so that
there is no need to non-dimensionalize and hence the sihe oéterence cell corresponds simply to the
physical dimensio. All physical parameter values and initial conditions asteld in Tables 1 and 2.
Figure 6 displays a sequence of solution snapshots atséléctes between 0 and 16 h that illustrate
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the spatial and temporal variations in the macroscale tesyreT; and ice-bar radiusy, . In each plot,
the horizontalX) axis corresponds to the radial distance measured fronetiteicof the circular domain
Q. As time progresses, the temperature gradually increagbpenetrates the domain interior as heat
from the outer boundary diffuses inwards. In response trike in temperature, the ice melts and the
ice bar within each local reference cell shrinks in size. Teebars in the outermost region melt first,
and by timet ~ 16 h the entire domain is completely melted (isgy,= 0 throughouQ). The formation

of a steep thawing front that progresses from the outer banyrtd the center of the domain is clearly
visible in Figure 6b. These results should be contrasteld i study in Ceseri & Stockie (2013) that
investigated only the local behaviour of the solution tottheving model (at some fixed location on the
microscale); on the other hand, our homogenized modelteeiluistrate the progress of the thawing
front on the macroscale, while at the same time incorpagatimysical processes taking place on the
microscale.

(a) Macroscale temperatufig(x,t) (b) Local ice-bar radiusyy (x,t)
---0.0h 25—
2820 —0.9h
----3.4h 2
---7.1h
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Figure 6. Simulations of the reduced model, showia@nds,, as functions of the global variable pictured at selected times
between 0 and 16 h.

5.3 Simulations of the sap exudation model

Next we perform simulations of the sap exudation model foea stem with the same parameters and
boundary conditions as for the reduced model. Recall thathese the length of the reference cell
to bed = 4.33x 10~° m, consistent with the size of fibers and vessels in actuaisag. The initial
temperature is again taken to Bg; = T throughout, with the water in the fiber initially frozen arnkt
vessel sap in liquid form. Recall that this initial state teaps the effect of freezing point depression due
to the presence of sugar within the vessel sap; and besittegygbese initial conditions, there is no
need to incorporate any concentration dependence in tegifigepoint for this thawing-only model. To
initiate a thawing cycle, we apply the Robin boundary cdnditit the outer boundary of the tree stem
as in the reduced modekD (E; (Ryee,t)) OxT1(Riree,t) - N = o (T1(Riree, t) — Ta), whereT, = T+ 10. All
other parameters and initial values specific to the sap exudaodel can be found in Tables 1 and 2.
After applying the multiscale algorithm described in Seets.1, the solutions fofy, sy andsg;, r,
U, p{,\, andpy, are illustrated in Figure 7 at a sequence of six times betWeand 14 h. From these
plots, it is evident that the solution dynamics for all vaies are characterized bynaelting frontthat
progresses through the tree from the outer boundary tovagrdenter (from right to left in the plots)
as the warm ambient air gradually heats up the interior. Heumore, the time required for complete
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(a) Temperaturdy (b) Phase interfacesy, Syi
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Figure 7. Simulations of the sap exudation model showiny)-dependent solution profiles at a sequence of time pointall In
cases, the profiles evolve from right to left (toward the eeof the tree) as indicated by the arrow in (a).
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melting of the ice contained in the fibers is just under 1.4 h.

The temperature profiles vary smoothly in space as one exfreat a diffusion problem, while the
other solution quantities are characterized by a steey fnaih propagates toward the centre of the tree
with a speed that decreases with time. The steepness of ttiagrfeont derives from the thawing of
ice and subsequent adjustment of liquid between vessel#nd on the microscale, all of which occur
very rapidly in the instant after the temperature exceeddréezing poinfl. at any given locatiorx.
The reason for the gradual slowing of the melting front wiithet is that the heat flux naturally decreases
as the front approaches the center of the tree, which in éaws to a speed decrease owing to the Stefan
condition.

We also observe a clear separation in time scales betwesatothevolution of temperature on the
macroscale and the relatively rapid phase change and safrildion within fibers and vessels on the
microscale. This scale separation is easily seen by congkigure 7 with plots of the time evolution
of local solution variables at a fixed radial locatios- 0.15 m shown in Figure 8. The thickness of the
fiber—ice layer can be determined as the vertical distantede® thes,, andsy curves in Figure 8b,
which rapidly drops to zero as the ice melts. At the same timedi-water is driven from fiber to vessel
by the pressure stored in the fiber gas bubble, and the pesgkirin Figure 8c clearly illustrates the
subsequentincreasej, that we attribute to exudation pressure. After the meltiragpss is complete,
the vessel-liquid pressure continues to increase (althatig slow rate that is not easily visible to the
naked eye) owing to a slight expansion of gas in the fiber asdetén response to further temperature
increase as heat continues to diffuse through the liquid@fam the outer tree surface.

(a) Temperaturd; (b) Phase interfacesy, Syi (c) Liquid pressureg&,, P
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Figure 8. Simulations of the sap exudation model, showiegithe evolution of various solution components at the fixatial
positionx = 0.15 m.

Upon more careful inspection of the gas/ice and ice/waterfaces in Figure 8b, we observe that
there is a slight time delay in the motionsj, relative tosy;. Indeed, the ice begins to melt at the gas/ice
interface (leading to an increasesy) at a time that is roughly 25 s in advance of whgnstarts to
drop, which is when a water layer appears between the ice bad\iall. This phenomenon can be
explained as follows. When melt-water first appears in aqaddr fiber, the gas bubble pressure is so
high that water is immediately forced out into the vesselyieg the ice layer in contact with the fiber
wall. The gas pressure then declines until approximately @&pses, at which time the rate of water
melting exceeds that of the porous outflow and a water laygine¢o accumulate along the fiber wall.
By this time, roughly half of the water volume contained ie ftber has been transferred into the vessel.

One of the most significant results from our sap exudationehisdthe prediction that vessel lig-
uid pressure increases by roughly 120kPa, which is withinringe of exudation pressures actually
observed in sugar maple trees (Cirelli et al., 2008) andetyaelated species such as black walnut
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(Améglio et al., 2001). Furthermore, simulations of nplkifreeze and thaw cycles with this homoge-
nized model yield results that are consistent with corgrbéxperiments on walnut (Graf et al., 2015).
Work is currently underway on comparing our model resulesqeeriment measurements of sugar maple
saplings (Brown, 2015).

Finally, we draw a comparison between the solution of theesaplation model for temperatufe
and ice layer thickness,, — sy, and the corresponding solution variabl@s, (sw) from the reduced
problem in Section 3. Although the shape of the temperatutéce interface profiles are similar, there
is a significant difference in that the melting process ferrdduced problem takes over 10 times longer
than for the sap exudation problem even though the macrasdopain and outer temperature are
the same. This discrepancy may seem at first glance to besistent, but this result can be easily
explained as follows. The diffusion coefficient for the sapaation problem is roughly 10 times higher
because of the much larger value of thermal diffusiviiydc) in the gas phase (with an upper bound of
2 x 107> m?/s based on atmospheric conditions) compared with the quneting values for ice and
water (12 x 10-8 and 13 x 10" m?/s respectively) which are the only phases appearing in thecesl
model.

6. Conclusions

The aim of this paper was to apply techniques from periodimdgenization to derive a multiscale
model for a multiphase flow problem arising in the context @fphe sap exudation. Because of the
complexity of the physics underlying the sap exudation [@eb(involving liquid/ice phase change,
dissolving gas, flow through porous cell membranes, osnaoglother effects), we started by deriving
a simpler reduced model that focuses on the melting of a gierarray of ice bars. This reduced model
belongs to the class of Stefan problems, which have beepsivglied in the context of homogenization
in case of fast diffusion. We prove results on existencequeness and a priori estimates for the weak
form of the reduced governing equations involving st slow diffusion, which we then use to derive a
strong form of the homogenized limit problem in which thexaiclear separation between equations for
the cellular level processes on the microscale, and hesgoat on the macroscale. Our approach has
the advantage that it applies homogenization techniquastraightforward manner in order to obtain
an uncomplicated limit model. The primary novelty of the Igtieal results, relative to other work
on homogenization of Stefan-type problems, derives fromdinectly imposing a Dirichlet condition
on temperature at the phase interface, which gives rise &xandposition into fast and slow variables
on the sub-region¥! andY? of the reference cell. A major advantage of this decompwsit that

it leads immediately to a simple and efficient numerical radthased on a time-splitting approach
that exploits the scale separation in the limit equatiomspdrticular, we are able to encapsulate all
microscale processes specific to the phase change withiretbeence cell domail?, wherein the
temperature diffuses slowly. Consequently, this homagghlimit structure (and the corresponding
numerical algorithm) can be easily adapted to the sap exudatoblem by simply “plugging in” the
corresponding microscale equations governing the cedltHlgrocesses. In passing, we proved a general
existence result for quasi-linear parabolic differentig@iations having a non-monotone nonlinearity in
the diffusion operator. Numerical simulations are perfednfior both the sap exudation problem and
the reduced model, and the results are shown to be consialitimtugh there are significant differences
that we attribute to the absence of a gas phase in the redungel.nThe homogenized limit equations
derived here have been extended elsewhere (Graf et al.) 2@ I&andle the freezing case, and then
applied to simulate multiple daily cycles of freeze and thawles; these results show an excellent
match with sap exudation experiments.



26 of 35 |. KONRAD, M. A. PETER & J. M. STOCKIE

There are several natural avenues for future work that rogethis study. Most notably, we would
like to fill the gap in our analytical results by extend thegfsato handle the nonlinearity arising from an
enthalpy-dependent thermal diffusion coefficient. Thisgfwill be guided by results on other related
nonlinear problems (Kanschat-Krebs, 2015; Visintin, 200Ve also plan to extend our model to handle
the three-dimensional geometry of a cylindrical tree stewhiaclude radial flow of sap and the effect
of gravitational pressure head on vertical transport.

A. Proofsof three main results

This appendix contains proofs of the lemmas and theoremadimted in Section 4. Throughout, we
useC or C; to denote a generic, real, positive constant whose valuecmayge from line to line.

A.1 Proof of existence

THEOREM 4.1 Consider equation (4.6) satisfying the conditions)(4Then there exists at least one
solution of equation (4.11).

Proof.

(i) To handle the nonlinearities &fwe perform the semi-discretization
um— umfl
T+A(m|<)(um*1,um) =f™ inV*, (A1)

form=1,...,N,withNe N,N>2, k=1, u’=upand

1
fM== [ f(t)dt,
<) 10

form=1,...,N andJn = [(m—1)k,mK. Thenf(t) = f™onJy form=1,...,N. With these
conditions the existence of the semi-discrete problem)(Aolds.

(i) (A priori estimates) We define the functiong: [0, T] — V andw : [0, T] — L2(Q) with

Ug(t) =u™, (A.2a)
Wi (t) =um+ ?&uerl —um. (A.2b)
Then it holds that
2 K N 12
Huk—wk||L2(S.L2(Q)) g § leum_ um* HLZ(Q)' (A3)
m=

For the next estimate we start with the fact that
2(a—b,a)=|lall5 — [bll5 +la—bll Vabel*(Q),

which implies

U™ — (U™ IS + [Ju™ — u™ I + 2k(AmMR) U™ u™), Uy = 2K(FM Uy (A4)
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Using Holder’s inequality we obtain that
, - k
[u™[E = U™ YIS + (U™ = u™ |G + KA UG < 3l F™1G-. (A.5)

Making use of the inequality

N T
kY I < [T o, (A6)
m=1 0
and then summing (A.5) ovenfrom 1 tor < N yields
rn2 4 m m—12 4 mj 2 2 17 2
Ju HQ+H;HU —u Ho+k)\rr;||u I < [voll +X/o [ ()] k. (A7)
It then follows that
1 /T
W3 <ol +5 [ ITOF.& fori<r<N.  (A8a)
4 m m-12 2 1 /7 2
> [ —u IIQSHUoHQJrX/ [ ()], (A.8b)
m=1 0
Compz o L 2, 1T 2
k3 IU7IG < 5 ol + 55 JALGIA (A80)
m=

Using (A.8a) we obtain the estimates

Ukl L=(s2(0)) < C (A.9a)
(W[l L=(s12(0)) < C. (A.9b)
where the constamtdepends only on the right-hand side of (A.8a). Because of
T 5 N 5
[ Tu ot =k 3 o).
0 m=1
it follows that
[l L2(sv) < €. (A.10)

The Banach space™(S,L?(Q)) is the dual space of the separable spats, L?(Q)); hence,
when taken together with the estimates (A.9) and (A.10) aedlieorems of Eberlein—-Shmuljan
and Banach—Alaoglu, we are guaranteed the existence céguésces

U—u inL2(SV), (A.11a)
U—"u inL®(SL3(Q)), (A.11b)
W = w o in L®(S,L2(Q)). (A.11c)

We next want to show that

u=w. (A.12)
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Using (A.3) and (A.8a) we conclude that

ug—We— 0 inL%(SL%(Q)), (A.13)
so that for a subsequence

Uk (t) — wi(t) — O.

With Egs. (A.9) we obtain that

u—w— 0 inL*(SL%Q)),
and hence we can rewrite (A.11c) as

W —*u inL®(SL3(Q)).

The nonlinearity ofA requires another a priori estimate to perform the likiit- 0. From (A.3),
(4.7e) and (4.10a) we deduce that

um— um—l
k \%

< v + Al v (A.14)

After that, we apply (A.6) and (A.8c) to obtain

N f[gm_ g1 2
k Z <d < oo, (A.15)
m=1 k V*

whered only depends on the data in (4.7¢e) and constargadA. This estimate implies that
IWell2gv+) < d. (A.16)
Eqg. (A.11a) and the constructionwf in (A.2a) yield
Vo >0 Vk<9: HWk||L2(]5.T[.V) <, (Al?)

for cindependent od. When taken together with (A.16), (A.13), and the theoremiofs—Aubin,
we obtain subsequences

we—u inL2(]3,T[,L2(Q)), (A.18a)
ug—We — 0 inL%(SL%(Q)), (A.18Db)
ug—u inL2(]3,T[,L3(Q)). (A.18c)

Then there exist a subsequer(cr), converging pointwise a.e. ddto u. Using (A.11a) and
Lebesgue’s theorem we obtain

u—u inL%(SL%(Q)). (A.19)
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(i) (Limit) We define a translation of the functiow : [0,T] — V by
ut—k) :=u™?! onJ, form=1,...,N, (A.20)
for Jm = [(m— 1)k, mK. Then the semi-discretization yields
Wi (t) +At) (u(t — k), ug(t)) = fk(t) fora.eteS inV™. (A.21)

Applying (A.21) tov € ¥ with ¥* C L?(SL?(Q)) andv(T) = 0, and integrating oves using
integration by parts in the first term yields

_/ W (1), Wt dt+/ ) (Ut —K) ) dt — / (Fe(t), V(D)) dt + (o , V().
(A.22)
With (4.10a) and (A.11a) it holds for a subsequence that
AC) (Uk(- —K),u(-)) = ¢ inV™. (A.23)
Taking the limit in (A.22) we obtain
T T
[ v, was [govoia= [1o,voidr . vo). @24
0 0
Withue ¥, Eq. (A.24) andS € ¥* yield
Ut)+{(t)="f(t) foraeteS inV* (A.25)
Itis left to show that
A(t)(u,u) = ¢. (A.26)

We use the monotonicity & in the second argument and compactness from the a prian&sts
to obtain

X 1= / ) (Ut — K), Ui (1)) — A (Uit — K), V(1)) Ui(t) — V(1)) t > O (A.27)
forallve 7. Eqg. (A.25) then implies
T 1 , 1 5 T
[ r0.u)dt+ 5ol = 5 1umIE = [ @.u) e, (A28)

and from Eqg. (A.21) we obtain

T T T
|k und + [ anudt - .u@u)id = [ dbum)d (829
0 0 0

We use the following transformation
T T T
ko uet) o = [ lt) m®) ot + [ h(0) ) ()

L2~ Lol L 5 pum—um 2 (A30)
=3 0~ 5llUlo—5 - Q- :
2 2 2.2,
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Egs. (A.29) and (A.30) together lead to
T
| AD (=0, i(1). uelt)

T 1 1 1 X .
= [ (O w0yt = SIIE+ Sl + 5 Y U um R (A1)
0 m=1

Using Eq. (A.8b), we conclude that the sum in (A.30) and (Ai8XTonvergent. From Eq. (A.27)
we deduce that

.
0< [ (), w0 -+ 5 uolh — 1
LS jum— a1 — [T A Ut — 0, () V(D)) ot
3 3 I = AR K. u0) V)

- [ A0 v0) ui - vo)d. (432

The limit superior in (A.32) leads to

o< [ (10, uv)dt+ Sluol3 3]
X 0 ) 2 0l Q 2

uT)l+y
T T
- [ @y [ Abu.vo).u -vi) d - (A33)
where we used
i in ¥ > u(T) (n.39)
and
u(-—k) —u inL3(SL%(Q))=L%Sx Q). (A.35)

This last result follows from Eq. (A.19), the Lebesgue im&mpn theory, and an application of the
Nemyzki operator. Egs. (A.33) and (A.28) lead to

-y < /OT<Z(t)—A(t)(u(t),v(t)),u(t)—V(t))dt vYveV. (A.36)

Now we consider two cases:

(a) If the integral on the right-hand side of (A.36) is alwaygater or equal to 0, then let=
u—oawwith a > 0 andw € 7. It follows that

0< /OTWU — At)(u(t), u(t) — aw(t)), w(t)dt Vwe 7. (A.37)
Using condition (4.10b), the limit passage for— 0 is admissible and we obtain
0< /OT<Z(t) —A@)(u(t),u(t)),wt))dt Ywe ¥, (A.38)

and with the standard linearity argument the proof is comeple
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(b) If on the other hand the right-hand side of Eq. (A.36) lmees negative, then there exists a
v e ¥ and (because of continuity) a whole bBJI(v) C ¥ such that

[)T<z(t) — A (U(t),v(t)),u(t) —v(t)) dt <O v e Br(v). (A.39)

We setv=u—wwith w € B, (u—v), and use Eqg. (A.39) and the linearity condition (4.10b) to
obtain

[ 120~ Av ). - w) wiye = [ €0 - A u,u)wi) @
+ [ a0, wo) Wiy <o. (Ag0)
With Eq. (4.7¢) we deduce
[ (20— AR .u0). W) d <0 we B (u-v) (A41)
which yields
[ @) - At ut) w0 Va0 weB(u-v. (A

As a result, Eqg. (A.41) holds for alw € ¥ and using the standard trick of linearity, statement
(A.26) is proven.

O

A.2 Proof of a priori estimates

LEMMA 4.2 There exists a consta@t, independent o€, such that the solutio®; of (4.4) (equiva-
lently, E; . andE, ¢ of (4.3)) satisfies

10e% + 1K 0O |3 ¢ = |Enel By + I DELelZs  + B2l + €2l|DE2¢ 3z, < .
Proof. Begin by testing Eq. (4.5) witp; to obtain
(e, Pe) + (KeD (Pe + ™ (Ta)) 0P, 0pe) o = (—& @ *(Ta), pe) -
BecauseDw' is bounded from below by a positive constant, we can applyléfimition of k. to get
(&pe, Ps) @ +min{ D'} | Dpg | 3 +min{Da'}|0pe |5,z < l|dtew™ (Ta) G + [l 0¢1%-

Then, integrating with respect to time and using the bouness of||w(T,)||%, we conclude using
Gronwall's Lemma that

1 . . 1
1P (1) + min{De H|Dpe |2, , +min{De'HleTpe |z , < C+ 5 10:(0)]1
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for everyt € [0,tm], where we use that the initial conditions are bounded. Tieisly for ©; that

1 _ . .
2110:(t) + X (Ta(t)) |3 +min{Day }[[ 00 |3  +min{Da'} 600 12,

1
<C+5[10¢(0) + w0 (Ta(0) [,

after which we obtain from the reverse triangle inequaltigtt
1 . .
51O ()lI5 + min{De'} | 08|15  +min{De'} €00 2

1 _ 1,
<C+3510:(0) + w0 (Ta(0) 5 + 5 0 (Talt))[2-
This implies forE; ¢ andE; ¢ that
|Ese(t)]|%; + [E2e()]%2 + min{Dew'} [ DEwe |3 , +min{Da }|eOEz ]|, , < Ci,

whereC; is a constant independent of O

A.3 Proof of uniqgueness theorem

THEOREM4.2 Equations (4.18) have at most one solution given by

TeV Q) +Ta =L ([0tm], #5(Q)) + Ta) N7 ([0,tm], L2(Q)) ,

T € 72(Q x Y?) + To= (L2 ([0,tm], L3(Q, 545" (Y?))) + T1) N2 ([0,tm], L2(Q x Y?))
whereT; = w(E;) andT, = w(Ey).

Proof. First we note that the cell problem (4.13) has a unique smytivhich was proven in Hornung
(1997). Hence, we will only prove uniqueness of the macrpicproblem by assuming that there are
two solutions(E; 4, Ep a) and(Ex b, E2 p), and then showing that they are equal. To show uniqueness of
solutions to (4.18), we use the equivalent version (4.16) monlinear diffusion coefficient. We start by
substituting each of our solutions into (4.16), subtraettttio equations, and then test with the functions
E1a—EppandEz o —Ezp:

IY'|(6E1a— &E1p, Era—E1p)o
+ (M (DW (E1,a)0E1,a — D/ (Eq,b) OBy b), UE1.a— DBy b)o
+(&Eza— &E2 b, Eza—E2b)gxy2
+ (Dw'(E2,a) OyE2 a — D& (Ez ) OyEx b, OyE2 a— OyEz b) g, y2 = 0.

By adding and subtracting an extra term we obtain

0=[Y{(&Esa— &Erp, ELa—E1b)o
+(M(Da (Ey, 2)JE1.a — D/ (Eq. 2) JE p + D/ (Eq, 2) UEy p — Do/ (Exp) UEy p),
OE1,a— OE1p)o + (GEza— &E2 b, Eza—Ezb)gxy2
+ (D' (Ez,a)0yEp o — D' (Ez,a) DyEp b+ D' (Ez,a) UyEp b — D' (Ez,p) OyEa b,
|:|yEZ,a— DyEZ.b)Q xY25
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which yields the following estimates

Y |(@Eya— &Ewp, Eva— E1b)o +min{||1Dw/||}||0Eya— DE1b]%
+(&E2a— &Ez b, Eza—Ezp)g,yz2+Min{Dw'} | OyEz a — DE2 b5, v2
< —((DW (Ey,a) — Dw/(Ex,p))OEy b, OE1a— OE1p)o
— ((DW'(Ez,a) — DW/(Ez,p))UyEz b, OyE2 o — OyE2 b) o v2
< ||IDW/(Ey,a) — DW'(Ep)|[Le(0) IDEL bl o | OE1,a — DE1 bl 0
+|IDw(Ez,a) — D (B2 b)lL=(axv2) I DyE2 bll 0 xv2l| OyEz,a — OyE2 bll o xy2:
< CL|DW (E1,a) — D& (Ep)llol|DEL bl o|[DE1a — DEg bllo
+CL||Dw/(Ez,a) — D/ (E2.b) | o wv2l OyE2 bll o wv2l OyE2,a — OyEz bl g xv2;
< CpC||Er,a— Enpllo|UEwLbllol|DELa— DB bllo
+CoCL[Ez.a— Ezpllav2llDyE2 bl g vl ByE2a — OyEz bll g vz,

Here, we first use Holder's inequality; secondly tBat’ is bounded and greater than zero, &ads
bounded which implies thaiDw(-)|| =(o) < CL||Dw(-)||q for a constan€i > 0; and thirdly we use
thatDa is Lipschitz continuous with consta@p. Next, we apply the quadratic formula and integrate

with respect to time to get

1 .
§|Y1||\El,a— Exl|% +min{[|1D&|[}[|DEs,a — DEy bl|%

1 .
+3 IE2,a— Ez,pl|5 vz + Min{Dw'}|OyEp a — DEZ,bHéXy;t

CoCLA tm CoCL
< 222 V6 0 EvolB DL ol dt-+ 2 | TELa— DEL sl
CoCLA tm CoCL
T /0HEZ,a—E2,b||éxy2||DyE2,b||éxyzdt+7|\DyE2,a_DyEZ,bHéxyz,p

foranyA > 0, where we have taken advantage of the fact that terms camgahe initial conditions are
zero. Rearranging terms yields

1 : CoCL
3 VHIE s~ Exlfy + (min{ImDa} - S5 ) 0B CEvolf
1 : CoCL
+ EHEz,a— E2,b||é><y2+ <m|n{Dw’} Y ) [OyEza— DEzab”ész,t

CoCLA [tm
<=5 / |E1,a— E1pl
0

Finally, we choos@ large enough such that all terms on the left-hand side ariéveoand exploit that
|0E4]|4 and | 0yE2||% are bounded, after which we can apply Gronwall’s Lemma taiabt

CoCLA ftm
Bl 0Bl o+ =25 [T B2~ Eanld, el DyE2nlh e .

2

|E1.a — Evpllh + [0ELa — DELbl%, + [E2a — E2bl% e + I0yE2a — DE2pl% 2, < O.

ConsequentlyE; 5 = Eq p andJE; 4 = OE; p, almost everywhere of2 x [0,tm], and similarlyE; 5 =
Ez p andUE; o = UE; , almost everywhere of2 x Y2 % [0, tm]. O
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