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1.1 Introduction

The dominant technique for producing large defect free crystals is known as the Czochralski method. Developed
in 1916 by Jan Czochralski as a method of producing crystals of rare metals, this method is now used to produce
most of the semiconductor wafers in the electronics industry.

The method begins with a crucible loaded with starting material (polycrystalline indium antimonide) and a
seed crystal on which the growth of a single crystalline ingot is initiated. Once the starting material is melted
to the correct consistency, a seed crystal is lowered on a pull rod until the tip of the seed crystal just penetrates
the molten surface. At this point, the seed crystal and the crucible containing the molten starting material
are counter-rotated and the temperature is adjusted until a meniscus is supported. As the pull rod is rotated,
the seed crystal is slowly withdrawn from the melt developing a single crystal. By carefully controlling the
temperatures and rotation rates of the crucible and the rod, a precise diameter of the resulting crystal can be
maintained. This process is illustrated in Figure 1.1.

A common problem of using the Czochralski technique is that defects begin to appear in the crystal once the
diameter of the crystal exceeds some critical value. The main objective of this study is to attempt to understand
this phenomena by modelling the process mathematically. Hopefully, the model can also be used to design growth
procedures that produce crystals without defects even when the diameters are greater than the critical values
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Figure 1.1: The Czochralski crystal pulling technique.

observed under current pull conditions. As indium antimonide (InSb) is used as an infrared detector, being able
to manufacture large diameter crystals would have an immediate impact in industry.

The whole growing assembly is maintained in an envelope that permits the control of the ambient gas and
enables the crystal to be observed visually. In the case of InSb, the ambient gas is hydrogen to ensure the
reduction of any InOx compounds that may be produced. This addition of hydrogen necessitates additional
complications to the growth procedure. Namely, i) the high heat losses due to the fluidity of the hydrogen and
ii) the avoidance of any oxygen to avoid explosions!

Many aspects of this problem have been investigated to gain a greater insight of the physical processes
involved. We begin with the heat problem first as a one dimensional model in Section 1.4 and then extending to
a second dimension in Section 1.5. This analysis indicates that the temperature of the gas surrounding the crystal
has a major impact on both the thermal stress experienced by the crystal and the shape of the crystal/melt
interface. In contrast, variations in the heat flux from the melt have much less of an effect. For completeness the
temperature profile of the crucible is also determined in Section 1.7 by neglecting the convection of the liquid
InSb.

Having investigated the temperature profiles, the analysis focuses on the behaviour of the fluid in Section 1.8.
Scaling arguments are used to estimate the thickness of the various boundary layers and explain the main flow
patterns that are experimentally observed.

In Section 1.9 the shape of the meniscus is determined for various rotation rates. The height of the meniscus
above the surface of the fluid is about 0.3 mm irrespective of the rotation rate. However, at a rotation rate of
10 rpm, the height of triple point drops about 0.15 mm from its stationary value. This analysis shows that the
shape of the meniscus is relatively invariant at least at low rotation rates yet the actual vertical position of the
meniscus changes readily with the rate of rotation.

After analyzing the fluid flow patterns, a model is developed in Section 1.10 for the height of the melt as
a function of time. This indicates that for a crystal of constant radius the proportion of the effective pull rate
due to the falling fluid level remains essentially constant over the complete growing time of the crystal. This no
longer remains true if the radius of the crystal is allowed to increase at a constant rate.

1.2 Mathematical Model: Heat Flow

We begin by describing in some detail the mathematical model of the heat flow in the crystal, melt and gas
assuming axial symmetry. This model will later be simplified but for now we suppose that the material, in both
the solid and liquid states, cools by radiation. In the Czochralski process, the liquid is drawn up, cools to the
solidification temperature, and solidifies. As a result the governing equation is

∂T

∂t
+ ∇ · (~v T ) =

1
ρc

∇ · (k∇T ) (1.1)
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where T denotes temperature, ~v velocity, ρ density, c specific heat, and k thermal conductivity. This model
assumes that the fluid shear does not dissipate enough energy to heat up the liquid significantly. By fixing
the coordinate system to the surface of the liquid, the velocity in the solid phase, vp, is the sum of the crystal
pull rate and the rate at which the fluid level drops in the crucible. In the melt, the fluid is assumed to be
incompressible and as such the fluid velocity, vl, satisfies ∇ · ~vf = 0.

Let the melt/gas and crystal/gas interfaces be denoted by the surfaces z = fl(r, t) and z = fs(r, t) respectively.
The normal component of the heat flux must be continuous at these surfaces. Therefore, assuming that the heat
is lost through convection and radiation, this gives the boundary condition

−k
∂T

∂n
= h(T − Tg) + εσ(T 4 − T 4

a ). (1.2)

For this expression n denotes the outward normal of the interface, h the heat transfer coefficient, ε the emittance,
σ the Stefan-Boltzmann constant, Tg is the gas temperature, and Ta the ambient temperature.

The crystal/melt interface, z = S(r, t), is a free boundary. At this interface

T = TF on z = S(r, t) (1.3)

where TF is the freezing temperature and

ρsL

(
∂S

∂t
− vp

)
=
[
−k

∂T

∂n

]l

s

= ks

(
∂Ts

∂z
− ∂Ts

∂r

∂S

∂r

)
− kl

(
∂Tl

∂z
− ∂Tl

∂r

∂S

∂r

)
. (1.4)

This latter condition equates the heat lost in the phase transition from liquid to solid (L per unit mass) to the
net heat flux accumulating at the interface. Since InSb expands on freezing there is either a net flow of InSb away
from z = S or the surface of the crystal must rise. Other boundary conditions include a regularity condition at
r = 0, an applied heat flux of Qapp in the crucible and a heat flux Qlost lost out the top of the crystal. Figure 1.2
illustrates the geometry and summarizes the equations and boundary conditions in the crystal, melt and crucible.
These problems are specifically dealt with in Sections 1.4, 1.5 and 1.7.

1.3 Nondimensionalization: Heat Flow

To identify the dimensionless parameters in the heat problem and to determine the relative importance of the
various terms we set

r∗ = r/lr, S∗ = S/lr, z∗ = z/lz, t∗ = t/τ,

v∗p = vp/vo, T ∗ =
T − Ta

TF − Ta

where lr, lz are the characteristic lengths, τ and vo are the time and velocity scales, and TF − Ta is the
representative temperature scale. In terms of these variables equation (1.1) in the crystal becomes

ρscsl
2
z

ksτ

(
∂T ∗

∂t∗
+

voτ

lz
v∗p

∂T ∗

∂z∗

)
=

∂2T ∗

∂z∗2 +
l2z
l2r

1
r∗

∂

∂r∗

(
r∗

∂T ∗

∂r∗

)

while the Stefan equation yields

ρsLlzlr
ks(TF − Ta)τ

(
∂S∗

∂t∗
− voτ

lr
v∗p

)
=
(

∂T ∗
s

∂z∗
− lz

lr

∂T ∗
s

∂r∗
∂S∗

∂r∗

)
− kl

ks

(
∂T ∗

l

∂z∗
− lz

lr

∂T ∗
l

∂r∗
∂S∗

∂r∗

)
.

Denoting δ = lr/lz, τ = lz/vo, Pe = volzρscs/ks, the Péclet number based on the length in the z direction, and
dropping the asterisks results in the expression

Pe
(

∂T

∂t
+ vp

∂T

∂z

)
=

∂2T

∂z2 +
1
δ2

1
r

∂

∂r

(
r
∂T

∂r

)
(1.5)
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Figure 1.2: Summary of the equations, geometry and boundary conditions. The z direction is greatly exaggerated
for clarity in that the interface z = S(r, t) is shown in Section 1.9 to lie very close to the line z = 0. See Section 1.7
for an analysis of the heat in the crucible region.

and the Stefan condition becomes

δ
∂S

∂t
= vp +

ks(TF − Ta)
ρsLvolz

[(
∂Ts

∂z
− kl

ks

∂Tl

∂z

)
− 1

δ

(
∂Ts

∂r

∂S

∂r
− kl

ks

∂Tl

∂r

∂S

∂r

)]
. (1.6)

Ignoring the effects of radiation, the boundary conditions at r = 0 and r = 1 are given by

∂T

∂r
(0, z) = 0,

∂T

∂r
(1, z) = −γ[T − Tg(1, z)] (1.7)

where γ = hlr/ks from expression (1.2), Tg(1) is the nondimensional gas temperature near the crystal surface,
and for simplicity we have neglected the heat loss due to radiation.

As typical growth parameters for InSb we take ρsL = 1.3× 109 J m−3, TF = 798.4 K, Ta ' 300 K, kl = 9.23
J m−1s−1K−1, ks = 4.57 J m−1s−1K−1, ρlcl = 1.7× 106 J m−3K−1, ρscs = 1.5× 106 J m−3K−1, ρl = 6.47× 103

kg m−3, ρs = 5.64 × 103 kg m−3, lr = 0.03 m, h = 10 J m−2s−1K−1. With this choice of parameters

volz = 1.75 × 10−6, Pe = 9850δvo, γ = 6.56 × 10−2

where the first parameter is determined by setting the coefficient in the Stefan equation to one. This condition
connects the aspect ratio and the pull rate through δ = 1.71 × 104vo. Typical pull rates range from 0.1-100
mm hr−1 or about 10−8-10−5 m s−1. Consequently Pe ≤ 0.02 and the left hand side of (1.5) may be neglected.
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For the numerical simulations, the temperature of the gas, Tg(z), was given an exponential behaviour. In
non dimensionalized form

Tg(z) = Tmin + (Tmax − Tmin)e−λz, λ = 0.15, Tmin = 0.5, Tmax = 0.9. (1.8)

A crude estimate for the fluid heat flux kl∂Tl/∂z ' kl∆Tl/∆z where ∆z is the width of the fluid boundary layer
and ∆T = Tcrucible − Tmelt. Details on how ∆z is determined can be found in Section 1.8.2. In the case of InSb
this gives kl∂Tl/∂z ' −50kl ' −450 W m−2.

Converting from the non dimensionalized values back into their dimensional versions is straightforward.
Taking the non dimensionalized uniform pull rate, v∗p = 1 yields

vo =
ks(TF − Ta)

ρsLlz
,

∂S

∂t
− vp = vo

(
∂T ∗
∂z∗

− kl

ks

∂T ∗
∂r∗

)

and, T = Ta + (TF − Ta)T ∗. The fixed uniform pull rate is an artifact of choosing the coefficient in expres-
sion (1.6) to be unity and could be changed with the addition of another parameter. Finally, since the system is
encapsulated, the ambient temperature is probably much higher that Ta = 300 K. Increasing Ta will result in a
corresponding drop in the value of vp.

1.4 First Steps: A 1D Temperature Model

For any fixed height z the average of the temperature across the crystal radius is given by

T (z) = 2
∫ 1

0

T (r, z) r dr

where we have used the non dimensionalized coordinates. Applying this averaging technique to equations (1.3),
(1.5) and (1.7) we obtain the second order linear nonhomgeneous boundary value problem

d2T

dz2
= −2γ

δ2
[T − Tg(z)], T (0) = 1,

dT

dz
(1) = −γ

δ
[T (1) − Tg(1)] (1.9)

where Tg(z) is given by (1.8) and δ = lr/lz = 1/3. The growth of the crystal/melt interface is governed by the
Stefan condition (1.6) and by assuming that the slope of the interface is small, |∂S/∂r| � 1, one obtains

δ
∂S

∂t
= vp +

∂Ts

∂z
− kl

ks

∂Tl

∂z
. (1.10)

With this averaging method, Ts = T (0) while the value for kl∂Tl/∂z ' −450 W m−2.
Expression (1.9) was solved using a shooting method starting at z = 1 and shooting towards z = 0. The

Robin condition, dT/dz(1) = −(γ/δ)[T (1)− Tg(1)] precluded starting at z = 0. In detail, the temperature T (1)
was assumed and dT/dz(1) is given by the Robin condition. The next choice for T (1) depends on the value
of T (0), the method converging once T (0) = 1. Solving (1.9) for T (z) gives the decreasing temperature profile
shown on the left of Figure 1.3. The right side of the illustration is the temperature dependence of the gas,
Tg(z). In this case TF − Tg(0) = 80 K in dimensionalized units and the interface velocity from uniform, vp = 70
mm hr−1, is ∂S/∂t− vp = −29.6 mm hr−1. Figure 1.4 illustrates the relative velocity as TF − Tg(0) varies from
80 K to 400 K. As expected, increasing TF − Tg(0) increases the speed of the interface.

1.5 2D Temperature Distribution of the Crystal

For the two dimensional problem we return to expression (1.5) and make the standard ansatz

T (r, z) = T0 + δT1 + δ2T2 + · · · .
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Figure 1.3: The left graph shows the average temperature T (z) over the length of the crystal with the temperature
of the gas Tg(z) overlaid for comparison. On the right is just the temperature of the gas. The uniform interface
velocity is vp = 70 mm hr−1 and the deviation from uniform, ∂S/∂t− vp = −29.6 mm hr−1.

This implies that T0 satisfies

1
r

∂

∂r

(
r
∂T0

∂r

)
= 0,

∂T0

∂r

∣∣∣
r=0

= 0,
∂T0

∂r

∣∣∣
r=1

= −γ[T0 − Tg(z)]

giving T0 = Tg(z). Continuing in this fashion we find to O(δ2) that

T (r, z) = Tg(z) + δ2

(
1 − r2 +

2
γ

)
T ′′

g (z)
4

. (1.11)

A difficulty arises as z → 0 where in the non dimensionalized variables we have the condition T = 1. It is unlikely
that T (r, 0) = 1 = Tg(0) so that a boundary layer correction is required. For the boundary layer solution, Tbl,
we rescale the z in expression (1.5) by δ and denote z̃ = z/δ. When the equations are scaled in this way Tbl

satisfies
∂2Tbl

∂z̃2 +
1
r

∂

∂r

(
r
∂Tbl

∂r

)
= 0 (1.12)

with the boundary conditions

∂Tbl

∂r
(0, z̃) = 0,

∂Tbl

∂r
(1, z̃) = −γ(T − Tg), Tbl(r, 0) = 1 − Tg(0), lim

z̃→∞
Tbl(r, z̃) = 0. (1.13)
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Figure 1.4: The deviation from uniform interface velocity, ∂S/∂t− vp, as a function of TF − Tg(0).

At z̃ = 0 the condition 1 − Tg(0) corrects for the Tg(0) from expression (1.11). Solving (1.12)-(1.13) gives to
leading order in δ

T (r, z) = Tg(z) + Tbl(r, z) = Tg(z) + [1 − Tg(0)]
∞∑

n=0

2γ

γ2 + ζ2
n

J0(ζnr)
J0(ζn)

e−ζnz/δ (1.14)

where J0 is the zeroth order Bessel function of the first kind and the ζn are the zeros of ζnJ ′
0(ζn) = −γJ0(ζn).

As with the one dimensional case, the growth of the crystal/melt interface is governed by the Stefan condition
(1.10) where ∂Ts/∂z now varies with r according to expression (1.14).

For the numerical simulations, Tg(z) was specified by equation (1.8) and kl∂Tl/∂z was varied linearly over
the radial coordinate by 15% with an average value of -450 W m−2 as in the one dimensional case so that
kl∂Tl/∂z ' -480 W m−2 at r = 0 and kl∂Tl/∂z ' -420 W m−2 at r = 1. Choosing δ = 1/3 gives a uniform pull
rate of vp = 70 mm hr−1. The corresponding two dimensional temperature profile is illustrated in Figure 1.5
and should be compared with Figure 1.3, the profile for the one dimensional case. Since the isotherms in the two
dimensional situation are quite flat one would expect considerable agreement with the temperature in the one
dimensional case. However, due to the difference in the boundary condition at large z, the temperature decreases
with z much faster in the two dimensional case. As a result, the speed of the interface, illustrated in Figure 1.6,
is about three times that predicted with the one dimensional model. The model accurately predicts that the
growth rate is larger near the periphery of the crystal so that the interface is concave down. This asymmetry in
the growth rate across the interface increases as TF −Tg(0) increases. At the other extreme, Tg(0) > TF the gas
melts the crystal and the shape of the crystal/melt interface becomes concave up. Clearly, controlling the the
temperature of the surrounding gas is critical in reducing the thermal stress within the crystal.
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Figure 1.5: Temperature profile T (r, z) in the crystal with δ = 1/3.

1.6 The Thermal Stress Problem

The temperature distribution induces a thermal stress field in the crystal due to the inhomogeneities in the
thermal contraction. Some analytical insight as to the source of the stress can be gained by supposing that we
have a thin body, lr/lz � 1, and looking at the outer region where the scaling r/lr and z/lz is appropriate. The
radial and axial displacements u and w are scaled in a similar fashion u/lr and w/lz. The thermal stresses are
scaled by αTF E where α is the thermal expansion coefficient, TF is the melting temperature and E the Young’s
modulus. Under this scaling the strains are O(1).

In terms of scaled variables and using the result T = Tg(z) from Section 1.5 yields

εr = Tg(z) + [σr − ν(σθ + σz)] =
∂u

∂r

εθ = Tg(z) + [σθ − ν(σr + σz)] =
u

r

εz = Tg(z) + [σz − ν(σr + σθ)] =
∂w

∂z

εrz = (1 + ν)σrz =
1
2

(
δ
∂u

∂z
+

1
δ

∂w

∂r

)
.



1.6. THE THERMAL STRESS PROBLEM 9

0 0.005 0.01 0.015 0.02 0.025 0.03
-150

-140

-130

-120

-110

-100

-90

-80

-70

r (m)

∂S
/∂

t -
 v

p (
m

m
/h

r)

Interface velocity deviation (from uniform)

at z = 0          
at z = ∆z/2
N = 100 terms     
v

p
 =  70 mm/hr   

Figure 1.6: Radial dependence of the relative speed of the interface ∂S/∂z − vp with δ = 1/3. The dashed curve
is the speed at z = 0 while the solid curve is the speed just inside the interface at z = ∆z/2. Negative values
indicate that the interface is growing downwards. Finally, the N = 100 indicates that the Bessel series solution
was truncated at 100 terms.

with ν the Poisson ratio. The scaled equilibrium equations are

∂

∂r
σr +

1
r
(σr − σθ) + δ

∂

∂z
σrz = 0

∂

∂r
σrz +

1
r
σrz + δ

∂

∂z
σz = 0.

As for boundary conditions, because of the axisymmetry we have the u = 0 and ∂w/∂r = 0 at r = 0 while the
boundary at r = 1 is unstressed so that σr = σrz = 0 at r = 1.

Making the standard ansatz u = u0 + δu1 + · · · , w = w0 + δw1 + · · · and using the expression for εrz one has

2(1 + ν)σrz =
1
δ

∂w0

∂r
+

∂w1

∂r
+ δ

∂u0

∂z
+ O(δ2).

Since εrz is O(1), w0 = W (z) and therefore σ0
rz = 0. In addition, the second equilibrium equation implies that

∂

∂r
(rσ1

rz) = −r
∂

∂z
σ0

z

and by applying the boundary condition at r = 1 we have σ1
rz = 0 and ∂σ0

z/∂z = 0.
The relationship for u0 comes from the first equilibrium equation which reduces to

∂2u0

∂r2
+

1
r

∂u0

∂r
− 1

r2
u0 = 0
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Figure 1.7: Norm of the gradient of the temperature as Tg(0) varies. The figure on the left has Tg(0) = 720 K
and the figure on the right has Tg(0) = 560 K.

with solution u0 = A(z)r. Thus we obtain

σ0
r =

A(z) + νW ′(z)
(1 + ν)(1 − 2ν)

− Tg(z)
(1 − 2ν)

.

Using the boundary condition at r = 1 once again gives σ0
r = 0 and hence A(z) = −νW ′(z) + (1 + ν)Tg(z). In a

similar fashion we obtain σ0
θ = 0 and σ0

z = W ′(z) − Tg(z) = C, a constant. If we consider the exact solution for
the whole cylinder when the base of the crystal is stress free and simple equilibrium considerations give∫ 1

0

σzr dr = 0

at any value of z, thus we may conclude that σ0
z = 0 and W ′(z) = Tg(z).

Thermal stress will be restricted to a region within a distance lr from the growing surface. Since these stresses,
in the nondimensional case, will depend on the scaled temperature difference 1 − Tg(0) we expect them to be
of magnitude αE[TF − Tg(0)] and they will be determined by a solution of the full axisymmetric equations; a
problem which appears to be analytically intractable. However it is clear that the magnitude of the stresses can
be controlled by making TF −Tg(0) as small as possible. As numerical evidence of these observations Figure 1.7
displays contours for the norm of the temperature gradient as an indicator of the total stress. Figure 1.8 shows
the von Mises stress produced by the temperature distribution obtained in Section 1.5. The von Mises stress is
defined as

σe =
[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2

]1/2
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Figure 1.8: von Mises stress of an InSb crystal together with the corresponding temperature distribution.

where σ1, σ2 and σ3 are the principle stresses at a given point within the crystal.

1.7 Distribution of Heat in the Crucible

For completeness we now determine the temperature profile in the crucible and the holder assuming no motion of
the fluid. The isotherms will be modified by any convective flow in the crucible but as we will see in Section 1.8
this flow is practically inviscid so that the temperature will for the most part remain radially stratified. Figure 1.9
illustrates the domain and summarizes the boundary conditions. For the interior region we have liquid InSb with
a thermal conductivity of kl = 9.23 W m−1K−1. Outside of this is a thin layer of quartz, 3 mm, with a
conductivity of approximately kq = 1.5 W m−1K−1 and finally surrounded by a layer of graphite with kg = 120
W m−1K−1. It should be noted that for simplicity we have taken the thermal conductivity of each of these
materials to be constant however they are actually functions of the temperature. For example, kg varies from
150 W m−1K−1 to 100 W m−1K−1 as the temperature increases from 300 K to 900 K.

This problem is complicated by the involved boundary conditions. There is a regularity condition at r = 0
and a heat inflow at r = 0.1 m with an applied heat flux of about Qapp = 1200 W. At z = −0.16 m there is heat
lost due to convection with a heat transfer coefficient h = 10 W m−2K−1 to the surrounding hydrogen gas at a
temperature Tg1 = 600 K. At the top of the melt, z = 0, there are two conditions. At the crystal/melt interface
the temperature of the melt is the solidification temperature of the crystal. Therefore, T = TF = 798.4 K for
z = 0 and 0 ≤ r ≤ lr with lr = 0.03 m. The remainder of this boundary suffers heat loss due to convection again
with a heat transfer coefficient of h = 10 W m−2K−1 but in this case the surrounding gas is taken to have a
temperature of about Tg2 = 700 K. Two final conditions are that the temperature flux must be continuous at the
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−kl
∂Tl

∂n̂
= −kq

∂Tq
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−kq
∂Tq

∂n̂
= −kg

∂Tg

∂n̂

Figure 1.9: Shown here is the geometry and boundary conditions for solving the steady state heat equation in
the crucible and the holder. Summarizing the parameters: kl = 9.23 W m−1K−1, kq = 1.5 W m−1K−1, kg = 120
W m−1K−1, TF = 798.4 K, Qapp = 1200 W, h = 10 W m−2K−1, Tg1 = 600 K, Tg2 = 700 K, and lr = 0.03 m.

graphite/quartz and the quartz/InSb boundaries. Figure 1.10 shows the isotherms and the interesting artifact
of a cold spot at the bottom of the holder at r = 0.

1.8 Mathematical Model: Fluid Flow

We now turn our attention to the behaviour of the fluid. The fundamental equations of the fluid motion are
governed by the incompressible Navier-Stokes equations within a rotating crucible. We assume that the flow is
independent of the azimuthal angle and that the variations in the fluid density can be ignored except insofar as
their effect on the gravitation forces. This latter assumption is known as the Boussinesq approximation.

Consider for a moment the force on the fluid due to gravity

~Fg = ρl~g = −ρ∇φ

where φ = gz is the gravitational potential and ρl is the density of the fluid. By expressing the density as a
constant ρo and a small variation ρε we have ρl = ρo + ρε with ∇ρo = 0 and

~Fg = −∇(ρoφ) + ρε~g.

Redefining the pressure as P ′ = P + ρoφ gives the expression

−∇P + ~Fg = −∇P ′ + ρε~g. (1.15)

Since the change in density, ρε, is for the most part a result of heating the fluid, we linearize this change in
density so that ρε ' β(T − TF ) where β is the thermal coefficient of expansion.

The fact that the crucible is rotating introduces a coriolis force and a reaction force due to the centripetal
acceleration of the fluid particles. This second force can be written as a potential and combined with the
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Figure 1.10: Illustrated is the temperature profile of the crucible and the holder. Note the cold spot at the base
of the holder at r = 0. This pattern is expected to persist in the presence of the convective flow of the melt since
in Section 1.8 it is shown that the fluid flow is essentially inviscid.

nonrotating gravitational potential to give

φ = gz − 1
2
ω2

1r
2 (1.16)

where −∇φ is the measured graviational force in the accelerated frame and we have taken the rotation rate
~ω = −ω1k̂.

Combining (1.15), (1.16) and the azimuthal symmetry of the flow yields the following pseudo-steady incom-
pressible Navier-Stokes equations for the fluid velocity ~vl = 〈ur, uθ, uz〉

ur
∂ur

∂r
+ uz

∂ur

∂z
= − 1

ρo

∂P ′

∂r
− 2ω1uθ + ν∆ur (1.17)

ur
∂uθ

∂r
+ uz

∂uθ

∂z
= 2ω1ur + ν∆uθ (1.18)

ur
∂uz

∂r
+ uz

∂uz

∂z
= − 1

ρo

∂P ′

∂z
+ ν∆uz − βg(T − TF ). (1.19)

Although it does not appear in these expressions, the angular velocity of the crystal is taken to be ω2k̂ which is
in the opposite direction to that of the crucible. In addition to these three equations, the fluid is incompressible
and the temperature satisfies expression (1.1). Thus in component form we have

1
r

∂

∂r
(rur) +

∂

∂z
uz = 0 (1.20)

ur
∂T

∂r
+ uz

∂T

∂z
=

kl

ρocl
∆T. (1.21)

Even without specifying any boundary conditions, the complexity of these five expressions precluded any
detailed simulation of the flow. However, it is known by observing the melt that there exist three distinct regions
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Figure 1.11: Experimentally observed flow pattern of the liquid InSb. The three major features are I: a buoyancy
drive cell; II: a cell driven by Ekman pumping; III: a transient spiral.
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Data Symbol Value
Growing Properties

Crystal Radius lr 0.03 m
Crucible Radius Rc 0.08 m

Liquid Properties
Melting Temperature TF 798.4 K
Density ρl 6.47 × 104 kg m−3

Thermal Conductivity kl 9.23 W m−1K−1

Heat Capacity ρlcl 1.7 × 106 J m−3K−1

Thermal Diffusivity α 5.4 × 10−6 m2s−1

Dynamic Viscosity ν 3.3 × 10−7 m2s−1

Coefficient of Expansion β 1 × 10−4 K−1

Table 1.1: A summary of the physical parameters of liquid InSb.

of flow as depicted in Figure 1.11. Cell I is a buoyancy driven cell from expression (1.19). Cell II results from
Ekman pumping and is a consequence of (1.17) and (1.18). Cell III is a complex spiral that is expected to exist
at higher rotation rates.

Over the next couple subsections each of these regions are analysed using the material parameters of the
liquid InSb and in preparation of this, these parameters are collected in Table 1.1.

1.8.1 Cell I

This cell is a buoyancy driven cell resulting from the upwelling of heated InSb at the outside wall of the crucible
and the subsequent radial inflow as the fluid cools. By comparing the relative strengths of the inertial, buoyancy
and viscosity forces on a packet of fluid the width and flow rate of this viscous boundary layer can be estimated.
Let the viscous boundary layer have thickness δI and an upward velocity of uI at the crucible wall. The
subscript refers to the cell under consideration. For the length scale, we choose the height of the crucible which
is approximately Rc. Balancing the three forces yields the expression

u2
I

Rc
' βg(T − TF ) ' νuI

δ2
I

and a little rearranging gives

ReI =
uIRc

ν
= Gr1/2

I , δI = Gr−1/4
I Rc

where ReI is the Reynolds number and GrI = βg(T − TF )R3
c/ν2 is the Grashof number. As with liquid metals,

the Prandtl number PrI = ν/α ' 0.061 � 1 which implies that there is a very thin viscous boundary as
compared to the thermal boundary layer so that the heat flow is driven by the thermal diffusivity.

To determine whether or not there is a convective flow we compute the Rayleigh number, Ra = GrPr. If
Ra exceeds a critical value (about 1100 for a free surface) then a convective flow is expected. In our case
T −TF ' 30 K so that RaI ' 2.8× 104 and indeed we predict that there will be a buoyancy cell. This buoyancy
cell is practically unavoidable in that one requires T − TF < 10−3K to prevent it. Having established that there
is a convective flow, the speed of the upwelling InSb is given by the relationship vo,IδI ' α or vo,I ' αGr1/4/Rc.
The flow rate around the cell is QI = 2πRcδIvo,I = 2παRc. Finally, in the core region the speed of the falling
fluid satisfies πl2rvi,I = 2παRc which implies that vi,I = 2αRc/l2r . Setting T − TF ' 30 K gives GrI = 1.4× 108,
ReI = 1.2 × 104, δI = 0.7 mm, vo,I = 7.4 mm s−1, vi,I = 0.97 mm s−1 and QI = 2.7 ml s−1.
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1.8.2 Cells II and III

The steady velocity of the rotating crystal at z = 0 produces a thin boundary layer at the surface. By assuming
a horizontal flow at the surface, expressions (1.18) and (1.19) reduce to

−2ωuθ + ν
∂2ur

∂z2
= 0

2ωur + ν
∂2uθ

∂z2
= 0

where ω = |ω1 − ω2| by taking into account the combined rotation of the crystal and the crucible. Letting
~vl(z = 0) = 〈0, vo, 0〉 and choosing limz→−∞ ~vl(z) = 0 in the geometry of Figure 1.2 we have the solution

~vl(z) = voe
z/δII 〈sin(z/δII), cos(z/δII), 0〉.

The thickness of the boundary layer, δII = π(ν/|ω1 −ω2|)1/2 and is chosen to be the depth at which the velocity
is opposite to that at the surface. This δII width is used to estimate the fluid heat flux back in Section 1.3.
Because the fluid does not rotate as a rigid body with respect to the crystal, we approximate the radial velocity
of the fluid to be a fixed proportion of its rigid value so that v ' γr|ω1 − ω2| with γ ' 0.05. To obtain the
velocity entering the Ekman layer we take v to be the radial speed of the fluid at a radius of twice the depth
of the Ekman layer so that r ' 2δII . This gives vo,II ' 2πγ(ν|ω1 − ω2|)1/2. By the structure of the Ekman
layer, the core velocity, vi,II at z = −δII is the same as vo,II except in the opposite direction. As for the flux,
this is simply QII = πl2rvo,II ' 2π2γl2r(ν|ω1 − ω2|)1/2. For the typical rotation rates, 1-10 rpm, one finds that
vi,II = vo,II ' 0.2 mm s−1 and QII = 0.65 ml s−1.

This leaves the transient spiral structure. It is expected that this is a result of the fluid entering the Ekman
layer having a velocity that far exceeds the speed at the core region of the buoyancy driven cell. Comparing
these two velocities gives the expression

α2

π2γ2ν
� |ω1 − ω2| l4r

R2
c

which indicates that this structure should appear at large rates of rotation. For the values indicated in Table
1.1 one would require |ω1 − ω2| � 28 Hz.

1.9 Shape of the Meniscus

The shape of the melt/gas interface, fl(r, t), is determined by the Laplace-Young equation which describes the
equilibrium configuration of a curved liquid surface under the effect of a gravitational field. For cylindrical growth
of a crystal the radius of the crystal, lr, changes according to the expression

dlr
dt

=
(

vp − dhr

dt

)
tan(θ − θo) (1.22)

where θo is the equilibrium contact angle of the surface with the vertical tangent at the triple point, θ is the
current contact angle, vp is the pull rate and dhr/dt is rate of change of the crystal height at the outer edge of
the crystal. Since the crucible is rotating, the shape of the meniscus and therefore the height of the triple point
above the surface z = 0 will be affected by this rotation.

Suppose that the fluid velocity is zero so that there are no coriolis effects and the steady state pressure
satisfies

−1
ρ
∇P = ∇

(
gz − 1

2
ω2r2

)

where ρ ' ρl is difference in density between the liquid and gas phases and where we have taken a rotation rate
of ω = ωk̂. In addition, the pressure drop across the melt surface, z = fl, is determined by the surface tension,
σl by

P = Po − σκ = Po − σl∇ ·
[ ∇fl

(1 + |∇fl|2)1/2

]
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Figure 1.12: Menisucus profile for the melt/gas interface, fl(r, t) for no rotation and at 10 rpm.

where κ is the curvature of the free surface.
Setting fl = h(r), combining these two expressions, and denoting derivatives with respect to r with dots one

obtains

−1
ρ
∇P = gḣ− ω2r − σ

ρ

d

dr

[
1
r

d

dr

(
rḣ

(1 + |ḣ|2)1/2

)]
= 0.

Letting r = ar∗, h = ah∗ with a2 = σl/ρlg and then dropping the stars gives the nonlinear second order ODE

ḧ +
ḣ

r
(1 + ḣ2) −

[
h − aω2

4g
(2r2 − R2

c)
]

= 0, lr/a ≤ r ≤ Rc/a

where ḣ(lr/a) = − cot(θo) and h(lr/a) is chosen so that

lim
r→∞

[
h(r) − aω2

4g
(2r2 − R2

c)
]

= 0

and at large radii h(r) approaches the parabolic surface due to the rotation of the crucible.
For InSb, σl = 0.434 J m−2, ρl = 6.47×104 kg m−3 and θo = 69o. Figure 1.12 illustrates the meniscus profile

for two cases: no rotation and for a rotation rate of 10 rpm. In both of these cases the crystal radius, lr = 3 cm
and Rc = 8 cm. Increasing the rotation rate drops the height of the triple point.

1.10 A Model for the Melt Height

Up to this point we have taken the coordinate system to be fixed at the crystal/melt interface so that the pulling
speed vp is the sum of the crystal pull rate and the rate at which the fluid level drops in the crucible. In this
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Figure 1.13: Position of the triple point as a function of the rotation rate.

section we will determine the proportion of effective pulling rate that is due to the dropping level of the fluid.
At any time t the mass of the fluid that leaves the crucible must equal the mass that is incorporated into the

crystal. That is,

ρl
∂Vl

∂t
= 2πρs

∫ R(t)

0

(
∂S

∂t
− vp

)
r dr (1.23)

where R(t) is the radius of the crystal at time t and S is the location of the crystal/melt interface. For Vl we
assume that the crucible is a hemisphere of radius Rc so that

Vl = π

(
2
3
R3

c + SR2
c −

1
3
S3

)
(1.24)

where −Rc ≤ S(t) ≤ 0. By assuming that the interface is essentially flat ∂S/∂r ' 0, expressions (1.23) and
(1.24) combine to give

∂S

∂t
=

vp

1 − ρl

ρs

(R2
c − S2)
R2(t)

(1.25)

with S(0) = 0 if one starts with an initially full crucible. Expression (1.25) provides an exact solution for the
height of the melt surface and can be used to accurately determine the appropriate rate at which to move the
crucible. Based on the geometry t ≤ tc where tc is the time at which the crystal comes in contact with the
crucible, S2(tc) + R2(tc) = R2

c . Consequently, the slope in expression (1.25), ∂S/∂t ≥ vp/(1 − ρl/ρs).
When the crystal radius is constant, (1.25) can be integrated to give a cubic equation for S but in general we

take R(t) = lr +vpt tanϕ where 2ϕ ' 4o is the growth angle. Figure 1.14 illustrates the height of the surface and
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Figure 1.14: The height of the fluid and the proportion of the effective pull rate due to the falling fluid as a
function of the non dimensionalized time. The solid line corresponds to ϕ = 2o while the dashed line is the case
of a constant radius, ϕ = 0.
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the proportion of the effective pull rate due to the falling liquid state for ϕ = 0 (constant radius) and ϕ = 8o.
For the constant radius case the rate at which the fluid falls is essentially constant until the height of the fluid
reaches about −0.75Rc. Over this region about 20% of the effective pull rate is due to the falling fluid. As the
level drops further, the rate of the falling fluid becomes the dominant effect. When ϕ = 2o the growing time is
reduced since the crystal reaches the sides of the crucible much earlier. However the same behaviour is observed
except that the fluid accounts for about 30% of the effective pull rate and this linear behaviour extends for a
shorter time period.

1.11 Conclusion

The main purpose of this work was to understand the growing process of InSb with the ultimate hope of growing
large radius crystals. Analysing the temperature distribution within the crystal allowed us to estimate the
growing rate by solving the Stefan problem. However, this relied on a very crude estimate for the heat flux from
the melt. Despite this drawback, it was noticed that the growth rate of the crystal/melt interface is larger at the
periphery of the crystal and that the temperature gradients are largest near the triple point. The temperature
distribution was used to calculate the von Mises stress. Calculation of the stress is essentially a post processing
analysis but could in principle incorporated into a feedback control system used to produce the crystal. One
question that has not been addressed is whether or not there exists temperature distributions that produce less
von Mises stress. Moreover, if such temperature profiles exist, what changes in the geometry of the growing
environment are required?

Another interesting problem is that of the fluid flows. Some heuristic analysis was performed but this appears
to be a finely balanced system between the Ekman pumping and the buoyancy flows. Further understanding of
this system would be very worthwhile yet complicated by the rotation of the crucible.

The rate which the radius of the crystal grows depends on the effective pull rate and the angle the fluid
makes with the extracted crystal. Computing the shape of the meniscus at various rotation rates illustrates that
increasing the rotation rate to 10 rpm drops the location of the triple point about one half the height of the
nonrotating meniscus. Since the shape of the meniscus determines the location of the triple point and it is near
this triple point that much of the thermal stress is generated, inclusion of this effect may be quite important to
determining the overall shape of the crystal/melt interface.

Many aspects of the problem of growing InSb crystals were investigated in the hopes of understanding the
growing process. Growing larger crystals seems to depend for the most part on controlling the temperature of
the surrounding hydrogen gas. Other elements of the growing method were investigated and it is hoped that
further work, perhaps on a model that incorporates most of these factors, will yield advances in this method.
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