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Abstract

We propose an efficient algorithm for the immersed boundary method on distributed-
memory architectures, with the computational complexity of a completely explicit method
and excellent parallel scaling. The algorithm utilizes the pseudo-compressibility method
recently proposed by Guermond and Minev that uses a directional splitting strategy
to discretize the incompressible Navier-Stokes equations, thereby reducing the linear
systems to a series of one-dimensional tridiagonal systems. We perform numerical sim-
ulations of several fluid-structure interaction problems in two and three dimensions and
study the accuracy and convergence rates of the proposed algorithm. For these prob-
lems, we compare the proposed algorithm against other second-order projection-based
fluid solvers. Lastly, the strong and weak scaling properties of the proposed algorithm
are investigated.
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1. Introduction

The immersed boundary (IB) method is a mathematical framework for studying fluid-
structure interaction that was originally developed by Peskin to simulate the flow of blood
through a heart valve [42]. The IB method has been used in a wide variety of biofluids
applications including blood flow through heart valves [19, 42], aerodynamics of the vocal
cords [11], sperm motility [9], insect flight [34], and jellyfish feeding dynamics [25]. The
method is also increasingly being applied in non-biological applications [36].
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The immersed boundary equations capture the dynamics of both fluid and immersed
elastic structure using a mixture of Eulerian and Lagrangian variables: the fluid is rep-
resented by Eulerian coordinates that are fixed in space, and the immersed boundary
is described by a set of moving Lagrangian coordinates. An essential component of the
model is the Dirac delta function that mediates interactions between fluid and IB quan-
tities in two ways. First of all, the immersed boundary exerts a elastic force (possibly
singular) on the fluid through an external force term in the Navier-Stokes equations that
is calculated using the current IB configuration. Secondly, the immersed boundary is con-
strained to move at the same velocity as the surrounding fluid, which is just the no-slip
condition. The greatest advantage of this approach is that when the governing equations
are discretized, no boundary-fitted coordinates are required to handle the solid structure
and the influence of the immersed boundary on the fluid is captured solely through an
external body force.

When devising a numerical method for solving the IB equations, a common approach
is to use a fractional-step scheme in which the fluid is decoupled from the immersed
boundary, thereby reducing the overall complexity of the method. Typically, these
fractional-step schemes employ some permutation of the following steps:

• Velocity interpolation: wherein the fluid velocity is interpolated onto the immersed
boundary.

• IB evolution: the immersed boundary is evolved in time using the interpolated
velocity field.

• Force spreading: which calculates the force exerted by the immersed boundary and
spreads it onto the nearby fluid grid points, with the resulting force appearing as
an external forcing term in the Navier-Stokes equations.

• Fluid solve: which evolves the fluid variables in time using the external force cal-
culated in the force spreading step.

Algorithms that fall into this category include Peskin’s original method [42] as well as
algorithms developed by Lai and Peskin [29], Griffith and Peskin [20], and many others.

A popular recent implementation of fractional-step type is the IBAMR code [28] that
supports distributed-memory parallelism and adaptive mesh refinement. This project
grew out of Griffith’s doctoral thesis [15] and was outlined in the papers [18, 20]. In the
original IBAMR algorithm, the incompressible Navier-Stokes equations are solved using
a second-order accurate projection scheme in which the viscous term is handled with an
L-stable discretization [33, 53] while an explicit second-order Godunov scheme [8, 35] is
applied to the nonlinear advection terms. The IB evolution equation is then integrated
in time using a strong stability-preserving Runge-Kutta method [14]. Since IBAMR’s
conception, drastic improvements have been made that increase both the accuracy and
generality of the software [17, 19].

Fractional-step schemes often suffer from a severe time step restriction due to numer-
ical stiffness that arises from an explicit treatment of the immersed boundary in the most
commonly used splitting approaches [50]. Because of this limitation, many researchers
have proposed new algorithms that couple the fluid and immersed boundary together in
an implicit fashion, for example [5, 27, 30, 37, 40]. These methods alleviate the severe
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time step restriction, but do so at the expense of solving large nonlinear systems of al-
gebraic equations in each time step. Although these implicit schemes have been shown
in some cases to be competitive with their explicit counterparts [41], there is not yet
sufficient evidence to prefer one approach over the other, especially when considering
parallel implementations.

A common class of fractional-step schemes for solving the incompressible Navier-
Stokes equations makes use of a projection method, and is divided into two steps. First,
the discretized momentum equations are integrated in time to obtain an intermediate
velocity field that in general is not divergence-free. In the second step, the intermediate
velocity is projected onto the space of divergence-free fields using the Hodge decomposi-
tion. The projection step typically requires the solution of large linear systems in each
time step that are computationally costly and exhibit poor parallel scaling. This cost
is increased even more when a small time step is required for explicit implementations.
Note that even though some researchers make use of unsplit discretizations of the Navier-
Stokes equations [17, 41], there is nonetheless significant benefit to be had by using a
split-step projection method as a preconditioner [16]. Therefore, any improvements made
to a multi-step fluid solver can reasonably be incorporated into unsplit schemes as well.

In this paper, we develop a fractional-step IB method that has the computational
complexity of a completely explicit method and exhibits excellent parallel scaling on
distributed-memory architectures. This is achieved by abandoning the projection method
paradigm and instead adopting the pseudo-compressible fluid solver developed by Guer-
mond and Minev [21, 22]. Pseudo-compressibility methods relax the incompressibility
constraint by perturbing it in an appropriate manner. Familiar methods include Temam’s
penalty method [51], the artificial compressibility method [6], and Chorin’s projection
method [7, 45]. Guermond and Minev’s algorithm differentiates itself by employing a
directional-splitting strategy, thereby permitting the linear systems of size Nd×Nd typ-
ically arising in projection methods (where d = 2 or 3 is the problem dimension) to
be replaced with a set of one-dimensional tridiagonal systems of size N × N . These
tridiagonal systems can be solved efficiently on a distributed-memory computing archi-
tectures by combining Thomas’s algorithm with a Schur-complement technique. This
allows the proposed IB algorithm to exhibit near-ideal scaling. The only serious lim-
itation of the IB algorithm is that it is restricted to simple (rectangular) geometries
and boundary conditions due to the directional-splitting strategy adopted by Guermond
and Minev. However, since IB practitioners often use a rectangular fluid domain with
periodic boundary conditions, this is not a serious limitation. Instead, the IB method
provides a natural setting to leverage the strengths of Guermond and Minev’s algorithm
allowing complex geometries to be incorporated into the domain through an immersed
boundary. This is a simple alternative to the fictitious domain procedure proposed by
Angot et al. [1].

In section 2, we begin by stating the governing equations for the immersed boundary
method. We continue by describing the proposed numerical scheme in section 3 where we
incorporate the higher-order rotational form of Guermond and Minev’s algorithm which
discretizes an O

(
∆t2

)
perturbation of the Navier-Stokes equations to yield a formally

O
(
∆t3/2

)
accurate method. As a result, the proposed method has convergence properties

similar to a fully second-order projection method, while maintaining the computational
complexity of a completely explicit method. In section 4, we discuss implementation
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details of the algorithm for distributed-memory architectures. Finally, in section 5, we
demonstrate the accuracy, efficiency and parallel scaling properties of our method through
several test problems in 2D and 3D.

2. Immersed Boundary Equations

In this paper, we consider a d-dimensional Newtonian, incompressible fluid that fills
a periodic box Ω = [0, H]d having side length H and dimension d = 2 or 3. The fluid
is specified using Eulerian coordinates, x = (x, y) in 2D or (x, y, z) in 3D. Immersed
within the fluid is a neutrally-buoyant, elastic structure Γ ⊂ Ω that we assume is either
a single one-dimensional elastic fiber, or else is constructed from a collection of such
fibers. In other words, Γ can be a curve, surface or region. The immersed boundary
can therefore be described using a fiber-based Lagrangian parameterization, in which
the position along any fiber is described by a single parameter s. If there are multiple
fibers making up Γ (for example, for a “thick” elastic region in 2D, or a surface in 3D)
then a second parameter r is introduced to identify individual fibers. The Lagrangian
parameters are assumed to be dimensionless and lie in the interval s, r ∈ [0, 1].

In the following derivation, we state the governing equations for a single elastic fiber
in dimension d = 2, and the extension to the three-dimensional case or for multiple fibers
is straightforward. The fluid velocity u(x, t) = (u(x, t), v(x, t)) and pressure p(x, t) at
location x and time t are governed by the incompressible Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∇2u + f , (1)

∇ · u = 0, (2)

where ρ is the fluid density and µ is the dynamic viscosity (both constants). The term
f appearing on the right hand side of (1) is an elastic force arising from the immersed
boundary that is given by

f(x, t) =

∫
Γ

F (s, t) δ(x−X(s, t)) ds, (3)

where x = X(s, t) = (X(s, t), Y (s, t)) represents the IB configuration and F (s, t) is
the elastic force density. The delta function δ(x) = δ(x)δ(y) is a Cartesian product of
one-dimensional Dirac delta functions, and acts to “spread” the IB force from Γ onto
adjacent fluid particles. In general, the force density F is a functional of the current IB
configuration

F (s, t) = F [X(s, t)] . (4)

For example, the force density

F [X(s, t)] = σ
∂

∂s

(
∂X

∂s

(
1− L

|∂X∂s |

))
(5)

corresponds to a single elastic fiber having “spring constant” σ and an equilibrium state
in which the elastic strain |∂X/∂s| ≡ L.
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The final equation needed to close the system is an evolution equation for the im-
mersed boundary, which comes from the simple requirement that Γ must move at the
local fluid velocity:

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω

u(x, t) δ(x−X(s, t)) dx. (6)

This last equation is nothing other than the no-slip condition, with the second delta
function convolution form being more convenient for numerical computations because of
its resemblance to the IB forcing term (3). Periodic boundary conditions are imposed on
both the fluid and the immersed structure and appropriate initial values are prescribed
for the fluid velocity u(x, 0) and IB position X(s, 0). Further details on the mathematical
formulation of the immersed boundary problem and its extension to three dimensions
can be found in [43].

3. Algorithm

We now provide a detailed description of our algorithm for solving the immersed
boundary problem. The novelty in our approach derives first from the use of a pseudo-
compressibility method for solving the incompressible Navier-Stokes equations, which is
new in the IB context and is described in this section. The second novel aspect of our
algorithm is in the parallelization, which is detailed in section 4.

3.1. Pseudo-Compressibility Methods

Pseudo-compressibility methods [45, 48] are a general class of numerical schemes
for approximating the incompressible Navier-Stokes equations by appropriately relaxing
the incompressibility constraint. An O (ε) perturbation of the governing equations is
introduced in the following manner

ρ

(
∂uε
∂t

+ uε · ∇uε
)

+∇pε = µ∇2uε + f , (7)

ε

ρ
Apε +∇ · uε = 0, (8)

where various choices of the generic operator A lead to a number of familiar numerical
schemes. For example, choosing A = 1 (the identity) corresponds to the penalty method
of Temam [51], A = ∂t yields the artificial compressibility method [6], A = −∇2 is
equivalent to Chorin’s projection scheme [7, 45] (as long as the perturbation parameter
is set equal to the time step, ε = ∆t), and A = −∇2∂t yields Shen’s method [47] (when
ε = βρ(∆t)2 for some positive constant β).

Recently, Guermond and Minev [21, 22] proposed a new pseudo-compressibility method
that exhibits remarkable parallel scaling properties. The first-order version of their
method can be cast in the form of an O (ε)-perturbation such as that shown in equations
(7)–(8) with ε = ∆t and

A =

{
(1− ∂xx)(1− ∂yy) in 2D,

(1− ∂xx)(1− ∂yy)(1− ∂zz) in 3D.
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They also proposed an O
(
ε2
)

(second-order in time) variant that corresponds to the
three-stage scheme

ρ

(
∂uε
∂t

+ uε · ∇uε
)

+∇pε = µ∇2uε + f , (9)

ε

ρ
Aψε +∇ · uε = 0, (10)

ε
∂pε
∂t

= ψε − χµ∇ · uε, (11)

where ψε is an intermediate variable and χ ∈ (0, 1] is an adjustable parameter (Guermond
and Minev [21] suggest using χ = 1

2 ).
For both variants of the method, corresponding to either (9)–(10) or (9)–(11), the mo-

mentum equation is discretized in time using a Crank-Nicolson step and the viscous term
is directionally-split using the technique proposed by Douglas [10]. The perturbed incom-
pressibility constraint is solved using a straightforward discretization of the direction-split
factors in the operator A that reduces to a set of one-dimensional tridiagonal systems.
These simple linear systems can be solved very efficiently on a distributed-memory ma-
chine by combining Thomas’s algorithm with a Schur-complement technique. This is
achieved by expressing each tridiagonal system using block matrices and manipulating
the original system into a set of block-structured systems and a Schur complement sys-
tem. By solving these block-structured systems in parallel, the domain decomposition
can be effectively parallelized.

It is important to note that Guermond and Minev’s fluid solver cannot be recast as
a pressure projection algorithm; nevertheless, it has been demonstrated both analyti-
cally [24] and computationally [23] to have comparable convergence properties to related
projection methods. More precisely, the higher-order algorithm we apply here yields a
formally O

(
∆t3/2

)
accurate method for 2D flows, although in practice higher conver-

gence rates are observed in both 2D and 3D computations.
The main disadvantage of the algorithm is that it is limited to simple (rectangu-

lar) geometries because of the use of directional-splitting. However, this is not a real
disadvantage in the immersed boundary context because complex solid boundaries can
be introduced by using immersed boundary points (attached to fixed “tether points”)
that are embedded within a regular computational domain. In this way, the IB method
provides a simple and efficient alternative to the fictitious domain approach [1] and re-
lated methods that could be used to incorporate complex geometries into Guermond and
Minev’s fluid solver.

3.2. Discretization of Fluid and IB Domains

When discretizing the governing equations, we require two separate computational
grids, one each for the Eulerian and Lagrangian variables. For simplicity, we state our
discrete scheme for a two-dimensional fluid (d = 2) and a fiber consisting of a single
one-dimensional closed curve. The immersed structure is discretized using Ns uniformly-
spaced points sk = khs in the interval [0, 1], with mesh spacing hs = 1/Ns and k =
0, 1, . . . , Ns − 1. As a short-hand, we denote discrete approximations of the IB position
at time tn = n∆t by

Xn
k ≈ (X(khs, tn), Y (khs, tn)) ,
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where n = 0, 1, 2, . . .. Similarly, the fluid domain Ω = [0, H]2 is divided into an N ×N ,
uniform, rectangular mesh in which each cell has side length h = H/N . We employ a
marker-and-cell (MAC) discretization [26] as illustrated in Figure 1, in which the pressure

pni,j ≈ p(xi,j , tn)

is approximated at the cell center points

xi,j = ((i+ 1/2)h, (j + 1/2)h) ,

for i, j = 0, 1, . . . , N −1. The velocities on the other hand are approximated at the edges
of cells

uE,n
i,j =

(
uE,n
i,j , v

E,n
i,j

)
,

where

uE,n
i,j ≈ u(ih, (j + 1/2)h, tn) and vE,n

i,j ≈ v((i+ 1/2)h, jh, tn).

The x-component of the fluid velocity is defined on the east and west cell edges, while
the y-component is located on the north and south edges.

Figure 1: Location of fluid velocity and pressure variables on the staggered marker-and-cell (MAC) grid.

3.3. Spatial Finite Difference Operators

Next, we introduce the discrete difference operators that are used for approximating
spatial derivatives. The second derivatives of a scalar Eulerian variable are replaced using
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the second-order centered difference stencils

Dxxpi,j =
pi+1,j − 2pi,j + pi−1,j

h2

and Dyypi,j =
pi,j+1 − 2pi,j + pi,j−1

h2
.

The same operators may be applied to the vector velocity, so that for example

Dxxu
E
i,j =

[
Dxxu

E
i,j

Dxxv
E
i,j

]
.

Since the fluid pressure and velocity variables are defined at different locations (i.e., cell
centers and edges respectively), we also require difference operators whose input and
output are at different locations, and for this purpose we indicate explicitly the locations
of the input and output using a superscript of the form Input→Output . For example, an
operator with the superscript C→E takes a cell-centered input variable (denoted “C”)
and returns an output value located on a cell edge (denoted “E”). Using this notation,
we may then define the discrete gradient operator GC→E as

G
C→Epi,j =

(
pi,j − pi−1,j

h
,
pi,j − pi,j−1

h

)
,

which acts on the cell-centered pressure variable and returns a vector-valued quantity on
the edges of a cell. Likewise, the discrete divergence of the edge-valued velocity

D
E→C · uE

i,j =
ui+1,j − ui,j

h
+
vi,j+1 − vi,j

h
,

which returns a cell-centered value.
Difference formulas are also required for Lagrangian variables such as Xk, for which

we use the first-order one-sided difference approximations:

D
+
s Xk =

Xk+1 −Xk

hs

and D
−
s Xk =

Xk −Xk−1

hs
.

Finally, when discretizing the integrals appearing in (3) and (6), we require a discrete
approximation to the Dirac delta function. Here, we make use of the following approxi-
mation

δh(x) =
1

h2
φ
(x
h

)
φ
(y
h

)
where

φ(r) =


1
8 (3− 2|r|+

√
1 + 4|r| − 4r2) if 0 ≤ |r| < 1,

1
8 (5− 2|r| −

√
−7 + 12|r| − 4r2) if 1 ≤ |r| < 2,

0 if 2 ≤ |r|,
(12)

which is a popular choice in the immersed boundary literature [20, 29, 37]. Peskin [43]
describes a number of desirable properties that the discrete delta function should satisfy,
and several approximate delta functions that satisfy various subsets of the properties
(including equation (12)) have been derived and used in practice [3, 20, 49].
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3.4. IB-GM Algorithm

We are now prepared to describe our algorithm for the IB problem based on the fluid
solver of Guermond and Minev [22], which we abbreviate “IB-GM”. The fluid is evolved
in time in two main stages, both of which reduce to solving one-dimensional tridiagonal
linear systems. In the first stage, the diffusion terms in the momentum equations are
integrated in time using the directional-splitting technique proposed by Douglas [10]. The
nonlinear advection term on the other hand is dealt with explicitly using the second-order
Adams-Bashforth extrapolation

Nn+1/2 =
3

2
N(uE,n

i,j ) +
1

2
N(uE,n−1

i,j ), (13)

where N(•) is an approximation of the advection term u · ∇u. In this paper, we write
the advection term in skew-symmetric form

N(u) ≈ 1

2
u · ∇u +

1

2
∇ · (uu), (14)

and then discretize the resulting expression using the second-order centered difference
scheme studied by Morinishi et al. [38].

In the second stage, the correction term ψ is calculated using Guermond and Minev’s
splitting operator [22], and the actual pressure variable is updated using the higher-order
variant of their algorithm corresponding to (9)–(11). For all simulations, we use the same
parameter value χ = 1

2 as suggested in [22].
For the remaining force spreading and velocity interpolation steps, we apply stan-

dard techniques. The integrals appearing in equations (3) and (6) are approximated to
second order using the trapezoidal quadrature rule and the fiber evolution equation (6)
is integrated using the second-order Adams-Bashforth extrapolation.

Assuming that the state variables are known at the (n− 1)th and nth time steps, the
IB-GM algorithm proceeds as follows.

Step 1. Evolve the IB position to time tn+1/2 = (n+ 1/2)∆t:

1a. Interpolate the fluid velocity onto immersed boundary points:

Un
k =

∑
i,j

uE,n
i,j δh(xE

i,j −Xn
k )h2.

1b. Evolve the IB position to time tn+1 using an Adams-Bashforth discretization
of (6):

Xn+1
k −Xn

k

∆t
=

3

2
Un
k −

1

2
Un−1
k .

1c. Approximate the IB position at time tn+1/2 using the arithmetic average:

X
n+1/2
k =

1

2

(
Xn+1
k + Xn

k

)
.

Step 2. Calculate the fluid forcing term:
9



2a. Approximate the IB force density at time tn+1/2 using (5):

F
n+1/2
k = σD−s

D+
s X

n+1/2
k

1− L∣∣∣D+
s X

n+1/2
k

∣∣∣
 .

2b. Spread the IB force density onto fluid grid points:

f
E,n+1/2
i,j =

∑
k

F
n+1/2
k δh(xE

i,j −X
n+1/2
k )hs.

Step 3. Solve the incompressible Navier–Stokes equations:

3a. Predict the fluid pressure at time tn+1/2:

p
∗,n+1/2
i,j = p

n−1/2
i,j + ψ

n−1/2
i,j .

3b. Compute the first intermediate velocity field uE,∗ by integrating the momen-
tum equations explicitly:

ρ

(
uE,∗
i,j − uE,n

i,j

∆t
+Nn+1/2

)
=

µ (Dxx +Dyy)uE,n
i,j −GC→Ep

∗,n+1/2
i,j + f

E,n+1/2
i,j .

3c. Determine the second intermediate velocity uE,∗ by solving the tridiagonal
systems corresponding to the x-derivative piece of the directional-split Lapla-
cian:

ρ

(
uE,∗∗
i,j − uE,∗

i,j

∆t

)
=
µ

2
Dxx

(
uE,∗∗
i,j − uE,n

i,j

)
.

3d. Obtain the final velocity approximation at time tn+1 by solving the following
tridiagonal systems corresponding to the y-derivative piece of the directional-
split Laplacian:

ρ

(
uE,n+1
i,j − uE,∗∗

i,j

∆t

)
=
µ

2
Dyy

(
uE,n+1
i,j − uE,n

i,j

)
.

3e. Determine the pressure correction term ψ
n+1/2
i,j by solving

(1−Dxx) (1−Dyy)ψ
n+1/2
i,j = − ρ

∆t
D

E→C · uE,n+1
i,j .

3f. Calculate the pressure at time tn+1/2 using

p
n+1/2
i,j = p

n−1/2
i,j + ψ

n+1/2
i,j − χµDE→C ·

(
1

2
(uE,n+1

i,j + uE,n
i,j )

)
.
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Note that in the first step of the algorithm with n = 0, we do not yet have an approxima-
tion of the solution at the previous time time step, and therefore we make the following
replacements:

• In Step 1b, approximate the fiber evolution equation using a first-order forward
Euler approximation X1

k = X0
k + ∆tU0

k.

• In Step 3a, set p
∗,1/2
i,j = 0.

• In Step 3b, the nonlinear term from equation (13) is replaced with N1/2 = N(uE,0
i,j ).

4. Parallel Implementation

Here we outline the details of the algorithm that relate specifically to the parallel
implementation. Since the scaling properties of our algorithm is a primary feature, it is
important to discuss our implementation in order to understand the parallel character-
istics of the method.

4.1. Partitioning of the Eulerian and Lagrangian Grids

Suppose that the algorithm in section 3.4 is implemented on a distributed-memory
computing machine with P = Px ·Py processing nodes. The parallelization is performed
by subdividing the rectangular domain Ω into equally-sized rectangular partitions {Ω`,m},
with ` = 1, 2, . . . , Px and m = 1, 2, . . . , Py, where Px and Py refer to the number of
subdivisions in the x– and y–directions respectively. Each node is allocated a single
domain partition Ω`,m, along with the values of the Eulerian and Lagrangian variables
contained within it. For example, the (`,m) node would contain in its memory the fluid
variables uE

i,j and pi,j for all xi,j ∈ Ω`,m, along with all immersed boundary data Xk and
F k such that Xk ∈ Ω`,m. This partitioning is illustrated for a simple 3× 3 subdivision
in Figure 2(a).

In this way, the computational work required in each time step is effectively divided
between processing nodes by requiring that each node update only those state variables
located within its assigned subdomain. Nonetheless, some inter-node communication
is still required and because we are working on a distributed memory architecture this
exchange of information can be very costly and should therefore be minimized. We now
describe our approach for implementing the data partitioning and communication, which
makes use of infrastructure provided by Open MPI [12] and PETSc [2].

Since the fluid and immersed boundary are discretized on two different grids, the data
partitioning between nodes must be handled differently in each case. The partitioning
of Eulerian variables is much simpler because the spatial locations remain fixed in time
and remain associated with the same node for the entire computation. In contrast,
Lagrangian variables are free to move throughout the fluid and so a given IB point may
move between two adjacent subdomains in the course of a single time step. As a result,
the data structure and communication patterns for the Lagrangian variables are more
complex.

Consider the communication required for the update of fluid variables in each time
step, for which the algorithm in section 3.4 requires the explicit computation of several
discrete difference operators. For points located inside a subdomain Ω`,m, these discrete
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(a) (b)

Figure 2: (a) Parallel domain decomposition with Px = Py = 3. (b) Communication required to update
ghost cell regions for the subdomain Ω2,2.

operators are easily computed; however for points on the edge of a domain partition,
a difference operator may require data that is not contained in the current node’s local
memory. For example, when calculating the discrete Laplacian (using the 5-point stencil)
data at points adjacent to the given state variable are required. As a result, when an
adjacent variable does not reside in Ω`,m, communication is required with a neighbour-
ing node to obtain the required value. This communication is aggregated together using
ghost cells that lie inside a strip surrounding the boundary of each Ω`,m as illustrated
in Figure 2(b). The width of the ghost region is set equal to the support of the discrete
delta function used in the velocity interpolation and force spreading steps; that is, two
grid points in the case of the delta-approximation (12)). When a difference operator is
applied to a state variable stored in the (`,m) node, the neighbouring nodes commu-
nicate the data contained in the ghost cells adjacent to Ω`,m. After the ghost region
is filled, the discrete difference operators may then be calculated for all points in Ω`,m.
When combined with the parallel linear solver discussed later in section 4.2, this parallel
communication technique permits the fluid variables to be evolved in time.

As the IB points move through the fluid, the number of IB points residing in any
particular subdomain may vary from one time step to the next. Therefore, the memory
required to store the local IB data structure changes with time, as does the communi-
cation load. These complications are dealt with by splitting the data structure defining
the immersed boundary into two separate components corresponding to IB points and
force connections. The IB point (IB) data structure contains the position and velocity
of all IB points resident in a given subdomain, whereas the force connection (FC) data
structure keeps track of all force-generating connections between these points. The force
density calculations depend on spatial information and so the IB data structure requires
a globally unique index (which we call the “primary key”) that is referenced by the FC

data structure (the “foreign key”). This relationship is illustrated in Figure 3, where the
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(a)
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Figure 3: (a) Relationship between the data structures for the IB points (IB) and elastic force connections
(FC). (b) References from a chosen force connection to the corresponding IB points.

force connections shown are consistent with the elastic force function (5). If the IB data
structure is represented as an associative array using PointID as the key (and referenced
as IB[PointID]) and FC[i] represents a specific element of the force connection array,
then the force density calculation may be written as

FC[i].Fdens =
FC[i].sigma

h2
s

(
IB[ FC[i].LPointID ].X + IB[ FC[i].RPointID ].X

− 2 * IB[ FC[i].PointID ].X
)
,

where we have assumed here that the force parameter L = 0.
We are now prepared to summarize the complete parallel procedure that is used to

evolve the fluid and immersed boundary. Keep in mind that at the beginning of each
time step, a processing node contains only those IB points and force connections that
reside in the corresponding subdomain. The individual solution steps are:

• Velocity interpolation: Interpolate the fluid velocity onto the IB points and store
the result in IB[•].U. This step requires fluid velocity data from the ghost region.

• Immersed boundary evolution: Evolve the IB points in time by updating IB[•].X =

13
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Figure 4: IB points inside the ghost region surrounding Ω`,m are communicated from Ω`+1,m.

Xn+1
• . Note that the IB point position at the half time step (IB[•].Xh = X

n+1/2
• )

also needs to be stored for the force spreading step.

• Immersed boundary communication: Send the data from IB points lying within the
ghost region to the neighbouring processing nodes. Figure 4 illustrates how the IB
points residing in the ghost region corresponding to Ω`,m are copied from Ω`+1,m

(for both the full time step n+ 1 and the half-step n+ 1/2). In this example, three
IB points (corresponding to PointID = k, k + 1, k + 2) and two force connections
(with FC[i].PointID = k, k + 1) are communicated to Ω`,m. The additional IB
point is required to calculate the force density for FC[i].PointID = k+1. Because
the IB point k − 1 already resides in Ω`,m, the force density can be computed for
FC[i].PointID = k without any additional communication.

• Force spreading: Calculate the force density for all IB points in Ω`,m and the
surrounding ghost region at the time step n+ 1/2. Then spread the force density
onto the Eulerian grid points residing in Ω`,m.

• Immersed boundary cleanup: Remove all IB points and corresponding force con-
nections that do not reside in Ω`,m at time step n+ 1.

• Evolve fluid: Evolve the fluid variables in time using the parallel techniques dis-
cussed above. This requires communication with the neighbouring processing nodes
to update the ghost cell region, and further communication is needed while solving
the linear systems.

Using the approach outlined above, each processing node only needs to communicate
with its neighbouring nodes, with the only exception being the linear solver which we
address in the next section. Since communication is often the primary bottleneck in the
performance of a parallel algorithm, this is the property that allows our method to scale
so well. For example, if the problem size and number of processing nodes are doubled,
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then we would ideally want the execution time per time step to remain unchanged. Any
algorithm that requires global communication cannot have this ideal scaling property
because communication costs will increase as the number of nodes increases. Fortunately,
no global communication is required in our algorithm so far, and so the linear solver is
the only remaining obstacle to achieving the ideal parallel scaling.

4.2. Linear Solver

A key remaining component of the algorithm outlined in section 3.4 is the solution of
the tridiagonal linear systems arising in the fluid solver. When solving the momentum
equations the following linear systems arise:(

1− µ∆t

2ρ
Dxx

)
uE,∗∗
i,j = uE,∗

i,j −
µ∆t

2ρ
Dxxu

E,n
i,j , (15)(

1− µ∆t

2ρ
Dyy

)
uE,n+1
i,j = uE,∗∗

i,j − µ∆t

2ρ
Dyyu

E,n
i,j , (16)

while the pressure update step requires solving

(1−Dxx) (1−Dyy)ψ
n+1/2
i,j = − ρ

∆t
D

E→C · uE,n+1
i,j .

This last equation can be split into two steps

(1−Dxx)ψ
∗,n+1/2
i,j = − ρ

∆t
D

E→C · uE,n+1
i,j , (17)

and (1−Dyy)ψ
n+1/2
i,j = ψ

∗,n+1/2
i,j , (18)

where ψ∗i,j is an intermediate variable. Note that each linear system in (15)–(18) involves
a difference operator that acts in one spatial dimension only and decouples into a set
of one-dimensional periodic (or cyclic) tridiagonal systems. For example, equations (15)
and (17) consist of N tridiagonal systems of size N ×N having the general form

A
(j)Ψi,j = bi,j , (19)

for each j = 0, 1, . . . , N − 1.
Because the processing node (`,m) contains only fluid data residing in subdomain

Ω`,m, these tridiagonal linear systems divide naturally between nodes. Each node solves
those linear systems for which it has the corresponding data bi,j ∈ Ω`,m as illustrated
in Figure 5. For example, when solving (19) along the x-direction, each processing node
solves N/Py linear systems and the total work is spread over Px nodes. Similarly, when
solving the corresponding systems along the y-direction, each processing node solves
N/Px systems spread over Py nodes.

Each periodic tridiagonal system is solved directly using a Schur-complement tech-
nique [46, sec. 14.2.1]. This is achieved by rewriting the linear equations as a block-
structured system where the interfaces between blocks correspond to those for the sub-
domains. To illustrate, let us consider an example with P = 2 processors only, for which
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Figure 5: (a) Coupling direction for linear systems (15) and (18). (b) Coupling direction for linear
systems (16) and (17). Each processing node participates in solving N/Px,y tridiagonal systems and
requires communication in the direction of the arrows.

the periodic tridiagonal system

a1 b1 c1
c2 a2 b2

. . .

. . .

cM−1 aM−1 bM−1

cM aM bM
cM+1 aM+1 bM+1

. . .

. . .

bN cN aN





y1

x2

...

...
xM−1

y2

xM+1

...

...
xN



=



g1

f2

...

...
fM−1

g2

fM+1

...

...
fN


arises from a single row of unknowns in Figure 5(a) (or a single column in Figure 5(b)). In
this example, the indices M−1 and M refer to the subdomain boundary points (denoted
with a vertical line in the matrix above) so that the data (y1, x2, . . . , xM−1, g1, f2, . . . ,
fM−1) reside on processor 1 and (y2, xM+1, . . . , xN , g2, fM+1, . . . , fN ) on processor 2.
To isolate the coupling between subdomains, the rows in the matrix are reordered to
shift the unknowns at periodic subdomain boundaries (y1 and y2) to the last two rows,
and then the columns are reordered to keep the diagonal entries on the main diagonal.
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This yields the equivalent linear system

a2 b2 c2
. . .

. . .

cM−1 aM−1 bM−1

aM+1 bM+1 cM+1

. . .

. . .

cN aN bN
b1 c1 a1

cM bM aM





x2

...

...
xM−1

xM+1

...

...
xN
y1

y2



=



f2

...

...
fM−1

fM+1

...

...
fN
g1

g2



,

which has the block structure B1 E1

B2 E2

F 1 F 2 C

 x1

x2

y

 =

 f1

f2

g

 .
In the more general situation with P subdomains, the block structure becomes

B1 E1

B2 E2

. . .
...

BP EP

F 1 F 2 · · · F P C




x1

x2

...
xP
y

 =


f1

f2
...

fP
g

 ,
or more compactly [

B E
F C

] [
x
y

]
=

[
f
g

]
, (20)

where C ∈ RP×P , B ∈ R(N−P )×(N−P ), E ∈ R(N−P )×P , and F ∈ RP×(N−P ). Here, x
and f denote the data located in the interior of a subdomain while y and g denote the
data residing on the interface between subdomains. Next, we use the LU factorization
to rewrite the block matrix from (20) as[

B E
F C

]
=

[
I 0

FB−1 I

] [
B E
0 S

]
,

where S = C − FB−1E is the Schur complement. Using this factorized form, we can
decompose the block system into the following three smaller problems:

Bf∗ = f , (21)

Sy = g − Ff∗, (22)

Bx = Bf∗ −Ey. (23)

Based on this decomposition, we can now summarize the solution procedure as follows:
17



• Local tridiagonal solver: Each processor solves a local non-periodic tridiagonal
system

Bpf
∗
p = fp,

which can be solved efficiently using Thomas’s algorithm. The matrices Bp are the
non-periodic tridiagonal blocks in the block diagonal matrix B.

• Gather data to master node: Each processor sends three scalar values to the master

node corresponding to the first and last entries of the vector f∗p , as well as the scalar
gp. Because F p is sparse, only a few values are required to construct the right hand
side of the Schur complement system.

• Solve Schur complement system: On the master node, solve the reduced P×P Schur
complement system (22). Based on the sparsity patterns of F and E, the Schur
complement matrix S is periodic and tridiagonal and therefore can be inverted
efficiently using Thomas’s algorithm.

• Scatter data from master node: The master node scatters two scalar values from
y to each processor. Because of the sparsity of B−1E, only a few values of y are
required in the next step. Therefore, the pth processor only requires the entries of
y numbered p and mod(p+ 1, P ).

• Correct local solution: Each processor corrects its local solution

xp = f∗p −B−1
p Epy,

using the local values f∗p computed in the first step.

The tridiagonal systems above can be parallelized very efficiently. As already indicated
earlier, this procedure only requires two collective communications – scatter and gather
– and because global communication only occurs along one spatial direction the commu-
nication overhead increases only marginally with the number of processors. A further
cost savings derives from the fact that the tridiagonal systems do not change from one
time step to the next, and so the matrices S and B−1E can be precomputed.

The only potential bottleneck in this procedure is in solving the reduced Schur com-
plement system (22). Since the reduced system is solved only on the master node, the
clock cycles on the remaining idle nodes are wasted at this time. Furthermore, this
wasted time increases as the number of processors increase since the Schur complement
system grows with P . Fortunately, the IB algorithm never solves just a single tridiagonal
system. For example, when solving (19) along the x-direction, P = Px processing nodes
work together to solve N/Py tridiagonal systems. Therefore, the N/Py systems when
solved together require solving N/Py different Schur complement systems. This workload
can be spread out evenly between the P processors keeping all the processors occupied.

5. Numerical Results

To test the accuracy and parallel performance of our algorithm, we consider the
following four model problems:
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• Thin ellipse: an idealized one-dimensional elliptical membrane with zero thickness
immersed in a 2D fluid. This is a standard test problem in the IB literature.

• Thick elliptical shell: a generalization of the first example to a thick immersed
boundary, made up of multiple fibers with an elastic stiffness that is reduced
smoothly to zero at the edges. This example demonstrates the second-order spatial
accuracy of the numerical method for smooth problems.

• Multiple thin ellipses: that simulates multiple copies of the “thin ellipse” and
demonstrates the parallel scaling of the algorithm in 2D.

• Cylindrical shell: a natural extension of the “thin ellipse” problem to 3D that
demonstrates the effectiveness of our algorithm for 3D problems.

These test examples are chosen in order to show the ability of our algorithm to solve a
wide range of immersed boundary problems.

5.1. Thin Ellipse

For our first 2D model problem, the initial configuration is an elliptical membrane
with semi-axes r1 and r2, parameterized by

X(s, 0) =

(
1

2
+ r1 cos(2πs),

1

2
+ r2 sin(2πs)

)
,

with s ∈ [0, 1]. The ellipse is placed in a unit square containing fluid that is initially
stationary with u(x, 0) = 0. We see from the solution snapshots in Figure 6 that the elas-
tic membrane undergoes a damped periodic motion, oscillating back and forth between
elliptical shapes having a semi-major axis aligned with the x- and y-directions. The
amplitude of the oscillations decreases over time, and the membrane tends ultimately
toward a circular equilibrium state with radius approximately equal to

√
r1r2 (which has

the same area as the initial ellipse).
For this problem, we actually computed results for two immersed boundary algorithms

corresponding to different fluid solvers. The first algorithm, denoted GM-IB, is the same
one described in section 3.4 that uses Guermond and Minev’s fluid solver. The second
algorithm, denoted BCM-IB, is identical to the first except that the fluid solver is replaced
with a second-order projection method described by Brown, Cortez, and Minion [4]. We
take values of the parameters from Griffith [17], who used µ = 0.01, ρ = 1, r1 = 5

28 ,
r2 = 7

20 and Ns = 19
4 N . We then compare our numerical results for different choices of

the membrane elastic stiffness (σ) and spatial discretization (N). Unless stated otherwise,
the time step is chosen so that the simulation is stable on the finest spatial grid (with
N = 512). This is a conservative choice for the time step that attempts to avoid any
unreasonable accumulation of errors in time, but it also provides limited information
regarding the time step restrictions for the two methods; however, we observe in practice
that there is little difference between the time step restrictions for the GM-IB and BCM-
IB algorithms.

Because the fluid contained within the immersed boundary cannot escape, the area
of the oscillating ellipse should remain constant in time. However, many other IB com-
putations for this thin ellipse problem exhibit poor volume conservation which manifests
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Figure 6: Snapshots of a thin oscillating ellipse using the GM-IB method, with parameters σ = 1,
N = 256 and ∆t = 0.04/512.
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Figure 7: Results for the thin ellipse problem using the GM-IB method with σ = 1 and ∆t = 0.04/512.
(a) Maximum and mean radii. (b) Pressure slices across the x–axis with y = 0.5 and t = 0.2.

itself as an apparent “leakage” of fluid out of the immersed boundary. The source of this
volume conservation error is numerical error in the discrete divergence-free condition for
the interpolated velocity field located on immersed boundary points, which can be non-
zero even when the fluid solver guarantees that the velocity is discretely divergence-free
on the Eulerian fluid grid [39, 44]. Griffith [17] observed that volume conservation can be
improved by using a pressure-increment fluid solver instead of a pressure-free solver, and
furthermore that fluid solvers based on a staggered grid tended to perform better than
those using a collocated grid. We have employed both of these ideas in our proposed
method and so we expect to see significant improvement in volume conservation relative
to other IB methods.

We begin by plotting the maximum and mean radii of the ellipse versus time in
Figure 7(a), from which it is clear that the immersed boundary converges to a circular
steady state having radius

√
r1r2 = 1

4 . The BCM-IB results are indistinguishable from
those using GM-IB, and so only the latter are depicted in this figure. The low rate of
volume loss observed in both algorithms is consistent with the numerical experiments
of Griffith [17]. Owing to the relatively high Reynolds number for this flow (Re ≈ 150)
there exists a noticeable error in the oscillation frequency for coarser discretizations,
although we note that this error is much smaller for lower Re flows. We suspect that this
frequency error could be reduced significantly by employing higher-order approximations
in the nonlinear advection term and the IB evolution equation (6), such as has been
done by Griffith [18]. Finally, we note that Figure 7(b) shows that the GM-IB algorithm
captures the discontinuity in pressure without any visible oscillations.

We next estimate the error and convergence rate for both algorithms. Because the
thin ellipse problem is characterized by a singular IB force, there is a discontinuity in
velocity derivatives and pressure and so our numerical scheme is limited to first order
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accuracy. We note that improvements in the convergence rate could be achieved by
explicitly incorporating these discontinuities into the difference scheme, for example as
is done in the immersed interface method [31, 32].

When reporting the error in a discrete variable qN that is approximated on a grid at
refinement level N , we use the notation

E [q;N ] = ‖qN − qexact‖2. (24)

Because the exact solution for the thin ellipse problem is not known, we estimate qexact

by using the approximate solution on the finest mesh corresponding to Nf = 512, and
then take qexact = INf→NqNf

, where INf→N is an operator that interpolates the finest
mesh solution qNf

onto the current coarse mesh with N points. We use the discrete `2

norm to estimate errors, which is calculated for an Eulerian quantity such as the pressure
using

‖pi,j‖2 =

h2
∑
i,j

|pi,j |2
1/2

, (25)

and similarly for a Lagrangian quantity such as the IB position using

‖Xk‖2 =

(
hs
∑
k

|Xk|2
)1/2

, (26)

where | · | represents the absolute value in the first formula and the Euclidean distance
in the second. The convergence rate can then be estimated using solutions qN , q2N and
q4N on successively finer grids as

R [q;N ] = log2

( ‖qN − I2N→Nq2N‖2
‖q2N − I4N→2Nq4N‖2

)
. (27)

A summary of convergence rates and errors is given in Tables 1 and 2 for both the
GM-IB and BCM-IB algorithms, taking different values of the elastic stiffness parameter
σ. The error in all cases is measured at a time three-quarters through the ellipse’s first
oscillation, when the membrane is roughly circular in shape. Table 1 clearly shows that
the two algorithms exhibit similar convergence rates for all state variables. First-order
convergence is seen in both the fluid velocity and membrane position, while the pressure
shows the expected reduction in accuracy to O

(
h1/2

)
owing to the pressure discontinuity.

The errors in Table 2 show that GM-IB and BCM-IB are virtually indistinguishable from
each other except for the error in the divergence-free condition, E [∇ · u;N ], where the
BCM-IB algorithm appears to enforce the incompressibility constraint better than GM-
IB. Because Guermond and Minev’s fluid solver does not project the velocity field onto
the space of divergence-free velocity fields (even approximately), it is not surprising that
BCM-IB performs better in this regard. This difference will be explored further in the
following sections. Lastly, we remark that the magnitude of the fluid variables increases
with the stiffness σ, so that the error increases as well (since E is defined as an absolute
error measure); however, the relative error and convergence rates remain comparable as
σ varies over several orders of magnitude.
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Table 1: Estimated `2 convergence rates for the thin ellipse problem with three different parameter
sets: (σ = 0.1, t = 1.06, ∆t = 0.08/512), (σ = 1, t = 0.31, ∆t = 0.04/512), (σ = 10, t = 0.0975,
∆t = 0.01/512).

R [u;N ] R [p;N ] R [X;N ]

σ N GM BCM GM BCM GM BCM

0.1
64 1.02 1.02 0.55 0.55 1.46 1.46
128 1.05 1.06 0.53 0.53 1.28 1.29

1
64 1.48 1.51 0.72 0.73 1.34 1.35
128 0.96 1.03 0.57 0.58 1.31 1.37

10
64 1.27 1.33 0.88 0.84 1.35 1.33
128 0.89 1.03 0.68 0.82 1.32 1.71

Table 2: Estimated `2 errors the thin ellipse problem with three different parameter sets: (σ = 0.1,
t = 1.06, ∆t = 0.08/512), (σ = 1, t = 0.31, ∆t = 0.04/512), (σ = 10, t = 0.0975, ∆t = 0.01/512).

E [u;N ] E [p;N ] E [X;N ] E [∇ · u;N ]

σ N GM BCM GM BCM GM BCM GM BCM

0.1

64 7.41e−3 7.44e−3 4.13e−2 4.13e−2 2.81e−4 2.82e−4 4.77e−3 3.67e−16
128 3.10e−3 3.16e−3 2.36e−2 2.36e−2 6.69e−5 6.75e−5 1.05e−2 7.22e−16
256 9.64e−4 1.03e−3 1.03e−2 1.04e−2 1.36e−5 1.39e−5 1.86e−2 1.41e−15
512 1.91e−4 – 8.84e−4 – 1.80e−6 – 2.91e−2 2.83e−15

1

64 5.61e−2 5.69e−2 4.56e−1 4.57e−1 4.32e−4 4.36e−4 1.04e−1 1.86e−15
128 1.88e−2 1.98e−2 2.56e−1 2.57e−1 1.06e−4 1.09e−4 2.50e−1 3.60e−15
256 6.32e−3 6.65e−3 1.13e−1 1.11e−1 2.08e−5 2.15e−5 4.55e−1 7.04e−15
512 5.46e−3 – 4.77e−2 – 9.21e−6 – 7.23e−1 1.40e−14

10

64 3.37e−1 3.38e−1 5.88e+0 5.89e+0 6.33e−4 6.38e−4 6.12e−1 7.01e−15
128 1.61e−1 1.62e−1 3.12e+0 3.04e+0 1.56e−4 1.57e−4 2.12e+0 1.40e−14
256 7.06e−2 5.48e−2 1.42e+0 1.20e+0 3.08e−5 2.60e−5 3.94e+0 2.72e−14
512 6.24e−2 – 1.12e+0 – 2.01e−5 – 6.34e+0 5.39e−14
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5.2. Thick Elliptical Shell

Our second test problem involves the thick elastic shell pictured in Figure 8 that has
been studied before by Griffith and Peskin [20]. This is a natural generalization of the
thin ellipse problem, wherein the shell is treated using a nested sequence of elliptical
immersed fibers. The purpose of this example is not only to illustrate the application of
our algorithm to more general solid elastic structures, but also to illustrate the genuine
second-order accuracy of our numerical method for problems that are sufficiently smooth.

To this end, we take an elliptical elastic shell with thickness γ using two independent
Lagrangian parameters s, r ∈ [0, 1], and specify the initial configuration by

X(s, r, 0) =

(
1

2
+ (r1 + γ(r − 1/2)) cos(2πs),

1

2
+ (r2 + γ(r − 1/2)) sin(2πs)

)
.

The shell is composed of circumferential fibers having an elastic stiffness that varies in
the radial direction according to

σ(r) = 1− cos(2πr).

Because the elastic stiffness drops to zero at the inner and outer edges of the shell, the
corresponding Eulerian force f is a continuous function of x; this should be contrasted
with the “thin ellipse” example in which the fluid force is singular, since it consists of a
1D delta distribution in the tangential direction along the membrane. As a result, we
expect in this example to observe higher order convergence because the solution does not
contain the discontinuities in pressure and velocity derivatives that were present in the
thin ellipse problem. Unless otherwise indicated, we take the parameter values ρ = 1,
r1 = 0.2, r2 = 0.25, γ = 0.0625, Ns = (75/16)N , Nr = (3/8)N and ∆t = 0.08/512 that
are consistent with the computations in [20].

The dynamics of the thick ellipse problem illustrated in Figure 8 are qualitatively
similar to those in the previous section, in that the elastic shell undergoes a damped
oscillation. In Table 3, we present the `2 convergence rates in the solution for different
values of fluid viscosity µ. We also include the corresponding results computed by Griffith
and Peskin [20] and observe that the GM-IB, BCM-IB, and Griffith-Peskin algorithms all
exhibit remarkably similar convergence rates. The `2 errors for the GM-IB and BCM-IB
methods are almost identical to Griffith and Peskin’s, and so we have not reported them
for this example.

It is only when the viscosity is taken very small (µ = 0.0005) that the Griffith-Peskin
algorithm begins to demonstrate superior results. Because this improvement corresponds
to a higher Reynolds number, we attribute it to differences in the treatment of the
nonlinear advection term and the IB evolution equation. Indeed, Griffith and Peskin
approximate the nonlinear advection term using a high-order Godunov method [8, 35]
and integrate the IB equation (6) using a strong stability preserving Runge-Kutta method
[14]. We have made no attempt to incorporate these modifications into our algorithm
because Godunov’s method requires solving a Poisson problem, whereas a Runge-Kutta
time integration would require an additional velocity interpolation step; consequently,
employing either of these changes would drastically reduce the parallel efficiency of our
algorithm. Recall that one of our primary aims is to avoid making use of Poisson solvers
that are used in so many other IB methods. With this in mind, we restrict our attention
to lower Reynolds number flow corresponding roughly to Re / 1000.
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Figure 8: Snapshots of a thick oscillating ellipse using GM-IB method, with parameters µ = 0.005,
N = 256 and ∆t = 0.08/512.

Table 3: Estimated `2 convergence rates R [q; 128] for the thick ellipse problem at time t = 0.4. For
comparison, Griffith’s results [20] are reported in the final row. Since Griffith reports the component-wise
convergence rate of the velocity field, we approximate R [u; 128] ≈ max(R [u; 128] , R [v; 128]).

µ = 0.05 µ = 0.01 µ = 0.005

u p X u p X u p X
GM-IB 2.10 1.88 1.69 2.12 1.88 1.76 2.11 1.88 1.99
BCM-IB 2.11 1.88 1.69 2.09 1.87 1.74 2.09 1.87 1.99
Griffith [20] 2.16∗ 1.89 1.98 – – – 2.20∗ 1.86 1.74
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Lastly, we investigate the accuracy with which our discrete solution satisfies the dis-
crete divergence-free condition for a variety of time steps and spatial discretizations. Our
aim in this instance is to determine how well the fluid solver of Guermond and Minev
approximates the incompressibility constraint, which is related to the volume conserva-
tion issue discussed in the thin ellipse example. Table 4 lists values of the error in the
discrete divergence of velocity, E [∇ · u;N ], measured at time t = 0.4 and estimated using
equation (24). Observe that E [∇ · u;N ] increases slightly as the spatial discretization
is refined, but decreases when a smaller time step is used. This last result is to be ex-
pected because Guermond and Minev use a O (∆t) perturbation of the incompressibility
constraint (8).

Table 4: Error in the divergence-free condition E [∇ · u;N ] for the thick ellipse problem using the GM-IB
method and µ = 0.01.

∆t = 0.08
512

∆t = 0.04
512

∆t = 0.02
512

∆t = 0.01
512

∆t = 0.005
512

∆t = 0.0025
512

N = 64 6.34e−3 2.37e−3 8.93e−4 3.20e−4 1.08e−4 3.42e−5
N = 128 8.94e−3 3.68e−3 1.49e−3 5.75e−4 2.11e−4 7.36e−5
N = 256 1.00e−2 4.19e−3 1.73e−3 6.79e−4 2.55e−4 9.06e−5
N = 512 1.04e−2 4.35e−3 1.80e−3 7.11e−4 2.68e−4 9.59e−5

5.3. Multiple Thin Ellipses

The next example is designed to explore in more detail the parallel scaling properties
of our proposed GM-IB algorithm, by computing a variation of the thin ellipse problem
from section 5.1. Because our 2D computations are performed on a doubly-periodic fluid
domain, the thin ellipse geometry is actually equivalent to an infinite array of identical
elliptical membranes. This periodicity in the solution provides a simple mechanism for
increasing the computational complexity of a simulation by explicitly adding multiple
periodic copies while technically solving a problem with an identical solution. Each copy
of the original domain (see section 5.1) may then be handled by a different processing
node, which allows us to explore the parallel scaling of the GM-IB algorithm.

Suppose that we would like to perform a parallel simulation using P = Px · Py
processing nodes. On such a cluster, we can simulate a rectangular Px × Py array of
identical ellipses, situated on the fluid domain Ω = [0, Px] × [0, Py]. We subdivide the
domain into equal partitions so that each processor handles the unit-square subdomain
Ω`,m = [` − 1, `] × [m − 1,m], for ` = 1, 2, . . . , Px and m = 1, 2, . . . Py. If we denote by
(x`,m, y`,m) the centroid of Ω`,m, then each subdomain contains a single ellipse having
the initial configuration

X`,m(s, 0) = (x`,m + r1 cos(2πs), y`,m + r2 sin(2πs)) ,

using the same Lagrangian parameter s ∈ [0, 1] as before. In order to make the flow
slightly more interesting, and to test the ability of our parallel algorithm to handle
immersed boundaries that move between nodes, we impose an initial background fluid
velocity field u(x, 0) = 1

2

(
1,
√

3
)

instead of the zero initial velocity used in section 5.1.
Snapshots of the solution for a 2× 2 array of ellipses are illustrated in Figure 9.

To investigate the parallel performance of our algorithm, we simulate arrays of thin
ellipses corresponding to different values of Px and Py in the range [1, 12]. For each
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Figure 9: Simulation of a 2× 2 array of thin ellipses.
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simulation, we use parameters µ = 0.01, ρ = 1, σ = 1, r1 = 5
28 , r2 = 7

20 , h = 1
128 ,

hs = 4
19h and ∆t = 0.01

128 and compute up to time t = 1.00. In the case of perfect parallel
scaling the execution time should remain constant between simulations, since for example
if the problem size is doubled the number of nodes P is also doubled. Therefore, the
problem represents a weak scalability test for the proposed algorithm since the workload
per processor node remains constant as the number of nodes increase.

Computations for this problem were performed on the Bugaboo cluster that is man-
aged by WestGrid [54], a member of the high-performance computing consortium Com-
pute Canada. This cluster consists of 12-core blades, each containing two Intel Xeon
X5650 6-core processors (2.66 GHz) that are connected by Infiniband using a 288-port
QLogic switch.

The execution times for the various array sizes (Px, Py) are summarized in Table 5.
We observe that while there is a slight increase in execution time with P , the differences
are minimal considering the large variation in problem size. For example, the difference
in execution time between simulations with P = 1 and P = 64 is only 31%! This slight
degradation in performance can be attributed primarily to the increase in communica-
tion costs from the tridiagonal solver, which we recall involves scatter/gather operations
before/after solving the Schur complement. As P increases, the time required for this
communication increases. However, even though the size of the Schur complement sys-
tems also increases with P , these systems are distributed between more processors and so
there is not a significant hit on the parallel performance owing to the Schur complement
solves.

The degradation in performance caused by communication is occasionally exacerbated
by high network loads experienced on the Bugaboo cluster, where we observed significant
variation in execution times between otherwise identical runs. Therefore our results must
be viewed as demonstrating the algorithm performance in a less than ideal setting, which
is in reality a more realistic environment for most applications.

Finally, we report in Table 5 values of the parallel “efficiency” which is the ratio
between the execution time of a multi-node parallel simulation with its serial counterpart
(P = 1). In other words, the efficiency of a P -node simulation is

EP =
T1

PTP
,

where P is the number of processors and TP is the corresponding execution time. This
efficiency represents the strong scalability of our algorithm. An efficiency of EP = 1 is
“ideal” and smaller values of EP indicate reduced parallel efficiency. Note that the serial
computation involves no Schur complement systems because the tridiagonal systems can
be computed directly, and therefore a reduction efficiency is to be expected. According
to Table 5, we see that the parallel efficiency remains close to 1 for all simulations,
and it is only for much larger problems that any significant reduction in efficiency is
observed. Indeed, for some simulations we even observe super-linear speed-up (EP > 1)
which might be attributed to more efficient memory utilization in these simulations
owing perhaps to a reduced number of cache misses. This same super-linear speed-up
has also been observed by Ganzha et al. [13], who studied the parallel performance of
the Guermond-Minev algorithm for the fluid-only case. We remark in closing that these
results could most likely be improved by improving the underlying network topology.
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Table 5: Execution time (in seconds) and parallel efficiency for the multiple thin ellipse problem with P
ellipses on P processors, and P = Px × Py .

Px Py Wall Time Efficiency Px Py Wall Time Efficiency

1 1 107.60 1.00 7 7 137.78 1.03
1 2 110.28 0.99 7 8 140.55 0.93
2 2 111.44 1.03 8 8 141.36 0.91
2 3 112.42 1.05 8 9 153.00 0.83
3 3 116.67 1.05 9 9 156.18 0.85
3 4 116.87 1.08 9 10 157.25 0.86
4 4 119.63 1.06 10 10 164.55 0.81
4 5 128.97 0.99 10 11 164.54 0.77
5 5 130.78 0.97 11 11 164.59 0.78
5 6 132.72 0.96 11 12 171.04 0.76
6 6 133.96 1.07 12 12 176.45 0.76
6 7 136.35 1.04

5.4. Cylindrical Shell in 3D

For our final test case, we consider a three-dimensional example in which the immersed
boundary is a cylindrical elastic shell. The initial configuration of the shell is an elliptical
cylinder having semi-axes r1 and r2 that is parameterized by

X(s, r, 0) =

(
r,

1

2
+ r1 cos(2πs),

1

2
+ r2 sin(2πs)

)
,

using the two Lagrangian parameters s, r ∈ [0, 1]. The force density exerted by the shell
is

F [X(s, r, t)] = σs
∂2X

∂s2
+ σr

∂

∂r

(
∂X

∂r

(
1− L∣∣∂X

∂r

∣∣
))

,

which treats the elastic shell as an interwoven mesh of one-dimensional fibers. The s
parameterization describes fibers running around the elliptical cross-section of the cylin-
der, that have a zero resting length and elastic stiffness σs. On the other hand, the r
parameterization describes fibers running axially along the length of the cylinder, and
here we impose a non-zero resting-length L and elastic stiffness σr. Since the domain is
periodic in all directions, the ends of the cylinder are connected to their periodic copies
so that there are no “cuts” along the fibers. This problem is essentially equivalent to the
two-dimensional thin ellipse problem considered in section 5.1, with the only difference
being that the 2D problem does not have any fibers running along the non-existing third
dimension. The 2D thin ellipse and 3D cylinder problems are only strictly equivalent
when σr = 0. However, we take σr = σs = 1 and L = 1 in order to maintain the integrity
of the elastic shell and avoid any drifting of elliptical cross-sections in the x-direction.

The elastic shell is discretized using an interwoven mesh of 1D fibers corresponding
to equally-spaced values of the parameters s and r. In the simulations to follow, we use
the parameter values µ = 0.01, ρ = 1, r1 = 5

28 , r2 = 7
20 , N = 128, Ns = 19

4 N , Nr = 3N
and ∆t = 0.04/N .
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The solution dynamics are illustrated by the snapshots pictured in Figure 10, which
show that the elastic shell oscillates at the same frequency as the thin ellipse shown in
Figure 6. Although the geometry of this problem may seem somewhat of a special case
because of the alignment of axial fibers along the x-coordinate direction, this feature
has no noticeable impact on parallel performance measurements. Indeed, the reason
that fiber alignment doesn’t affect communication cost is because all IB points and force
connections residing in the ghost region are communicated regardless of whether or not
they actually cross subdomain boundaries. In Table 6, we present measurements of
execution time and efficiency that illustrate the parallel scaling over the first 100 time
steps with the number of processors P varying between 1 and 128. In all runs, the domain
is partitioned evenly between the P processing nodes using rectangular boxes. We note
that the IB points in this example are not evenly distributed between domain partitions
so that the computational work is not shared equally among processing nodes. This is
reflected in a reduced parallel efficiency for the “Entire Computation” when P is taken
larger; however, the efficiency of the fluid component of the algorithm remains near the
ideal efficiency value of 1. Once again, we observe for several runs that the efficiency
exceeds 1 which we ascribe to more efficient memory utilization (i.e., fewer cache misses).

Table 6: Execution time (in seconds) and efficiency for the 3D cylindrical shell problem for a fixed fluid
discretization (N = 128) and varying the number of processing nodes (P ).

Entire Computation Fluid Computation

P Wall Time Efficiency Wall Time Efficiency

1 1041.50 1.00 203.59 1.00
2 522.10 1.00 98.00 1.04
4 267.56 0.97 52.42 0.97
8 138.80 0.94 24.49 1.04
16 76.64 0.85 12.14 1.05
32 40.39 0.81 6.39 1.00
64 37.97 0.43 3.48 0.91
128 31.74 0.26 1.88 0.84

6. Conclusions

We have developed a new algorithm for solving the immersed boundary problem
on distributed-memory parallel computers that is based on the pseudo-compressibility
method of Guermond and Minev for solving the incompressible Navier-Stokes equations.
The fundamental advantage of this fluid solver is the direction-splitting strategy applied
to the incompressibility constraint, which reduces to solving a series of tridiagonal linear
systems that have an extremely efficient parallel implementation. We have extended
Guermond and Minev’s approach by incorporating periodic boundary conditions and
using a slightly different parallel implementation.

Numerical computations demonstrate the ability of our method to simulate a wide
range of immersed boundary problems that includes not only 2D flows containing isolated
fibers and thick membranes constructed of multiple nested fibers, but also 3D flows
containing immersed elastic surfaces. The strong and weak scalability of our algorithm
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Figure 10: Snapshots of an oscillating cylindrical shell that is initially stretched outward along the
z–direction.
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is demonstrated in tests with up to 144 distributed processors, where excellent speedups
are observed. It is only for larger simulations that our implementation exhibits sub-
linear scaling for the fluid portion of the computation. Lastly, since our implementation
does not apply any load balancing strategy, some degradation in the parallel efficiency is
observed in immersed boundary portion of the computation when the elastic membrane
is not equally divided between processors.

We believe that our computational approach is a very promising one for solving fluid-
structure interaction problems in which the solid elastic component takes up a large
portion of the fluid domain, such as occur with dense particle suspensions [52] or very
complex elastic structures that are distributed throughout the fluid. These are problems
where local adaptive mesh refinement is less likely to offer any advantage because of the
need to use a nearly-uniform fine mesh over the entire domain in order to resolve the
immersed boundary. It is for this class of problems that we expect our approach to offer
advantages over methods such as that of Griffith et al. [18].

We plan in future to focus on implementing modifications to our algorithm that
will improve the parallel scaling, and particularly on improving memory access patterns
for the Lagrangian portion of the calculation related to force spreading and velocity
interpolation. We will also investigate code optimizations that aim to reduce cache
misses and exploit on-chip parallelism.
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