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Abstract. This is a computational study of gravity-driven fingering instabilities in un-
saturated porous media. The governing equations and corresponding numerical scheme
are based on the work of Nieber et al. [Ch. 23 in Soil Water Repellency, eds. C. J. Rit-
sema and L. W. Dekker, Elsevier, 2003] in which non-monotonic saturation profiles are
obtained by supplementing the Richards equation with a non-equilibrium capillary pressure-
saturation relationship, as well as including hysteretic effects. The first part of the study
takes an extensive look at the sensitivity of the finger solutions to certain key param-
eters in the model such as capillary shape parameter, initial saturation, and capillary
relaxation coefficient. The second part is a comparison to published experimental results
that demonstrates the ability of the model to capture realistic fingering behaviour.

1. Introduction

The transport of water and dissolved contaminants within
the vadose zone is extremely important in a wide range of
natural and industrial applications including protection of
groundwater aquifers, irrigation, flood control, and biore-
mediation, to name just a few. Many of these applications
exhibit preferential flow in which gravitational, viscous or
other forces initiate instabilities that propagate as coher-
ent finger-like structures. In fingered flow, water is able to
bypass a significant portion of the porous matrix and thus
penetrate more rapidly than would otherwise be possible
for a uniform wetting front; as a result, fingering can have
a major impact on the transport of contaminants carried
by an infiltrating fluid. A clear understanding of fingering
phenomena can therefore be essential in the study of certain
applications such as groundwater contamination.

We focus in this work on preferential flow that is driven
by gravitational forces arising from the difference in density
between invading water and displaced air. The structure of
a typical finger consists of a nearly saturated “tip” at the
leading edge, behind which follows a “tail” region having a
uniform and relatively low saturation (see Fig. 1). As the
finger penetrates into the soil, the region immediately be-
hind the tip drains somewhat causing pressure to decrease
and preventing the finger core from widening, thereby al-
lowing the unstable finger to persist in time. Experimental
studies have provided additional insight into the detailed
character of fingers and the physical mechanisms driving
their formation, beginning with the work of Hill and Par-
lange [1972] and continuing to the present day with the work
of authors such as Diment and Watson [1985], Glass et al.
[1990], Selker et al. [1992a], Lu et al. [1994], Bauters et al.
[2000], Yao and Hendrickx [2001], Wang et al. [2004] and
DiCarlo [2004].

Various mathematical models have been developed to
capture fingering phenomena [Philip, 1975; Parlange and
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Hill , 1976; DiCarlo et al., 2008] with many based on apply-
ing the Richards equation (RE) in combination with appro-
priate constitutive equations for soil properties. Techniques
of linear stability analysis were applied to two-dimensional
models by Saffman and Taylor [1958], Chuoke et al. [1959],
and Parlange and Hill [1976], who derived stability crite-
ria and analytical predictions for quantities such as finger
width and velocity. Raats [1973] postulated a criterion for
stability which stated that a wetting front is unstable if the
velocity of the front increases with depth; this is clearly sat-
isfied for some layered media as well as for water-repellent
soils. Many analytical results have been compared to ex-
periments by authors such as Glass et al. [1989b] and Wang
et al. [1998], who found that no single analytical formula is
capable of capturing the behaviour of the majority of soils.
Other modifications and improvements to the theory have
appeared more recently, such as Wang et al. [1998] who
modified the work of Parlange and Hill [1976] to include
dependence on the water- and air-entry pressures. A com-
prehensive review of stability results, including comparison
to experiments, can found in de Rooij [2000]. There has
also been a great deal of recent effort on explaining gravity-
driven fingering using models based on conservation laws
[Eliassi and Glass, 2002; Nieber et al., 2003, 2005; Cueto-
Felgueroso and Juanes, 2008, 2009a]. A recent paper by
Cueto-Felgueroso and Juanes [2009b] presents the first ex-
haustive stability analysis of a conservation law that leads to
fingering in unsaturated flow, and a follow-up study by the
same authors performs an extensive comparison to experi-
ments as well as providing an excellent review of the current
literature [Cueto-Felgueroso and Juanes, 2009a].

There has been a recent surge of interest in modelling fin-
gering instabilities using extensions of the RE model, such
as the work of Cuesta et al. [2000] and Cuesta and Hulshof
[2003] who analyze non-monotonic travelling wave profiles
that arise when dynamic capillary effects are incorporated.
Both Eliassi and Glass [2001] and Nieber et al. [2005] identi-
fied a number of mechanisms that could give rise to gravity-
driven fingering, including non-monotonicity in hydraulic
properties, dynamic capillary effects and hysteresis. Egorov
et al. [2003] provide an overview of the mathematical for-
mulation showing that Richards equation is unconditionally
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stable even for heterogeneous media. Furthermore, Nieber
et al. [2003] claim that dynamic (or non-equilibrium) effects
are sufficient to cause formation of fingered flow, while per-
sistence of fingers is dominated by hysteresis. In parallel
with these developments, several novel mathematical mod-
els have been developed which incorporate these and other
effects. A number of authors have investigated the use of
non-equilibrium effects [Mitkov et al., 1998; Cuesta et al.,
2000; Hassanizadeh et al., 2002; Helmig et al., 2007; Man-
they et al., 2008] while others [DiCarlo et al., 2008] have been
inspired by non-monotonicity to introduce extra terms in the
RE that capture the “hold-back-pile-up” effect examined by
Eliassi and Glass [2003]. Non-equilibrium effects have also
been studied in the context of two-phase flow by van Duijn
et al. [2007], who used an extension of the Buckley-Leverett
model to obtain non-monotonic profiles with both infiltra-
tion and drainage fronts. Sander et al. [2008] proposed a
one-dimensional RE model including hysteresis and non-
equilibrium capillary terms, which is very closely-related to
the model studied in this paper. Adding to the controversy
are experimental results such as DiCarlo [2007] which failed
to find significant dynamic effects in gravity-driven infiltra-
tion. Notwithstanding the extensive literature on this sub-
ject, many open questions remain about which governing
equations and constitutive relations are most appropriate
for capturing preferential flows.

We will focus on a specific model called the relaxation
non-equilibrium Richards equation (or RNERE) [Nieber
et al., 2003, 2005] which incorporates both dynamic and
hysteretic effects. These authors developed an iterative
algorithm for integrating the governing equations numeri-
cally, and showed that their method is capable of generat-
ing finger-like solutions. The main drawback of this work
was that it contained no concrete comparisons to experi-
mental results. In this paper, we perform a more extensive
suite of numerical simulations with the RNERE model and
compare the results to published experimental studies. We
also carry out a careful numerical convergence study and
investigate the sensitivity of the model to changes in physi-
cal parameters and algorithmic aspects such as the choice of
inter-block averaging for hydraulic conductivity. The results
demonstrate that the RNERE model is capable of reproduc-
ing realistic fingering flows for a wide range of physically
relevant parameters.
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Figure 1. Left: A typical finger propagating into a
porous medium having an initially uniform saturation
θr. At the leading edge of the finger is a well-defined
“core” or “tip” region with water content close to the
saturated value θs. Behind the tip lies a “tail” region
having a nearly constant intermediate value of water con-
tent. Right: The corresponding saturation profile along
the central axis of the finger.

2. Mathematical Model

We begin by presenting the governing equations for the
RNERE model as presented by Nieber et al. [2003], while
at the same time reviewing earlier work on fingered flow in
porous media. The RE is written in mixed form as

∂θ∗

∂t∗
= ∇∗ · (k∗(θ∗)∇∗ψ∗) − ∂k∗(θ∗)

∂z∗
, (1)

where t∗ represents time [s], θ∗ is the volumetric water con-
tent or saturation [m3/m3], and ψ∗ is the water pressure
head [m]. The asterisks are used here to indicate dimen-
sional quantities, and will be dropped shortly when the
equations are non-dimensionalized. Hydraulic conductiv-
ity [m/s] is denoted by k∗(θ∗), which is assumed to be a
given function of water content in the case of unsaturated
flow. The spatial domain is two-dimensional with coordi-
nates (x∗, z∗), where z∗ represents the vertical direction and
is measured positive downwards and x∗ is measured horizon-
tally. This form of the RE is called “mixed” because both
saturation and pressure appear as dependent variables, and
it is preferred to both the θ–based form (which becomes
singular when the flow is fully saturated) and the ψ–based
form (which leads to large mass conservation errors when
discretized) [Celia et al., 1990].

Many models of flow in porous media combine the RE
with an equilibrium constitutive relation of the form ψ∗ =
p∗(θ∗), which assumes that transport properties relax in-
stantaneously to their equilibrium values as water content
varies during a wetting or drying process. This is a rea-
sonable approximation under certain circumstances; how-
ever, there is now evidence from both laboratory experi-
ments [DiCarlo, 2004] and stability analyses [Nieber et al.,
2005] that suggests the RE by itself is unable to capture
the non-monotonic profiles observed in fingering instabili-
ties and so it lacks some critical physical mechanism. An
illustration of a typical solution profile is shown in Fig. 1,
wherein a downward-propagating finger is led by a nearly-
saturated “tip” region that leaves behind it a “tail” region
having a lower water content. An earlier attempt at simu-
lating fingered flow using the equilibrium RE was made by
Nieber [1996] who incorporated hysteretic effects and found
that fingers only appeared when a downwind-weighted mean
was used for hydraulic conductivity. Eliassi and Glass [2001]
concluded that the finger-like profiles obtained in these simu-
lations did not represent solutions of the actual model equa-
tions, but rather were numerical artifacts arising from local
truncation errors due to the particular choice of downwind
mean.

Based on physical arguments, Hassanizadeh and Gray
[1993] advocated that a non-equilibrium version of the cap-
illary pressure relationship should be employed in situations
where the relaxation time is comparable to other time scales
in the flow. This work inspired Nieber et al. [2003] to propose
their RNERE model in which the RE was supplemented by
a relaxation equation of the form

ψ∗ − p∗(θ∗) =
τ∗

ρg

∂θ∗

∂t∗
, (2)

where p∗(θ∗) represents the equilibrium water pressure head
[m], ρ is the density of water [kg/m3], g is the gravitational
acceleration [m/s2], and τ∗ = τ∗(ψ∗, θ∗) > 0 is a suitably-
chosen capillary relaxation function [kg/m s]. They pre-
sented numerical simulations of finger-like instabilities and
concluded that a non-equilibrium effect is sufficient to initia-
tive the instabilities and that hysteresis is necessary to sus-
tain the fingers once formed. In most cases, τ∗ is assumed
either to be a constant [Hassanizadeh et al., 2002; Manthey
et al., 2008] or else a separable function of dynamic capil-
lary pressure and water content [van Duijn et al., 2004; Di-
Carlo, 2005; Nieber et al., 2005], although the proper choice



of functional form for the relaxation function remains an
open question. We note that Eq. (2) should be viewed as
an equation for the dynamic capillary pressure ψ∗ rather
than an evolution equation for θ∗; indeed, when (2) is sub-
stituted into Eq. (1), the resulting PDE takes the form of
a third-order evolution equation for θ∗ which is of pseudo-
parabolic type [King and Cuesta, 2006].

Before proceeding further, we briefly mention several
other attempts at incorporating non-equilibrium effects into
the RE in more general contexts not directly related to fin-
gering. Mitkov et al. [1998] took a phase-field model for
solidification and adapted it to porous media flow; their
model contains a phenomenological term in which the con-
stants have no direct relationship to the physics. Baren-

blatt et al. [2003] suggested an alternate approach in which
dynamic effects are incorporated into both capillary pres-
sure and hydraulic conductivity through an “effective sat-
uration” variable. Three further variants of the RE called
the hypo-diffusive, hyperbolic and mixed forms were pro-
posed with an aim to reproducing the “hold-back-pile-up”
effect observed in experiments [Eliassi and Glass, 2003; Di-

Carlo et al., 2008]. Analytical and numerical results suggest
that many of these approaches show promise, but the proper
choice of model remains an open question.

To complete the mathematical description of the RNERE
model equations (1) and (2), the equilibrium pressure p∗ and
hydraulic conductivity k∗ must be specified as functions of
water content. These quantities are customarily expressed
in terms of the normalized water content

θ =
θ∗ − θr

θs − θr
, (3)

where θs and θr are the saturated and residual (or irre-
ducible) water contents, respectively; θ is commonly referred
to as the effective saturation or simply saturation. In a par-
tially saturated porous medium, the saturation variable sat-
isfies 0 6 θr 6 θ∗ 6 θs 6 φ, where φ represents the poros-
ity, so that θ always lies between 0 and 1. We adopt the
widely-used van Genuchten–Mualem relationships for p∗(θ)
and k∗(θ) [van Genuchten, 1980], which are monotonic func-
tions containing several empirical fitting parameters that are
used to fit with experimental data for a variety of soil and
rock types. Saturation and pressure are related at equilib-
rium by

θ = (1 + α∗
ℓ |p∗|nℓ )

−mℓ , (4)

where nℓ and mℓ = 1−1/nℓ are parameters that govern the
shape of the capillary curves.

In practice, θ is a hysteretic function wherein the inverse
capillary length α∗

ℓ [m−1] and shape parameter nℓ differ de-
pending on whether the current state is evolving along the
main wetting curve (ℓ = w) or main drying curve (ℓ = d).
The corresponding hydraulic conductivity is given by

k∗(θ) = ko

√
θ
h
1 − (1 − θ1/mℓ)mℓ

i2
, (5)

where ko represents the fully saturated value (at θ = 1).
The RE (1) becomes degenerate when k∗(0) = 0, although
we never have to deal explicitly with this issue because we al-
ways choose a value of initial saturation θi greater than the
residual value θr. Furthermore, we have not encountered
values of the reduced saturation in excess of 1 (for which
the conductivity is undefined in Eq. (5)) and so the com-
puted solution remains within the physical limits 0 6 θ 6 1.

Details of the precise form of the hysteresis model to be used
will be provided later in Section 3.

2.1. Non-Dimensionalization and Choice of τ

In this section, the equations are reduced to dimensionless
form using the transformations

x = α∗
wx

∗, z = α∗
wz

∗, αℓ = α∗
ℓ/α

∗
w ,

ψ = α∗
wψ

∗, p = α∗
wp

∗, k = k∗/ko, (6)

t = α∗
wkot

∗/(θs − θr),

where (α∗
w)−1 (the reciprocal of the van Genuchten parame-

ter for the main wetting curve) has been used as the natural
length scale. The governing equations (1), (2), (4) and (5)
then reduce to

∂θ

∂t
= ∇ · (k(θ)∇ψ) − ∂k(θ)

∂z
, (7)

ψ = p+ τ (ψ, θ)
∂θ

∂t
, (8)

θ = Sℓ(p) := (1 + αℓ|p|nℓ )−mℓ , (9)

k(θ) = Kℓ(θ) :=
√
θ
“
1 − (1 − θ1/mℓ )mℓ

”2

, (10)

where the dimensionless capillary relaxation function is

τ (ψ, θ) =
(α∗

w)2ko

ρg
τ∗(ψ∗, θ∗),

and Sℓ(p) and Kℓ(θ) represent the hysteretic constitutive re-
lations (which depend on the wetting/drying state ℓ = w, d).
It will prove convenient when describing the numerical al-
gorithm to recast the time-derivative in Eq. (8) in terms of
the equilibrium capillary pressure as

τ (ψ, θ)
∂p

∂t
= ψ − p, (11)

q1 = 0 q1 = 0

q2 = qi

q2 = qiq2 = qi q2 = qi + eq(x)

infiltration zone (di)

x

z

Figure 2. The computational domain with width L
and height H . Zero flux conditions are imposed on side
boundaries and a background flux of qi on the top and
bottom boundaries. Finger formation is driven by an ad-
ditional infiltration flux eq applied along a portion of the
top boundary having width di.



where τ (ψ, θ) = τ(ψ, θ) (dθ/dp).
Following Nieber et al. [2005] (who was motivated by the

experiments of Selker et al. [1992b]) we assume that τ is a
function of ψ only

τ (ψ) = τo[ψ − ψo]
γ
+, (12)

where τo, ψo and γ are constants and [·]+ = max(·, 0).
Nonetheless, the appropriate choice of functional depen-
dence for τ on the state variables remains an open question.
Various other functional forms have been proposed by Di-
Carlo [2005] and Sander et al. [2008], all of which we find
leads to similar fingering patterns provided that τ → 0 as
ψ → ψo and that the magnitude of the relaxation parameter
is comparable. On the other hand, if τ is taken to be a con-
stant then no fingers were observed in our simulations, hence
suggesting that it is essential to have a solution-dependent
τ .

2.2. Boundary and Initial Conditions

Inspired by the geometry most commonly employed in
experimental studies, we consider a two-dimensional rect-
angular domain as shown in Fig. 2 that has width L and
heightH (both dimensions having been non-dimensionalized
by scaling with α∗

w like the other lengths in Eq. (6)). The
initial saturation is assumed constant throughout the do-
main, θ(x, z, 0) = θi. No-flux conditions are imposed along
side boundaries and specified inflow (outflow) conditions are
given along the top (bottom) boundaries, both of which we
express in terms of the dimensionless flux variable

q = (q1, q2) = −k(θ)∇(ψ − z), (13)

where q1 and q2 represent the components of the flux vector.
This last equation is a statement of Darcy’s law for unsatu-
rated flow and is rescaled according to q = q∗/ko, where the
original physical flux q∗ has units of m/s. The fluxes on the
left, right, and bottom boundaries are given respectively by

q1(0, z, t) = 0, q1(L, z, t) = 0, q2(x,H, t) = qi, (14)

where qi represents a constant gravity-driven background
flux that corresponds to the initial saturation θi. The specifi-
cation of such a background flux is essential when the porous
medium is not air-dried, such as is the case for most nat-
urally occurring soils. In order to drive the formation of
fingers, the flux along the top boundary is specified by some
constant background flux qi plus an infiltration flux eq that
is imposed along a strip of width 0 6 di 6 L,

q2(x, 0, t) =


qi + eq(x), if |2x− L| 6 di,
qi, otherwise.

(15)

Following Nieber et al. [2003], this infiltration flux is writ-
ten as the sum of an average value qs plus a small sinusoidal
perturbation

eq(x) = qs + qsη cos

„
πf

di
(2x− L+ di)

«
, (16)

where η represents the amplitude of the perturbation and
2πf/di the frequency (for f a positive integer). We note
that the size and number of fingers actually observed in sim-
ulations is relatively insensitive to the choice of perturbation
parameters η and f .

We close with a brief mention of a common result on
stability of gravity-driven vertical infiltration flow, wherein
viscous forces tend to stabilize the flow while gravitational
forces are the destabilizing influence. Extensive work on sta-
bility has been reported by many authors, including Philip
[1975], Parlange and Hill [1976], Wang et al. [1998] and

de Rooij [2000]. It is known that unstable flow will occur
if the hydraulic conductivity increases with depth, which
translates into a requirement that the inflow at the top
boundary satisfies 0 < qi + qs < 1.

3. Solution Algorithm

We next describe the algorithm developed by Nieber et al.

[2003] for solving the RNERE problem in Eqs. (7) and (9)–
(11), which is an iterative strategy that employs a finite vol-
ume spatial discretization in space and a semi-implicit time-
stepping scheme. The domain is divided into an Nx × Nz

rectangular grid, with cell dimensions ∆x = L/Nx and
∆z = H/Nz in the x– and z–directions respectively. The
discrete saturation θi,j approximates the solution at cell cen-
ters ((i− 1/2)∆x, (j − 1/2)∆z), and similarly for the pres-
sure head ψi,j . Employing an implicit backward Euler dis-
cretization for the time derivative in Eqs. (7) and (11) and
centered second-order differences in space, the discrete equa-
tions become

θi,j − bθi,j

∆t
=

1

∆x

„
ki+1/2,j

ψi+1,j − ψi,j

∆x
− ki−1/2,j

ψi,j − ψi−1,j

∆x

«
+

1

∆z

„
ki,j+1/2

ψi,j+1 − ψi,j

∆z
− ki,j−1/2

ψi,j − ψi,j−1

∆z

«
−

ki,j+1/2 − ki,j−1/2

∆z
, (17)

and

τ (ψi,j)
pi,j − bpi,j

∆t
= ψi,j − pi,j , (18)

for i = 1, 2, . . . , Nx and j = 1, 2, . . . , Nz. The time step is
denoted by ∆t and the “hat” notation bθ and bp refers to a
solution value at the previous time step.

It is worth mentioning that although an upwind differ-
ence might normally be advocated for the convective (gravi-
tational) term in Eq. (17), we have chosen to use a centered
difference for consistency. In practical computations, we ob-
serve no difference between an upwind or centered difference
treatment of the ∂k/∂z term because capillary effects dom-
inate in this problem.

In contrast with the cell-centered saturation and pressure
head unknowns, the hydraulic conductivity values ki±1/2,j

and ki,j±1/2 are located at cell edges. Since the conductivity
depends on saturation which is not available at cell edges, it
must be approximated using some weighted mean of nearby
values of saturation; the specific choice of averaging method
will be considered in detail in Section 4.1. The capillary re-
laxation function in Eq. (12) is replaced by the regularized
function τδ(ψ) = τo max ((ψ − ψo)

γ , δ), where the cut-off
parameter 0 < δ ≪ 1 prevents τ from becoming zero and
hence avoids a singularity in Eq. (18).

The difference stencils in Eq. (17) involve values of pres-
sure head ψi,j for i = 0, Nx + 1 and j = 0, Ny + 1, located
at points lying one-half grid cell outside the physical do-
main. These “fictitious values” are eliminated using the flux
boundary conditions (14)–(16) as follows. First, the flux is
discretized along cell edges, with the q1-component (on side
boundaries i = 0, Nx) being approximated by

q1;i+1/2,j = −ki+1/2,j

„
ψi+1,j − ψi,j

∆x

«
, (19)



and the q2-component (along horizontal boundaries j =
0, Nz) by

q2;i,j+1/2 = −ki,j+1/2

„
ψi,j+1 − ψi,j

∆z
− 1

«
. (20)

Then the boundary conditions for q1 and q2 are used to
express fictitious point values in terms of known values of
pressure head at interior points, which can then be used in
Eq. (17).

We now describe the iterative scheme for solving the non-
linear system (17), which can be written more succinctly in
matrix-vector form as

A Π +
Θ − bΘ

∆t
= 0, (21)

where Θ and Π are vectors containing the discrete approx-
imations of θi,j and (ψ − z)i,j respectively, and A = A(Θ)
is a symmetric pentadiagonal matrix whose entries are non-
linear functions of saturation. Nieber et al. [2003] did not
base their iterative solution strategy directly on Eq. (21)
because the matrix A is not positive definite; instead, they
proposed the following modified iteration

(Aν+1 + D
ν+1)Πν+1 = D

ν+1Πν − Θν+1 − bΘ
∆t

, (22)

where ν represents the iteration number and D is a diagonal
matrix whose entries are given by

D =
1

∆t

∂Θ

∂Ψ
=
S′(P )

∆t

d

dΨ

 
Ψ∆t+ τ (Ψ) bP
τ (Ψ) + ∆t

!
. (23)

This approach has the advantage that the iteration matrix
(A + D) is both symmetric and positive definite and thus has
much better convergence properties. We now outline the it-
erative procedure within each time step, assuming that each
iteration begins with ν = 0, Θ0 = bΘ, Ψ0 = bΨ and P 0 = bP :

Step 1. Solve the relaxation equation

τ (Ψν)
P ν+1 − bP

∆t
= Ψν − P ν+1

for P ν+1.

Step 2. Update the saturation using Θν+1 = S(P ν+1).

Step 3. Evaluate the matrices A and D at Θ = Θν+1,
P = P ν+1 and Ψ = Ψν . Then solve the linear system (22)
for Πν+1 and let Ψν+1 = Πν+1 + z.

Step 4. If the current solution satisfies the convergence
criterion ‖Πν+1 − Πν‖2/‖Πν‖2 < 10−6, then stop. Other-
wise, increment ν and return to Step 1.

Following Eliassi and Glass [2001], we employ a variable
time step which is initialized to ∆t = 10−4 and then replaced
at the end of each time step by min(1.05∆t, ∆tmax), where
the maximum allowable step is given by the CFL-like condi-
tion ∆tmax = 0.1 min(∆x,∆z)/qs. This approach minimizes
initial start-up errors by taking a relatively small time step
initially, which then increases gradually to ∆tmax. The al-
gorithm just described is implemented in Matlab and uses
the built-in preconditioned conjugate gradient solver pcg to
invert the linear system in Step 3.

We stress that this is only one possible choice of algorithm
and that many other strategies have been proposed for solv-
ing the coupled system of equations for saturation and cap-
illary pressure. For example, Cuesta [2003] and Cuesta and
Pop [2009] have analyzed a number of algorithms (includ-
ing the one described above) in the context of the Burgers
equation, supplemented by dynamic capillary effects.

An important aspect of our RNERE model is the singu-
larities that occur when θ = 0 (where the iteration matrix

(A + D) fails to be positive definite) and θ = 1 (where the
derivative of the hydraulic conductivity k′(θ) becomes un-
bounded). A number of methods have been proposed in
the literature (e.g., Starke [2000]; Pop [2002]) to regular-
ize coefficients in the governing equations in order to avoid
these singularities. We have not made use of any such reg-
ularization here because in practice, we find that the com-
puted saturation never reaches the limiting values of 0 or 1.
Nonetheless, it may be worthwhile in future to consider im-
plementing such a regularization approach to improve the
efficiency and robustness of the algorithm in cases where
conditions approach the saturated and unsaturated limits.

3.1. Implementation of Hysteresis

An integral component of the RNERE algorithm is the
specification of the hysteretic state, which is potentially dif-
ferent at every point in the domain and depends on the
local saturation and wetting history. We have chosen to im-
plement a closed-loop hysteresis model described by Scott
et al. [1983] and implemented by Eliassi and Glass [2003]
wherein all curves have the same values of residual and sat-
urated water content (0 and 1 respectively in our dimen-
sionless variables). We have also taken the shape parame-
ters for the wetting and drying curves to be constant and
equal (n := nw = nd), so that the various curves differ only
in their value of αℓ (although in general, the values of nℓ

should also depend on the current hysteretic state).
Following Eliassi and Glass [2003], the main drying curve

is written θ = Sd(p) while the scanning drying curves are
given by the scaled equation

θ =
θSd(p)

Sd(p)
, (24)

where θ and p denote respectively the saturation and pres-
sure reversal points along the previous wetting curve. Simi-
larly, the main wetting curve is θ = Sw(p) while the scanning
wetting curves are written

θ = θrev + (1 − θrev)Sw(p), (25)

where

θrev =
θ − Sw(p)

1 − Sw(p)
, (26)

and θ and p are the reversal points along the previous drying
curve.

The main drying and wetting curves are unique, while
the scanning curves differ depending on the reversal points
which are determined as follows. At each point in space,
we maintain the current state (wet or dry) as well as the
previous reversal point (θ, p). To avoid problems with con-
vergence in the iterative scheme, the hysteretic state is up-
dated only at the end of each time step and not within a
ν-iteration. To detect a reversal point along a local drying
or wetting curve, we test whether the time rate of change
of saturation has reversed sign between the current (k) and
previous (k − 1) time steps, which is equivalent to check-
ing that ∆θk

i,j · ∆θk−1
i,j < 0 where ∆θk

i,j = θk
i,j − θk−1

i,j . To
avoid spurious wet/dry oscillations between successive time
steps, we impose the additional constraint that

˛̨
∆θk

i,j

˛̨
> ε,

where ε is a reversal threshold. If both of these criteria
are met, then a flow reversal has occurred and the current
state is switched to either wetting (if ∆θk

i,j > 0) or drying
(if ∆θk

i,j < 0), and the current values for the reversal point
(θ, p) are updated. The appropriate scanning curve – ei-
ther Eq. (24) or (25)–(26) – is then used to determine the
capillary pressure as a function of saturation.
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Figure 5. Saturation contours for the base case, plotted
at four equally-spaced time intervals between t = 0 and
tend = 77.
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Figure 6. Saturation map for the base case at time
tend = 77.

4. Numerical Simulations

To investigate the relevance of the proposed model and
the accuracy and efficiency of the numerical algorithm, we
consider a “base case” corresponding to a 14/20 grade sand
studied experimentally by Glass et al. [1989b]. The param-
eters listed in Table 1 are taken directly from their paper,
with the exception of n, θi and αw , whose values are justified
in Sections 4.4–4.6.

The computational domain is taken to be a rectangle of
width L = 14 and height H = 35 in dimensionless units,
where L is chosen slightly larger than the actual infiltration
width di = 10.5 used in experiments in order to minimize
boundary effects. Unless otherwise noted, the domain is dis-
cretized using a uniform grid havingNx = 201 andNz = 401
points in the x and z directions respectively. All simulations
were performed on a Mac Pro with 2×3 GHz processor and
8GB RAM, with a typical run requiring approximately 2
hours of computation time.

A sample computation with the base case parameters is
shown in Fig. 5, which depicts the progression of the wetting
front at a sequence of equally-spaced times. In these plots
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Figure 7. The effect of hysteresis and dynamic effects
on the wetting front, for the base case: (a) with hystere-
sis only; (b) base case, with both hysteresis and dynamic
effects; (c) with dynamic effects only.

(as well as the other plots and tables that follow) all quan-
tities are expressed in dimensionless form. The plotted con-
tours of saturation correspond to a value of θ equal to 25% of
the finger tail saturation, which we have found gives a good
representation of the finger size and shape. The structure of
the individual fingers is seen more clearly in the saturation
map given in Fig. 6, where each concentrated finger tip is
followed by a tail region of roughly constant saturation. The
“capillary fringe” region, depicted schematically in Fig. 1,
is evident as a narrow zone of rapid saturation change sur-
rounding each finger. The finger tip and tail are evident
in this plot and the shape of each finger is in qualitative
agreement with the generic profile sketched in Fig. 1.

To illustrate the importance of dynamic and hysteretic
effects in the RNERE model, we show in Fig. 7 how the
wetting front differs when either of these effects is left out.
When the dynamic term is omitted from the saturation
equation (see Fig. 7(a)) fingering instabilities clearly fail
to be initiated. Conversely, when hysteretic effects are left
out (see Fig. 7(c)) protrusions begin to form at the wetting
front but they never actually develop into full-blown fingers.
These observations are consistent with the claim of Nieber
et al. [2003] that dynamic capillary effects are responsible
for the initiation of fingering instabilities, while hysteresis is
required to sustain the fingers in time.

In the following sections, we present an extensive suite of
numerical simulations that address the following four issues:

• choosing an appropriate mean for the estimation of
inter-block hydraulic conductivity values;

• determining the dependence of the numerical solution
on grid resolution, and comparing to previously published
simulations;

Table 1. “Base case” parameters given in SI units. With
the exception of n, θi and αw , these values are taken from
Glass et al. [1989b].

Symbol Description Value Units

n Capillary shape parameter 12 –
αw Inverse capillary length 35 m−1

θi Initial water content 0.01 m3/m3

θs Saturated water content 0.42 m3/m3

θr Residual water content 0.075 m3/m3

ko Saturated conductivity 0.063 m/s
K Permeability 6.5 × 10−10 m2

ψwe Water entry pressure −0.023 m



• measuring the sensitivity of the solution to certain key
parameters: shape parameter (nℓ), dynamic relaxation co-
efficient (τ ) and initial saturation (θi); and

• comparing simulated results to previously published ex-
perimental data.
In addition to providing plots of saturation plots, we will
also report quantities such as finger width (df ), finger ve-
locity (vf ), number of fingers (Nf ), and average volume flow
rate through each finger (Qf ), all of which vary depending
on the value of the infiltration flux qs. When multiple fin-
gers are present and a specific quantity varies from finger to
finger, we report the average value over all fully-developed
fingers.

4.1. Choice of Mean for Inter-Block Conductivity

As mentioned in Section 3, the discrete equations require
values of hydraulic conductivity at cell edges (ki±1/2,j and
ki,j±1/2) whereas the values of saturation on which k de-
pends are defined at cell centers; therefore, some form of
averaging is usually necessary. It is well known that dis-
crete approximations of the RE can be very sensitive to the
choice of inter-block averaging used for hydraulic conduc-
tivity [Belfort and Lehmann, 2005]. A number of different
approaches have been advocated in the literature, for in-
stance using arithmetic [van Dam and Feddes, 2000], geo-
metric [Haverkamp and Vauclin, 1979], harmonic [Das et al.,
1994], and Darcian-weighted means [Warrick , 1991]. Card-
well and Parsons [1945] showed that the effective permeabil-
ity for a heterogeneous porous medium must lie somewhere

Table 3. Dimensionless parameter values: (a) “base case”
and Glass et al. comparisons; (b)–(c) modifications to base
values for simulations indicated.

Symbol Description Value

(a) Parameters from Glass et al. [1989b] – “base case”:
n Capillary shape parameter 12.0
αw Inverse capillary length (wetting) 1.0
αd Inverse capillary length (drying) 0.5
θi Initial water content 0.01
τo Relaxation coefficient 0.1
γ Relaxation exponent 1
ψo Relaxation parameter 0
ε Hysteretic reversal criterion 10−10

δ Relaxation cut-off 0.04
qi Background flux 3.3 × 10−6

qs Infiltration flux 0.14
η Perturbation amplitude 0.01
f Perturbation frequency 5
di Infiltration source width 10.5
tend End time 77
H Domain height 35
L Domain width 14

(b) Modifications for Nieber et al. [2003] (Figs. 8 & 10):
n Capillary shape parameter 7.0
θi Initial water content 0.1
τo Relaxation coefficient 5.0
qs Infiltration flux 0.2
tend End time 96
H Domain height 60
L Domain width 30

(c) Modifications for DiCarlo [2004, Tab. 1] for 20/30 and
30/40 sands (Fig. 14):

n Capillary shape parameter 6.23 / 10.0
θi Initial water content 0.001
H Domain height 7.08 / 6.92
L Domain width 0a

a DiCarlo’s experimental soil columns measure less than one
finger width in diameter, so that the flow is essentially one-
dimensional; we perform “quasi-1D” simulations by taking only
two grid points in the x–direction.

between the harmonic and arithmetic mean values. Fur-
thermore, Warren and Price [1961] used Monte Carlo sim-
ulations of random media to show that the expected value
of conductivity for a heterogeneous system is given by the
geometric mean.

Of particular interest in this paper is the case where the
conductivity undergoes large variation between grid cells ow-
ing to the presence of sharp wetting fronts at finger bound-
aries. Although a straightforward analytical argument in-
dicates that the harmonic mean is the appropriate mean
to use in such situations in 1D [Gutjahr et al., 1978], this
is not the case in higher dimensions where many compu-
tational studies indicate that the harmonic average yields
results that are inferior to those using other averaging meth-
ods [Haverkamp and Vauclin, 1979; Belfort and Lehmann,
2005; Pinales et al., 2005]. Extensive comparisons have been
drawn using measures such as resolution and stability of the
wetting fronts, sensitivity to grid refinement, and robust-
ness over a wide range of soil types and physical parameters.
There remains a significant degree of controversy over which
averaging procedure is best in practice, and to date no single
mean has been found to be superior in all circumstances.

In this section, we compare results using the arithmetic
and geometric means for hydraulic conductivity, which we
have found are the most common means utilized in compu-
tations. Values of conductivity along vertical cell edges are
determined as follows

Arithmetic mean: ki±1/2,j =
1

2
(ki±1,j + ki,j),

Geometric mean: ki±1/2,j =
p
ki±1,jki,j ,

with similar formulas for ki,j±1/2 along horizontal cell edges.
Problem parameters are taken from simulations presented
by Nieber et al. [2003], which are identical to those for our
base case described earlier, except for a few differences in-
dicated in Table 3(b). The same set of parameters will also
be considered in the following two sections. Our model is
identical to Nieber et al.’s, except for a slight difference in
the implementation of capillary hysteresis.

The results for the geometric mean are shown in Fig. 3
for five different choices of grid resolution (51×61, 101×121,
201 × 241, 401 × 481 and 801 × 961), and the solution has
clearly converged to a wetting profile with 4 well-defined
fingers even on a 201× 241 grid. In contrast, Fig. 4 demon-
strates that simulations with the arithmetic mean converge
more slowly, and the results on the finest grid are still not
fully converged. These simulations are consistent with those
of Zaidel and Russo [1992], who found that use of the arith-
metic mean introduces excessive smearing in wetting fronts
and underestimates saturation values relative to the geo-
metric mean. Based on these results, we conclude that the
geometric mean is superior for the problem under considera-
tion, which is also consistent with the a number of previous
studies [Haverkamp and Vauclin, 1979; Hornung and Mess-
ing , 1983; Belfort and Lehmann, 2005]. Consequently, we
have chosen to apply the geometric mean in all remaining
computations in this paper.
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Figure 3. Saturation maps corresponding to the geo-
metric mean for five different grid resolutions, using pa-
rameters from Nieber et al. [2003].
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Figure 4. Saturation maps corresponding to the arith-
metic mean for five different grid resolutions, using pa-
rameters from Nieber et al. [2003].

4.2. Grid Refinement Study

To ensure that the numerical solution does converge with

the expected second order accuracy, simulations were per-

formed on a sequence of successively refined grids of size

101 × 121 to 801 × 961 cells. The latter represents the

finest resolution possible owing to memory restrictions on

the computing equipment readily available to us. The grid

resolution and physical parameters in this case were chosen

to correspond to the numerical simulations of Nieber et al.

[2003].

The solution on the finest grid is treated as the “exact

solution” and the error is estimated using the ℓ2 norm of

the difference between exact and computed values of sat-

uration. The resulting absolute errors are summarized in

Table 2 from which it is clear that the solution converges

as the grid is refined; furthermore, the order of convergence

is close to the expected value of 2. Fig. 8 depicts satura-

tion contours corresponding to various grid refinement levels

and clearly demonstrates the convergence of the numerical

solution.

Table 2. Grid refinement study, where the order of accuracy
is estimated as the base-2 logarithm of the ratio of successive
errors. The “exact” solution corresponds to an 801 × 961 grid
computation.

No. of cells (Nx ×Nz) ℓ2− error Ratio Order
60 × 51 10.59 3.52 1.82

121 × 101 3.01 3.82 1.93
241 × 201 0.79 4.31 2.11
481 × 401 0.18 – –
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Figure 8. Saturation contours corresponding to the dif-
ferent grid resolutions used in the convergence study.

4.3. Comparison with Nieber et al.’s Computations

We now investigate the effects of grid resolution in more
detail by way of a direct comparison with simulation results
reported by Nieber et al. [2003]. We focus on their second
set of simulations (c.f., their Fig. 8), using different values of
the infiltration width (di = 1, 5, 10.5, 15, 20, 25 and 30) and
grid resolutions of 101× 121 and 201× 241. Our results are
summarized in Fig. 10 from which we observe a close match
with Nieber et al. [2003, Fig. 8] in terms of both number of
fingers and saturation levels. There are slight differences be-
tween finger widths and velocities, but we attribute these to
our alternative implementation of capillary hysteresis. We
emphasize the discrepancies between our high and low res-
olution results for values of di = 10.5, 15 and 30, which
stresses the importance of using a sufficiently resolved grid
in these fingering computations. It is particularly important
to use a higher grid resolution in situations such as di = 30
that are close to a “transitional phase” where in this case the
solution exhibits somewhere between three and four fingers.
We also stress the importance of performing a careful con-
vergence analysis as part of any numerical study of fingering
to ensure that the features being simulated are a true rep-
resentation of actual fingering instabilities of the governing
equations.

4.4. Sensitivity to Capillary Shape Parameter, n

In the next three sections, we switch to the base case
and investigate the sensitivity of the solution to changes in
a number of important parameters. No value is provided
by Glass et al. [1989b] for the capillary shape parameter n
appearing in the van Genuchten–Mualem relationships (9)
and (10), and so we look for guidance in related experi-
mental studies on sandy soils. The values for n reported
in the literature exhibit significant variability, lying any-
where between 3 and 20 even for porous media having similar
coarseness and wettability (e.g., Schroth et al. [1996]; Nieber
et al. [2000]). The larger values of n typically correspond to
water-repellent soils in which fingers are more likely to form,
while smaller values indicate a reduced tendency to gener-
ate fingering instabilities. Consequently, it is important in
any modelling study of fingering to understand the effect of
changes in n on the character of the solution.

In Fig. 9, we present simulations for several values of n
lying between 4 and 15, while all other parameters are set to
the base case values. In all simulations except for n = 4, the
solution exhibits well-defined fingers having the characteris-
tic non-monotonic saturation profile down the central axis of
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Figure 10. Comparison of fingers for various values of the infiltration width di, based on parameters
from Nieber et al. [2003]. The solid (red) saturation contours correspond to solutions on a 101×121 grid,
while the broken (black) contours are for a 201 × 241 grid.

each finger. Furthermore, increasing n leads to an increase
in the tip/tail saturation ratio and a decrease in finger width
and finger flux, as expected; in other words, fingers are more
diffuse for smaller n while finger boundaries become sharper
when n is increased.

(a) n = 4 (b) n = 8 (c) n = 12† (d) n = 15
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Figure 9. Contour plots of saturation for different values
of the capillary shape parameter n, with contours shown
at four equally-spaced times. The base case is indicated
by a dagger (†).

The value of n = 12 used in the base case is character-
istic of highly water-repellent soils, which is corresponds to
the other experimental and numerical studies we are most
interested in.

4.5. Sensitivity to Initial Saturation, θi

A study of the effect of the initial saturation θi on our
numerical solution is warranted for two reasons. First of all,
the nature of fingering instabilities and the properties of in-
dividual fingers (such as finger width and velocity) can be
very sensitive to the choice of initial water content, as ev-

idenced by several experimental studies [Diment and Wat-
son, 1985; Bauters et al., 2000; Wang et al., 2003]. Finger
shape and size depends strongly on the initial wetting state;
in particular, vertical infiltration into a soil with larger ini-
tial saturation tends to generate fingers that are more diffuse
than when the soil is dry. Secondly, as with the capillary
shape parameter n, the value of θi is frequently omitted in
the list of parameters reported in experimental studies (e.g.,
Glass et al. [1989b]).

We therefore perform a series of simulations using various
choices of initial saturation between 0.001 and 0.075, holding
the infiltration flux qs constant. The results are summarized
in Fig. 11 from which we observe that the number of fingers
increases as θi is increased. In fact, the spacing between

(a) (b) (c) (d)

θi = 0.001 θi = 0.01† θi = 0.03 θi = 0.075
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Figure 12. Saturation maps at the final time corre-
sponding to the same values of θi depicted in Fig. 11.



fingers also decreases to the extent that when θi ' 0.05, the
individual fingers merge together to form a single finger.

(a) (b) (c) (d)θi = 0.001 θi = 0.01† θi = 0.03 θi = 0.075
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Figure 11. Contour plots of saturation for different
values of the initial saturation θi, shown at four equally-
spaced times. The base case is indicated by a dagger
(†).

As θi and finger width increase, we notice from the satu-
ration maps in Fig. 12 that the maximum finger tip satura-
tion decreases while the finger velocity remains relatively un-
changed; this behaviour can be justified using a simple mass
conservation argument. Most of these computed trends are
consistent with experiments, the exception being the fin-
ger velocity for which some experimental studies exhibit a
stronger dependence on θi (e.g., Bauters et al. [2000]).

We mention in closing this section that in the absence
of a given value of initial saturation in Glass et al. [1989b],
we have chosen θi = 0.01 for the base case. This value lies
within with the typical range of residual saturations seen in
experiments for similar soils, and also generates fingers with
a tip saturation that is consistent with values reported by
DiCarlo [2004].

4.6. Sensitivity to Capillary Relaxation Coefficient,

τo

Although several recent models for gravity-driven finger-
ing have used a capillary relaxation term to incorporate dy-
namic effects, there remains a great deal of uncertainty in
both the functional form and overall magnitude of the re-
laxation coefficient τ [Juanes, 2008; Manthey et al., 2008].
Stauffer [1978] derived an empirical estimate based on the
Brooks–Corey model for conductivity and capillary pressure
(in lieu of the van Genuchten–Mualem relationships used
here) that takes the following form

τ∗ =
γsµθsh

2
b

λko
, (27)

where γs = 0.1 is a fitting parameter, µ is the fluid viscos-
ity, and λ and hb are the Brooks–Corey parameters. Recent
experimental results suggest that the values of τ for sandy
media can range between 0.006 and 20, so that τ∗ lies be-
tween 2 × 103 and 6 × 106 kg/ms [Manthey et al., 2008].

We have run a number of simulations using the functional
form for τ given in (11) and with the scaling constant τo

varying between 0.01 and 1.0. The resulting saturation is

depicted in Fig. 13,

(a) τo = 0.01 (b) τo = 0.05 (c) τo = 0.1† (d) τo = 0.3
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Figure 13. Contours of saturation for different values
of the capillary relaxation coefficient τo, at four equally-
spaced times. The base case is indicated by a dagger
(†).

from which it is evident that τo has a strong influence

not only on the number of fingers but also on finger width

and velocity. If τo is taken very small (less than 0.001) then

dynamic effects become negligible and finger formation is

suppressed. If, on the other hand, τo is taken larger then

the finger tip saturation tends to increase which in turn re-

duces the number of fingers.

For the purposes of the base case, we have chosen an in-

termediate value of τo = 0.1 which gives a range of τ that is

centered on the empirical estimate in Eq. (27), and which

also corresponds well to the range of experimental values

reported in the literature.

4.7. Comparison with DiCarlo’s Experiments

In this section we consider the experimental results re-

ported by DiCarlo [2004], who studied the importance of

non-equilibrium effects on finger formation in sandy porous

media. These experiments investigated the effect of changes

in infiltration flux, initial saturation, and porous media

properties on the resulting saturation profiles. DiCarlo also

proposed an RE-based model which neglected hysteretic ef-

fects, but did include a dynamic capillary term (as in our

Eqs. (7)–(8)) with a number of different forms for the dy-

namic relaxation coefficient τ (θ), including a constant and

various power-law forms similar to Eq. (12). The correspon-

dence between his numerical simulations and experiments

(in terms of finger tip saturation) was less than satisfactory;

in particular, although a reasonable fit was obtained for the

tip saturations when τ was a power law function, the wetting

front ahead of the finger tip was much too diffuse.
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(b) 30/40 sand
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Figure 14. Comparison of tip and tail saturations from
the RNERE model and experiments. Results are for two
different soil types – (a) 20/30 sand (top), (b) 30/40
sand (bottom) – and the experimental data points are
extracted from DiCarlo [2004, Figs. 6 and 8]. The “Di-
Carlo tip” curve in (a) corresponds to a numerical simu-
lation using a non-equilibrium model without hysteresis
from DiCarlo [2005, Fig. 2].

We focus primarily on DiCarlo’s experimental and nu-
merical results for 20/30 sands which are reproduced in
Fig. 14(a). These results were essentially one-dimensional
because the diameter of the soil columns being studied was
less than the characteristic finger width and hence was too
small for fingers to form; we have therefore performed a
“quasi-1D” simulation in which the horizontal extent of the
domain is only two grid points wide. Here, we choose pa-
rameters the same as in the base case except that the cap-
illary shape parameter, initial saturation, and domain size
are modified according to Table 3(c). Simulations were per-
formed for a range of values of infiltration flux qs, and the
resulting tip and tail saturations are plotted in Fig. 14(a).

We extracted values of all parameters from DiCarlo [2004]
except for the initial saturation which he did not provide.
The computed tip saturation is quite sensitive to θi, while
the impact on tail saturation is much less. As θi is increased,
the tip profile in Fig. 14(a) shifts toward the right until it
eventually overlaps with the tail profile, which corresponds
to a stable flow. On the other hand, as θi is decreased the
profile shifts to the left and steepens becoming similar in
shape to the “DiCarlo tip” curve. Consequently, we have
used initial saturation as a fitting parameter and chose a
value of θi = 0.001 that yields the best match with experi-
mental tip data.

The results in Fig. 14(a) demonstrate a significant im-
provement over DiCarlo’s model, especially in terms of the
tip saturation. There is also excellent agreement with the
tail data, although unfortunately there is no corresponding
tail simulation from DiCarlo for us to compare to. A second
comparison is made for a 30/40 sand from DiCarlo [2004] in
Fig. 14(b). Except for some small deviations at the lowest
infiltration rates, these results also show a good fit between
our model and DiCarlo’s experiments. Similar comparisons
are obtained for other soil types.

Finally, it is worth emphasizing that our computations
exhibit fingers that sustain a sharp front ahead of the finger
tip, exhibiting none of the non-physical diffusive smooth-
ing observed in the model results of DiCarlo [2005]. This
discrepancy can be justified following Nieber et al. [2003]
who attributed the initial formation of fingers to dynamic
capillary effects that are present in both DiCarlo’s and our
RNERE model; however, fingers persist in time only when
hysteretic effects are also incorporated, which is the case for
our RNERE model but not DiCarlo’s.

4.8. Comparison with Glass et al.’s Experiments

We next make use of the dimensional analysis and exper-
iments of Glass et al. [1989a, b] to assess the response of
finger width and tip velocity to changes in infiltration flux,
qs. Their two-dimensional experiments involved two layers
of fine-over-coarse sand, with water fed in from the top and
air allowed to escape freely. Fingering was observed in the
lower, coarse sand layer – a result that can be predicted
using the stability analysis of Raats [1973]. We therefore re-
strict our attention to the lower layer only which contains a
coarse 14/20 silica sand having grain diameter in the range
0.00070–0.0012 m.

The parameter values used in this section are the same
as those for the base case listed in Table 3(a). The residual
saturation θr = 0.078 is consistent with the tail water con-
tent reported in Glass et al. [1989b]; however, they did not
provide values of the remaining porous medium parameters
and so we chose n = 12, θi = 0.01 and α∗

w = 35 m−1, which
are consistent with other 14/20 sands in the literature.

In Fig. 16, we present saturation contours from a series
of simulations in which the infiltration flux qs is varied be-
tween 0.038 and 0.32 cm/min. Decreasing the qs causes an
increase in the number of fingers, in addition to decreas-
ing both finger velocity and tip saturation (as indicated in
Fig. 15). The corresponding numerical values for various
quantities are summarized in Table 4.
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Figure 15. Computed tip and tail saturations for the
Glass et al. [1989b] comparisons.

Following Glass et al. [1989a], we relate the average fin-
ger velocity (vf ) and width (df ) to the average volume flow
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Figure 16. Saturation contours for various values of infiltration flux fluxs, corresponding to parameters
listed in Table 3(a) for Glass et al. [1989b]. A further comparison of specific quantities is provided in
Table 4. The base case is indicated by a dagger (†) and the end time for each simulation is indicated on
the plot.

Table 4. Comparison of the finger number, width and velocity corresponding to the simulations in Fig. 16. The
experimental data are taken from Glass et al. [1989b] (no data were available for the highest flux value, qs = 0.52).

Experimental data Numerical simulations

qs Nf Qf df vf Nf Qf df vf

0.012 4 0.03 0.45 0.12 7 0.02 0.28 0.08
0.038 4 0.10 0.52 0.21 6 0.07 0.34 0.18
0.088 5 0.18 0.60 0.29 6 0.15 0.49 0.29
0.11 6 0.19 0.61 0.30 6 0.19 0.54 0.32
0.14† 4 0.38 0.79 0.41 5 0.29 0.70 0.38
0.28 6 0.50 0.91 0.46 4 0.74 1.34 0.53
0.32 5 0.66 1.08 0.52 3 1.12 1.79 0.59
0.52 – – – – 2 2.73 3.88 0.69

rate in a finger using Qf = df vf . Since infiltration flux

is related to finger velocity via qs = Nfdfvf/di, the finger

volume flow rate can be written as

Qf =
di qs

Nf
. (28)

We then take our simulations for different values of qs and

redisplay the results in Fig. 17 as a plot of finger velocity

versus finger flow rate, including data from Glass et al.’s

experiments. There is very close agreement between the

simulated and experimental results. In particular, as the in-

filtration flux qs increases (or equivalently, vf increases) the

slope of the velocity–flux curve decreases.
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Figure 17. Plot of finger flow rate versus velocity with
experimental data (square points) taken from Glass et al.
[1989b].



In Fig. 18, we present a plot of finger width versus flow
rate in which the dependence is approximately linear. This
behavior is consistent with Glass et al.’s experiments where
they used a linear least squares fit to predict the finger
width. However, the correlation here is not as strong and
our computations significantly over-predict the finger width
at higher values of finger flux.
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Figure 18. Plot of flow rate versus finger width with ex-
perimental data (square points) taken from Glass et al.
[1989b].

In an effort to explain this discrepancy, we plot finger ve-
locity against finger width in Fig. 19, which includes the
experimental data of Glass et al. [1989b]. The experimental
points are classified as corresponding to “side” and “inner”
fingers (where side fingers lie immediately adjacent to the
side boundaries) and significant differences are apparent be-
tween the two sets of fingers which Glass et al. attribute to
boundary effects. If we focus only on the interior fingers,
then our model does a very good job of capturing the ob-
served behaviour. Indeed, it is the contribution of the side
fingers to the average finger width that leads to the devia-
tions in slope at higher flux in Fig. 18.
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Figure 19. Plot of finger width versus finger velocity,
with experimental data taken from Glass et al. [1989b].
Square data points denote fully developed interior fingers
while crosses denote fingers adjacent to side boundaries.

5. Discussion

In this study we investigated the ability of the RNERE
model to capture gravity-driven fingering in unsaturated
soils. Our results expand on previous studies of the RNERE
model in two ways: first, by performing an extensive sen-
sitivity analysis for various important physical parameters;
and second, by drawing a systematic comparison between
simulations and previously published experimental results.
We showed that with a careful choice of initial saturation
and capillary relaxation coefficient, the model is capable of
accurately reproducing the fingering behaviour observed in
experiments. Comparisons with several independent exper-
imental studies attest to the accuracy and robustness of the
RNERE approach.

In contrast to the work of DiCarlo [2005], who concluded
that the RNERE does not contain all the required physics to
describe gravity-driven fingering instabilities, we have shown
that by coupling both non-equilibrium and hysteretic ef-
fects it is possible to capture fingering phenomena with the
RNERE. Our numerical simulations demonstrate the impor-
tance of performing a detailed numerical convergence study
in order to ensure that fingers have been sufficiently well re-
solved. The model sensitivity analysis showed that dynamic
capillary terms must be properly handled if the fingered
flow is to be captured accurately, and in particular that
an accurate estimate of the τo parameter is essential. As
more research is undertaken in the study of non-equilibrium
capillary effects, we expect that more accurate and reliable
experimentally-validated correlations for the capillary relax-
ation parameter will become available.

There are a number of possible avenues for future work
that will be explored:

• We will investigate the use of alternate iterative strate-
gies that improve on the robustness and efficiency of the
RNERE algorithm. We hope to draw inspiration in this
respect from other well-known work on RE-based methods
such as Celia et al. [1990] and Miller et al. [1998]. Current
advances in ODE solvers for dealing with event detection
and non-smooth or discontinuous coefficients may also yield
improvements in the treatment of hysteretic switching crite-
ria, which has a big impact on convergence of the iterative
scheme. Furthermore, there has been an explosion of recent
work on alternate models for handling dynamic capillary ef-
fects which could be applied here [Beliaev and Schotting ,
2001; Sander et al., 2008; Peszyńska and Yi , 2008; Helmig
et al., 2007; Manthey et al., 2008].

• Analytical results for fingered flow, derived using
asymptotic or other approximate methods, will be studied
to gain a better understanding of the impact of hysteresis
and dynamic effects on the mechanics of finger formation.
We will initially be guided by other previous work on trav-
eling wave approximations for wetting fronts in the RNERE
model with dynamic capillary effects [DiCarlo et al., 2008;
Nieber et al., 2005] and hysteresis [Dautov et al., 2002;
Sander et al., 2008].

• Two alternate mathematical models have recently been
proposed that are relevant to capturing gravity-driven fin-
gering phenomena. The model of Cueto-Felgueroso and
Juanes [2008] accounts for effective surface tension phenom-
ena due to saturation gradients through the addition of a
new fourth order derivative term in the equations. Their
numerical results capture the main qualitative features of
fingered flow without the need for hysteresis, although they
state that hysteretic effects are still important and that hys-
teresis can be easily incorporated into their model [Cueto-
Felgueroso and Juanes, 2009a]. Another approach proposed
by Pop et al. [2009] introduces an additional PDE for the in-
terfacial area that obviates the need for an explicit treatment
of hysteresis. We intend to perform an extensive computa-
tional comparison of these two models using a generalization
of our RNERE approach, initially in 1D, that should help to
elucidate the relative advantages and disadvantages of the
various approaches.
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