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Abstract. A linear stability analysis is performed on a two-dimensional version of the “immersed
fiber problem”, formulated by C. Peskin to model the flow of fluid in the presence of a mesh of moving,
elastic fibers. The purpose of the analysis is to isolate the modes in the solution which are associated
with the fiber, and thereby determine the effect of the presence of a fiber on the fluid. The results are
used not only to make conclusions about the stability of the problem, but also to suggest guidelines
for developing numerical methods for flows with immersed fibers.
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1. Introduction. This paper is concerned with the stability of incompressible,
viscous fluid flows in the presence of moving, elastic fibers. A mesh of such fibers
was used by Peskin in [7] to model muscle tissue immersed in blood, leading to the
development of a numerical scheme for computing the flow of blood within the heart.
His “Immersed Boundary Method” facilitated realistic computations of flows with
complex, elastic structures suspended in fluid. The method was extended to a three-
dimensional model of the heart in [8] and has also been applied to various other
physical problems involving the motion of immersed elastic fibers (such as aquatic
animal locomotion in [4] and fluid flow in the inner ear in [2]). Recently, some theo-
retical work has been performed on the numerical methods used to compute problems
with immersed fibers; for example, the work of Beyer & LeVeque [1], Tu & Peskin [10]
and LeVeque & Li [5]. However, to our knowledge, no analysis has been performed
on the equations of motion themselves.

The basic idea in this paper is to examine the stability of the underlying differ-
ential equations for a simplified two-dimensional model of the immersed boundary
problem. By performing a linear analysis, we concentrate on the modes associated
with the fiber and thereby determine the stability characteristics of flows with im-
mersed fibers. Based on these analytical results, conclusions will be drawn regarding
not only the structure of the problem and hence the type of behaviour to expect in
computed solutions, but also the numerical methods which should be employed for
flows containing immersed fibers.

2. The Immersed Fiber Problem. To simplify the analysis, we will consider
a two-dimensional analogue of the three-dimensional problem posed by Peskin &
McQueen in [8] for the purpose of computing the flow of blood in the heart. First,
define a fluid domain ©Q C IR? within which is suspended a single, isolated fiber I
(refer to Figure 1). The fiber position is given by @ = (#,y) = X (s,t), where s is the
arclength along the fiber in some reference configuration. The fiber is assumed to have
zero mass and volume, and to adhere to adjacent fluid particles. Consequently, the
fluid and fiber may be considered as a composite material whose motion is described
by the single velocity field w = u(®,t) = (u(x,t), v(x,1)), with corresponding pressure
p(#,t). The fluid is taken to be Newtonian and incompressible, with constant density
and kinematic viscosity, v; hence, the motion of the fluid-fiber composite is governed
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Fia. 1. A two-dimensional model of the heart: the flurd domain, €2, which is divided into two
parts, Qt and Q~, by an isolated fiber T' immersed in the fluid. The subdomain o (delimited by
dashed lines) is the region considered in the linearized version of the immersed fiber problem.

by the Navier-Stokes equations,

(1) = —u-Vu+vAu—Vp+ F,

(2) V-u=0,

where both pressure and force have been normalized by the constant density. The
requirement that the fiber move at the local fluid velocity is equivalent to

(3) aa—)f = u(X(s,1),1).

One more element is needed to close the system, namely an expression for the
force F in (1). External forces are assumed to be negligible so that F must arise solely
from elastic forces exerted by the fiber on neighbouring fluid particles. Let T'(s,t) be
the force of tension in the fiber and assume that 7" is of the form

(4) r=o(|%|)-

s
Notice that |dX| = |0X /Js| - |ds|, where |dX]| is the distance between two points
on the fiber, and |ds| is the distance between the same two points in the reference
configuration; hence, |0X /9s| is a measure of the fiber strain. Then

0X
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is the unit tangent vector to the fiber. It may be shown (see [8]) that the local force
density applied to the fluid 1s

(6) f= 2.

Because the force is zero everywhere except on the fiber, F' is a distribution, and may
be written

(7) F(x,t)= /Ff(s,t)é(az—X(s,t))ds,

where J(®) is a two-dimensional delta function defined as a product of two Dirac
delta functions: d(x) = d(#)d(y). Equations (1)—(7) describe the coupled motion of
an elastic fiber interacting with the fluid in which it is immersed, and will be referred
to henceforward as the “immersed fiber problem”.

3. Linear Stability.

3.1. Problem Reformulation. The presence of a delta-function singularity in
the immersed fiber problem, leads us to recast the equations in an alternate form
which is more amenable to analysis. In the same spirit as Peskin & Printz [9], we
integrate equation (1) across the fiber, assuming the velocity is continuous across T,
thereby obtaining the following conditions:

(8) [u] =0,
(9) 1/T~[n~Vu]:—fa;,
Os
—[p]+1/n~[n~Vu]:—f8;.
Os

Here, [] = (-)[q+ — (-)|q- denotes the difference in a quantity on either side of the
fiber, and 7 is the unit normal vector to the fiber defined by n -7 = 0. The last jump
condition reduces to

(10) =~

upon application of (8) and the incompressibility condition (2). From (9) and (10), it
1s apparent that both the normal derivative of the velocity and the pressure may be
discontinuous across I'.

Instead of applying equations (1) and (2) on the whole domain €, we can avoid
the delta-function singularity in the forcing function by solving the Navier-Stokes
equations with zero force

(11) wy = —u-Vu+vAu — Vp,

(12) V-u=0,

separately on the two subdomains Q% and Q~ of £y (on each of which the solution
is continuous), and linking the solutions via the jump conditions (8)—(10). In the
resulting problem, (8)-(12), (3)—(6), the singular force has been eliminated in favour
of jumps across the fiber.
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3.2. Linearized Stability. To determine how a small perturbation in the fiber
affects the stability of the flow, consider a small section of the fiber (contained within
the subdomain €y C £ depicted in Figure 1) which is approximately horizontal.
Suppose that, at equilibrium, the fiber lies along y = 0, and 1s given a small initial
perturbation. For the purpose of isolating the influence of the fiber on the flow, let
us extend the boundaries of €y to infinity in the y-direction. This is a reasonable
assumption, since we expect that the important dynamics (that is, the dynamics
which distinguish fluids with immersed fibers from those without) will occur in the
region near the fiber. It also serves to pinpoint modes associated solely with the fiber,
since there are no non-trivial discrete modes of Stokes’ equations without an immersed
fiber on a domain of infinite extent.

A common form of the fiber tension used in immersed boundary computations (for
example, in [10] and [9]) is T' = S(|0X /9s| — 1), where S is a constant, corresponding
to a fiber which is slack in the reference state, [0X /Js| = 1. In actual computations,
however, the fiber is always taken to be under stress, particularly when then system
is at equilibrium (i.e. when the fluid and fiber are at rest, and the force is zero).
Hence, we choose an equilibrium state defined by |0X /ds| = § > 1, around which
the solution is linearized by supposing a perturbation of the form

(13) X(S’t) = (56 —|—€(5,t),7](5,t)),

(refer to Figure 2) and assuming that £, 7, w and their derivatives are small, at least
for some finite time. The linear versions of equations (11) and (12) are simply the

equilibrium
state X = (Bs,0)

fiber /

e material points (evolved) X=X(st)

O material points (equilibrium)

Fia. 2. Fiber configuration for the 2D model problem.

Stokes equations

(14) wy = vAu — Vp,

(15) V-u=0,
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while the fiber evolution equation (3) becomes

0X

(16) o

= u(s,0,1).

Differentiating (13) with respect to s and dropping non-linear terms yields

0X

E = (64‘55,775),
0X
‘E =3+,

which may then be used to obtain the linearized version of (5)

T = (LUS/ﬁ)'

Expand the tension T from (4) in a Taylor series about the equilibrium state |0.X /Js| = 3
to get

T =09+ 01&s

where og = ¢(3)/3 and o1 = ¢'(F). As stated earlier, we assume that the fiber is
always under tension, and further that the tension is an increasing function of the
fiber strain, which for the linear force function amounts to taking og > 0 and o1 > 0.
The following physical interpretation may be given to the two tension parameter
values:
e oy represents a constant tension in the fiber which (because of its positive
sign) acts to restore the fiber to the horizontal whenever any portion is dis-
placed vertically from its equilibrium state. Taking oy = 0 corresponds to a
fiber which is slack in its reference state.
e o1 measures the effect that changes in the length of the fiber have on the ten-
sion; this parameter is also positive, since stretching (£, > 0) or compressing
(&5 < 0) the fiber amounts to increasing or decreasing the tension.
The above expressions for 7" and 7 may be substituted into (6) to obtain the force
density

f = (Ulgssa 0-07755);

from which the following jumps are derived from (8)—(10)

(17) [u] =0,
(18) [v] =0,
(19) [Vg_Z] = —01&ss,
(20) - [p] = —00Mss-

The linearized version of the immersed fiber problem is now given by equations (14)-
(20).

It is evident from equation (20) that the pressure may be discontinuous across
the fiber. This 1s of particular concern for the Immersed Boundary Method, which
applies a projection scheme over the entire domain, without any special treatment at
the discontinuity. Since the projection method assumes a continuous pressure field,
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care must be taken to ensure that employing a projection scheme to solve the immersed
fiber problem does not introduce any spurious results in numerical computations. On
the other hand, the formulation (8)—(12), (3)-(6), in terms of interfacial jumps, should
have no such problem since it allows the projection to be applied separately on the
two subdomains, each of which has continuous pressure.

In order to isolate the modes associated with the immersed fiber, we look for two
separable solutions of the form

y)
(y)
(v)

PN

£
1

) <) )
<

— e>\t+iocx

(21)

o

~

0

[ s e o2

one on each of the two halves of the domain €2y. The wavenumber, «a, 1s real, and
we assume, for the moment, that « is positive (we rule out the case of o = 0, since
this leads simply to the trivial solution). By substituting (21) into (14), forming the
linear combination iati + dv/dy, and applying the incompressibility condition (15),
we get a second order, linear differential equation for the pressure. After imposing
the requirement that the solution be bounded as y — £oo, the solution i1s determined
on either side (“4”) of the fiber to be

(22) pE(y) = ATeTov,

We then substitute this expression for the pressure into (14) and (16) to get

(23) at(y) = BEFH %Aiew
(24) T (y) = CeF £ %Aiewy
~ 1 Yo
N 1 «
(26) o = XC-I— + FA-I_

where A% B* and C* are constants, and p? = o® + % Here, we’ve assumed
that Re(p) > 0 (for uniqueness) and that g # « (i.e. A # 0). Next, we apply the
incompressibility condition (15) to the velocities on either side of the fiber, as well as
the four jump conditions (17)—(20), which leads to a homogeneous system of six linear
equations in the six unknown coefficients. To ensure that there exists a non-trivial
solution, we require that the determinant of the system is zero which, after some
manipulation, reduces to the following expression

09 a1
(27 (p+ap® = o = ot 5a®) (1 +ap’ — ap— o + —5a?) = 0.
In the case when A = 0, it may be shown that only the trivial solution satisfies

equations (14)—(20) (and hence the requirement that p # «). Recall the earlier
assumption that a > 0. If we consider the case a < 0, the solution for the pressure in
(22) is slightly modified, which leads to a dispersion relation identical to (27) except
that « is replaced by —a. Hence, we may limit our discussion of the stability of the
solution to modes with positive wavenumber.
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An important consequence of the linearization process is that the modes corre-
sponding to the normal and tangential motion of the fiber are decoupled. Of the
two factors in equation (27), the first depends on oy only (which encompasses the
normal motion of the fiber), and the other solely on o1 (corresponding to a tangential
motion). This decoupling is illustrated by the solution plots given in Section 3.3.4.

3.3. Results. To simplify the analysis in this section, we recast the problem in
terms of the following dimensionless variables:

(28) ﬁ:ﬂ/("l), a:a/(‘”) X:A/(%), and y= 22,

ﬁ ﬁ 01
The dispersion relation (27) may now be written

ot s s s Vgiieg  an g g L
(29)  ('+ap-ap-atn+ %a?’)(u?’ +apt - @ - & 4 5% =0,

where X = - a2

Since (29) is a polynomial equation in i with factors of degree 3 and 4, analytic
expressions for the roots are easily derived using the symbolic algebra package Maple
[3]. A contour plot of the largest growth rate, Re(A), is given in Figure 3 for a range
of & and =, with the region of stability (where Re(X) < 0) denoted by dashed lines.
It is not surprising that this is precisely the region where v > 0 (i.e. og > 0 and
o1 > 0); that is, the fiber modes are stable when the tension force acts to oppose any
stretching or curvature of the fiber.

Unfortunately, the foregoing discussion does not allow us to conclude that the
immersed fiber problem is stable. By extending €2y to infinity in the y-direction, we
picked out the modes arising solely from the presence of the fiber, and so demonstrated
that these interfacial modes decay in time. To draw conclusions about the stability
of the full spectrum requires an analysis of the doubly-periodic domain (for which
the Stokes equations without an immersed fiber exhibit modes with a growth rate
A = —va? o an integer). The dispersion relation for the periodic case is not a
polynomial, but rather a transcendental equation, from which it is difficult, if not
impossible, to obtain all modes.

Nevertheless, we can still glean some useful information from the previous analysis
of the immersed fiber problem. Now that the modes associated with the fiber are
known to be linearly stable, we’d like to attack the question: “How rapidly does a
perturbation in the fiber die out in timel” To simplify our investigation of the solution
modes, 1t is appropriate to consider three cases: namely that of small, intermediate
and large values of the non-dimensionalized wavenumber, &. The small a case is
the one we are really interested in (since Peskin’s numerical examples fall into this
regime), and the other two cases are included for completeness.

3.3.1. Small wavenumber. Equation (29) was solved for v = 2, and all “phys-
ical” roots (i.e. roots for which Re(f) > 0) were plotted in Figure 4 for values of
@ € 10,0.5]. An explicit form for the dependence of the growth rate on the wavenum-
ber may be determined by computing a regular asymptotic expansion for each root
in powers of the non-dimensionalized wavenumber &, as & — 0. There are, in fact,
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-2.1 2.4 2.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.1

CONTOUR FROM -1 .0000 T0 1.8000 CONTOUR INTERVAL OF @ 10000 PT(3,3)= @ .33296E-01

Fia. 3. Contours of the mazimum scaled growth rate Re(\) plotted versus v = g—‘; and scaled

wavenumber . The stable region is marked by dashed contours and lies above and to the right of
the 0.0 contour.

two complex conjugate pairs of roots, given in terms of dimensional variables as
1 . 1
. fooNz 2 v(l+i) fogNT Vo, e
A+ ~ (—) T oA (—) TG 0 ! ’
o ~ivlgs) @ o5 \22 a e +O0(ax)

A . (o] % 3 I/(l—l) (o] % 7 14 2 ~9
3~ —iv(g5) of - S () et - qet 0@,

3y~ oSV (o) s rLED (000 5 o),

2 2w? V3 \a?
O v(14+iV3) (o1 \3 s V(=4 ro1NE s 1
W~ =T () e - V3 (52) of + 0@,

which substantiates the results in Figure 4. Note that beyond a value of & & 0.4,
two of the roots merge and split into a pair of real roots, and shortly thereafter (at
« /2 0.5), one of those roots (A*) becomes non-physical (i.e. Re(pt) becomes negative).

The asymptotic expressions given above may be used to relate the linear stability
of the immersed fiber problem to the stiffness of an associated numerical scheme such
as the Immersed Boundary Method. A typical computation, such as that in [6], is on
a domain Q = [0, 1]%, with a grid spacing of Az = Ay = 1/64 (all measurements being
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Fia. 4. Plots of the real and imaginary part of the scaled growth rate X versus wavenumber &
for each of the physical roots, denoted by +, A, O and X. The value of v is taken to be 2.

in ¢m). This discretization allows the computation to resolve modes with a maximum
wavenumber of apay = 1/Az = 64. We can assess the stiffness of the method by
considering the growth of modes with wavenumbers restricted to the range o € [0, 64].

As mentioned earlier, it is the small wavenumber regime which is of most interest,
because this is where Peskin’s computations are found to lie. Based on the information
in [6], we take the parameters to be v = 0.01 em/s? and o9 = o1 = 10,000 em?/s?
(i.e. ¥ = 1). For a € [0, 64], the non-dimensionalized wavenumber lies in the range
a € [0,6.4 x 107°], which clearly indicates that Peskin’s numerical examples lie in the
small wavenumber region. It may not be appropriate to take the maximum « to be
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as large as 64, since the approximation to the delta-function used in the Immersed
Boundary Method may serve to lower the effective wavenumber in computations.
However, we will use this value to illustrate the stiffness in the problem, which 1s
present even for smaller o.

In the course of his immersed boundary computations, Peskin has observed that a
very small time step is required in order to achieve stability. This seems to suggest that
the problem is stiff, and we’d like to find an explanation for this stiffness in terms of the
analytical results above. Examining the asymptotic expressions for the growth rates,
we find that the highest wavenumber (o = 64) leads to Re(At) = Re(A2) ~ —4.4x10?
and Re(A*) = Re(A\") = —1.8 x 10°. Hence, the fiber modes have eigenvalues with
Re(A\) € [-1.8x 105, 0], which can be compared to the modes of Stokes equations with
A = —va? € [-4.1 x 10*,0]. By observing the wide disparity in growth rates, it is
clear that the immersed fiber problem is stiff and, in fact, the stiffness is much more
severe than that present in a Stokes flow without immersed fibers. This deterioration
in conditioning of the problem is due to the modes which arise from the interaction
of the fiber with the fluid, through the combination of large fiber tension parameters,
oo and/or o1, and small viscosity.

In terms of numerical computations, the presence of stiff modes suggests the use
of an implicit time-stepping scheme. The analytical justification given here backs
up the conclusion of Tu & Peskin in [10] that by applying a fully implicit scheme, a
considerable improvement in numerical stability can be realized. They also observe
that “in 1ts present form, the fully implicit scheme is probably too expensive for
practical application”[10, p. 1376], and suggest that a more efficient implementation
be developed. It is our hope that the analysis given here may help in devising a more
efficient scheme, by allowing the stiff interface modes to be singled out.

3.3.2. Intermediate wavenumber. Figure 5 contains a plot of the scaled growth
rate A for values of @ in the intermediate range [0, 2]. It is evident that, in addition to
the bifurcation at @ & 0.4, mentioned in the previous section, there is a similar point
at @ = 1.7, at which a complex conjugate pair merges and splits into two real roots.

3.3.3. Large wavenumber. Figure 6 depicts Xfor a € [0,5]. To determine the
dependence of A on « for large «, we again perform an asymptotic expansion of the
roots as & — oo to obtain the following three real roots (in terms of dimensional
variables):

2 3
u] 01 07 3oy -1 ~_2
Ao~ T LY T s Toos® PO
A oo 303 1903 | 2
Ao ™ Y T 5ma T Toows® O,
2 3
+ 2 09 0g 1 ~_
AOON—I/OZ +E—EOZ +0(0[ )

It is clear that AZ and A% grow linearly in o to first order, while the expansion for
AL certifies that the third mode varies quadratically with the wavenumber, which is
suggested by the shape of the curves in Figure 6. Like solutions to Stokes’ equations
without an immersed fiber, the mode represented by A gives rise to stiffness in the
problem, for as the wavenumber varies, the growth rates take on widely disparate
values. However, the presence of a fiber gives rise to an additional source of stiffness
in AL and A% . For these two modes, A may be large even for moderate values of «
if the viscosity is small or the tension parameters o1 or og are large. However, when
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Fia. 5. Plots of the real and imaginary parts of the scaled growth rate versus wavenumber for
each of the physical roots , denoted by +, x, O and A. In this plot, it is clear that there are two
bifurcation points, at values of approzimately 0.4 and 1.7, where two complex conjugate roots merge
and split into two real roots.

« is taken large enough (i.e. when the solution is resolved to a fine enough level), the
Stokes-like mode (A1) is the dominant one.

3.3.4. Solution plots. Figure 7 gives a pictorial representation of the the modes
found by substituting the values for A and u into the solutions from (22)—(26), with
parameter values v = 1, 09p = 1, 0y = 1, @« = 1 and ¢t = 0. There are only three
“real” modes satisfying the condition Re(y) > 0. The plots for A” correspond to
the mode which arises from the factor in (27) involving o1, and thus embody the
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Fia. 6. Plot of the nondimensionalized growth rate Re(fAv) versus o for each of the three roots
satisfying Re(u) > 0. The value of v is taken here to be 2. The imaginary part of the roots is zero
for all values of scaled o > 1.7.

horizontal expansion and contraction of the fiber (which is obvious from the velocity
vector plot). The normal velocity and pressure for A® are smooth, while the tangential
velocity is not; hence, the fiber force for this mode arises solely from the first jump
condition (19). On the other hand, the remaining two modes, A® and A*, comprise
the normal (vertical) motion of the fiber. The source of this motion is the constant
tension, ¢p, which acts normal to the fiber, and arises from the second jump condition
(20). The modes in this case have a smooth velocity and discontinuous pressure.

4. Summary and Conclusions. Eliminating the delta-function in favour of
jump conditions in the immersed fiber problem allows us to split the problem into two
continuous ones, which are more amenable to analysis. The linearized problem yields
interesting observations regarding the behaviour of solutions which give insight into
flows in the presence of immersed fibers. Furthermore, the dependence of the modes
on the wavenumber helps guide us in selecting an appropriate numerical scheme.

It is clear from the jump condition (10) that the pressure is discontinuous. A
projection method which is based on the “jump” formulation has the advantage that
the projection step will not be applied across the fiber, but only on subdomains where
the pressure 1s continuous. It is unclear what effect the discontinuity will have on the
projection step in the Immersed Boundary Method, and so this question deserves
further investigation.

After examining the dependence of the growth rate on values of the parameters
which define the linearized fiber tension, it is evident that the solutions modes arising
solely from the interaction of an immersed fiber with the surrounding fluid are stable
for precisely those tension forces which are physically reasonable. That is, instability
occurs only for the non-physical case where contraction or expansion of the fiber 1s
accompanied by “positive feedback”.

By solving for the roots of the modal equation numerically, we discovered that
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the growth rates of the solution modes vary to a wide degree, and hence the problem
is stiff. Furthermore, the main source of stiffness is not the modes arising from
the Stokes flow, but rather those originating from the interaction of the fluid with
the fiber. We conclude that a numerical scheme will have to employ implicit time-
stepping of some type in order to devise an efficient scheme. Tu & Peskin made the
same conclusion based on numerical evidence, but also found that the use of a fully
implicit scheme is impractical. Asymptotic expansions of the roots for both large and
small wavenumbers are used to back up the observations, and give an explicit form
for the dependence of the growth rate on the parameters in the problem. This verifies
that the presence of the fiber has a significant effect on the flow, which is of particular
importance in computations.

Notwithstanding the stiffness arising from the interfacial modes, there is still
hope for improving the conditioning of the Immersed Boundary Method by singling
out the problem modes. In particular, it may be possible to derive a semi-implicit
scheme which handles the stiff interfacial modes in a special way, without requiring
the expensive step to a fully implicit solver.

Acknowledgements. We would like to thank Randall LeVeque and Charles Pe-
skin for their helpful comments.
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