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Abstract

We consider the problem of estimating the emissions of particulate matter from point sources at known

locations. Dispersion of the particulates is modelled by the 3D advection-diffusion equation with delta-

distribution source terms, as well as height-dependent advection speed and diffusion coefficients. We

construct a finite volume scheme to solve this equation and apply our algorithm to an actual industrial

scenario involving emissions of airborne particulates from a zinc smelter using actual wind measurements.

We also address various practical considerations such as choosing appropriate methods for regularizing

noisy wind data and quantifying sensitivity of the model to parameter uncertainty. Afterwards, we use

the algorithm within a Bayesian framework for estimating emission rates of zinc from multiple sources

over the industrial site. We compare our finite volume solver with a Gaussian plume solver within the

Bayesian framework and demonstrate that the finite volume solver results in tighter uncertainty bounds

on the estimated emission rates.
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1. Introduction1

Dispersion of pollutants in the atmosphere and their subsequent impacts on the environment are2

major sources of concern for many large industrial operations and the government agencies that monitor3

their emissions. For this reason, assessing environmental risks is a normal aspect of ongoing industrial4

activities, particularly when any new or expanded operation is being considered. Atmospheric dispersion5

models play a crucial role in impact assessment studies where they are routinely studied with the aid6

of computer simulations. An overview of the different aspects of atmospheric dispersion modelling can7

be found in the articles [29, 53] while a self-contained and detailed introduction is available in the8

monographs [38, 50].9
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In general, numerical methods for atmospheric dispersion modelling can be split into two classes:10

(1) semi-analytic methods that utilize some approximate analytical solution to the underlying partial11

differential equations (PDE); and (2) numerical solvers that use finite volume or finite element methods12

to approximate the underlying PDE with minimal simplifying assumptions. The semi-analytic methods13

include the class of Gaussian plume solvers. These models have been widely studied in the literature14

(see [55] and the references therein) and are implemented in industry-standard software such as AERMOD15

[9] and CALPUFF [49]. The semi-analytic solvers are efficient but they are often based on several16

simplifying assumptions that may not apply in all emissions scenarios. For example, most Gaussian17

plume type models assume that the flow is advection-dominated so that dispersion in the wind direction18

can be neglected. In contrast, the direct numerical solvers, such as finite volume or finite element19

methods, are more flexible and allow for complicated geometry and physical processes but they are often20

expensive to evaluate (see the monograph [60] and the series of articles [6, 7, 8] for a detailed comparison21

between different direct solvers). Comparisons between semi-analytic and direct numerical solvers are22

plentiful in the literature and we refer the reader to the articles [1, 11, 33, 42, 48] for examples of such23

comparisons.24

In this article we focus on short-range dispersion and deposition of heavy particulate matter from25

an industrial site, where “short” refers to distances of at most a few kilometers. Short-range deposition26

is of significance in impact assessments for emissions of heavy particulate material (particulates that27

are made up of dense substances such as heavy metals) that has potentially long-term impacts on the28

environment because the maximum deposition of these particulates occurs close to the sources due to29

their higher density. We are inspired by an earlier paper of Lushi and Stockie [31], who considered30

emissions from a lead-zinc smelter located in Trail, British Columbia, Canada. These authors studied31

the inverse source identification problem, in which their objective was to use a Gaussian plume model32

to determine the rate of zinc emissions from several point sources given measurements of wind velocity33

and zinc deposition. In contrast with this earlier work, we propose in this paper a finite volume solver34

that directly handles a time-varying wind field and also takes into account vertical variations of both35

wind velocity and eddy diffusion coefficients, thereby avoiding some of the brute simplifications inherent36

in Gaussian plume models. Although a finite volume solver can be expensive to evaluate compared with37

a Gaussian plume approach, we show that by exploiting the linear dependence of the deposition data on38

the emission rates one can nonetheless significantly reduce the total cost of the model evaluations.39

Source inversion in atmospheric dispersion has attracted much attention in recent decades [18, 53,40

40, 28, 52]. Methodologies for solving the source inversion problem can be split broadly into the two41

classes of variational and probabilistic methods. In the former approach one formulates the inverse42

problem as an optimization problem with an appropriate choice of regularization and utilizes convex43

optimization tools to find an estimate to the emission rates that gives a good match to the measured44

data. The latter approach obtains a probability distribution on the parameters that is informed by45

the data and prior knowledge and obtains an estimate of the emission rates. The cornerstone of the46

variational methodology is the solution to the adjoint problem [32]. Pudykiewicz [40] and Sharan et al.47
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[52] use the solution of the adjoint equation to directly obtain an estimate of the sources while Bocquet48

[5] uses the adjoint problem to evaluate derivatives in an optimization problem with maximum entropy49

regularization. Kumar et al. [28] use the renormalization inversion technique that splits the emission50

rates into the sum of two functions: one function is informed by the solution to the adjoint equation and51

is hence estimated directly, where the second is not informed by the data and is set to zero.52

The main drawback of the variational approach is that it does not naturally account for noise and53

uncertainties in the data and the model parameters. In this article, we solve the source inversion problem54

using a Bayesian approach that belongs to the class of probabilistic methods. Recent examples of55

applications of the Bayesian approach in the literature include the work of Senocak et al. [51] where a56

Gaussian plume forward model was used within a Bayesian framework in order to estimate the location57

and rate of emissions of a source. Ristic et al. [43] solve the problem of locating a source using approximate58

Bayesian computation techniques and compare three different Gaussian plume models to solve the inverse59

problem. The work of Keats et al. [26] is more closely related to this article, since they used a finite60

volume solver to construct the forward map within a Bayesian framework in order to infer the location61

and emission rate for a point source. A similar approach was employed by Hosseini and Stockie [22] to62

estimate the time-dependent behavior of emissions for a collection of point sources that are not operating63

at steady state. Here, we use a finite volume solver that was developed in [20] within a hierarchical64

Bayesian framework in order to infer the rate of emissions of multiple sources in an industrial site. We65

assume that emission rates are constant in time and that the locations of the sources are known. The66

main challenge in our setting derives from the fact that data is only available in the form of accumulated67

measurements of deposition over long times (within dust-fall jars) and so we do not have access to68

real-time measurement devices. This means that estimating temporal variations in source emissions is69

not possible. The hierarchical Bayesian framework minimizes the effect of the prior distribution and70

allows the algorithm to calibrate itself. Furthermore, the Bayesian framework provides a natural way71

of quantifying the uncertainties in the estimated emission rates and we leverage this ability to perform72

an uncertainty propagation study that allows us to study the effect of the sources on the surrounding73

environment. Finally, we compare our finite volume solver with the Gaussian plume solver of [31] in the74

context of the Bayesian inversion algorithm. We demonstrate that the finite volume solver results in75

smaller uncertainties in the estimated emission rates, which is strong evidence of the superiority of the76

finite volume approach.77

The remainder of this article is organized as follows. We begin in Section 2 by presenting a general78

model for dispersion and settling of particulate matter in the atmosphere, based on an advection-diffusion79

PDE. We also provide details regarding the functional forms for variable coefficients that are commonly80

applied in atmospheric science applications. In Section 3, we develop a finite volume scheme for solving81

this variable coefficient advection-diffusion problem in three dimensions. In Section 4, we present an82

industrial case study involving dispersion of zinc from four major sources, and use our numerical solver83

to study the impact of these sources on the area surrounding the smelter. We also address various84

practical aspects of atmospheric dispersion modelling, such as regularizing noisy wind data and studying85
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sensitivity of our model to unknown parameters such as mixing-layer height and atmospheric stability86

class. In section 5 we introduce the Bayesian framework for solution of the source inversion problem87

and obtain an estimate of the emission rates for four sources on the industrial site in Trail, BC, Canada.88

Finally, we compare the solution of the inverse problem when our finite volume solver is used to obtain89

the forward map to the setting where a Gaussian plume solver is used to solve the forward problem.90

2. Mathematical model for pollutant dispersion and deposition91

We begin by developing a mathematical model based on the advection-diffusion equation, which is92

a linear partial differential equation (PDE) capable of capturing a wide range of phenomena involving93

transport of particulate material in the atmosphere. In particular, we are concerned with the release of94

contaminants from elevated point sources (such as stacks or chimneys), advective transport by a time-95

varying wind field, diffusion due to turbulent mixing, vertical settling of particles due to gravitational96

effects, and deposition of particulate material at the ground surface. This scenario is depicted in Fig-97

ure 1. The effects of deposition are especially important since a common and inexpensive technique98

for monitoring pollutant emissions is by means of dust-fall jars, which measure a monthly accumulated99

deposition of particulate matter at fixed locations. We also focus attention on short-range particulate100

transport over distances on the order of a few kilometres.101

Figure 1: Diagram depicting the primary mechanisms of advection, diffusion, settling and deposition for particulate material

released from a single stack-like point source.

Before proceeding any further, we first provide a list of several main simplifying assumptions:102

(i) Variations in ground topography are negligible, so that the ground surface can be taken to be a103

horizontal plane.104

(ii) The wind velocity is assumed horizontal and spatially-uniform within each horizontal plane. This105

follows naturally from assumption (i) and is reasonable since we are only interested in short-range106

transport. We allow horizontal velocity components to change with altitude owing to effects of107

the atmospheric boundary layer. These are necessary assumptions because wind measurements are108
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only available at a few locations, so that there is insufficient data to permit reconstruction of a109

detailed wind field.110

(iii) A (small) constant vertical component is included in the advection velocity for each particulate,111

which accounts for the settling velocity of solid particles (see Section 2.1 for details).112

(iv) Pollutant sources take the form of stacks or vents on top of buildings that are small in comparison113

with the transport length scales, so that all can be approximated as point sources.114

(v) The effect of plume rise is incorporated by using an effective height for each source which is assumed115

to be fixed for the duration of the simulations. Since we don’t have access to stack temperatures in116

Section 4 we use approximate values for the plume rise that are informed by Briggs’ formulae [50,117

Table 18.4] and are based on observations of the plume height in steady wind conditions.118

(vi) In the case study of Section 4, aerial images suggest that the roughness length of the terrain is119

not constant since buildings, trees and a river are present. However, in the absence of sufficient120

information to determine a variable roughness length, we use an averaged value for the entire121

domain.122

(vii) All building down-wash or wake effects are assumed negligible.123

(viii) We consider only dry deposition and ignore any effects of wash-out due to wet deposition that124

might occur during rainfall events.125

In the following sections, we present the equations, boundary conditions and coefficient functions without126

detailed justification since the model is standard in the atmospheric science literature and can be found127

in references such as [38, 50].128

2.1. Atmospheric dispersion as a 3D advection–diffusion problem129

Based on the above assumptions, we can describe the transport of an airborne pollutant in three130

spatial dimensions using the advection–diffusion equation131

∂c(x, t)
∂t

+∇ · (u(x, t)c + S(x, t)∇c) = q(x, t) on Ω× (0, T ), (1)132

133

where c(x, t) [kg/m3] denotes the mass concentration (or density) of a certain pollutant at time t [s]134

and the spatial domain is the half-space Ω := {x = (x, y, z) : z ≥ 0}, where z denotes height above135

the ground surface. The wind velocity field is denoted u(x, t) = (ux(x, t), uy(x, t), uz(x, t)) [m/s] and136

S(x, t) := diag (sx(x, t), sy(x, t), sz(x, t)) [m2/s] represents a diagonal turbulent eddy diffusion matrix137

having non-negative entries, s{x,y,z}(x, t) ≥ 0. Because the size of any individual pollutant source is138

assumed much smaller than the typical length scale for transport, we can approximate the source term139

as a superposition of point sources, q(x, t) :=
∑Nq

i=1 qi(t) δ(x− xq,i), where Nq is the number of sources,140

xq,i is the location of the ith source (after correcting for vertical plume rise effects), and δ(x) is the 3D141

Dirac delta distribution.142
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We assume that the particle concentration is negligible at distances far enough from the sources, so143

that we can impose the far-field boundary condition144

c(x, t)→ 0 as |x| → ∞. (2)145
146

At the ground surface (z = 0) we impose a mixed (Robin) boundary condition to capture the deposition147

flux of particulate material following [50, Ch. 19] as148 (
usetc + sz

∂c

∂z

)∣∣∣∣
z=0

= udepc|z=0 , (3)149

150

where udep > 0 is the particle deposition velocity (an experimentally-determined constant) and uset is151

the settling velocity given for spherical particles by Stokes’ law as152

uset =
ρgd2

18µ
. (4)153

154

Here, ρ [kg/m3] is the particle density, d [m] is the particle diameter, g = 9.8 [m/s2] is the gravitational155

acceleration, and µ = 1.8× 10−5 [kg/m s] is the viscosity of air. If information regarding the size distri-156

bution of the particles is available then one can choose d to be the average or mode of that distribution.157

It is important to note that the deposition velocity udep takes into account the effects of aerodynamic158

resistance (depending on particle size and shape) and deposition surface type, and is therefore different159

from the settling velocity uset which depends only on aerodynamic resistance. Equation (3) assumes that160

the deposition rate (or flux) is proportional to ground-level concentration, and we take this deposition161

rate to be equal to the sum of advective and diffusive fluxes so that total mass of pollutant is conserved.162

2.2. Wind velocity profile163

Recall assumption (ii) that the vertical wind velocity is equal to the constant settling velocity,164

whereas the horizontal components vary with altitude; that is, u(x, t) = (ux(z, t), uy(z, t), uset). Next,165

let uh(z, t) =
(
u2

x(z, t) + u2
y(z, t)

)1/2 denote the magnitude of the wind velocity in the horizontal plane,166

and assume the well-known power-law correlation from [38]167

uh(z, t) = ur(t)
(

z

zr

)γ

, (5)168

169

which approximates the variation of uh with altitude within the atmospheric boundary layer. Here,170

ur(t) represents the measured wind velocity at a reference height zr, and γ is a fitting parameter that171

varies from 0.1 for a smooth ground surface up to 0.4 for very rough surfaces in urban areas. We note172

that other more flexible models for variations of wind velocity in the surface layer are available in the173

literature that account for the stability class of the atmosphere upon other factors (see [50, 16.4.3] for174

example). In this article we use the power law relation since we do not have sufficient data to make use175

of the more complex models.176

2.3. Eddy diffusion coefficients177

The eddy diffusion coefficients (sx, sy, sz) capture the effect of pollutant mixing due to turbulence,178

and so they only yield an accurate representation if we consider distances much larger than the typical179
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turbulent length scales, which are on the order of tens of meters [39]. These coefficients are typically180

difficult to measure in practice and so they often experience large errors. We will use a simple model that181

incorporates the dependence of eddy diffusion parameters on both altitude and wind speed as described182

in [50, Ch. 18].183

2.3.1. Vertical diffusion coefficient (sz)184

Following the Monin-Obukhov similarity theory [35], the vertical eddy diffusivity is written185

sz(z, t) =
κu∗(t)z
φ(z/L)

, (6)186

187

where κ is the von Karman constant and can be well-approximated by the value 0.4. The form of the188

function189

φ(z̄) =


(1− 15z̄)1/2, unstable (classes A, B, C),

1, neutral (class D),

1 + 4.7z̄, stable (classes E, F),

(7)190

191

is dictated by the Pasquill classification for atmospheric stability, with classes labelled A–F in Table 2192

ranging from very unstable to highly stable conditions. The parameter u∗(t) is known as the friction193

velocity and is commonly expressed as a function of the roughness length z0 (listed in Table 1 for different194

types of terrain) and the measured reference velocity ur:195

u∗(t) =
κur(t)

ln(hr/z0)
, (8)196

197

The parameter L is the Monin-Obukhov length [50], which we estimate using an expression from Golder [16]198

as199

1
L

= a + b log10 z0. (9)200

201

Parameters a and b are determined based on the Pasquill stability class and are also listed in Table 2.202

By combining equations (6)–(9), we have a method for computing sz(z, t) based on stability class and203

measured wind velocity.204

Note that the vertical diffusion coefficient vanishes at ground level, which leads to an inconsistency205

in the deposition boundary condition (3) arising ultimately from a scale mismatch in the vicinity of the206

ground (recall that the diffusive flux in (3) only makes sense if the typical length scale of interest is much207

larger than the turbulent length scale). In order to avoid this inconsistency, we regularize sz in a manner208

similar to what was done for the wind velocity in (5), utilizing the same cutoff height zcut.209

2.3.2. Horizontal diffusion coefficient (sx and sy)210

The horizontal diffusion coefficients are less well-studied than the vertical coefficients, mainly because211

they are more difficult to measure in practice. A commonly-used expression based on measurements of212

standard deviations in Gaussian plume models for unstable Pasquill classes [50] is213

sx(t) = sy(t) ' 0.1u∗z
3/4
i (−κL)−1/3, (10)214

215
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Surface type z0 (m)

Very smooth (ice, mud) 10−5

Snow 10−3

Smooth sea 10−3

Level desert 10−3

Lawn 10−2

Uncut grass 0.05

Full grown root crops 0.1

Tree covered 1

Low-density residential 2

Central business district 5–10

Table 1: Surface roughness parameter z0 for various terrain types, taken from [34].

Pasquill stability class a b

A (Extremely unstable) −0.096 0.029

B (Moderately unstable) −0.037 0.029

C (Slightly unstable) −0.002 0.018

D (Neutral) 0 0

E (Slightly stable) 0.004 −0.018

F (Moderately stable) 0.035 −0.036

Table 2: Monin-Obukhov length parameters for different stability classes, taken from [50].
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where zi is the mixing layer height (ranging from 100 to 3000 meters depending on topography, stability216

and time of year) and we have assumed that sx = sy based on symmetry considerations. Note that these217

horizontal diffusivities are independent of height, in contrast with the vertical diffusivity.218

3. Finite volume algorithm219

When designing a numerical algorithm to solve the forward model outlined in the previous section,220

the first issue that needs to be addressed is the impracticality of directly applying the far-field boundary221

condition (2), since that would require computing on an infinite domain. Instead, we truncate the domain222

and consider the finite rectangular box Ωh := [0,Hx]× [0,Hy]× [0,Hz] ⊂ R3 having dimensions Hx, Hy223

and Hz in the respective coordinate directions. We also consider a finite time interval of length T and224

denote the space-time domain as ΩT := Ωh × (0, T ]. The computational domain Ωh should be chosen225

large enough that it contains all sources and wind/dust-fall measurement locations, and so that the226

distance between any source and the boundary is large enough that concentration and diffusive fluxes227

along the boundary are negligible. Other than the boundary condition at ground level z = 0 (which228

remains unchanged), the far-field condition (2) is replaced by an outflow boundary condition on advection229

terms and a homogeneous Neumann condition on diffusion terms, both of which are simply special cases230

of a more general Robin condition.231

The linear advection–diffusion problem, along with modified boundary conditions for the truncated232

domain, can therefore be written in the generic form233 

∂c(x, t)
∂t

+∇ · (fA(x, t) + fD(x, t)) = q(x, t) in ΩT ,

α(x)c + β(x)∇c · n = 0 on ∂Ωh × (0, T ],

c(x, 0) = c0(x) on Ωh,

(11)234

235

where c(x, t) is the scalar quantity of interest, fA and fD are advective and diffusive fluxes, q(x, t) is the236

source term, and n is the unit outward normal vector to the boundary ∂Ωh. The advective and diffusive237

fluxes take the form238

fA := u(x, t) c and fD := −S(x, t)∇c, (12)239
240

where u(z, t) and S(x, t) are the velocity and diffusivity matrix as before.241

We now discuss the constraints on the given functions appearing above. As long as u, S, α(x) and242

β(x) are sufficiently regular (i.e., it is enough for them to be continuous functions) and the matrix S243

is positive definite, then we are guaranteed that (11) has a unique solution (see [12, Ch. 9]). In the244

context of the point source emissions problem, we are interested in singular sources consisting of a finite245

sum of delta distributions so that q ∈ (C∞
c (ΩT ))∗; that is, the source term should be a bounded linear246

functional on test functions in the solution domain. Finally, the initial concentration is assumed to satisfy247

c0 ∈ L2(Ωh) in general, although in the atmospheric dispersion context we will typically set c0 = 0.248
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We now discretize the problem in space by dividing the domain into an equally-spaced grid of Nx,249

Ny and Nz points in the respective coordinate directions. The corresponding grid spacings are ∆x =250

Hx/Nx, ∆y = Hy/Ny and ∆z = Hz/Nz, and grid point locations are denoted by xi = (i − 1)∆x for251

i = 1, 2, · · · , Nx + 1, and similarly for yj and zk. The time interval T is divided into NT sub-intervals252

delimited by points tn for n = 0, 1, 2, · · · , NT , which are not necessarily equally-spaced. In the following253

four sections, we provide details of our numerical scheme by describing separately the time discretization254

(using a Godunov type splitting), the spatial discretization for both advection and diffusion terms, and255

the source term approximation.256

3.1. Godunov time splitting257

Equation (11) is posed in three spatial dimensions and so can be challenging to solve efficiently,258

especially if the flow is advection-dominated. We seek an algorithm that approximates advection terms259

accurately and resolves fine spatial scales, while also allowing the solution to be integrated over long260

time intervals on the order of weeks to months. The class of splitting schemes satisfies these criteria, and261

we choose to apply a Godunov-type splitting that treats separately the advection and diffusion terms in262

each direction, as well as the source term. When applied over a discrete time interval t ∈ [tn, tn+1], the263

Godunov splitting takes the following form:264

∂c(1a)

∂t
+

∂

∂x

(
uxc(1a)

)
= 0, c(1a)(tn) = c(tn), (13a)265

∂c(1b)

∂t
+

∂

∂y

(
uyc(1b)

)
= 0, c(1b)(tn) = c(1a)(tn+1), (13b)266

∂c(1)

∂t
+

∂

∂z

(
uzc

(1)
)

= 0, c(1)(tn) = c(1b)(tn+1), (13c)267

∂c(2a)

∂t
− ∂

∂x

(
sx

∂c(2a)

∂x

)
= 0, c(2a)(tn) = c(1)(tn+1), (13d)268

∂c(2b)

∂t
− ∂

∂y

(
sy

∂c(2b)

∂y

)
= 0, c(2b)(tn) = c(2b)(tn+1), (13e)269

∂c(2)

∂t
− ∂

∂z

(
sz

∂c(2)

∂z

)
= 0, c(2)(tn) = c(2b)(tn+1), (13f)270

∂c(3)

∂t
− q = 0, c(3)(tn) = c(2)(tn+1), (13g)271

c(tn+1) = c(3)(tn+1). (13h)272
273

Thus, we need to solve a sequence of advection and diffusion problems in each coordinate direction274

between times tn and tn+1, and then in a final step take into account the contribution of the source275

term. This Godunov splitting is formally first-order accurate in time so that the leading order temporal276

error of the scheme is O(∆t), where the time step ∆tn = tn+1 − tn [23, 30] and ∆t := maxn(∆tn). The277

main advantage of this approach is that each of (13a)–(13f) is a one-dimensional problem that can be278

solved efficiently to obtain a solution of the full 3D problem.279

Before moving onto details of the spatial discretization, we need to describe the effect of splitting on280

the boundary conditions (11), which relies on recognizing that the Robin boundary condition is simply a281
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combination of advective and diffusive fluxes. Recalling that the advection terms in (13) are dealt with282

using outflow boundary conditions, we can impose the following flux condition on each boundary face:283

fA(x, t) = min{0,−(u(x, t) · n) c} for x ∈ ∂Ωh. (14)284
285

After that, we can impose the following modified Robin condition on the diffusion equations286

α(x)c + β(x)∇c · n = max{0, (u(x, t) · n) c} for x ∈ ∂Ωh. (15)287
288

Formally adding (14) and (15) yields the original boundary condition in (11), and this splitting introduces289

an additional O(∆t) error due to the boundary condition approximation [23].290

3.2. Discretizing advection in 1D291

Because each of the split advection equations (13a)–(13c) involves derivatives in only one coordinate292

direction, we demonstrate here how to discretize a generic 1D advection equation in x, after which the293

corresponding discretizations in y and z are straightforward. The subject of numerical methods for294

conservation laws (for which 1D advection is the simplest example) is well-studied, and we refer the295

reader to [30] for an extensive treatment. We make use of a simple upwinding approach and implement296

the advection algorithm using the Clawpack software package [10].297

Consider the following pure advection problem in 1D298 

∂c

∂t
+

∂

∂x
(cu(x, t)) = 0,

fA(0, t) = min{0, u(0, t) c},

fA(Hx, t) = min{0,−u(Hx, t) c},

c(x, 0) = c0(x),

(16)299

300

for x ∈ [0,Hx] and t ∈ (0, T ], where fA denotes a scalar advective flux analogous to the vector flux301

appearing in (11). Let Ci = [xi, xi+1] represent a finite volume grid cell and take Ci,n to be a piecewise302

constant approximation to c(x, tn) at all points x ∈ Ci. Then, define Ui,n := u(xi, tn) which can be303

interpreted as a piecewise constant approximation of the advection velocity.304

Using forward Euler time-stepping and upwinding for the discrete fluxes in each cell yields the explicit305

scheme306

307

Ci,n+1 = Ci,n +
∆tn
∆x

[
(max{0, Ui,n} −min{0,−Ui,n})Ci−1,n308

+ (min{0,−Ui,n} −min{0,−Ui+1,n} −max{0, Ui,n}+ max{0, Ui+1,n})Ci,n309

+ (min{0,−Ui+1,n} −max{0,−Ui+1,n})Ci+1,n

]
, (17)310

311

which holds at interior cells i = 2, 3, · · · , N − 1 and has an error of O(∆t, ∆x). Boundary conditions for312

advection are imposed using ghost cells (see [30, Ch. 7]). Note that our choice of boundary fluxes in (16)313

only allows the quantity c to leave the domain but prevents any influx. This boundary condition can be314
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easily implemented by setting C0,n = CN+1,n = 0, which define values of the solution at ghost cells lying315

at points located one grid spacing outside the domain.316

This explicit advection scheme introduces a stability restriction in each step of the form maxi(|Ui,n|)∆tn

∆x <317

ν < 1, called the CFL condition. Because velocity changes with time, we need to choose ∆tn adaptively318

to ensure that the Courant number ν is less than 1 in all grid cells at each time step. Ideally, we would319

like to maintain ν as close to 1 as possible in order to minimize artificial diffusion in the computed320

solution (see [30] for an in-depth discussion); however, when the velocity field varies significantly in x,321

then this may not be feasible and some smearing is unavoidable.322

3.3. Discretizing diffusion in 1D323

We use a similar approach to discretize the diffusion equation in 1D, for which we take the generic324

problem325 

∂c

∂t
− ∂

∂x

(
s(x, t)

∂c

∂x

)
= 0 for (x, t) ∈ (0,Hx)× (0, T ],

α(t)c + β(t)
∂c

∂x
= 0 at x = 0,

α̃(t)c + β̃(t)
∂c

∂x
= 0 at x = Hx,

c(x, 0) = c0(x).

(18)326

327

On interior cells away from the boundary, we can discretize this equation as328

Ci,n+1 = Ci,n −
∆tn
∆x2

[Si+1,n+1(Ci+1,n+1 − Ci,n+1)− Si,n+1(Ci,n+1 − Ci−1,n+1)] , (19)329

330

where Si,n := s(xi, tn). Here we also define ghost cells C0 and CN+1 to approximate the boundary331

conditions from (18) as follows:332 
α(tn+1)

C0,n+1 + C1,n+1

2
+ β(tn+1)

C1,n+1 − C0,n+1

∆x
= 0,

α̃(tn+1)
CN,n+1 + CN+1,n+1

2
+ β̃(tn+1)

CN+1,n+1 − CN,n+1

∆x
= 0,

(20)333

334

where C0,n+1 = CN,n+1 = 0 in order to approximate the outflow boundary conditions. Because this335

method is implicit in time, it is also unconditionally stable. Therefore, when solved in conjunction with336

the explicit advection equations, the same time step ∆tn can be used as long as the appropriate CFL337

conditions are satisfied for the advection equations.338

3.4. Approximating point sources339

The final element required to construct the 3D advection–diffusion solver is a discretization of (13g)340

to incorporate the effect of singular source terms. Using a finite volume approach we obtain the following341

semi-discrete scheme on cell Cijk342

C
(3)
ijk,n+1 = C

(2)
ijk,n + ∆tn

∫
Cijk

q(x, tn) dx, (21)343

344
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after which all that is needed is to select an appropriate quadrature scheme to evaluate the integral over345

each cell. Recall that the source terms of interest in our pollutant dispersion application consist of a346

sum of Nq delta distributions347

q(x, t) =
Nq∑
i=1

qi(t) δ(x− xs,i), (22)348

349

with source strengths qi(t) and fixed locations xs,i. Because each source term is singular at x = xs,i, we350

need to choose an appropriate regularization of the delta distribution.351

Smooth regularizations of the delta distribution have been studied extensively for a wide variety of352

PDEs and quadrature schemes [21, 56, 57, 58]. Well-known theoretical results are available which show353

that the spatial order of the solution approximation away from such a singular source is connected to the354

number of moment conditions1 that a regularized delta satisfies [21, 57, 58]. We choose a particularly355

simple piecewise constant approximation356

δh(x) =


1

∆x∆y∆z
if x ∈ [−∆x/2,∆x/2]× [−∆y/2,∆y/2]× [−∆z/2,∆z/2],

0 otherwise,

(23)357

358

which satisfies the first moment condition and is therefore known to yield approximations that converge359

pointwise with second-order spatial accuracy outside the support of the regularized source term. A360

distinct advantage of this choice of piecewise constant delta regularization is that the integrals in (21)361

can be performed exactly. Recalling that the discretization of advection terms is first-order accurate in362

space, it is clearly the error from the discretization of derivative terms that dominates the solution error363

and not that from the source terms.364

3.5. Approximating total deposition365

The scheme outlined above yields approximate values of pollutant concentration c(x, t); however,366

when dealing with particulate deposition we are often concerned with the total amount of particulate367

material that accumulates over some time interval (0, T ] at certain specified locations on the ground368

(corresponding to the dust-fall jar collectors). The total particulate measured at ground location (x, y, 0)369

can be expressed in the integral form370

w(x, y, T ) :=
∫ T

0

udep c(x, y, 0, t) dt. (24)371

372

Employing a one-sided quadrature in time, we can write the following approximate formula for accumu-373

lating deposition w between one time step and the next at location (xi, yj , 0)374

wij,n+1 = wij,n +
udep

2
(tn+1 − tn) (Cij1,n + Cij0,n) , (25)375

376

with wij,0 = 0. Here we used the value of the solution in the ghost cells Cij0 to improve the estimate of377

concentration at the boundary. This expression follows from our discretization of the Robin boundary378

conditions in (20).379

1For an integer m > 1, the mth moment condition requires that
R b

a ξmδh(ξ) dξ = 1 if m = 1 and = 0 otherwise, for any

interval [a, b] containing the support of δh.
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3.6. Numerical convergence study380

So far we have discussed the details of our finite volume algorithm for solution of advection-diffusion381

PDEs with variable coefficients. We implement this algorithm in Fortran by coupling the diffusion solver382

of Section 3.3 with the Clawpack 4.3 software package that implements the advection algorithm described383

in Section 3.2. Implementation of the source term as well as computation of total depositions are also384

done using Clawpack.385

In order to verify the convergence rate of our algorithm, we solve (11) on the cube Ωh = {0 ≤ x, z ≤386

10, −5 ≤ y ≤ 5} up to time T = 8.0. We assume that both the advection velocity and diffusion tensor are387

height-dependent and have the form u(x, y, z) = ((z/10)0.3, 0, 0) and S(x, y, z) = diag(0.25, 0.25, sz(z)),388

where389

sz(z) =
z
√

1− 15
40
√

1− 15z/10
. (26)390

391

To investigate the effect of the point source singularities on the solution accuracy we consider two cases:392

(i) A smooth source qsmooth(x, t) = 1
8 [1+cos(π(x−3))] · [1+cos(πy)] · [1+cos(π(z−3))] having support393

on the smaller cube {2 ≤ x, z ≤ 4, −1 ≤ y ≤ 1} contained in Ωh.394

(ii) An approximate point source qpoint = δh(x − (3, 0, 3)) with δh defined as in (23). Note that this395

source regularization depends on the mesh spacing so that the source term approximation changes396

as the grid is refined.397

We now present the results of a convergence study that investigates the effect on the solution of regular-398

izing the source term. The expected first-order spatial convergence of our algorithm relies on an implicit399

regularity assumption on the source term which is violated in the case of the point source regularization400

in case (ii). We aim to show first that for simulations using qsmooth, the method is uniformly first-order401

accurate owing to the regularity of the source term. The simulations are then repeated with qpoint,402

which show that first-order convergence is lost over the entire domain, but that the expected order of403

accuracy can be recovered if we omit from the error estimate any points contained within a suitably404

small neighbourhood of the source.405

To this end, we apply our algorithm on a sequence of uniform grids having N points in each coordinate406

direction with N = 16, 32, 64, 128 and 256, and specify the time step size within Clawpack by imposing407

a maximum Courant number of ν = 0.9. To estimate the error in the computed solutions we use the408

discrete `p norms defined by409

‖v‖`p :=

(
1
N

N∑
i=1

|vi|p
)1/p

(27)410

411

with p = 1, 2, and v being any vector with entries vi, i = 1, 2, . . . , N . Let CN denote the concentration412

solution on a grid of size N , and define the logarithm of the ratio of differences between successive413

solutions as414

Ep(N) = log2

(
‖CN − C2N‖`p

‖C2N − C4N‖`p

)
. (28)415

416
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As N →∞, we expect that Ep(N) should approach the value 1 which is the order of spatial convergence417

for the algorithm. Table 3 lists the computed values of Ep(64) for both qsmooth and qpoint, where we418

clearly see that the smooth source exhibits first-order accuracy. For the point source when all grid419

cells in the domain are included, our scheme is only convergences in the case of the `1-norm, and a420

rate significantly less than the expected value of 1. However, when the rate is estimated only at points421

separated from the source, then the convergence rates improve significantly even though they have not422

yet achieved the expected asymptotic value. These results are consistent with the discussion of delta423

source approximations in Section 3.4.

Ep(64)

Source type p = 1 p = 2

qsmooth (entire domain) 1.0268 1.0481

qpoint (entire domain) 0.5365 −0.5236

qpoint (away from source) 0.6227 0.5560

Table 3: Estimated convergence rates for smooth and singular source terms in the discrete `1 and `2 norms.

424

4. Industrial case study425

We are now prepared to apply the numerical solver to study an industrial problem concerning the426

dispersion of zinc from a lead-zinc smelter in Trail, British Columbia, Canada operated by Teck Resources427

Ltd. An aerial photograph of the industrial site is presented in Figure 2, which indicates the locations428

of four distinct sources of zinc (Q1–Q4) and nine dust-fall jars (or “receptors”) that take ground-level429

deposition measurements (R1–R9). A similar emissions scenario at the same industrial site was already430

considered by Lushi and Stockie [31], who instead employed a Gaussian plume approximation of the431

particulate transport equation rather than our finite volume approximation. They also solved the inverse432

source identification problem using a least-squares minimization approach.433

Here, we will use our finite volume algorithm to solve the forward emissions problem, and describe434

the advantages of this approach over the Gaussian plume approximation. We will then use our algorithm435

to construct the mapping from the source emission rate to the deposition measurements, incorporating436

this mapping within a Bayesian inversion framework that estimates the emission rates given monthly437

particulate accumulations within the dust-fall jars. Finally, we study the impact of the estimated emission438

rates on the area surrounding the industrial site. This approach for solving the inverse problem is closely-439

related to that in [22], where the source inversion problem for emissions of lead particulates was studied440

within a Bayesian framework, but instead using a Gaussian plume approximation for the forward solver.441

The locations and emission rates for the four sources are listed in Table 4, where we have assumed442

that emissions are constant in time since the lead-zinc smelter mostly operates at steady state. These443

emissions are rough engineering estimates provided by the company, and one of the purposes of this study444

is to exploit the dust-fall data in order to obtain more accurate approximations of the four emission rates.445
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We also note that the reported height of the sources in Table 4 are corrected for the plume rise effect446

using observations of the plume height in steady conditions. The pollutant of primary interest in this447

study is zinc, which manifests mostly in the form of zinc sulphate ZnSO4, for which values of physical448

parameters are provided in Table 5. The value of the diameter d is chosen to be consistent with the data449

in [14, 37] for Zn particles.450

Scale (m): 

N

0 100200300

Q1
Q2

Q3

Q4

R1
R2

R3

R4

R5

R6

R7

R8

R9

Figure 2: Aerial photo of the smelter site in Trail, British Columbia, Canada. Red dots indicate the main sources of

airborne zinc particulates and green triangles are the measurement (dust-fall jar) locations.

Symbol Emission rate qi [ton/yr] x-coordinate (m) y-coordinate (m) height (m)

Q1 35 748 224.4 15

Q2 80 625.5 176.6 35

Q3 5 255 646 15

Q4 5 251.6 867 15

Table 4: Location and estimates of emission rate for each zinc source.

4.1. Wind data451

An essential input to our model is the reference wind speed ur(t), which affects both the advection452

velocity (5) and eddy diffusion coefficients (8). Measurements of horizontal wind speed and direction are453

provided at 10-minute time intervals from a single meteorological post that is located adjacent to the454

smelter site (just off the lower right corner of the aerial photo, to the south-east). A wind-rose diagram455

and histogram of the raw wind measurements are presented in Figure 3 for the period June 3–July 2,456

2002. The raw wind data is highly irregular and suffers from significant levels of noise (see Figure 4,457

right). Furthermore, we need to interpolate this data to obtain an estimate of the wind velocity on458

intervals shorter than 10 minutes since our finite volume solver uses an adaptive time step. We could459
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Parameter Symbol Units Value for ZnSO4

Density ρ kg m−3 3540

Molar mass M kg mol−3 0.161

Diameter d m 5.0× 10−6

Deposition velocity udep m s−1 0.005

Settling velocity uset m s−1 0.0027

Table 5: Values of physical parameters for ZnSO4 particulates, taken from [31].

extend our data as a piecewise constant function in time, but the result would then be too irregular for460

our numerical solver (recall that both u(x, t) and S(x, t) must be sufficiently smooth for (11) to have a461

unique solution). Therefore, the raw data cannot be used directly and so must first be regularized.462

In order to overcome this problem we pre-process the raw wind data by applying a regularization463

procedure that fits a Gaussian process separately to wind velocity and direction. The details of this464

fitting step are outside of the scope of this article and so we refer the interested reader instead to465

the monographs [4, 59] that provide an introduction to the use of Gaussian processes in regression. We466

employ a Gaussian kernel and ten-fold cross validation, and the resulting regularized velocity components467

are compared with the raw data in Figure 4. The regularized wind data is clearly smoother in the sense468

that the direction and velocity experience more gradual variations in time, while the extreme values are469

also suppressed. This results in a noticeably different wind-rose plot for the regularized data (compare470

Figures 3 and 4). On the other hand, the regularization process retains the essential patterns such as471

the dominant northwest and southeast winds, as well as periods of low-to-moderate speed.472
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Figure 3: Wind-rose plot (left) and wind speed histogram (right) for the raw wind data measured over the period of June

3–July 2, 2002. The wind-rose plots clearly identify a prevailing wind direction during this period.

4.2. Parameter sensitivity analysis473

The model in Section 2 contains several input parameters that are difficult to measure accurately. In474

practice, one typically makes a compromise by approximating certain parameter values using a combina-475
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Figure 4: The regularized wind data displayed as a wind-rose diagram (left) and direction/velocity components (right). In

the component plots, blue dots represent the measured wind data and the red line denotes the regularized data.

tion of estimated values from other papers in the literature and/or employing some type of parameter-476

fitting based on prior knowledge of certain solution variables (such as deposition measurements in the477

present case). Table 6 summarizes the parameters in this case study for which there is a significant degree478

of uncertainty, all of which are associated with either the reference velocity or eddy diffusion coefficients.479

For each of these parameters, we provide a “best guess” along with a “most likely range”. These ranges480

are informed by both expert knowledge from the Company’s environmental engineering team as well as481

data from other similar studies in the atmospheric dispersion literature.482

Many of these parameters are strongly affected by weather or atmospheric stability class. For the time483

period of interest (June 3–July 2, 2002) the weather was mostly sunny with minimal rainfall, suggesting484

that an atmospheric stability class of very unstable or unstable type is most appropriate. Therefore,485

throughout the rest of this article we will take the stability class to be A. Furthermore, the terrain486

on the smelter site is a mix of trees, grass, paved areas and buildings, which when combined with the487

information in Tables 1 and 2 gives suggested ranges for z0 and L. Values for the velocity exponent γ and488

mixing height zi are selected following the guidelines in [50] for a general class of atmospheric dispersion489

problems. Finally, we use a range for cut-off length zcut that is chosen consistent with the average height490

of the various zinc sources.491

Clearly, the lack of accurate site-specific values for these parameters leads to some uncertainty in our492

simulated results. Therefore, we aim in this section to investigate the sensitivity of the model output493

to this parameter uncertainty. Sensitivity analysis is a well-developed subject in the areas of applied494

mathematics, statistics, engineering and applied sciences [17, 46, 54], and some well-known techniques for495

studying sensitivity of computer models include adjoint methods and brute-force derivative estimation496

methods. However these approaches focus on local sensitivity and so are not as useful for investigating497

the effect of varying a parameter over a wide range of values, such as we do here. Instead, we employ a498

statistical approach that allows quantifying global sensitivity of the model to selected parameters. For499

this purpose, we employ first-order Sobol indices and total effect indices of the parameters for given500
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functions of the model output. We provide a brief description of these sensitivity measures next and501

refer the interested reader to [46, Ch. 8] for a detailed discussion.502

Consider a set of p normalized parameters θθθ := (θ1, θ2, · · · , θp) defined over a unit hypercube Θp ∈503

[0, 1]p, and let η(θθθ) : Θp → R be some function of interest. In the context of this case study, we have p = 5504

parameters and we are especially interested in scalar-valued functions of the form η := J : Θp → R. For505

simplicity, we suppose that the function has zero mean,
∫
Θp η(θθθ) dθθθ = 0, from which it follows that the506

first-order Sobol index Si for parameter θi (known as the main effect) is given by507

Si(η) :=

∫ 1

0
η2

i (θi) dθi∫
Θp η2(θθθ) dθθθ

where ηi(θi) :=
∫ 1

0

· · ·
∫ 1

0

η(θθθ) dθ1 · · · dθi−1dθi+1 · · · dθp. (29)508

509

In essence, this first-order Sobol index compares the variance of η when all parameters except θi are510

integrated out against the entire variance of η; in other words, Si measures how the variation of θi511

controls the variation of η. Next, let θθθ−i := (θ1, · · · , θi−1, θi+1, · · · , θp) ∈ Rp−1 and define the total effect512

index S−i of the parameter θi as513

S−i(η) := 1−
∫ 1

0
· · ·
∫ 1

0
η2
−i(θθθ−i) dθθθ−i∫

Θp η2(θθθ) dθθθ
where η−i(θθθ−i) :=

∫ 1

0

η(θθθ) dθi. (30)514

515

Intuitively, this total effect index measures the combined effect of the parameter θi along with all of its516

interactions with the other parameters. Taken together, the Si and S−i indices provide a quantitative517

measure of how each parameter controls the output of the model through the function η.518

Computing Sobol indices typically involves evaluating high-dimensional integrals (in this case, five519

dimensions). In practice, it is not feasible to apply a quadrature rule directly and we will instead use520

Monte Carlo sampling. Furthermore, our finite volume code represents a costly integrand evaluation521

in the context of multi-dimensional integration, and so we also construct a surrogate model for the522

output and perform the Monte Carlo calculations using the surrogate instead. To this end, suppose523

that {θθθk}Kk=1 is a collection of points in parameter space, which we refer to as the experimental design.524

Suppose that the computer code is evaluated at these design points and the outputs are collected as525

a sequence of real values, {η(θθθk)}Kk=1. Then a surrogate model η̂(θθθ) : Θp → R is a function of the526

parameters that interpolates values of the original function at the design points; that is, η̂(θθθk) = η(θθθk)527

for k = 1, · · · ,K. If η̂ is to be a good surrogate, then it should be cheap to evaluate and also provide528

an accurate approximation of η over Θp. Clearly then, the quality of η̂ depends on many factors such as529

the method of interpolation, choice of experimental design, regularity of η, etc.530

In this case study we consider two quantities of interest that depend on total ground deposition531

w, which in turn depends on parameters through concentration c and the advection-diffusion PDE (1).532

For now we express these parameter dependencies formally as η = η(w; γ, z0, zi, L, zcut) and provide533

the specific form shortly. We employ a space-filling experimental design that consists of 128 points, at534

each of which the advection-diffusion PDE is solved on a spatial grid of size 503 (i.e., 50 grid points535

in each coordinate direction) using the regularized wind data from Figure 4. This computation can be536

done in parallel since the computer experiments are independent. We then use a Gaussian process to537

construct the surrogate, the details of which can be found in [27, 36] or [47, Section 2.3]. In order to538
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construct the surrogate we compute the quantity of interest η from the output of the finite volume solver539

(the deposition values) and feed this information to the R software package DiceKriging [45], which540

constructs a Gaussian process surrogate to our finite volume code. Afterwards, we use this surrogate in541

the R package Sensitivity [41] in order to estimate the Sobol indices.542

Parameter Symbol Range Best guess Equation

Velocity exponent γ [0.1, 0.4] 0.3 (5)

Roughness length (m) z0 [10−3, 2] 0.1 (8)

Height of mixing layer (m) zi [102, 3× 103] 1000 (10)

Monin-Obukhov length (m) L [−500,−1] −8 (6), (10)

Cut-off length (m) zcut [1, 5] 2 –

Table 6: The five problem parameters that are most uncertain, with ranges estimated based on knowledge of smelter site

characteristics and typical values used in other atmospheric dispersion studies [50].

In the following two sections, we introduce the two functions η of interest and describe how each543

depends on w and the five parameters. An essential aspect of our study of particulate deposition is to544

quantify the impact of deposition on the area surrounding the sources. The smelter site depicted in545

Figure 2 is on the order of 1000 m across, and immediately outside this area lies several residential zones546

within a radius of roughly 2000 m. We are therefore interested in differentiating between the particulates547

being deposited on the smelter site from those occurring within residential areas.548

4.2.1. Total deposition in a neighbourhood of the sources549

Let (x̄, ȳ) denote the location of the centroid of the industrial site on the ground and consider550

ηtot(w; γ, z0, zi, L, zcut) :=
∫
B1

w(x, y, T ) dx dy, (31)551

552

where B1 represents the ball of radius R1 centered at (x̄, ȳ) and w(x, y, T ) is the accumulated zinc553

deposition up to time T from (24). We take R1 = 2000 m and T = 30 days so that the functional554

ηtot(w) represents total deposition of zinc particulates over a monthly period. The integral is calculated555

by evaluating ηtot at all discrete grid point values lying inside B1 and then applying the midpoint rule556

approximation. We note that taking R1 = 1000 instead would not make much difference to the value of557

ηtot since the particulate concentration decreases so rapidly with distance away from the sources.558

Figure 5 shows the results of our computer experiments with 128 choices of parameters applied to559

the total deposition functional ηtot. Note the strong influence of γ on the model outputs, particularly in560

comparison with the other parameters where the influence is much weaker. This dominant influence of561

γ is further supported by the Sobol indices Si and S−i depicted in Figure 7a.562

4.2.2. Maximum off-site deposition563

The second quantity of interest is the maximum concentration of particulate material deposited out-564

side of the main smelter site, which is of more interest from the point of view of community environmental565
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impact assessment. Even though particulates deposited in close proximity to sources are higher than in566

residential areas located further away, the only people allowed access to the smelter site are company567

employees who have the benefit of protective equipment to help deal with the potentially higher concen-568

trations of pollutants. In contrast, inhabitants of nearby areas located in the surrounding community569

typically do not have such protection, and even though the pollutant concentrations are typically orders570

of magnitude lower, their potential long-term impacts could still be significant. Therefore, an important571

aspect of monitoring and protecting communities located adjacent to an industrial operation such as a572

smelter is to determine whether or not particulate deposition levels off-site ever reach some critical level,573

which motivates the following functional574

ηmax(w; γ, z0, zi, L, zcut) := max
(x,y)∈B̄2

w(x, y, T ), (32)575

576

where B̄2 = R2 \ B2 represents the area outside the ball B2 of radius R2 where we take R2 = 1000 m.577

This functional is easily evaluated by computing the maximum over all grid point values lying outside578

B2.579

Figure 6 depicts results of numerical experiments based on ηmax, which show that maximum depo-580

sition exhibits sensitivity to both the velocity exponent γ and Monin-Obukhov length L. This result is581

qualitatively different from the total deposition case, and the differences are particularly apparent from582

the bar plots of Sobol indices in Figure 7b. Indeed, the Sobol index values indicate that maximum off-site583

deposition is also sensitive to a third parameter, z0. This feature can also be recognized from the slight584

clustering of points in the z0 scatter plot in Figure 6, although the Sobol indices are a more reliable585

indicator.586
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Figure 5: Results of 128 computer experiments showing the dependence of total deposition ηtot in the vicinity of the smelter

on the five key parameters. The crossing point of the red lines denotes the value of total deposition at our best guess for

these parameters.
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Figure 6: Results of 128 computer experiments, showing the dependence of maximum off-site deposition ηmax on the

five key parameters. The crossing point of the red lines denotes the value of total deposition at our best guess for these

parameters.
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Figure 7: Results of the sensitivity analysis depicted in terms of Sobol indices for total deposition in the vicinity of the

smelter (left) and maximum deposition away from the site (right). The velocity profile exponent γ has a dominant effect

on total deposition whereas the maximum off-site deposition is affected significantly by z0 and L as well as γ. For either

choice of deposition functional, the remaining parameters zi and zcut are barely active.

5. Source inversion587

We now use the forward solver developed in the previous section to address the problem of determining588

the emission rates at point sources Q1–Q4 based on the zinc deposited in dust-fall jars R1–R9 (as depicted589

in Figure 2). The emission rates listed in Table 4 are estimates provided by the Company, based upon590

engineering calculations and knowledge of the specific chemical and metallurgical processes taking place591

in each of the four sources at the smelter. Our aim is to improve upon these estimates by solving the592

source inversion problem using our finite volume algorithm as the forward solver. In particular, we will593

apply a Bayesian approach to solving the inverse problem, for which a detailed introduction to the theory594

can be found in the monographs [3, 25].595

We assume that the emission rate from each source is constant for the duration of the study and596

take qi(t) ≡ qi in (22). We employ a smaller computational domain Ω = {−200 ≤ x ≤ 1200, −200 ≤597

y ≤ 1200, 0 ≤ z ≤ 300}, which is discretized on a 503 uniform grid. The regularized wind data598

from Figure 4 is employed, and parameters γ, z0, zi, L and zcut are fixed at the “best guess” values599

determined in Table 6. Based upon these assumptions and the fact that source locations are fixed in600

space, the mapping from emission rates qi to deposition w is linear. We can therefore define the forward601

map according to the matrix-vector equation602

w = Fq, (33)603
604

where F is a 502 × 4 matrix, q := (q1, q2, q3, q4)T is the emissions vector, and w is a vector containing605

the deposition values wij,NT
accumulated over the entire month from (25). The mapping is constructed606

by solving the forward problem separately for each source based on a unit emission rate. The resulting607

concentration contour plots are depicted in Figure 8, each of which is concatenated into a single column608

vector to form the columns of F.609

Given that the cross-sectional area of each dust-fall jar opening is Ajar = 0.0206 m2, which is small610

relative to the dimensions of a discrete grid cell, we can assume that the jars are point samples of611
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Figure 8: Contour plots of total deposited mass of zinc particulate in the vicinity of the smelter site during June 2–July 3

2002, when each source is given a unit emission rate. These four solutions are concatenated to form the columns of the

forward map F in (33).
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deposition and hence take the k-th dust-fall measurement to be612

dk = w(xrk
, yrk

, T ) Ajar, (34)613
614

where (xrk
, yrk

) denotes the kth sample location. Since the jars aren’t in general aligned with the discrete615

grid points, the dust-fall deposition estimates are determined from nearby discrete values w by means616

of linear interpolation, for which we employ Matlab’s interp2 function. Combining (33) and (34), we617

obtain the observation map618

G : R4 → R9, d = Gq, (35)619
620

where d = (d1, · · · , d9)T is the vector of dust-fall estimates. The mapping G is also a linear operator621

that takes emission rates as input and yields dust-fall measurements as output.622

We next describe the source inversion method within the Bayesian framework. We use dobs to denote623

the actual dust-fall jar measurements, and N (m,ΣΣΣ) for a multivariate normal random variable with624

mean m and covariance matrix ΣΣΣ. Then, denoting by π(ξξξ) the Lebesgue density of a multivariate625

random variable ξξξ, we consider an additive noise model where626

dobs = Gq + εεε and εεε ∼ N (0, σ2I9×9).627
628

Here, I9×9 denotes the 9 × 9 identity matrix and σ > 0 is the standard deviation of the measurement629

noise, which is computed by assuming a signal-to-noise ratio (SNR) equal to 10 which is chosen based630

on discussions with experts from the company and is informed by historical dustfall-jar measurements at631

the industrial site. It is then straightforward to verify that the distribution of the data dobs conditioned632

on q can be written as633

π(dobs|q) =
1

|2πσ2|9/2
exp

(
−1

2
‖Gq− dobs‖22

)
,634

635

which is referred to as the likelihood distribution.636

The next step in formulating the inverse problem is to construct a prior distribution for the parameter637

of interest q. Let qeng denote the given vector of engineering estimates for emission rates from Table 4.638

We model prior belief regarding q via the prior distribution π0 that is defined through639 

π0(q, λ) = π0(q|λ)π0(λ),

π0(q|λ) = N (q, λ−1I6×6),

π0(λ) = Gam(α0, β0).

(36)640

641

Here, Gam(α0, β0) is the Gamma distribution with density642

Gam(ξ;α0, β0) =
βα

0

Γ(α0)
ξα0−1 exp (−β0x) ,643

644

where Γ denotes the usual gamma function, α0 is known as the shape parameter and β0 is the rate [24].645

Put simply, π0 assumes that prior to observing any measurements the parameter q is a multivariate646
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normal random variable with an unknown variance λ−1, where the parameter λ is independent of q and647

follows a Gamma distribution. Following [19], we take parameters α0 = 1 and β0 = 10−4, which implies648

that π0(λ|q) has mean α0/β0 = 104 and variance α0/β2
0 = 108. This choice of parameters ensures that649

the prior on λ is sufficiently spread out so that it won’t affect the solution to the inverse problem, and650

hence is essentially “uninformative”.651

Applying Bayes’ rule [3, 25] we may now identify the posterior distribution on q and λ as652

π(q, λ|y) =
1
Z

π(dobs|q)π0(q|λ)π0(λ) where Z =
∫

exp
(
−1

2
‖Gy − dobs‖22

)
π0(y|λ)π0(λ) dy dλ.653

654

The quantity Z is simply a normalizing constant that ensures π(q, λ|dobs) is a probability density. In655

practice, we never actually compute Z but instead sample the posterior distribution directly using a656

Markov Chain Monte Carlo method. Making use of the conjugacy relations between normal and Gamma657

distributions (see [2] or [15, Sec. 2.4]) we can obtain an analytical expression for the conditional posterior658

distributions of q and λ as659

π(q|λ, dobs) = N (qλ, Cλ) , (37)660

π(λ|q, dobs) = Gam
(

α0 + 2, β0 +
1
2
‖q− qeng‖22

)
, (38)661

662

where663

qλ = qeng + λ−1GT(σ2I9×9 + λ−1GGT)−1(dobs −Gqeng), (39)664

Cλ = λ−1I4×4 − λ−1GT(σ2I9×9 + λ−1GGT)−1G. (40)665
666

This gives an efficient method for sampling the conditional posterior distributions for both q and λ,667

and also suggests that a block Gibbs sampler [2, 44] is capable of efficiently sampling the full posterior668

distribution π(q, λ|dobs). Given a large enough sample size K > 0, our sampling algorithm proceeds as669

follows:670

(i) Initialize λ(0) and set k = 1.671

(ii) While k ≤ K:672

1. Compute q(k) ∼ N (qλ(k−1) ,Cλ(k−1)).673

2. Compute λ(k) ∼ Gam
(
α0 + 2, β0 + 1

2‖q
(k) − qeng‖22

)
.674

3. Set k ← k + 1 and return to step 1.675

Note that the finite volume solver enters our framework for solving the inverse problem only through676

the matrix F in (33). Once this matrix is in hand, we can construct the observation map G and sample677

the posterior distribution using the Gibbs sampler. Here we improve efficiency by constructing the678

matrix F in an offline computation using a Fortran implementation of the finite volume algorithm which679

is coupled with Clawpack (and note further that this computation could also be easily parallelized).680

After that, we construct G and solve the actual inverse problem using Matlab. Constructing the matrix681
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F is by far the main bottleneck in our simulations, and can take up to 8 hours on an Intel Core i7682

processor with four parallel threads. With the matrix F in hand the rest of the calculations, including683

the sampling step, can be performed in a matter of minutes.684

The algorithm just described generates a collection of samples {(q(k), λ(k))}Kk=1 that are distributed685

according to the posterior distribution π(q, λ|dobs). Figure 9 depicts the results of such a computation686

with sample size K = 5000, wherein sub-figures a–e depict marginal posterior distributions for λ and the687

emission rates qi. Note that the posterior marginals on qi are unimodal and roughly symmetric, which688

suggests that the mean of posterior π(q|dobs), denoted qPM, is a good estimator of the true value of689

the parameter q. The trace plot of λ in Figure 9f exhibits the desirable mixing property of the Gibbs690

sampler. Finally, Figure 9g compares the engineering estimates qeng with the mean of the posterior691

distribution on the emission rates, denoted by qPM. The main difference between our solution and the692

engineering estimates is that the relative size of Q1 and Q2 is reversed: we clearly identify Q1 as the693

largest source on the site, whereas the Company’s engineering estimates suggest Q2 is the largest source.694

On the other hand, our estimates of Q3 and Q4 are very close to the engineering estimates. Furthermore,695

our solution predicts that a total of 116 ±18 ton/yr of zinc is emitted from the entire smelter operation,696

in comparison with the 125 ton/yr suggested by the engineering estimates, which leaves us confident697

that our emissions estimates are realistic and are in line with previous studies.698

Finally, we study the model predictions of the dust-fall jar data in order to assess the quality of the699

estimate from the posterior mean. Figure 10 compares the measured data with qeng and the predicted700

data using qPM. As expected, qPM shows a better match with the measurements compared with qeng,701

suggesting that the posterior mean yields a significant improvement over the engineering estimates.702

a) b) c) d) e)

-5000 0 5000 10000 15000

λ

0

0.1

0.2

D
en

si
ty

30 40 50 60 70

q
1

0

0.05

0.1

0.15

D
en

si
ty

20 30 40 50 60

q
2

0

0.05

0.1

0.15

-20 0 20 40

q
3

0

0.05

0.1

0.15

-10 0 10 20

q
4

0

0.1

0.2

f) g)

0 1000 2000 3000 4000 5000

samples

0

2000

4000

6000

8000

λ

Q1 Q2 Q3 Q4
0

20

40

60

80

E
m

is
si

o
n

 r
at

es
 (

tn
/y

r)

Solution

Engineering estimate

Figure 9: Statistical properties of 5000 samples generated from the posterior distribution π(q, λ|dobs) using the Gibbs

sampler. (a–e) Marginal posterior distributions of the samples. (f) Trace plot of the Markov chain for λ that demonstrates

the desirable mixing of the Markov chain. (g) Mean and standard deviation of the vector of emission rates q in comparison

with the engineering estimates qeng.
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Figure 10: Comparison of measured and simulated zinc dust-fall deposition, using wind data from the period June 2–July

3, 2002.

5.1. Uncertainty propagation and impact assessment703

With the solution of the inverse problem in hand, we now turn our attention to assessing the impact704

of the estimated emission rates. To this end, we push the full posterior distribution π(q|dobs) through705

the forward map F (rather than just the posterior mean). Note that the dependence of the posterior on706

λ is suppressed since we are only interested in q. Since this distribution is non-Gaussian we must resort707

to sampling, which can be expensive. To reduce the computational cost, we will instead approximate708

the posterior distribution by a Gaussian and obtain an analytical expression for the push-forward of the709

Gaussian approximation through the forward model. Let qPM be the posterior mean of the emission rates710

as before and let Cpost be the posterior covariance matrix of q, which can be approximated empirically711

using samples generated by the block Gibbs sampler. We then approximate the posterior distribution712

π(q|dobs) using the Gaussian713

π̃(q|dobs) = N (qPM,Cpost),714
715

with which we obtain an approximation of the probability distribution for total deposition w as716

π̃(w) = Fπ̃(q|dobs) = N (FqPM,FCpostFT).717
718

The mean and standard deviation of π̃(w) are displayed in Figure 11 alongside the engineering estimates719

qeng for comparison purposes. As one would expect, the estimate qPM results in smaller values of720

deposition than qeng; however, the deposition contours have a similar shape. The standard deviation721

is larger close to the sources and decays rapidly with distance from the sources. Intuitively, this means722

that the uncertainty in the solution of the inverse problem has a large impact close to the sources but723

this impact decays as we move away from the sources.724

5.2. Comparison with Gaussian plume solver725

A major advantage of the finite volume solver over the conventional Gaussian plume solution is its726

ability to capture transient behavior of plumes emitted from point sources and subsequently transported727

by the wind. In contrast, the Gaussian plume solution typically assumes that both the wind and the728

advected plume are determined under steady state conditions (the closely-related class of Gaussian puff729

solutions are capable of handling transient plumes but they have their own set of drawbacks [55]).730
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Figure 11: Contours of total deposited pollutant mass in the vicinity of the smelter site, accumulated during the period

June 2–July 3, 2002, using the qeng and qPM estimates (top row) and standard deviation of π̃(w) (bottom left). An aerial

map of the smelter site is also included (bottom right).
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Figure 12 depicts a typical plume shape arising from a constant unidirectional wind (analogous to the731

Gaussian plume solution) and compares it with the corresponding plume resulting from a more realistic732

time-varying wind field (here we imposed a synthetic wind field with a constant speed and sinusoidally-733

varying direction). The changing wind speed and direction lead to a time-dependent “meandering”734

motion of the plume in which the plume core with the highest particulate concentrations is deformed735

significantly relative to the uniform wind case. Contour slices further away from the source location736

experience a much greater deflection, although they also have less impact on total deposition because737

the concentration there is much smaller. This example illustrates yet another impact of wind time738

variations, which is to introduce an additional effective diffusion in the solution, thereby resulting in739

concentration (and deposition) fields that are much smoother.

Figure 12: Contour slices for a plume arising from a single point source. (left) A constant, uni-directional wind generates

the usual Gaussian-shaped plume. (right) A sinusoidally-varying wind direction and speed leads to a meandering plume

shape. Both results are computed using the finite volume solver.

740

We next compare the estimated monthly depositions of zinc using two forward solvers: the finite741

volume code and the Gaussian plume solution of [22, 31]. The Gaussian plume solver is based on742

an approximate analytical solution due to Ermak that incorporates a deposition boundary condition743

consistent with our model (1)–(3). Both solvers use the physical parameter values listed in Table 5,744

regularized wind data from Figure 4, and diffusion coefficients and wind parameters based on Pasquill745

stability class A.746

Computed results using the two forward solvers are compared in Figure 13, based on which we747

observe three main discrepancies. Because the Gaussian plume solution is incapable of capturing plume748

meander effects due to time-varying winds, the deposition contours computed using this method are more749

localized and less diffuse. On the other hand, the Gaussian plume solution fails to accurately capture750

depositions immediately adjacent to the sources because the solution there breaks down in calm winds;751

consequently, the deposition values near the sources are anomalously low. A third discrepancy arises752

from the fact that pollutants are not transported as far from the sources with the Gaussian plume solver.753

It is also important to point out that the discrete time step used in the two simulations is quite different.754
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Figure 13: Comparison of total deposition contours between the Gaussian plume solver of [31] (left) and our finite volume

solver (right). Both solutions are computed using the emission rates obtained from the posterior mean qPM estimate.

The Gaussian plume solver computes its quasi-steady solution at time instants separated by a constant755

interval of 10 minutes, which is justified in [31] based on the size of the domain and wind speed. On756

the other hand, the finite volume method selects the time step adaptively based on the CFL restriction,757

which ranges from roughly 1 s (at peak wind speeds) up to a maximum of 40 s (in calm winds). This758

implies that the finite volume solver is computing with a much smaller time step which improves the759

wind resolution and corresponding solution accuracy, but comes at the expense of a significant increase760

in computational cost.761

At this point, it is natural to ask how the differences between the two forward models affect the762

solution to the inverse problem. Recall that our Bayesian framework depends on the finite volume solution763

only through the observation matrix G that maps emission rates to dustfall-jar measurements in (35).764

A direct comparison is then afforded by simply constructing the G matrix from the Gaussian plume765

solution and then proceeding to solve the corresponding inverse problem. The result of this computation766

is presented in Figure 14. Using the Gaussian plume solver we estimate a total of 163.2 ± 31 ton/yr of767

zinc is emitted from the entire site, which is larger than the 116 ± 18 ton/yr estimated using the finite768

volume solver. Looking more closely at the results, we note that our estimates for Q1 and Q4 agree quite769

well between the Gaussian plume and finite volume solvers. However, the estimated values for Q2 and770

Q3 using the Gaussian plume solver are significantly larger than those obtained using the finite volume771

solver. This difference is not surprising if one considers our earlier observation that the two forward772

models differ significantly in their predictions of near-source depositions (see Figure 13). Given that773

the uncertainty bounds on the estimates obtained using the finite volume solver are smaller compared774

to those obtained using the Gaussian plume solver, we conclude that the finite volume solver not only775

provides more accurate predictions of the measurements but also provides a higher confidence in the776

solution. However, the disagreement between our predictions for Q2 is a source of concern. We suspect777

that this issue may be due to a lack of calibration of the model, and this issue will be studied in more778

detail in an upcoming article [13].779
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Figure 14: Comparison of estimated emission rates using the finite volume solver and the Gaussian plume solver of [31].

6. Conclusions780

In this article we present a model for short-range dispersion and deposition of particulate matter781

based on a discrete approximation of the advection-diffusion equation. The wind data and eddy diffusion782

coefficients entering the resulting parabolic partial differential equation allow us to include the effects of783

atmospheric stability class, surface roughness, and other important parameters. We then presented an784

efficient finite volume discretization of the PDE that aims to accurately capture the effect of spatially785

variable coefficients, deposition boundary condition, and concentrated point sources.786

The effectiveness of our numerical algorithm was then illustrated using an industrial case study787

involving the emission of zinc particulates from four point sources located at a zinc smelter. We simulate788

the results in a statistical framework that allows us to quantify global sensitivity of the model to the789

five most uncertain parameters. The sensitivity study demonstrates that the velocity exponent γ and790

the Monin-Obukhov length L are the most influential model parameters, suggesting that both require791

special care to minimize the uncertainty of any numerical simulations based on our model.792

We then proceed to solve the inverse problem of estimating the source emission rates from a given793

set of deposition measurements. We developed a Bayesian framework wherein the forward map was794

constructed using our finite volume code, and the prior distribution is assumed to follow a normal-795

Gamma structure. The inverse problem was solved by generating independent samples of the posterior796

using a Gibbs sampler and then taking the posterior mean as a estimator of the true emission rates.797

The Bayesian framework provides a natural setting for us to quantify the uncertainty in the solution of798

the inverse problem. Afterwards, we performed an uncertainty propagation study in order to assess the799

impact of the estimated emission rates on the area surrounding the industrial site. One of the most useful800

conclusions of our study was the observation that only four runs of the finite volume code are needed in801

order to obtain the forward map for the inverse problem. This efficiency gain comes from exploiting the802

linear dependence of the forward problem on the emission rates, and more than makes up for the smaller803

time step required in the finite volume scheme relative to other forward solvers like the Gaussian plume.804

Finally, we presented a comparison between our finite volume solver and a Gaussian plume solver.805

The Gaussian plume solver ignores certain physical processes such as the meandering of the plume806

31



during periods of rapid change in the direction of the wind. We then compared the solution of the source807

inversion problem using a Gaussian plume solver with that which was obtained using the finite volume808

solver. The estimates between the two methods agree to some extent but we saw that the finite volume809

solver exhibits smaller uncertainty bounds in comparison to the Gaussian plume solver which is a sign810

that the finite volume solver is better at explaining the data. However, our emission estimates using the811

finite volume method deviate more from the engineering estimates for some of the larger sources which812

is a source of concern. This might be due to a lack of calibration of the model which is an issue that we813

will consider in a future publication [13].814
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