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SUMMARY

The transport of three gas species, 8,0 and N, through the cathode of a proton exchange membrane (PEM)
fuel cell is studied numerically. The diffusion of the individual species islehed via the Maxwell-Stefan equa-
tions, coupled with appropriate conservation equations. Two mechanigrassumed for the internal energy
sources in the system: a volumetric heat source due to the electricaltdlovang through the cathode; and heat
flow toward the cathode at cathode-membrane interface due to the exotlebieniical reaction at this interface,

in which water is generated. The governing equations of the unsteadytiidn are written in fully conservative
form, and consist of the following: (i) three equations for the mass ceasen of the species; (ii) the momentum
equation for the mixture, which is approximated using Darcy’s Law for floparous media; and (iii) an energy

equation, written in a form that has enthalpy as the dependent variable.

Keywords: PEM fuel cells; Maxwell-Stefan equations; Finite volume methmpus media; Non-reacting

mixtures

1 INTRODUCTION

Zero emission power generation has always been the ideal goal dépeadlpe power generation community. One
approach to achieve this goal is via proton exchange membrane (PEMEfise which in principle combine oxy-
gen and hydrogen gas in a reaction that generates electrical cunahicmg only water as a byproduct. A PEM
fuel cell consists of two electrodes, the anode (hydrogen supplgespand the cathode (oxygen supply source),
between which is sandwiched a polymer membrane, usually consisting oiafithe interfaces between the

electrodes and membrane are impregnated with a platinum catalyst, as depketgdlin
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Approximate position of Fig. 1.

A great deal of recent research has appeared in the literature orimgooletransport processes in PEM fuel
cells. The vast majority of work (for example Gurau et al. (1998), Singhl. 1999) and Yi and Nguyen (1999))
has focused on mass transport and it is only more recently that more compleéds including heat transport and
condensation have appeared (see He et al. (2000), Rowe anddil)@0d Wang et al. (2001)).

The present work is part of an ongoing effort to carefully model inldigl elements of the PEM fuel cell, with
a particular focus on simulation of the flow of gas in the porous electrodes.trinsport of two species in both
anode and cathode was studied by Promislow and Stockie (2001), andottkisvas extended in Stockie et al.
(2003) to handle three species, with 2,3) = (Ha, H20, CO,) in the anode andl, 2,3) = (O, H20, Ny) in
the cathode. These two previous papers assumed isothermal condigwaseat in the flow domain, whereas an
extension of the model to temperature-dependent flows recently peddmn8radean et al. (2001), in which
the two-species diffusion was governed by Fick’s Law and temperataseused as the dependent variable in the
energy equation.

In this paper, we present a model for gas transport in the cathode Hiatiliar to that developed by Bradean
et al. (2001), except that the full Maxwell-Stefan equations are usediffusion and enthalpy is used as the
independent variable in the energy equation. Our motivation for usinglkpmtis that it is a more appropriate
quantity for capturing the physics of condensation, which will play an imporale in future modeling efforts.
First, we validate the numerical model against several isothermal and t&timgedependent test cases reported in
the literature. Then, the temperature-dependent algorithm is applied toeasimeeies flow. In the present work,
there is no liquid water, but regions of possible condensation can be iddriificonsidering locations where the

partial pressure of 5D hypothetically exceeds the steam saturation pressure at the mixture temgera

2 MATHEMATICAL MODELING

2.1 Governing Equations

The governing equations for unsteady flow of a gas mixture composerkefspecieq,1, 2,3) = O, H,O and N,
are described here. Three equations for the mass conservation pethiessare required, along with momentum
and energy equations for the mixture. The momentum equation is approxinyabedy’s Law for flow in porous
media, and the energy equation is written in terms of enthalpy in order to simpiifsefaxtension of this work to
include water condensation.

The conservation equation for the mixture mass can be written as:

29 [7] =0, (1)



wherep andV are the mixture density and velocity. For species 1 and 2, the conservatiatians are:
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where(C; and (s indicate species molar concentration, aidand N, represent the total species fluxes (advec-
tive + diffusive). It is important to note that the molar diffusive fluxésand.J, are measured relative to the
mass-averaged veIocit?.

A simplified form of the momentum equation, Darcy’s Law for porous mediasssimed to hold in the porous
electrode:
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wherey is the mixture viscosity, an& (permeability) and (porosity) are characteristics of the porous media.

The energy equation can be written in terms of total enthadipy; h + VTQ as:

0 — S
o, (PH = P) + V- [pVH| = -V + g, (5)

where we are operating under low speed conditions in which the workeaifr stress is ignored. The flux tegm
arises from two effects, conductive heat flux and diffusive enthiilpyes for the multi-species gas mixture, and so

can be written as
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The specific enthalpy of speciéss denoted byh;, and the mass diffusion flux relative to the mass-averaged
velocity by j; = pi(Vi — 17), whereV; is the velocity of species 1% (as noted before) is the mass-averaged mixture
velocity, and hencéV; — 17'), relative velocity of the speci@sw.r.t. the mixture velocity, is the diffusion velocity
of speciesi. The second form of the diffusive enthalpy term in Eqn. (6) can be/etby making use of the
definitionsh; = M;h; for the molar specific enthalpy anfl = Ci(V; — 17) for the molar diffusive flux relative to
the mass-averaged velocity. In Egn. (&)is a volumetric heat source arising from ohmic heat generation
b=t @)

wherei is the electrical current density in the electrode arid the electrical conductivity.

For flow in fuel cells, speeds are relatively low and so the kinetic energgnvisral orders of magnitude smaller

than the static enthalpy term. Therefofe= h + V2/2 ~ h, where
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with M being the mixture molecular weight ai¢ the species mole fraction determined by
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Assuming that all species obey the perfect gas law, in which specific baatbe taken constant near the
operating temperature, we then have

Ylépl + YQsz + Y36p3] T
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Numerical experiments show that the contribution of the second term in Egthé diffusive enthalpy flux of the

L

=C,, T/M (10)

species, is negligible. Ignoring this term, the energy equation for low spasss reduces to:
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% (ph— P)+V - [px?h] =V - (kVT) + g (11)

To close the system of equations, we assume that the mixture obeys thesisléalg
P = CRT, (12)

whereR, is the universal gas constant. The mixture and species concentragomrededed via

3
p=1_ pr=CiM + CoMs + MyCs, (13)
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whereCs = [C — C; — Cs] or
C=p+ (M3 —M)Cy + (Ms — M) Ca]/Mj. (14)

The auxiliary equations needed to determine the diffusive flufleandL, are explained in the next section.

2.2 Diffusive Fluxes

The diffusive fluxes,J;, are often derived in a simplified form based on Fick’s law, which is stricélljdvonly
for mixtures containing two species (see Taylor and Krishna (1993)). ¥ mppropriate model for multi-species
diffusion is obtained using the Maxwell-Stefan equations:
Al 2fsie)
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where C is the mixture concentration, D is the diffusivity matrix of MaxwelI-S’lefaa?ndf,;k represents the molar
diffusive fluxes relative to the mole-averaged velocity. Each compoofetite D matrix depends on the binary

diffusivity (i.e. A12, A1s, Or Agg), via the relationships
D = Aiz(Y1Ags+ (1 -Y1) A1) /S,
D1y = YA (A3 —Arg) /S,
Dy1 = Y2A13(Agg — Aia) /S,

Doy = Aoz (YaAiz+ (1 —Y2)A12)/S, (16)
where
S =Y Aos + Yo A3 + Y3Aqs. (17)



The diffusive fluxes based on mole- and mass-averaged velocitiesfi*imdﬁ, are connected via the following

relationship (see Taylor and Krishna (1993)):
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whered is Kronecker delta function, i.e. fér=1[, §x; = 1, andk # [, oy; = 0.
Combining Eqgns. (15) and (18) yields:
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where

a = 0[811D11+812D21]

b = Cs11Di2 + s12D22]
¢ = Clsa1Di1 + s22D21]
d = C [821D12 + SQQDQQ] . (21)

The final diffusivity matrixD is scaled by a factor of'-> ~ 0.636, known as a Bruggeman correction, in order to

take into account the resistance to diffusion due to the porous medium.

2.3 Discretization of Governing Equations

Obtaining velocity from the Darcy’s Law,

7—— 5 gp=_pwr (22)
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and substituting into Eqns. (1), (2), (3) and (11) yields:
X -V (pByVP), (23)
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% (ph — P) =V - (pBohVP) + V - (kVT) + ’; (26)

The above equations are discretized using a cell-vertex finite volumeaagbprim which all flow parameters
are stored at cell vertices. This approach allows us to locate nodes bauthdaries of the computational domain.
In the description that follows, we represent a typical temporal devava¢irm byoQ /ot, and spatial derivatives

by 0F /0x, whereF is of the formF = A(0B/0x) in all cases. Time derivatives are integrated using a first
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order explicit scheme, while spatial derivatives are discretized viangseoler centered differences, suitable for
the diffusion terms:

(g—i)jk = ﬁ [Fg — Fw], (27)

where F, and Fy are the numerical fluxes at the East (E) and West (W) faces of a tentuome surrounding
node (j,k). Fr and Fyy are determined from

Fp = ﬁ A e+ A By = Bl (28)
Fy = ﬁ A+ A L] B - B (29)

and similarly for they-derivative terms. As an example, the discretized form of Eqn. 23 cauldritten as:
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Similar form for the discretization of Eqns. 24-26 could be used. For themuexplicit computation, a globally
constant time step for temporal integrations were used. Stability requirementsthimigxplicit time step to be
small enough allowing to capture the physics of transient flow and ob8ewacceleration as the solution evolves
toward steady-state. The intermediate solutions would only be physicallgatoif a physically correct initial
condition is provided to the solver.

2.4 Boundary Conditions

For the following discussion of boundary conditions, refer to Fig. 1.

e At boundary locations (1), the wall is assumed to be impermeable. Thdﬁ’i&, Jé” = 0, andv = 0,
where J; andv represent diffusive flux and velocity components in vertical directiohe fieat flux con-
ducted through this boundary is determined by an equivalent convédxetateflux from the coolant, written
as—k(0T /0y) = KW (TW — T), whereK}¥ is an equivalent convective heat transfer coefficient between
the electrode and coolant, aid” is the coolant temperature.

e At open channel boundary (l1), the gas pressure is set equal thtreel pressuré? = P. The diffusive
fluxes at this boundary are assumed to obey an analogue of Newtofiisgclaw in heat transfer, i.elf =
r&(Cy, — Cy), for k = 1,2, whererf is the convective mass transfer coefficient for spekie$he energy
equation at this boundary is approximated-by (97 /0y) = K% (T — T, whereK¥ is the convective heat
transfer coefficient in the channel afids the channel temperature.



e Atthe catalyst boundary (Ill), species 1 (Oxygen) is assumed to thisepass flux conditiod; = ry (Cy —
C), Wherery is the convective mass transfer coefficient, @hd is the concentration at the membrane,
usually taken equal to zero. Water vapor (species 2) is generated botimdary at the rate of two moles of
water for each mole of oxygen that crosses the cathode-catalystdmyuhence Ny = —2N{. The inert
gas component, species 3;)Ncannot penetrate the membrane which is impermeable to gas, afsd).

A heat flux arises at this boundary due to the heat of reaction, ané r€¢6€ /0y) = 2N} h,, whereh,. is
the enthalpy of formation of water in gas form.

e At side boundaries (1V), periodic boundary conditions are specified.

3 RESULTSAND DISCUSSIONS

3.1 Numerical Validation

In this section, we present three validating test cases in a fuel cell @athbd is followed by a full three-species

non-isothermal computation in Section 3.2.

3.1.1 Three-speciesisothermal computation

The first validating test case performed relates to isothermal flow of a #peges(1,2,3) = (O, H2O, Nag)
mixture in the cathode, governed by Egns. (23) — (25). The computationaéin is depicted in Fig. 2.
Comparisons are extremely difficult to do because of the lack of experihutgain the literature. So we have
compared to previous published numerical results instead. An isothermglutation reported by Stockie et al.
(2003) is used for the comparison purposes, in which the governiregiegs were discretized using a method of
lines, resulted to a system of ordinary differential equations and integiragicitly using the stiff ODE solver of
DASSL.
This computation domain is performed based on the parameters: permea&bility 10~% cm?, porosity
e = 0.74, viscosityy = 2.24 x 107* g/(em.s), binary diffusivity coefficientsA1, = 0.124, A3 = 0.104 and
Aoz = 0.123 em? /s, channel pressurB = 1.0 x 10° dyne/cm?, species mole fractions in the chanigl= 0.21,
Y2 = 0.10 andY3 = 0.69, channel temperatufE = 346.15° K, and mass transfer coefficients= r = 10 cm/s

andryg = 0.8 cm/s.

Approximate position of Fig. 2.
Approximate position of Fig. 3.

Approximate position of Fig. 4.



Figures 3 and 4 display the results of the present computation at steéeljestaxygen and water fluxes at the
catalyst layer (i.e., the top boundary). The difference in molar fluxesgi¢hks or valleys differ by at most 7.1%.

The agreement in mole fractions is considerably better, lying within about 1%.

Approximate position of Fig. 5.

In the present computation, neither phase change nor condensationdkethddowever, the regions in which
condensation are likely to occur can still be estimated as follows. Condamsatars at the dew point, where the
partial pressure of water vapdt,, reaches the saturation pressure at the mixture temperatuie, i 8, , (7)) — 1.

With this in mind, we obtain relative humiditg¢ = P,/ P, (T"), where the saturation pressufe, ,, is determined

at
from Appendix A, at the mixture temperatur®. < 1 represents dry regions, and whifecannot exceed 1 in an
actual condensation problem, we identify regions in which condensatiatisriing by® > 1 in the present dry
computations. It is estimated that regiongtof 1 in isothermal computation cannot provide a reliable knowledge
on the locus of wet regions. However, > 1 regions in non-isothermal computation (in which energy equation
is also solved) can provide quite useful information on the locus of wa&megand it is estimated these regions
can well match with those in a two-phase modeling. This is especially true if equitithermodynamic model

is used in a two-phase flow computation, in which moisture onsets as soonsagutegion line is crossed. But in
order to evaluate the quantity of generated moisture a non-isothermaldrgdloputation is not sufficient and a
two-phase flow modeling is required.

Under usual fuel cell operating conditions, liquid water is known to beggad, but the exact location where
condensation occurs is unknown. If water condenses on or neaathgst layer (where the product8 enters
the cathode), then pockets of water may collect which could potentiallywanechannels through which oxygen
gas is supplied to the catalyst. In turn, these pockets of water could restinterrupt the supply of oxygen to the
catalyst and thereby degrade fuel cell performance. As a resultgearent of liquid water is of prime importance
in fuel cells, and identifying the locuB = 1 is a first step in locating potential problem situations.

Figure 5 shows the condensation pockets predicted by the isothermal simwaliich occur at the catalyst
boundary. Clearly, the supply of reactant gases are not cut off icdisis, but there is a potential for performance
degradation if excessive water is generated in these pockets, whichcemse regions of the catalyst to be starved

of oxygen.



3.1.2 Two-species non-isothermal computation

In the present validating test case, we consider the full set of goggetjnations, including the energy equation,
Eqgn. (26). This section deals with a non-isothermal computation of twdesptow (i.e. Q, H2O) in the cathode,
corresponding to an example considered by Bradean et al. (200theifrcomputation, the governing equations
were written in steady form, and a pressure-based scheme of Patdekay) (vas employed to iterate on the
solution until convergence is obtained. Furthermore, a single-chaeneiefry was studied (see Fig. 6). It should
also be noted that in their computations, the two-species mixture was assuniey tick’s Law; our model, on
the other hand, has three gas species modeled by the Maxwell-Stefasg amdhave set the concentration of the
third species, B, to zero in the channel for comparison purposes.

The problem parameters used in this case are as follows: permedbikity10~8 cm?, porositye = 0.74,
viscosityy = 2.24 x 10™* g/(cm.s), effective diffusivity D = 0.08 cm? /s (obtained based on binary diffusivity
values of A, = 0.124, Aj3 = 0.104, and Ags = 0.123 cm?/s), effective thermal conductivityy = 4. x
10° erg/(s em °K), specific heat of the mixtur€, = 2. x 107 erg/(g °K), channel pressur® = 1.1 x
10% dyne/cm?, mass fraction of Do, /p = 0.71 (instead of mass fraction an equivalent mole fraction values
of Y7 = 0.58, Y, = 0.42, andY3 = 0 are used), channel and coolant temperatites TV = 353.15°K,
channel mass transfer coefficierft = 800 cm/s, channel convective heat transfer coefficiéfif = 1.5 x
10* erg/(s em? °K), equivalent convective heat transfer coefficient in graphifé = 1.1x 107 erg/(s cm? °K),

heat of reactiorh,. = 1.36 x 10'2 erg/mol, mass transfer coefficient at the catalyst= 0.3 em/s, andgs = 0.

Approximate position of Fig. 6.
Approximate position of Fig. 7.

Approximate position of Fig. 8.

The numerical results for this example are displayed in Figs. 7 and 8. Thputed temperatures agree to
within approximately0.6° K (out of a full range of~ 360°K’). The sources for this slight disagreement (0.16%
difference) could be associated to the use of Fickian law in the two-spmcdsling by Bradean et al. (2001).
This is as opposed to the present modeling, in which Maxwell-Stefan hasused. It is noted that in the present
computation the mole fraction of the inert gas (Nitrogen), kg, in the channel has been set to zero in order to
match the test case of Bradean et al. (2001), however, an infinitesimaearo value are calculated as a part of
solution forY3 throughout the computational domain. The location of the possible corta@mezegion, as depicted

in Fig. 8, also matches very well with the results reported by Bradean &04l1].



3.1.3 Three-speciesisothermal; another validating case

As the last validation for the present computation, comparisons will be madehgitbomputation of Um et al.
(2000). Figure 9 shows the schematic of cathode and channel in Um(808D) computation. As shown in this
figure three-species flow enters the channel at the station (i) and etafs ahe comparisons will be made at the
cross-sectiory — S, which is located at the mid-length of the channel, Xe= L/2.

The computation is performed based on the data provided by Um et al.)(2808tation (i), on dry basis air
molar analysis is 21% oxygen and 79% nitrogen, where relative humidity=£00% is specified. The specified
channel pressure is 5 atm (= 5.066 bar), and the computation is perf@satiedrmally al” = 353° K (80°C).

To further match the cases, the following parameters are used for pelitgesb = 1.76 x 10~ ¢m?, and
porositye = 0.4. The rest of parameters are taken similar to that of Section 3.1.1.

For comparison purpose, the profile of oxygen mole fraction in the @estienS — S are presented (see
Figs. 9 and 10). It should be noted that in the present one-dimensiomgdutation, the values daf; = 0.171,
andY> = 0.0935 have been specified for the channel values of mole fraction. As shotig.iri0 the agreement
between the test cases are good. The root mean square (RMS) offénerdié between the computations have
been calculated, giving a value of within 4% difference between the mpresenputation and that of Um et al.
(2000). As a further validation, the general trends are consistent woethredicted by the one-dimensional

model of Bernardi and Verbrugge (1991).

Approximate position of Fig. 9.

Approximate position of Fig. 10.

3.2 Three-Species Non-Isothermal Computation

In this section, we present simulations of a full three-species non-isa#hdlow, and compare the results to an
equivalent isothermal calculation. The problem parameters used in thisothermal case ares = 0.677 x
10%erg/(cm s °K), C_'poz, C_'pH2O, C_'pN2 respectively =2.97 x 108, 3.39 x 108, and2.91 x 10® erg/(mol.°K),
K& = 15 x 10° erg/(s em? °K), K¥ = 1.1 x 107 erg/(s cm? °K), TV = 346.15°K, h, = 2.418 x
10'2 erg/mol, i = 1.0 amp/cm?, ando = 7.273 x 1075 amp? s/(erg cm). The rest of parameters were similar

to the test case of Section 3.1.1.
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Approximate position of Fig. 11.
Approximate position of Fig. 12.

The ® = 1 contour in Fig. 11 shows that the electrode remains almost totally dry exmeptdmall pocket
of condensation that appears at the bottom boundary above the lamdanftze solid wall region separating the
two channels). This prediction runs contrary to the results from the iso#lease, in which condensing pockets
appear along the top boundary (see Figs. 5 and 11). This significangelin the location of the condensing
regions highlights the importance of solving the energy equation along withhke tbansport equations.

The two sets of results are compared in Fig. 12 along horizontal crotierseat both the upper and lower
boundaries. Figures 12-a, and b show the distribution of the relative ity along the top and bottom bound-
aries, whereb = P, /P, , andP.

sat sat

is given by Eqgn. (32). Uniform temperature in the isothermal case qonels
to a constant value of saturation pressure. In the non-isothermaltbastemperature field is significantly ele-
vated via two sources: (i) heat source terms, arising fggnm the energy equation; and (ii) the heat of reaction
at the catalyst boundary which enters the electrode from the top bgurdae heat of reaction requires that the
temperature at the catalyst boundary be the highest along any horizorgalsection, as evidenced in Fig. 12-f.
Furthermore, a maximum temperature variation of about/8.@as obtained along the vertical cross-section at
mid-channel £ = 0.25 cm). While this temperature variation seems somewhat large in view ofihem thick-
ness of the electrode, a milder temperature variation could be obtainedafopk, by choosing a material with
higher thermal conductivity. A test case has been performed usiagt x 10° erg/(cm s °K) (about 6 times
larger thermal conductivity) and a temperature variation of less th&i(lveas obtained across the electrode.

We can also use the results of Fig. 12 to explain why the condensing regigrete from the upper catalyst
boundary to the bottom boundary. In Fig. 12-f, the temperature variatamgdhe vertical cross-sectian =
0.5 cm is approximately 5.0k, which translates into arise &P, = 6.21 x 10* dyne/cm? (about 17% of local
saturation pressure). ThiSP, , is the main reason tha decreases as we move upward through the electrode

above the landing area. It is noted that the main variatiod is due toP.

sat)

because of the similarity between
mole fraction {2) and mixture pressure?) between the isothermal and non-isothermal cases (see Figs. 12-c, d, i,

and j).

4 CONCLUSION

A mathematical model is presented for simulating isothermal flow of three gagesd€), H,O and N) in the
cathode of a proton exchange membrane fuel cell. The three trangpatians for the three species are augmented
by an energy equation in order to determine the temperature variations in thedée Regions of possible
condensation are obtained using this model by monitoring the over-satuegieds. WWe demonstrate that only

slight variations in temperature throughout the domain (of abotFs) @an significantly change the location of
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regions of condensing gas.

Over-saturated region®(> 1) in isothermal computations cannot provide a reliable knowledge of the locatio
of liquid water. However, regions whefle > 1 in non-isothermal computations (in which energy equation is also
solved) can provide useful information about the wet regions. Thisgecagally true if the equilibrium thermo-
dynamic model is used in a two-phase flow computation, in which condensatioimsoas soon as the saturation
line is crossed. In order to measure the amount of moisture generatede aophisticated model, which includes
phase change, is required. We plan to incorporate this change in the @gitg an equilibrium thermodynamic
model.

The energy equation is written in terms of enthalpy or could be written in termseshad energy (rather than
temperature) as the dependent variable, which will be an important issuéuie tudies that focus on careful

modeling of condensation.
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APPENDIX A

The saturation pressure for steam, within a temperature rarige-of40, 160]°C, is determined from the following

polynomial of degree 5 in terms afne/cm?:

P

sat

(T)=aT® +bT* +cT? +dT* +eT + f, (32)
where

a=T779E —6, b= +1.06E —2, c=—9.84E —1
d=113E+2, e=—-343E+3, f=-46.60E+4

Thermodynamic data is taken from steam thermodynamic tables of the text laylind Shapiro (2000) and fitted

using a fifth-order, least squares polynomial approximation.
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Figure Captions
1. Figure 1: A schematic picture of a proton exchange membrane (PEMdilie
2. Figure 2: Computational domain, consisting of a 2D slice through the catinad a pair of flow channels.

3. Figure 3: Comparison of molar fluxes at the catalyst boundary (the dopdary) for specie¢l,2) =
(Og, H20).

4. Figure 4: Comparison of computed mole fractions at the catalyst boufittertop boundary) for species
(1,2,3) = (Oz,H20, No).

5. Figure 5: Regions of possible condensation predicted by the modemhiagsisothermal conditions.
6. Figure 6: Fuel cell used by Bradean et al. (2001).

7. Figure 7: Comparison of temperature distribution at the catalyst boy(tartop boundary) with the results
of Bradean et al. (2001).

8. Figure 8: Region of possible condensation predicted by the presessj@cies non-isothermal computation
with one channel.

9. Figure 9: Cathode and channel schematics in Um et al. (2000) computatio

10. Figure 10: Comparison of oxygen mole fractidh)(across the porous media of cathode, at the cross-section

S — S of the previous figure.

11. Figure 11: Region of possible condensation predicted by the prtbsea-species non-isothermal computa-
tion with two channel.

12. Figure 12: Comparison of three-species isothermal (left) and dimeisnal (right) computations.
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Figure 1: A schematic picture of a proton exchange membrane (PEM)dliel ¢
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Figure 2: Computational domain, consisting of a 2D slice through the cathedegair of flow channels.
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Figure 3: Comparison of molar fluxes at the catalyst boundary (the topdaoy) for specie$l, 2) = (Oq, H20).
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Figure 4: Comparison of computed mole fractions at the catalyst bourttiaryop boundary) for speci¢s, 2, 3) =
(O2,H20, N3).
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Figure 5: Regions of possible condensation predicted by the model, agsiswtimermal conditions.
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Figure 6: Fuel cell used by Bradean et al. (2001).
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Figure 7: Comparison of temperature distribution at the catalyst bountterytdp boundary) with the results of
Bradean et al. (2001).
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Figure 8: Region of possible condensation predicted by the preserggames non-isothermal computation with

one channel.
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Figure 9: Cathode and channel schematics in Um et al. (2000) computation.

23



Oxygen mole fraction across the cross section S-S
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0.03
0.025 |- Present Computation %
\“\
0.02

i
L
\

\.

= Bernardi and Verbrugge
S, 0.015| (1991) ‘
>- \
001 i
0.005 |-
0 ] ]
0 0.05 0.1 0.2

Figure 10: Comparison of oxygen mole fractidf ) across the porous media of cathode, at the cross-segtios

of the previous figure.
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Figure 11: Region of possible condensation predicted by the preseetdpecies non-isothermal computation

with two channel.
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Figure 12: Comparison of three-species isothermal (left) and non-isasthéright) computations.
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