
STABILITY ANALYSIS FOR THE IMMERSED FIBER PROBLEM �JOHN M. STOCKIEy AND BRIAN T. R. WETTONyAbstract. A linear stability analysis is performedon a two-dimensional version of the \immersed�ber problem", formulatedby C. Peskin to model the 
ow of 
uid in the presence of a mesh of moving,elastic �bers. The purpose of the analysis is to isolate the modes in the solution which are associatedwith the �ber, and thereby determine the e�ect of the presence of a �ber on the 
uid. The results areused not only to make conclusions about the stability of the problem, but also to suggest guidelinesfor developing numerical methods for 
ows with immersed �bers.Key words. immersed boundary problem, linear stabilityAMS subject classi�cations. (primary) 35B30, (secondary) 76D05, 65M121. Introduction. This paper is concerned with the stability of incompressible,viscous 
uid 
ows in the presence of moving, elastic �bers. A mesh of such �berswas used by Peskin in [7] to model muscle tissue immersed in blood, leading to thedevelopment of a numerical scheme for computing the 
ow of blood within the heart.His \Immersed Boundary Method" facilitated realistic computations of 
ows withcomplex, elastic structures suspended in 
uid. The method was extended to a three-dimensional model of the heart in [8] and has also been applied to various otherphysical problems involving the motion of immersed elastic �bers (such as aquaticanimal locomotion in [4] and 
uid 
ow in the inner ear in [2]). Recently, some theo-retical work has been performed on the numerical methods used to compute problemswith immersed �bers; for example, the work of Beyer & LeVeque [1], Tu & Peskin [10]and LeVeque & Li [5]. However, to our knowledge, no analysis has been performedon the equations of motion themselves.The basic idea in this paper is to examine the stability of the underlying di�er-ential equations for a simpli�ed two-dimensional model of the immersed boundaryproblem. By performing a linear analysis, we concentrate on the modes associatedwith the �ber and thereby determine the stability characteristics of 
ows with im-mersed �bers. Based on these analytical results, conclusions will be drawn regardingnot only the structure of the problem and hence the type of behaviour to expect incomputed solutions, but also the numerical methods which should be employed for
ows containing immersed �bers.2. The Immersed Fiber Problem. To simplify the analysis, we will considera two-dimensional analogue of the three-dimensional problem posed by Peskin &McQueen in [8] for the purpose of computing the 
ow of blood in the heart. First,de�ne a 
uid domain 
 � IR2 within which is suspended a single, isolated �ber �(refer to Figure 1). The �ber position is given by x = (x; y) = X(s; t), where s is thearclength along the �ber in some reference con�guration. The �ber is assumed to havezero mass and volume, and to adhere to adjacent 
uid particles. Consequently, the
uid and �ber may be considered as a composite material whose motion is describedby the single velocity �eld u = u(x; t) = (u(x; t); v(x; t)), with corresponding pressurep(x; t). The 
uid is taken to be Newtonian and incompressible, with constant densityand kinematic viscosity, �; hence, the motion of the 
uid-�ber composite is governed� Both authors were supported by grants from NSERC Canada.y Institute of Applied Mathematics, University of British Columbia, Vancouver, BC, Canada1
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Fig. 1. A two-dimensional model of the heart: the 
uid domain, 
, which is divided into twoparts, 
+ and 
�, by an isolated �ber � immersed in the 
uid. The subdomain 
0 (delimited bydashed lines) is the region considered in the linearized version of the immersed �ber problem.by the Navier-Stokes equations,ut = �u � ru+ ��u�rp+ F ;(1) r � u = 0;(2)where both pressure and force have been normalized by the constant density. Therequirement that the �ber move at the local 
uid velocity is equivalent to@X@t = u(X(s; t); t):(3) One more element is needed to close the system, namely an expression for theforce F in (1). External forces are assumed to be negligible so that F must arise solelyfrom elastic forces exerted by the �ber on neighbouring 
uid particles. Let T (s; t) bethe force of tension in the �ber and assume that T is of the formT = ������@X@s ����� :(4)Notice that jdXj = j@X=@sj � jdsj, where jdXj is the distance between two pointson the �ber, and jdsj is the distance between the same two points in the referencecon�guration; hence, j@X=@sj is a measure of the �ber strain. Then� = @X@s����@X@s ����(5)



STABILITY ANALYSIS FOR THE IMMERSED FIBER PROBLEM 3is the unit tangent vector to the �ber. It may be shown (see [8]) that the local forcedensity applied to the 
uid is f = @@s (T� ) :(6)Because the force is zero everywhere except on the �ber, F is a distribution, and maybe written F (x; t) = Z� f (s; t)�(x�X(s; t))ds;(7)where �(x) is a two-dimensional delta function de�ned as a product of two Diracdelta functions: �(x) = �(x)�(y). Equations (1){(7) describe the coupled motion ofan elastic �ber interacting with the 
uid in which it is immersed, and will be referredto henceforward as the \immersed �ber problem".3. Linear Stability.3.1. Problem Reformulation. The presence of a delta-function singularity inthe immersed �ber problem, leads us to recast the equations in an alternate formwhich is more amenable to analysis. In the same spirit as Peskin & Printz [9], weintegrate equation (1) across the �ber, assuming the velocity is continuous across �,thereby obtaining the following conditions: [u] = 0;(8) �� � [n � ru] = � f � �����@X@s ���� ;(9) � [p] + �n � [n � ru] = � f �n����@X@s ���� :Here, [�] = (�)j
+ � (�)j
� denotes the di�erence in a quantity on either side of the�ber, and n is the unit normal vector to the �ber de�ned by n �� = 0. The last jumpcondition reduces to � [p] = � f �n����@X@s ���� ;(10)upon application of (8) and the incompressibility condition (2). From (9) and (10), itis apparent that both the normal derivative of the velocity and the pressure may bediscontinuous across �.Instead of applying equations (1) and (2) on the whole domain 
, we can avoidthe delta-function singularity in the forcing function by solving the Navier-Stokesequations with zero force ut = �u � ru+ ��u�rp;(11) r � u = 0;(12)separately on the two subdomains 
+ and 
� of 
0 (on each of which the solutionis continuous), and linking the solutions via the jump conditions (8){(10). In theresulting problem, (8){(12), (3){(6), the singular force has been eliminated in favourof jumps across the �ber.



4 J. M. STOCKIE AND B. T. R. WETTON3.2. Linearized Stability. To determine how a small perturbation in the �bera�ects the stability of the 
ow, consider a small section of the �ber (contained withinthe subdomain 
0 � 
 depicted in Figure 1) which is approximately horizontal.Suppose that, at equilibrium, the �ber lies along y = 0, and is given a small initialperturbation. For the purpose of isolating the in
uence of the �ber on the 
ow, letus extend the boundaries of 
0 to in�nity in the y-direction. This is a reasonableassumption, since we expect that the important dynamics (that is, the dynamicswhich distinguish 
uids with immersed �bers from those without) will occur in theregion near the �ber. It also serves to pinpoint modes associated solely with the �ber,since there are no non-trivial discrete modes of Stokes' equations without an immersed�ber on a domain of in�nite extent.A common form of the �ber tension used in immersed boundary computations (forexample, in [10] and [9]) is T = S(j@X=@sj�1), where S is a constant, correspondingto a �ber which is slack in the reference state, j@X=@sj = 1. In actual computations,however, the �ber is always taken to be under stress, particularly when then systemis at equilibrium (i.e. when the 
uid and �ber are at rest, and the force is zero).Hence, we choose an equilibrium state de�ned by j@X=@sj = � > 1, around whichthe solution is linearized by supposing a perturbation of the formX(s; t) = (s� + �(s; t); �(s; t));(13)(refer to Figure 2) and assuming that �, �, u and their derivatives are small, at leastfor some �nite time. The linear versions of equations (11) and (12) are simply the
equilibrium
state  x = (βs,0)

x = X(s,t)
fiber

ξ

η

material points (equilibrium)

material points (evolved)Fig. 2. Fiber con�guration for the 2D model problem.Stokes equations ut = ��u�rp;(14) r � u = 0;(15)



STABILITY ANALYSIS FOR THE IMMERSED FIBER PROBLEM 5while the �ber evolution equation (3) becomes@X@t = u(s; 0; t):(16)Di�erentiating (13) with respect to s and dropping non-linear terms yields@X@s = (� + �s; �s);����@X@s ���� = � + �s;which may then be used to obtain the linearized version of (5)� = (1; �s=�):Expand the tension T from (4) in a Taylor series about the equilibrium state j@X=@sj = �to get T = �0 + �1�swhere �0 � �(�)=� and �1 � �0(�). As stated earlier, we assume that the �ber isalways under tension, and further that the tension is an increasing function of the�ber strain, which for the linear force function amounts to taking �0 > 0 and �1 > 0.The following physical interpretation may be given to the two tension parametervalues:� �0 represents a constant tension in the �ber which (because of its positivesign) acts to restore the �ber to the horizontal whenever any portion is dis-placed vertically from its equilibrium state. Taking �0 = 0 corresponds to a�ber which is slack in its reference state.� �1 measures the e�ect that changes in the length of the �ber have on the ten-sion; this parameter is also positive, since stretching (�s > 0) or compressing(�s < 0) the �ber amounts to increasing or decreasing the tension.The above expressions for T and � may be substituted into (6) to obtain the forcedensity f = (�1�ss; �0�ss);from which the following jumps are derived from (8){(10)[u] = 0;(17) [v] = 0;(18) �� @u@y � = ��1�ss;(19) � [p] = ��0�ss:(20)The linearized version of the immersed �ber problem is now given by equations (14){(20).It is evident from equation (20) that the pressure may be discontinuous acrossthe �ber. This is of particular concern for the Immersed Boundary Method, whichapplies a projection scheme over the entire domain, without any special treatment atthe discontinuity. Since the projection method assumes a continuous pressure �eld,



6 J. M. STOCKIE AND B. T. R. WETTONcare must be taken to ensure that employing a projection scheme to solve the immersed�ber problem does not introduce any spurious results in numerical computations. Onthe other hand, the formulation (8){(12), (3){(6), in terms of interfacial jumps, shouldhave no such problem since it allows the projection to be applied separately on thetwo subdomains, each of which has continuous pressure.In order to isolate the modes associated with the immersed �ber, we look for twoseparable solutions of the form8>>>><>>>>: uvp�� 9>>>>=>>>>; = e�t+i�x8>>>><>>>>: bu(y)bv(y)bp(y)b�0b�0 9>>>>=>>>>; ;(21)one on each of the two halves of the domain 
0. The wavenumber, �, is real, andwe assume, for the moment, that � is positive (we rule out the case of � = 0, sincethis leads simply to the trivial solution). By substituting (21) into (14), forming thelinear combination i�bu + dbv=dy, and applying the incompressibility condition (15),we get a second order, linear di�erential equation for the pressure. After imposingthe requirement that the solution be bounded as y !�1, the solution is determinedon either side (\�") of the �ber to bebp�(y) = A�e��y:(22)We then substitute this expression for the pressure into (14) and (16) to getbu�(y) = B�e��y � i�� A�e��y(23) bv�(y) = C�e��y � ��A�e��y(24) b�0 = 1�B+ � i��2A+(25) b�0 = 1�C+ + ��2A+(26)where A�, B� and C� are constants, and �2 := �2 + �� . Here, we've assumedthat Re(�) � 0 (for uniqueness) and that � 6= � (i.e. � 6= 0). Next, we apply theincompressibility condition (15) to the velocities on either side of the �ber, as well asthe four jump conditions (17){(20), which leads to a homogeneous system of six linearequations in the six unknown coe�cients. To ensure that there exists a non-trivialsolution, we require that the determinant of the system is zero which, after somemanipulation, reduces to the following expression(�4 + ��3 � �2�2 � �3�+ �02�2�3)(�3 + ��2 � �2�� �3 + �12�2�2) = 0:(27)In the case when � = 0, it may be shown that only the trivial solution satis�esequations (14){(20) (and hence the requirement that � 6= �). Recall the earlierassumption that � > 0. If we consider the case � < 0, the solution for the pressure in(22) is slightly modi�ed, which leads to a dispersion relation identical to (27) exceptthat � is replaced by ��. Hence, we may limit our discussion of the stability of thesolution to modes with positive wavenumber.



STABILITY ANALYSIS FOR THE IMMERSED FIBER PROBLEM 7An important consequence of the linearization process is that the modes corre-sponding to the normal and tangential motion of the �ber are decoupled. Of thetwo factors in equation (27), the �rst depends on �0 only (which encompasses thenormal motion of the �ber), and the other solely on �1 (corresponding to a tangentialmotion). This decoupling is illustrated by the solution plots given in Section 3.3.4.3.3. Results. To simplify the analysis in this section, we recast the problem interms of the following dimensionless variables:e� = �=��1�2� ; e� = �=��1�2� e� = �=��21�3� ; and 
 = �0�1 :(28)The dispersion relation (27) may now be written(e�4 + e� e�3 � e�2e�2 � e�3e�+ 
2 e�3)(e�3 + e�e�2 � e�2e�� e�3 + 12 e�2) = 0;(29)where e� = e�2 � e�2.Since (29) is a polynomial equation in e� with factors of degree 3 and 4, analyticexpressions for the roots are easily derived using the symbolic algebra package Maple[3]. A contour plot of the largest growth rate, Re(e�), is given in Figure 3 for a rangeof e� and 
, with the region of stability (where Re(e�) < 0) denoted by dashed lines.It is not surprising that this is precisely the region where 
 > 0 (i.e. �0 > 0 and�1 > 0); that is, the �ber modes are stable when the tension force acts to oppose anystretching or curvature of the �ber.Unfortunately, the foregoing discussion does not allow us to conclude that theimmersed �ber problem is stable. By extending 
0 to in�nity in the y-direction, wepicked out the modes arising solely from the presence of the �ber, and so demonstratedthat these interfacial modes decay in time. To draw conclusions about the stabilityof the full spectrum requires an analysis of the doubly-periodic domain (for whichthe Stokes equations without an immersed �ber exhibit modes with a growth rate� = ���2, � an integer). The dispersion relation for the periodic case is not apolynomial, but rather a transcendental equation, from which it is di�cult, if notimpossible, to obtain all modes.Nevertheless, we can still glean some useful information from the previous analysisof the immersed �ber problem. Now that the modes associated with the �ber areknown to be linearly stable, we'd like to attack the question: \How rapidly does aperturbation in the �ber die out in time?" To simplify our investigation of the solutionmodes, it is appropriate to consider three cases: namely that of small, intermediateand large values of the non-dimensionalized wavenumber, e�. The small e� case isthe one we are really interested in (since Peskin's numerical examples fall into thisregime), and the other two cases are included for completeness.3.3.1. Small wavenumber. Equation (29) was solved for 
 = 2, and all \phys-ical" roots (i.e. roots for which Re(e�) > 0) were plotted in Figure 4 for values ofe� 2 [0; 0:5]. An explicit form for the dependence of the growth rate on the wavenum-ber may be determined by computing a regular asymptotic expansion for each rootin powers of the non-dimensionalized wavenumber e�, as e� ! 0. There are, in fact,
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Fig. 3. Contours of the maximum scaled growth rate Re(e�) plotted versus 
 = �0�1 and scaledwavenumber e�. The stable region is marked by dashed contours and lies above and to the right ofthe 0.0 contour.two complex conjugate pairs of roots, given in terms of dimensional variables as�+0 � i� � �02�2� 12 � 32 � �(1 + i)2p2 � �02�2� 14 � 74 � �4�2 + O(e� 94 );�40 � �i� � �02�2�12 � 32 � �(1� i)2p2 � �02�2�14 � 74 � �4�2 +O(e� 94 );��0 � ��(1� ip3)2 � �12�2� 23 � 43 � �(1 + i)p3 � �12�2�13 � 53 +O(e� 73 );�20 � ��(1 + ip3)2 � �12�2� 23 � 43 � �(1� i)p3 � �12�2�13 � 53 +O(e� 73 );which substantiates the results in Figure 4. Note that beyond a value of e� � 0:4,two of the roots merge and split into a pair of real roots, and shortly thereafter (at� � 0:5), one of those roots (��) becomes non-physical (i.e. Re(�) becomes negative).The asymptotic expressions given above may be used to relate the linear stabilityof the immersed �ber problem to the sti�ness of an associated numerical scheme suchas the Immersed Boundary Method. A typical computation, such as that in [6], is ona domain 
 = [0; 1]2, with a grid spacing of �x = �y = 1=64 (all measurements being
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Fig. 4. Plots of the real and imaginary part of the scaled growth rate e� versus wavenumber e�for each of the physical roots, denoted by +, 4, 2 and �. The value of 
 is taken to be 2.in cm). This discretization allows the computation to resolve modes with a maximumwavenumber of �max = 1=�x = 64. We can assess the sti�ness of the method byconsidering the growth of modes with wavenumbers restricted to the range � 2 [0; 64].As mentioned earlier, it is the small wavenumber regime which is of most interest,because this is where Peskin's computations are found to lie. Based on the informationin [6], we take the parameters to be � = 0:01 cm=s2 and �0 = �1 = 10; 000 cm3=s2(i.e. 
 = 1). For � 2 [0; 64], the non-dimensionalized wavenumber lies in the rangee� 2 [0; 6:4�10�5], which clearly indicates that Peskin's numerical examples lie in thesmall wavenumber region. It may not be appropriate to take the maximum � to be



10 J. M. STOCKIE AND B. T. R. WETTONas large as 64, since the approximation to the delta-function used in the ImmersedBoundary Method may serve to lower the e�ective wavenumber in computations.However, we will use this value to illustrate the sti�ness in the problem, which ispresent even for smaller �.In the course of his immersed boundary computations, Peskin has observed that avery small time step is required in order to achieve stability. This seems to suggest thatthe problem is sti�, and we'd like to �nd an explanation for this sti�ness in terms of theanalytical results above. Examining the asymptotic expressions for the growth rates,we �nd that the highest wavenumber (� = 64) leads toRe(�+) = Re(�4) � �4:4�102and Re(��) = Re(�2) � �1:8� 105. Hence, the �ber modes have eigenvalues withRe(�) 2 [�1:8�105; 0], which can be compared to the modes of Stokes equations with�S = ���2 2 [�4:1� 101; 0]. By observing the wide disparity in growth rates, it isclear that the immersed �ber problem is sti� and, in fact, the sti�ness is much moresevere than that present in a Stokes 
ow without immersed �bers. This deteriorationin conditioning of the problem is due to the modes which arise from the interactionof the �ber with the 
uid, through the combination of large �ber tension parameters,�0 and/or �1, and small viscosity.In terms of numerical computations, the presence of sti� modes suggests the useof an implicit time-stepping scheme. The analytical justi�cation given here backsup the conclusion of Tu & Peskin in [10] that by applying a fully implicit scheme, aconsiderable improvement in numerical stability can be realized. They also observethat \in its present form, the fully implicit scheme is probably too expensive forpractical application"[10, p. 1376], and suggest that a more e�cient implementationbe developed. It is our hope that the analysis given here may help in devising a moree�cient scheme, by allowing the sti� interface modes to be singled out.3.3.2. Intermediatewavenumber. Figure 5 contains a plot of the scaled growthrate e� for values of e� in the intermediate range [0; 2]. It is evident that, in addition tothe bifurcation at e� � 0:4, mentioned in the previous section, there is a similar pointat e� � 1:7, at which a complex conjugate pair merges and splits into two real roots.3.3.3. Large wavenumber. Figure 6 depicts e� for e� 2 [0; 5]. To determine thedependence of � on � for large �, we again perform an asymptotic expansion of theroots as e� ! 1 to obtain the following three real roots (in terms of dimensionalvariables): �21 � ��14��� �2164�3 � 3�311024�5��1 +O(e��2);�41 � ��04��� 3�2064�3 � 19�301024�5��1 +O(e��2);�+1 � ���2 + �204�3 � �304�5��1 +O(e��2):It is clear that �21 and �41 grow linearly in � to �rst order, while the expansion for�+1 certi�es that the third mode varies quadratically with the wavenumber, which issuggested by the shape of the curves in Figure 6. Like solutions to Stokes' equationswithout an immersed �ber, the mode represented by �+1 gives rise to sti�ness in theproblem, for as the wavenumber varies, the growth rates take on widely disparatevalues. However, the presence of a �ber gives rise to an additional source of sti�nessin �21 and �41. For these two modes, � may be large even for moderate values of �if the viscosity is small or the tension parameters �1 or �0 are large. However, when
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Fig. 5. Plots of the real and imaginary parts of the scaled growth rate versus wavenumber foreach of the physical roots , denoted by +, �, 2 and 4. In this plot, it is clear that there are twobifurcation points, at values of approximately 0.4 and 1.7, where two complex conjugate roots mergeand split into two real roots.� is taken large enough (i.e. when the solution is resolved to a �ne enough level), theStokes-like mode (�+1) is the dominant one.3.3.4. Solution plots. Figure 7 gives a pictorial representation of the the modesfound by substituting the values for � and � into the solutions from (22){(26), withparameter values � = 1, �0 = 1, �1 = 1, � = 1 and t = 0. There are only three\real" modes satisfying the condition Re(�) � 0. The plots for �2 correspond tothe mode which arises from the factor in (27) involving �1, and thus embody the
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Fig. 6. Plot of the nondimensionalized growth rate Re(e�) versus e� for each of the three rootssatisfying Re(�) > 0. The value of 
 is taken here to be 2. The imaginary part of the roots is zerofor all values of scaled e� > 1:7.horizontal expansion and contraction of the �ber (which is obvious from the velocityvector plot). The normal velocity and pressure for �2 are smooth, while the tangentialvelocity is not; hence, the �ber force for this mode arises solely from the �rst jumpcondition (19). On the other hand, the remaining two modes, �4 and �+, comprisethe normal (vertical) motion of the �ber. The source of this motion is the constanttension, �0, which acts normal to the �ber, and arises from the second jump condition(20). The modes in this case have a smooth velocity and discontinuous pressure.4. Summary and Conclusions. Eliminating the delta-function in favour ofjump conditions in the immersed �ber problem allows us to split the problem into twocontinuous ones, which are more amenable to analysis. The linearized problem yieldsinteresting observations regarding the behaviour of solutions which give insight into
ows in the presence of immersed �bers. Furthermore, the dependence of the modeson the wavenumber helps guide us in selecting an appropriate numerical scheme.It is clear from the jump condition (10) that the pressure is discontinuous. Aprojection method which is based on the \jump" formulation has the advantage thatthe projection step will not be applied across the �ber, but only on subdomains wherethe pressure is continuous. It is unclear what e�ect the discontinuity will have on theprojection step in the Immersed Boundary Method, and so this question deservesfurther investigation.After examining the dependence of the growth rate on values of the parameterswhich de�ne the linearized �ber tension, it is evident that the solutions modes arisingsolely from the interaction of an immersed �ber with the surrounding 
uid are stablefor precisely those tension forces which are physically reasonable. That is, instabilityoccurs only for the non-physical case where contraction or expansion of the �ber isaccompanied by \positive feedback".By solving for the roots of the modal equation numerically, we discovered that
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Fig. 7. Velocity vector plots and pressure contours for the modes �2 (top), �4 (middle) and�+ (bottom). Parameter values: � = 1, �0 = 1, �1 = 1, � = 1, t = 0.



14 J. M. STOCKIE AND B. T. R. WETTONthe growth rates of the solution modes vary to a wide degree, and hence the problemis sti�. Furthermore, the main source of sti�ness is not the modes arising fromthe Stokes 
ow, but rather those originating from the interaction of the 
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