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Sap transport in trees has long fascinated scientists, and a vast literature exists
on experimental and modelling studies of trees during the growing season when
large negative stem pressures are generated by transpiration from leaves. Much
less attention has been paid to winter months when trees are largely dormant but
nonetheless continue to exhibit interesting flow behaviour. A prime example is sap
exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and
related species to generate positive stem pressure while in a leafless state. Exper-
iments demonstrate that ambient temperatures must oscillate about the freezing
point before significantly heightened stem pressures are observed, but the precise
causes of exudation remain unresolved. The prevailing hypothesis attributes exu-
dation to a physical process combining freeze–thaw and osmosis, which has some
support from experimental studies but remains a subject of active debate. We ad-
dress this knowledge gap by developing the first mathematical model for exudation,
while also introducing several essential modifications to this hypothesis. We derive a
multiscale model consisting of a nonlinear system of differential equations governing
phase change and transport within wood cells, coupled to a suitably homogenized
equation for temperature on the macroscale. Numerical simulations yield stem pres-
sures that are consistent with experiments and provide convincing evidence that a
purely physical mechanism is capable of capturing exudation.

Keywords: Tree sap exudation; sugar maple; multiphase flow and transport;
phase change; differential equations; periodic homogenization

1. Introduction

The study of tree sap flow has a long history that has given rise over time to the
concept of the hydraulic architecture of trees [54]. Despite the extensive literature
on this subject, several aspects of sap transport remain controversial, including the
cohesion-tension theory of sap ascent [4, 51, 58]; embolism formation and recov-
ery [35, 59], which is ubiquitous in species subject to drought- or freezing-induced
stresses; and sap exudation in maple and related species such as walnut, butternut
and birch [11]. Furthermore, there is a great deal of current interest in the possible
effects of recent changes in weather patterns on both individual trees and forest
ecosystems [5, 20], and their connections with sap hydraulics [46]. The problems
just described involve complex interactions between sap flow and other phenomena
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such as nutrient transport, photosynthesis, soil physics, atmospheric dynamics, cell
growth, etc. Despite the extensive work to date on mathematical and computational
modelling of trees and their interactions with the environment, many open questions
remain that can only be addressed by considering sap flow coupled with other pro-
cesses and building integrated models that connect flow and structure at different
spatial scales and levels of organization [29].

Sugar maple is a keystone species in the forests of central and eastern North
America [38] and so is worthy of special attention. Members of the maple family
are distinguished from other hardwoods by a number of unusual structural and
functional features that allow them to exude sap during winter [37, 49], to gen-
erate unusually high rates of nitrification [31], or to recover from freeze-induced
embolism [45, 57]. The potential impacts of climate change on maple have also at-
tracted recent attention [31, 38], motivated by the economic importance of the maple
syrup industry, not to mention maple’s high timber value. In particular, maple sap
yields are sensitive to even small variations in temperature or snow cover during the
harvest season, so that recent unusual weather patterns underscore the importance
of developing a better understanding of the effects of local environmental conditions
on sap flow [26, 41].

Hundreds of scientific papers have addressed the phenomenon of sap exudation
during winter when maple trees are leafless and yet still exhibit pressure variations
that range over 150–180 kPa [3, 11, 12, 49]. However, the precise mechanism driving
the generation of heightened exudation pressure is still not fully understood [54].
The first systematic study appeared in an 1860 article by Sachs [43], who attributed
exudation pressure to thermal expansion of gas within sapwood or xylem. The next
major advance in understanding followed from the exhaustive study of Wiegand [56],
who found to the contrary that thermal expansion of gas, water or wood has min-
imal impact on exudation. Instead, Wiegand proposed a vitalistic or ‘living cell’
hypothesis wherein sugar is released into the sap by some cellular activity, which
gives rise to elevated pressure from osmotic gradients across selectively-permeable
membranes separating wood cells. Subsequently, this osmotic mechanism figured
prominently in the literature, although experimental studies have continued to yield
conflicting results that in turn stimulated development of new theories advocating
alternate (bio-)physical mechanisms. For example, some authors continued to sup-
port the thermal expansion hypothesis [36], while others advocated the various roles
of gas dissolution [24], cryostatic suction due to freezing [48], or temperature-induced
changes in bark thickness [32]. More recent studies have led to a new understanding
of exudation as a physical process deriving from a combination of freezing and thaw-
ing of sap [37] with osmosis [50]. Although some experimental evidence supports this
hypothesis [11] the precise mechanisms behind the exudation phenomenon is still
not fully understood.

We aim to resolve this long-standing open question by developing the first math-
ematical model for the freeze–thaw process in maple. We uncover the essential role
played by two physical mechanisms whose significance has not yet been recognized
– namely, root water uptake and freezing point depression due to sap sugar content.
Using numerical simulations of repeated freeze–thaw cycles, we obtain computed
exudation pressures that are consistent with experimental results.

Although the focus of this paper is on developing a complete and physically
consistent model for sap exudation, our results also have more far-reaching conse-
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quences. This work affords new insights into the complex multi-physics processes
occurring in trees and also provides a framework for studying other practical ques-
tions of importance to tree physiologists and maple syrup producers. Our model also
provides a platform for studying related phenomena such as embolism that occur
in a much broader range of tree species, as well as evaluating the response of trees
to changes in environmental variables such as temperature and soil moisture arising
from various climate change scenarios.

2. Physical mechanism for sap exudation

(a) Milburn and O’Malley’s hypothesis

Experimental work up to the 1980’s demonstrated that no single physical mech-
anism is capable of capturing measured winter stem pressures [33], and sap exuda-
tion remained an unsolved puzzle until the ground-breaking study of Milburn and
O’Malley [37]. They proposed a physical mechanism based on freezing and thawing
of sap, motivated by the unique structural characteristic of xylem in maple (and
related trees) that a significant proportion of the libriform fibers (or simply fibers)
are primarily gas-filled rather than being liquid-filled as in most other hardwood
species [56]. This peculiar feature of the fibers should be contrasted with the two
other cell types that play an active role in sap transport – vessels and tracheids –
which are mostly sap-filled and are connected hydraulically to each other via paired
pits (see figure 1a). Indeed, recent experiments [11, 44] suggest that fibers are essen-
tially non-conductive in comparison with other xylem elements because they lack
end-to-end cell connections and their lateral walls contain mostly unpaired (blind)
pits that are smaller and fewer in number than the more conductive vessels and
tracheids.

Milburn and O’Malley focused on the dynamics of a single fiber–vessel pair as
pictured in figure 1b, and ignored other xylem elements such as parenchyma and
ray cells. Whereas fibers had previously been thought to play a purely structural
role, Milburn and O’Malley proposed that as temperature falls below freezing, liquid
from the vessel is drawn by cryostatic suction through the porous fiber–vessel wall to
freeze on the inside of the fiber (figure 2, stages 1-2-3). As a result, any gas contained
within the fiber is compressed and acts as a pressure reservoir. When temperature
subsequently rises and ice thaws, the process reverses and the compressed gas bubble
forces melt-water into the vessel, thereby re-pressurizing the vessel sap (figure 2,
stages 3-4-1).

(b) Tyree’s modified hypothesis, with gas dissolution and osmosis

This freeze–thaw hypothesis was critically evaluated by Tyree [50], who proposed
a modified hypothesis featuring two important additions. First, he recognized that
gas under pressure will dissolve within an adjacent liquid [27] and that pressures
encountered in maple xylem are high enough that any bubbles should dissolve com-
pletely given sufficient time [52]. Therefore, some additional mechanism is required
to sustain gas bubbles in the fibers. Tyree’s second observation was that measured
xylem pressures depend strongly on sugar concentration in the vessel sap, 80% of
which derives from sucrose [12], which led him to conclude that sucrose is required
for exudation. He recognized that although the axial conductivity of fibers is neg-
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Figure 1: Xylem microstructure. (a) Cross-sectional view of hardwood xylem,
showing tracheids connected hydraulically to vessels and other tracheids via paired
pits. Fibers appear similar to tracheids except that they have fewer pits, most of
which are blind or unpaired. The parenchyma are living cells whose main role is
carbohydrate storage and so they are ignored here. (b) A fiber–vessel pair ap-
proximated as circular cylinders, showing typical dimensions of the fiber (length
Lf = 1.0× 10−3 m and radius Rf = 3.5× 10−6 ) and vessel (Lv = 5.0× 10−4 m and
Rv = 2.0× 10−5 m). The model domain corresponds to the horizontal cross-section
through the middle of the diagram.

ligible in comparison with vessels and tracheids, the lignified cellulose making up
secondary cell walls should admit a small radial conductivity. He then hypothesized
that the fiber–vessel wall forms an osmotic barrier that allows water to penetrate
but not the larger sucrose molecules. Consequently, an additional osmotic pressure
difference exists between the sweet vessel sap and pure fiber water, which he argued
is responsible for preventing fiber gas bubbles from completely dissolving.

Tyree’s modified freeze–thaw hypothesis includes water phase transitions, gas
dissolution and osmosis, and is currently the prevailing hypothesis for sap exuda-
tion [50]. It depends strongly on the existence of a hydraulically isolated system of
fibers and a selectively permeable fiber–vessel wall, both of which have since been
confirmed experimentally [11]. Although this evidence is compelling, there has been
no attempt yet to model this process mathematically (except for a related process
without phase change in the context of embolism recovery in maple [57]) and so it
remains unclear whether this physical description is capable of capturing exudation.

(c) Three essential physical mechanisms

Before proceeding further, we extend the freeze–thaw hypothesis just described
by incorporating three additional mechanisms:

Gas bubbles in the vessel: Sap (like water) is an incompressible fluid so that in the
rigid, closed vessel network of a leafless tree there is no mechanism for fiber–
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Figure 2: Stages in the freeze–thaw cycle. Various stages in the freeze–thaw
cycle are depicted within an adjacent fiber–vessel pair. Stages 1→2→3 depict the
freezing process: when temperature drops, an ice layer grows on the inner wall of the
gas-filled fiber as water is drawn via cryostatic suction through the porous cell wall.
Stages 3→4→1 depict the reverse process as temperature rises. Note the reversed
order of phase interfaces inside the fiber between stages 2 and 4. The blue arrows
denote water transport either through the fiber–vessel wall or between roots and
vessels.

vessel mass transfer if vessels are completely saturated with sap. However, the
existence of gas bubbles within vessels is well-documented in maple [39, 56]
and other hardwood species [50]. Even if xylem pressures were high enough
to dissolve such bubbles, gas would eventually be forced out of solution upon
freezing and so at least a transient presence of gas bubbles is unavoidable.
Therefore, introducing a gas phase in the vessels provides a plausible mecha-
nism for fiber–vessel pressure exchange.

Sap freezing point depression (FPD): Sap contains dissolved sugars and hence ex-
periences a reduced freezing point compared to pure water according to Blag-
den’s Law [7], ∆Tfpd = Kb Cs/ρw, where Kb is the cryoscopic constant, Cs

is sugar concentration, and ρw is water density. For example, sap containing
3% sucrose by mass experiences a FPD of ∆Tfpd ≈ 0.162 ◦K. Although this
temperature difference may appear insignificant, we will see that it is actually
large when considered on the scale of individual cells, and indeed is sufficient to
account for the existence of ice in fibers while sap in adjacent vessels remains
in liquid form. This partitioning of ice and liquid in neighbouring fiber–vessel
pairs induces cryostatic suction that draws liquid out of the vessel to form ice
on the inner fiber wall.

Root water uptake during freezing: No previous hypothesis for sap exudation ex-
plicitly considers the role of root water uptake. Furthermore, several studies
suggest that root pressure in maple has a negligible effect on exudation [3, 30].
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Nonetheless, it is well-known that during winter months trees can draw wa-
ter from the roots if soil temperatures are high enough [48, 54], which can
be caused by an insulating snow cover [42]. Recent experiments on maple
saplings [6, 40] have provided the first direct evidence that root water uptake
occurs in maple during winter while exudation is underway.

Our aim is now to incorporate these three modifications into a model of the freeze–
thaw process outlined previously, and then demonstrate that the resulting equations
are capable of reproducing observed behaviours.

3. Mathematical formulation

(a) Outline of the modelling approach

The freeze–thaw mechanism outlined in the previous section involves processes
operating on two distinct spatial scales: the microscale corresponding to individ-
ual wood cells with dimensions ranging from 10–100 microns; and the macroscale
corresponding to the tree stem with diameter tens of centimetres. The derivation
of our mathematical model for sap exudation therefore divides naturally over these
two scales. Firstly, we develop microscale equations that capture cell-level processes
within libriform fibers and vessels, combining the dynamics of freezing, thawing, gas
dissolution, osmotic pressure, heat transport, and porous flow through the fiber–
vessel wall. Secondly, we consider heat transport in the entire tree stem and apply
periodic homogenization to derive an equation for the macroscale temperature that
incorporates microscale cellular processes via appropriately defined transport coef-
ficients and source terms. We proceed as follows:

• Start from an existing microscale model for the thawing half of the freeze–
thaw process [8, 19] in which a 2D periodic microstructure is assembled from
copies of a reference cell Y containing a single fiber and vessel (see figure 3a).
The fiber is placed at the centre of Y (where the dashed line denotes the
fiber–vessel wall) and the remainder of the reference cell corresponds to the
vessel. This choice of geometry is a mathematical idealization that captures the
volumes of the fiber and vessel compartments, but is not intended to accurately
represent the actual layout of wood cells. The governing equations consist of a
partial differential equation (PDE) for the microscale temperature along with
five ordinary differential equations (ODEs) for phase interface locations and
root water volume, coupled nonlinearly through source terms and algebraic
constitutive relations.

• Supplement the thawing model with analogous equations for the freezing pro-
cess, which have similar structure but differ slightly depending on the precise
state of freezing or thawing in the fibers and vessels.

• Apply periodic homogenization [2, 19] to derive a macroscopic equation for
temperature that is coupled to the microscale (reference cell) problem at each
point within the tree stem (see figure 3b). The macroscopic heat diffusion
equation contains an integral source term depending on the microscale tem-
perature and capturing all processes on the cellular level. A similar approach
has been applied to studying protein-mediated transport of water and solutes
in non-woody plant tissues [10].
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Figure 3: Multiscale problem geometry. (a) Idealized microscale fiber–vessel
geometry, consisting of a square reference cell Y with side length `. This diagram
depicts a thawing scenario (stage 4 in figure 2) wherein a fiber of radius Rf (dashed
line) contains a gas bubble surrounded by annular layers of ice and liquid water,
where the gas/ice and ice/water interfaces are concentric circles of radius sg and siw

respectively. The vessel contains a gas bubble (radius r) and liquid sap (water plus
sugar). The total liquid volume transferred from fiber to vessel is denoted by U . The
reference cell Y = Y 1∪Y 2 is divided into two regions separated by a curve Γ, where
diffusion on Y 1 (light blue, outer vessel) is fast and on Y 2 (dark blue, fiber plus
fiber–vessel overlap region) is slow. (b) A requirement for homogenization is that
the tree cross-section can be approximated by a periodic fine-structured domain,
tiled with copies of the reference cell. The macroscale problem is then solved on a
homogeneous domain Ω having the same size. Radial coordinates on the micro- and
macroscales are denoted y and x respectively.

• Exploit radial symmetry on the micro- and macroscales to reduce both PDEs
for temperature to a single spatial dimension. We will see later in section 4a
that the microscale equations need only be solved on the circular sub-region
Y 2 in figure 3a (consisting of the fiber and surrounding vessel overlap region)
which is clearly radially symmetric.

(b) Microscale equations for cell-level thawing process

The cell-level model is based on equations already developed for the thawing
half of the freeze–thaw process by Ceseri and Stockie [8], which were subsequently
homogenized by Graf and Stockie [19]. We therefore begin by considering an inter-
mediate state in the thawing process corresponding to stage 4 in figure 2, during
which the vessel sap is completely thawed while the fiber contains both liquid and
ice. We extend the Ceseri–Stockie model by incorporating additional physical ef-
fects that capture the influence of ice–water surface tension, root water uptake, and
volume change due to ice/water phase transitions. We discuss some of the most
important assumptions and modifications next, leaving the reader to consult the
references [8, 19] for a complete derivation and discussion of assumptions.

Our model is based on the conceptual diagram in figure 1b that depicts a single
vessel–fiber pair. Tracheids are not treated separately but instead ‘lumped together’
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with vessels because, although they are connected hydraulically to vessels via paired
pits, they have a much smaller diameter and correspondingly lesser influence on sap
transport than vessels. Because multiple fibers adjoin and interact hydraulically
with each vessel, we introduce the parameter Nf representing an average number of
fibers per vessel, which is estimated from SEM images [11] as Nf ≈ 16. Our model
captures the dynamics of a single fiber and then scales all fiber–vessel flux terms by
an appropriate factor of Nf .

We assume that sapwood can be represented as a doubly-periodic array of ide-
alized reference cells Y as pictured in figure 3, where each reference cell contains a
circular fiber embedded within a surrounding square liquid region representing the
adjoining vessel. This choice of geometry is made for mathematical convenience in
the homogenization step, and can be justified because our aim is to derive a sys-
tem of equations that captures the net effect of sap flow and heat transport on the
microscale, keeping in mind that any specific geometric details will ultimately be
‘averaged out’ during the homogenization process anyways.

Our 2D geometry comes with the built-in assumption that axial (vertical) varia-
tions are neglected. In the absence of root water uptake, the model tree behaves as
a closed system that is essentially in equilibrium. Any pressure differences initiated
by phase change engender primarily horizontal flow between neighbouring cells, and
negligible axial flow. Furthermore, we have already shown [8] that phase change on
the microscale dominates the pressure exchange process and occurs very rapidly (on
the order of milliseconds). Root water uptake induces an axial flow but this is a
much slower process; therefore, over the time scales that dominate the microscale
problem, axial transients may be neglected.

The fiber is a circular cylinder with length Lf and cross-sectional radius Rf as
pictured in figure 3a. Situated at the centre of the fiber is a cylindrical gas bubble
with time-varying radius sg(t), outside of which lies an annular ice layer with outer
radius siw(t). The remaining volume extending to the fiber radius Rf contains melt-
water from thawed ice. We note that this configuration is specific to the thawing
process, and the ordering of ice and water layers would be reversed during freezing.

The vessel is represented by the portion of the reference cell lying outside the
fiber–vessel wall (denoted by a dashed line) and the side length ` of the reference cell
is chosen so that the vessel cross-sectional area equals that of a cylinder of radius
Rv. Keeping in mind that there are actually Nf fibers connected to each vessel, we
require that ` satisfy the area constraint

`2 = πNf (Rf )2 + π(Rv)2. (3.1)

Within the vessel is a gas bubble of radius r(t), which is surrounded by liquid sap
owing to the FPD effect that lowers freezing temperature below that in the fiber.
The cumulative volume of melt-water flowing through the porous fiber–vessel wall
is denoted by U(t) and is measured positive from fiber to vessel. The final variable
that determines the local state of the fiber–vessel system is the volume of root water
uptake, denoted Uroot(t).

We may now formulate a first-order system of five ODEs describing the time
evolution of siw, sg, r, U and Uroot. The fiber ice–water interface is governed by the
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Stefan condition [1, 13]

∂tsiw = − kw/ρw

(Ew − Ei)
∇T2 · ~n +

∂tU

2πsiwLf
, (3.2)

where ∇T2 · ~n represents the normal temperature derivative on the interface (i.e.,
the curve along which temperature equals the melting (or freezing) point Tm) and
the final term accounts for the volume of water transferred between fiber and vessel.
This form of the Stefan condition assumes that liquid motion induced by phase
density differences is negligible [1]. The microscale temperature T2(y, t) is obtained
as the solution of a heat diffusion equation that will be stated in the next section,
where the microscale spatial coordinate is y. The parameters ρw and kw denote
density and thermal conductivity of liquid water, while (Ew − Ei) is the enthalpy
difference between water and ice (also called the latent heat or enthalpy of fusion)
at locations where T2 = Tm. The effects of thermal expansion are known to be
relatively small [56] and so have been neglected here.

Imposing mass conservation yields an equation for the fiber gas bubble radius
(which in this thawing scenario is a gas–ice interface)

∂tsg = − (ρw − ρi)siw∂tsiw

sgρi
+

ρw∂tU

2πsgρiLf
, (3.3)

where ρi is the density of ice. An equation for the vessel gas bubble radius follows
from a similar mass conservation argument

∂tr = −Nf∂tU + ∂tUroot

2πrLv
, (3.4)

where Lv denotes the length of a vessel. This last equation expresses the balance
between water flux from neighbouring fibers and the slight volume change stemming
from the water/ice density difference. The effect of gas dissolution has been omitted
here but will be incorporated below in the gas density; this approximation was al-
ready justified in [9], which showed that incorporating dissolution in these equations
has negligible impact on the bubble radii sg and r.

Darcy’s law governs liquid water flux through the porous fiber–vessel wall

∂tU = −L A

Nf

[
pv

w(t)− pf
w(t)− posm + pf

i (t)
]
, (3.5)

where the wall is characterized by hydraulic conductivity L and surface area A. The
pressure term in square parentheses derives from four contributions: liquid pressure
in the vessel (pv

w) and fiber (pf
w), osmotic pressure (posm), and capillary pressure

(pf
i ) due to ice–water surface tension [18]. This latter contribution, also known as

cryostatic suction, follows hand-in-hand with FPD and arises whenever ice lies on
the inside surface of the wall and liquid sap is present on the vessel side, since then
the small capillary pores in the adjoining wall (with radius rcap) contain both ice
and liquid. For the thawing scenario under consideration here, water lies on both
sides of the fiber–vessel wall and so pf

i = 0; however, other stages in the freeze–thaw
process can give rise to non-zero pf

i as detailed in the next section (see also figure 4).
The final ODE comes from another application of Darcy’s law to root flux

∂tUroot = max
{
−LrAr

(
pv

w(t)− psoil

)
, 0
}

, (3.6)
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where Lr is the root hydraulic conductivity and Ar denotes the portion of root
surface area corresponding to a single vessel. The cut-off function ‘max{ · , 0}’ ensures
that water only flows inward from soil to roots and not outward, which is consistent
with experiments that demonstrate root outflow can be a factor of five smaller than
that for inflow [21]. Indeed, studies of root water transport in a variety of tree species
show that root conductivity can vary with factors such as temperature [17], root
age [14], and time of day [21] or season [34]. Many authors attribute this selective
control of water transport to membrane proteins known as aquaporins [23].

In the preceding discussion we introduced a number of constant parameters
whose values are listed in table 1. The remaining symbols correspond to interme-
diate variables whose definitions we provide next. First, the density of gas in the
fiber and vessel bubbles depends on initial values of density and volume, modified
to account for dissolved gas according to

ρf
g =

(
V f

g (0) + HV f
w (0)

V f
g + HV f

w

)
ρf

g (0), ρv
g =

(
V v

g (0) + HV v
w (0)

V v
g + HV v

w

)
ρv

g(0), (3.7)

where H is the dimensionless Henry’s constant for air in water. The various phase
volumes are determined from the cylindrical cell geometry as

V f
g = πLfs2

g, V v
g = πLvr2, (3.8)

V f
w = πLf

((
Rf
)2 − s2

iw

)
, V v

w = πLv
(
(Rv)2 − r2

)
. (3.9)

The corresponding gas pressures are given by the ideal gas law as

pf
g =

ρf
gRT

Mg
, pv

g =
ρv

gRT

Mg
, (3.10)

where R is the universal gas constant and Mg is the molar mass of air. The water
and gas pressures in both fiber and vessel differ by an amount equal to the capillary
pressure, which is determined by the Young–Laplace equation as

pf
w = pf

g −
2σgw

sg
, pv

w = pv
g −

2σgw

r
, (3.11)

where σgw is the air–water surface tension. The osmotic pressure across the fiber–
vessel wall depends on sap sugar concentration according to

posm = CsRT. (3.12)

Finally, the sap sugar content induces a reduction in freezing temperature that obeys

Tm,sap = Tm −∆Tfpd = Tm − KbCs

ρw
. (3.13)

(c) Equations for other phase transitions

In the previous section we developed equations specific to the thawing process,
during which the vessel is completely thawed and the fiber contains a mix of gas,
water and ice (see stage 4 in figure 2). We describe next how these equations should
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Table 1: Model parameters for base case simulation
(Unless cited otherwise, all parameter values are taken from [8])

Symbol Description Values Units

Microscale variables (functions of time t and space x, y):
siw, sg interface locations in fiber m

r vessel bubble radius m
U water volume flowing from fiber to vessel m3

Uroot root water volume uptake m3

V volume m3

p pressure Pa
ρ density kg m−3

Subscripts: i, w, g for ice, water/sap, gas

Superscripts: f , v for fiber, vessel

Tree structural parameters:
A area of fiber–vessel wall 6.28× 10−8 m2

Ar root area for a single vessel [15] 1.14× 10−6 m2

` side length of reference cell, equation (3.1) 4.33× 10−5 m
Lf length of fiber 1.0× 10−3 m
Lv length of vessel element 5.0× 10−4 m
L conductivity of fiber–vessel wall 5.54× 10−13 m s−1 Pa−1

Lr conductivity of roots [47, 53] 2.7× 10−16 m s−1 Pa−1

Nf number of fibers per vessel 16 –
Rf inside radius of fiber 3.5× 10−6 m
Rv inside radius of vessel 2.0× 10−5 m
rcap radius of pores in fiber–vessel wall [28] 2.80× 10−7 m
W thickness of fiber–vessel wall 3.64× 10−6 m

Water phase properties: ice, liquid
ci, cw specific heat capacity 2100, 4180 J ◦K−1 kg−1

Ei, Ew enthalpy at Tm 574, 907 kJ kg−1

ki, kw thermal conductivity 2.22, 0.556 W m−1 ◦K−1

ρi, ρw density 917, 1000 kg m−3

σiw, σgw surface tension [18] 0.033, 0.076 N m−1

c∞ regularization parameter, equation (3.32) 1.0× 107 J ◦K−1 kg−1

Physical constants:
H Henry’s constant for air in water 0.0274 –
Kb cryoscopic (Blagden) constant 1.853 kg ◦K mol−1

Mg molar mass of gas (air) 0.029 kg mol−1

R universal gas constant 8.314 J ◦K−1 mol−1

Tm melting point for pure water 273.150 ◦K

‘Base case’ simulation:
Cs sap sugar concentration (3% by mass) 87.6 mol m−3

psoil soil pressure at roots = pv
w(0) 2.03× 105 Pa

R tree cross-sectional radius 0.035 m
Ta(t) ambient temperature [−10, 20] + Tm

◦K
Tm,sap melting point for sap = Tm −KbCs/ρw 272.988 ◦K

be modified to capture other freeze–thaw states in the fiber and vessel. In particular,
we account for the fact that phase interfaces can appear or disappear whenever ice
completely thaws (or liquid completely freezes), as well as the reversal of the ice and
water layers in the fiber during freezing and thawing.

In fact, many equations remain unchanged throughout the entire freeze–thaw
cycle, with the exception being those for sg, siw and pf

i . The required modifications
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1
Completely
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gasgas

sap
pf

i = 0 (3.14)

∂tsiw = 0 (3.15)

∂tsg =
∂tU

2πsgLf
(3.16)

2
Vessel thawed
Fiber freezing gas

sap
Heat 
outflux

Root uptake

ice

gas

pf
i =

2σiw

rcap

V f
i

V f
i + V f

w

(3.17)

∂tsiw =
ki/ρi

(Ew − Ei)
∇T · ~n +

∂tUρw

2πsiwLf ρi
(3.18)

∂tsg =
(ρw − ρi)siw∂tsiw

sgρw
+

∂tU

2πsgLf
(3.19)

Vessel freezing
Fiber frozen

gas

sap 

ice

gas

pf
i =

2σiw

rcap
(3.20)

∂tsiw = 0 (3.21)

∂tsg = min


ρw∂tU

2πsgLf ρi
, 0

ff
(3.22)

3
Completely

frozen
gas

sap ice

ice

gas

pf
i = 0 ∂tr = 0 (3.23)

∂tsiw = 0 ∂tU = 0 (3.24)

∂tsg = 0 ∂tUroot = 0 (3.25)

Vessel thawing
Fiber frozen

gas

sap 

ice

gas

pf
i =

2σiw

rcap
(3.26)

∂tsiw = 0 (3.27)

∂tsg = min


ρw∂tU

2πsgLf ρi
, 0

ff
(3.28)

4
Vessel thawed
Fiber thawing

sap

Heat 
influx

gas gas

pf
i = 0 (3.29)

∂tsiw = −
kw/ρw

(Ew − Ei)
∇T · ~n +

∂tU

2πsiwLf
(3.30)

∂tsg = −
(ρw − ρi)siw∂tsiw

sgρi
+

ρw∂tU

2πsgLf ρi
(3.31)

Figure 4: Microscale equations for all stages of the freeze–thaw process.
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for each case are listed in figure 4, referenced by the numbered stages in figure 2. We
emphasize that the ice–water interface lies within pores in the fiber–vessel wall and
forms a mushy layer wherein both solid and liquid phases coexist in the pore space.
This type of phase interface (called a frozen fringe in the context of ice lensing in
soils [18]) differs from an idealized gas–water interface in that the interfacial pressure
jump pf

i increases with ice volume fraction according to

pf
i =

2σiw

rcap

V f
i

V f
i + V f

w

,

where σiw represents the ice–water surface tension and V f
i,w are the corresponding

volume fractions. Finally, we note that when both fiber and vessel are completely
frozen (stage 3) the equations for r, U and Uroot also drop out of the system.

(d) Homogenized equation for temperature

The equations derived in the preceding two sections govern microscale processes
at the cellular level whereas on the macroscale the temperature is of primary interest,
and it is transport of heat between the external (ambient) environment and the
interior of the tree stem that drives the freeze–thaw process. Clearly, there exists a
two-way interaction between the global temperature and the local fiber–vessel state,
wherein temperature governs phase change dynamics in fibers and vessels, while
cellular processes in turn influence heat transport through the Stefan condition and
local phase volume fractions. To simplify this complex multiscale problem, we exploit
a separation in spatial scales reflected in the fact that state variables describing the
fiber–vessel configuration are essentially ‘invisible’ on the macroscale except through
their effect on heat transport properties of the sap- and gas-filled wood.

Because of the repeating microstructure of wood, this problem is ideally suited
to the application of periodic homogenization. The philosophy behind this approach
is to solve at each point in space a local problem on a reference cell Y that deter-
mines the solution state on the microscale. By using an appropriate homogenization
or averaging procedure, the effect of microscale variables on the macroscale may
then be incorporated into equations for the global solution variables. One technical
requirement is that the reference cell must divide into two sub-regions, Y = Y 1∪Y 2,
separated according to whether heat diffusion is fast (in Y 1, the outer portion of
the vessel) or slow (in Y 2, an overlap region covering the fiber and the remainder
of the vessel). The result is two heat equations: one governing temperature on the
macroscopic domain Ω and the second on Y 2 × Ω. When these two equations are
coupled together, we obtain a two-scale temperature solution on the domain Y ×Ω.
Instead of fully coupling the micro- and macroscale equations, this homogenization
approach leads naturally to a simpler system of equations that captures the essential
aspects of coupling between scales. A similar homogenization approach has been ap-
plied by Chavarŕıa-Krauser and Ptashnyk to a model of water and solute transport
in plants [10].

The dynamics of heat transport are best described using a mixed formulation
written in terms of both temperature and specific enthalpy, which are denoted re-
spectively by T2(x, y, t) and E2(x, y, t) on the reference cell region Y 2, and T1(x, t)
and E1(x, t) on the macroscale. The variables T1 and E1 depend on time t and the
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global spatial coordinate x, whereas microscale quantities have an additional de-
pendence on the reference cell Y through a local spatial coordinate y. Temperature
and enthalpy are not independent variables but instead are related via the piecewise
linear function

T (E) =


1
ci

E, if E < Ei − δi,

Tm + 2E−Ei−Ew

2c∞
, if Ei − δi ≤ E < Ew + δw,

Tm + 1
cw

(E − Ew), if Ew + δw ≤ E.

(3.32)

We introduce the large parameter c∞ (taking c∞ = 107 in practice) to impose a
small but nonzero slope (1/c∞) on the central plateau region where T ≈ Tm. We
also make use of the fact that Ei = ciTm and choose

δi =
ci(Ew − Ei)
2(c∞ − ci)

and δw =
cw(Ew − Ei)
2(c∞ − cw)

, (3.33)

so that the function T (E) is continuous. This form of T (E) is a regularization of the
exact temperature–enthalpy relationship [55] that avoids numerical instabilities in
the calculation of temperature and also recovers the exact (piecewise linear) result
in the limit as c∞ →∞ and δi, δw → 0.

During the homogenization procedure [19], we find that heat transport in the
reference cell must only be treated on the sub-region Y 2 where temperature obeys

cw∂tT2 −∇y · (D(E2)∇yT2) = 0 in Y 2(x, t)× Ω, (3.34)

and D(E2) is a thermal diffusion coefficient that is a piecewise linear and continuous
function of enthalpy [55]

D(E) =


ki

ρi
, if E < Ei,

ki

ρi
+ E−Ei

Ew−Ei

(
kw

ρw
− ki

ρi

)
, if Ei ≤ E < Ew,

kw

ρw
, if Ew ≤ E.

(3.35)

We employ this nonstandard definition of D (instead of the usual thermal diffusivity
having units m2 s−1) so that we can factor out the specific heat, thereby allowing
the same coefficient to be used in both this microscale heat equation and the mixed
temperature–enthalpy form we develop below for the macroscale. We include an
explicit time- and global space-dependence in Y 2(x, t) to emphasize the fact that
the ice region within the fiber is bounded by a moving water–ice interface, and that
the fiber configuration varies from point to point throughout the tree stem. On the
water-ice interface (corresponding to the inner boundary of Y 2) the temperature
equals the melting point value

T2 = Tm on ∂Y 2(x, t)× Ω. (3.36)

We thereby obtain the macroscale temperature equation

∂tE1 −∇x · (ΠD(E1)∇xT1) =
1
|Y 1|

∫
Γ

D(E2)∇yT2 · ~n dS in Ω, (3.37)

Article submitted to Royal Society



Multiscale model for sap exudation 15

where the coupling with microscale variables is embodied in a surface integral term.
The factor Π multiplying the diffusion coefficient is a 2 × 2 matrix whose entries
depend on the reference cell geometry according to

Πij =
1
|Y 1|

∫
Y 1

(δij +∇yµi) dy, (3.38)

for i, j = 1, 2. Here, δij is the Kronecker delta symbol and µi(y) are solutions of a
standard reference cell problem on Y 1 [2]. The temperature on the outer surface of
the tree is held at the ambient value

T1 = Ta(t) on ∂Ω. (3.39)

Finally, the micro- and macroscale solutions are coupled by matching temperature
on the interior boundary

T2 = T1 on Γ× Ω. (3.40)

In summary, the governing equations consist of a system of differential–algebraic
equations (3.2)–(3.13) and (3.34)–(3.36) for the microscale temperature and fiber–
vessel state variables within each local reference cell. These are supplemented by
equations (3.37)–(3.40) for the macroscale temperature on Ω. Both problems are
solved at each spatial point x ∈ Ω and the two solutions are coupled by means of
the integral source term in (3.37) and the boundary condition (3.40). The geometry
of the local reference cell is also incorporated into the macroscale problem via the
(constant) pre-factors Π multiplying the diffusion coefficient in (3.37).

4. Simulating daily freeze–thaw cycles

(a) Numerical solution algorithm

The radial symmetry of both micro- and macroscale domains implies that all
solution variables can be written as functions of a single radial coordinate and time.
We use a method of lines approach and discretize the temperature variables in
space using finite elements, yielding a large system of time-dependent ODEs. When
combined with the ODEs and algebraic equations governing microscale fiber–vessel
dynamics, the resulting coupled system is integrated in time using a standard ODE
solver. The spatial discretization on the two scales proceeds as follows:

• Microscale (cell-level) equations: The fiber ice temperature is assumed to be
a uniform 0 ◦C, and gas temperature is also taken constant since the thermal
diffusivity of gas is so much larger than that for either ice or water. Therefore,
the PDE (3.34) for temperature on Y 2 must only be solved on the annular
region between Γ and the phase interface siw (see figure 3a). We find that
sufficient accuracy is obtained for T2 by using only 4 radial grid points within
the annulus. Because the phase interface evolves in time, we use a moving
mesh approach wherein the motion of grid points introduces an additional
‘grid advection’ term that is proportional to the mesh point velocity [22].

• Macroscale (tree-level) equation: The tree stem is similarly divided into equally-
spaced radial points, and here we find that taking 20 grid points yields suffi-
cient accuracy in T1. Owing to radial symmetry, the integral source term in
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(3.37) reduces to multiplication by the curve length |Γ|. The factors Π de-
pend only on the reference cell geometry and so can be pre-computed at the
beginning of a simulation.

We employ an efficient split-step approach where in each time step the reference cell
problem is solved for the microscale variables, and then the macroscale temperature
equation is solved by holding the microscale variables constant.

The algorithm described above has been implemented in Matlab using the built-
in stiff ODE solver ode15s to integrate the equations in time. The only algorithmic
detail remaining to be described is the switching between equations required as
phase interfaces appear or disappear. We can capture this switching simply and
robustly using the Events option provided in the ODE solver suite, which signals
an event based on zero-crossings of an ‘indicator function’. During any portion of
the freeze–thaw cycle, the indicator function is set equal to either the thickness of
a phase interface or the difference between the phase temperature and the melting
temperature. When the indicator crosses zero, the time integration halts, equations
are modified appropriately, and the ODE solver is restarted using the new set of
equations and taking the current solution as the new initial state. The time in-
tegration then proceeds until the next phase change event is signalled. A typical
simulation covering 4 daily temperature cycles requires between 30–45 minutes of
clock time on an Apple MacBook Pro with 2.3 GHz quad-core Intel i7 processor.

(b) Choice of parameters

The algorithm just described is used to simulate freeze–thaw dynamics in a
typical base case scenario for which all parameters are listed in table 1. We take
a ‘sapling’ of diameter 0.07 m consisting entirely of sapwood. The sugar content
of maple sap ranges from 1–5% by mass [49] and so we choose a representative
value of 3% that induces a vessel FPD of ∆Tfpd = 0.162 ◦C. To mimic temperature
variations during late winter, we let ambient temperature vary sinusoidally between
−10 and +20 ◦C over a 24-hour period (this range is somewhat extreme but is
chosen to correspond with the experiments of Améglio et al. [3] that we will describe
shortly). We begin with a freezing event and initialize the tree in a thawed state
with uniform temperature 0.35 ◦C, just slightly above the freezing point. Each fiber
initially contains gas and water with 75% gas by volume, whereas the vessel has a
much smaller initial gas content of 8%.

There remain two parameters whose values we have not been able to obtain rea-
sonable estimates from the literature – root hydraulic conductivity Lr and capillary
pore radius rcap – and so we have had to adjust their values in order to match numer-
ical results with experimental data. First, we choose Lr = 2.7 × 10−16 m s−1 Pa−1

so that pressure and root uptake vary over time scales similar to those observed
in experiments [3, 49]. Then, we take rcap = 2.8 × 10−7 m so that the exudation
pressure build-up is within the observed range of 80 to 150 kPa [11, 12]. This pore
size is also consistent with that measured in other membranes that hinder transport
of sucrose molecules [28].
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Figure 5: Comparison of base case simulation with Améglio’s experi-
ments. (a) Simulated vessel sap pressure (middle, with and without root water)
and cumulative root water uptake (bottom) in response to an imposed periodic am-
bient temperature (top). The vertical dotted lines highlight times when temperature
crosses the freezing point. Two primary features of the vessel pressure curve are the
amplitude of pressure oscillations in each daily cycle (∆p1, arising from ice–water
capillary effects) and the residual pressure increase at the end of a cycle (∆p2, due
to root water uptake). (b) Améglio et al.’s experiments on black walnut [3] (repro-
duced with permission of Oxford University Press). The measurements relevant to
our study are ‘P control’ (sap pressure) and ‘T trunk’ (temperature).

(c) Base case: Pressure build-up during temperature cycling

Using these base case parameters and initial conditions, we perform two nu-
merical simulations: one with root water uptake corresponding to a soil pressure of
psoil = 203 kPa, and a second with no root uptake (e.g., consistent with a completely
frozen soil). Vessel sap pressures are compared in figure 5a, and in both cases we
observe a periodic variation in pressure synchronized with daily temperature fluctu-
ations. Without root uptake, the vessel pressure simply oscillates between two fixed
values of 20 and 200 kPa and there is no pressure build-up over multiple freeze–thaw
cycles. However, when root uptake is included there is a gradual pressure increase
superimposed on the background oscillations, with a total increase (measured from
the local maximum in each cycle) of roughly 80 kPa over the four days. The accom-
panying plot of total root uptake in figure 5a shows that the majority of root water
is absorbed during the first freeze–thaw cycle, followed by a more gradual uptake
that is essentially complete after 3 days.

We next draw a direct comparison with the experiments of Améglio et al. [3]
who studied black walnut trees (Juglans nigra) in a controlled laboratory setting
where the living stump of an excised tree branch was connected via a sealed pipe
to a pressure transducer. We calculate vessel sap pressure in our simulations as an
average pressure across the stem cross-section to be as close as possible to such a
transducer measurement. We are unaware of any comparable data for sugar maple,
but we claim that a meaningful comparison may still be drawn with Améglio’s
results since black walnut is closely related to maple and undergoes exudation under
similar conditions [3, 11, 16]. The curves to focus on in Améglio’s figure 5b are the
air temperature (labelled ‘T trunk’) and stem pressure (labelled ‘P control’).
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The qualitative agreement between simulated and experimental pressures is re-
markable considering the complexity of the processes involved and the minimal
parameter fitting required. The overall shape of pressure curves is similar, with each
freeze–thaw cycle exhibiting a rapid increase whenever temperature exceeds the
freezing point. The pressure then attains a maximum, after which there is a slight
decrease over roughly 6–8 hours, followed by a rapid drop as ambient temperature
crosses the freezing point again. We remark that there is also a rough quantita-
tive agreement between simulations and experiments in that pressure oscillations
have an amplitude of 80 to 100 kPa, and the total pressure build-up over four days
also is similar. On the other hand, the maximum value of our simulated pressure is
290 kPa, which is almost double the 160 kPa observed in the black walnut experi-
ments; however, it is possible that more time is needed for the experiment to reach
steady state, not to mention that there are species–specific differences that could
influence pressure.

A more quantitative comparison can be drawn based on two characteristic fea-
tures of the pressure in figure 5a labelled as ∆p1 and ∆p2. The first corresponds to
the amplitude of oscillations in the absence of root uptake, which derives mainly from
cryostatic suction and so can be estimated using the formula ∆p1 ≈ 2σiw/rcap ≈
236 kPa. This value is close to the computed amplitude of the ‘no root uptake’ curve,
as well as to the rise in vessel pressure during the initial thawing event for the ‘base
case’. The second feature ∆p2 captures the exudation pressure build-up during the
first freeze–thaw cycle which arises mainly from root water uptake. Because this
additional water acts to compress the gas in fiber and vessel, we apply the differ-
ential form of the ideal gas law at constant temperature, ∆p2 ≈ −p ∆V /V , during
the first freezing event. Substituting values of p ≈ 200 kPa for the initial vessel
pressure, ∆V ≈ 0.4 cm3 for the root water volume uptake (taken from figure 5a)
and V ≈ 1.15 cm3 for the initial gas volume in a slice through the tree cross-section
(with thickness equal to that of the reference cell, Lf ), we obtain |∆p2| ≈ 69 kPa.
The correspondence between this estimate and the computed value of 50 kPa is
reasonable, considering that it ignores effects such as gas dissolution.

Despite the abundance of experimental data available for sugar maple [11, 12, 25,
49], most experiments measure sap outflux from tapped trees [12] rather than the
‘closed system’ corresponding to an untapped tree that we consider here. Other mea-
surements have been taken of excised wood samples rather than living trees, while
yet others were taken in uncontrolled external conditions with irregular variations in
pressure and ambient temperature. Consequently, we hesitate to attempt a detailed
comparison between any of these experiments and our simulations; nonetheless, we
can still draw a few quantitative comparisons. For instance, Tyree [49] performed
experiments on excised maple branches that absorbed water at a maximum rate
of 12 cm3/h; for similar sized branches, our model yields a comparable maximum
absorption rate of roughly 13 cm3/h as well as qualitatively similar solution pro-
files. Another experiment by Johnson et al. [25] yielded total root uptake of 2.0 cm3

during freezing, followed by a much smaller uptake of 0.1 cm3 during a subsequent
freezing event. We see similar qualitative behaviour in our simulations, as well as
measuring 2.2 and 0.2 cm3 of water absorbed during the first and second freeze,
respectively.
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Figure 6: Comparison of various physical mechanisms. (a) An investigation
of the relative importance of various physical effects, depicting pressure with each
of the following mechanisms turned off: FPD, root water uptake, osmosis, gas dis-
solution. The ‘base case’ and ‘no root uptake’ curves are repeated from figure 5a for
easy comparison. (b) Corresponding curves for root uptake.

(d) Two crucial mechanisms: Root water uptake and FPD

To evaluate the relative importance of the various physical mechanisms, we
present in figure 6 the base case pressure and root water uptake alongside simula-
tions with each of the following mechanisms ‘turned off’: FPD, root uptake (repeated
from figure 5a), osmosis and gas dissolution. The first two mechanisms clearly have
the greatest impact on the build-up of exudation pressure. We already discussed
the crucial role of root uptake in facilitating pressure accumulation over multiple
freeze–thaw cycles. This effect is underscored by the plots in figure 7a depicting the
pressure response when root conductivity Lr varies between zero (no uptake) and
nearly ten times the base value.

Without FPD, the vessel pressure remains nearly constant and there is minimal
root uptake, whereas without osmosis the vessel pressure increases. We therefore
conclude that the predominant impact of sugar on exudation is through FPD rather
than osmosis, and even though ∆Tfpd is small it nonetheless plays a critical role in
facilitating pressure transfer between fiber and vessel. This dependence is illustrated
further by figure 7b, where sugar content is varied between 0 and 7% and we ob-
serve that both net pressure build-up and oscillation amplitude increase with sugar
content.

One assumption requiring further investigation is that of zero conductivity to
root outflow in (3.6), which we motivated by citing experimental results that ex-
hibit a small but still nonzero root outflow [21]. To study this outflow effect, we
take four different outflow conductivities equal to the inflow value Lr scaled by a
factor between 0 and 1 (where 0 corresponds to the base case). The results in fig-
ure 8 clearly show that allowing even a small outflow has a major influence on the
root water uptake by preventing accumulation of water over multiple freeze–thaw
cycles and thereby reducing build-up of exudation pressure. Because of the obvious
sensitivity of these results to root outflow, a more extensive experimental study of
root conductivity in maple is warranted.

We end this section by addressing the seemingly counter-intuitive result in fig-
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Figure 7: Sensitivity of exudation pressure to parameters. (a) Root hy-
draulic conductivity, Lr, in m s−1 Pa−1. (b) Sugar content in %.
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Figure 8: Sensitivity to root outflow. (a) Pressure curves with non-zero con-
ductivity to root outflow, where the ratio of outflow-to-inflow ratio varies between
0 and 1. (b) Corresponding plots of root uptake.

ure 6a that introducing osmosis decreases vessel sap pressure. This result can be most
easily explained by considering the water flux equation (3.5) over a long enough time
that the fiber and vessel have reached a quasi-steady state and ∂tU ≈ 0. Then (3.5)
reduces to the simple pressure balance(

pv
g −

2σgw

r

)
︸ ︷︷ ︸

pv
w

−
(

pf
g −

2σgw

sg

)
︸ ︷︷ ︸

pf
w

− posm + pf
i ≈ 0.

The ice–water capillary pressure pf
i is a constant, and our simulations show that

osmosis has relatively small impact on fiber bubble size and pressure (the latter
effect was discussed in [8]). Therefore, the primary influence of osmosis is within
the vessel: osmotically-driven flow from fiber to vessel compresses the vessel bubble
which not only increases the vessel gas pressure pv

g , but also increases the capillary
pressure term (via a reduction in bubble radius r). The contribution from surface
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Figure 9: Local phase change dynamics. Plots of temperature versus radius
and enthalpy for a fixed time in the middle of a freezing event (a,b, top) and a
thawing event (c,d, bottom). Points correspond to discrete solution values on an
equally-spaced radial grid and are coloured according to the current state of fiber
and vessel: blue if both are frozen; red if both are thawed; purple if fiber is frozen
and vessel is thawed.

tension dominates and so the net effect is actually a decrease in vessel sap pressure
pv

w, which is consistent with figure 6a and the results reported in [8].

(e) Phase change dynamics on the microscale

When a completely frozen tree warms above 0 ◦C during the day, a thawing
front develops near the bark (wherein water and sap are frozen ahead of the front
and thawed behind) and advances into the stem; an analogous scenario occurs upon
freezing. Clearly, the ‘interesting’ solution dynamics will occur in the vicinity of
this front, and hence knowledge of phase change on the microscale is desirable for
understanding solution behaviour. Over a century ago, Wiegand [56] recognized the
existence of freezing and thawing fronts that ‘penetrate the wood in a wave-like
manner’ and in which ‘but few cells would actually take part in the production of
pressure at any one time’; however, there has so far been no attempt to develop a
mathematical model for this phenomenon. In particular, the role of FPD in govern-
ing the progress of these phase transitions throughout the sapwood has not been
investigated before.

Phase change dynamics are most easily studied by means of a temperature–
enthalpy diagram as depicted in figures 9a,c, which are each taken at a fixed time
during a freeze or thaw event. Both plots feature a plateau region at the melting
temperature, which has a horizontal extent equal to the enthalpy of fusion. Note
that there are two distinct melting temperatures in fiber and vessel equal to Tm and
Tm,sap = Tm −∆Tfpd respectively. The corresponding plots of temperature versus
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radius are shown in figures 9b,d which depict the local state of each point within the
tree stem. For example, in the freezing case (top) the three grid points closest to the
stem centre are completely thawed (red), the outermost point is frozen (blue), and
the intervening points are undergoing freezing (purple). Owing to FPD, water in the
fiber freezes before the vessel sap, thereby introducing a time delay in formation of
ice between the fiber and vessel.

For both freezing and thawing, the bulk of the stem is in a state located at the
leading edge of the enthalpy plateau (right edge for freezing, left edge for thawing).
This behaviour can be explained by considering the local rate of phase change:
conservation of energy at a phase interface is expressed mathematically using the
well-known Stefan condition, which states that the rate of freezing (or thawing) is
proportional to the temperature gradient. Referring to figures 9b,d, the temperature
difference between adjacent points is smaller near the tree centre and larger near the
bark. Consequently, at any location in the tree a freezing event begins within the
fiber as a slow process, followed at a later time in the vessel which freezes relatively
quickly. In contrast, a thawing event begins with a slow thawing of the vessel sap,
followed by rapid thawing in the fiber.

5. Concluding remarks

We have developed the first complete mathematical model for the tree sap exuda-
tion process based on a prevailing freeze–thaw hypothesis. We introduced a number
of additions to this hypothesis, and identified root water uptake and freezing point
depression (FPD) as the two main driving mechanisms for sap exudation. In par-
ticular, we showed that the primary mechanism whereby sugar induces exudation
pressure is via the FPD and not osmosis as was previously believed. Numerical sim-
ulations of the governing equations demonstrate qualitative and quantitative agree-
ment with experimental data on sugar maple and the related species black walnut.
The quality of agreement is striking considering that the model parameters were
determined using a minimum of parameter fitting. Our work clearly demonstrates
the need for further experiments on sugar maple that parallel the work of Améglio
et al. on walnut [3]. Our model results lead to the important conclusion that FPD
is a primary driver of sap exudation, which also requires experimental validation.
Furthermore, because we have only rough estimates at present for two of the model
inputs – capillary pore size rcap and root conductivity Lr (especially differences
between conductivity to inflow and outflow) – more accurate measurements of these
parameters are also required.

Our model provides an ideal platform from which to investigate other problems
related to sap flow in maple and related species. First of all, we aim to extend
our current model of a 2D stem cross-section to three dimensions. This will permit
us to incorporate variations in gravitational pressure head and sugar concentration
with height [56] and to study problems of practical importance to the maple syrup
industry such as optimizing tap-hole placement or determining sensitivity to changes
in soil or climatic conditions. Finally, there are a number of intriguing parallels
between exudation and the phenomenon of freeze-induced winter embolism [45, 57]
that are also worthy of future investigation.
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