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Abstract

Examples of fluid motion driven by immersed flexible structures abound in nature. In

many biological settings, for instance a beating heart, an active material generates a time-

dependent internal forcing on the surrounding fluid. Motivated by such active biological

structures, this thesis investigates parametric resonance in fluid-structure systems induced

by an internal forcing via periodic modulation of the material stiffness.

One particular application that we study is the cochlea which is the primary compo-

nent for pitch selectivity in the mammalian hearing system. We present a 2D model of

the cochlea in which a periodic internal forcing gives rise to amplification of basilar mem-

brane (BM) oscillations. This forcing is inspired by experiments showing that outer hair

cells within the cochlear partition change their lengths when stimulated, which can in turn

distort the partition and modulate tension across the BM. We demonstrate the existence of

resonant (unstable) solutions through a Floquet stability analysis of the linearized govern-

ing equations. Moreover, we show that an internal forcing is sufficient to produce travelling

waves along the BM in the absence of any external stimulus.

We next examine parametric instabilities in a 3D system by considering a closed spherical

elastic membrane (or shell) immersed in a viscous, incompressible fluid. A Floquet analysis

for both inviscid and viscous systems shows that parametric resonance is possible even in

the presence of fluid viscosity. Numerical simulations are presented to verify the analysis

and an application to cardiac fluid dynamics is discussed.

Finally, we deviate from the topic of parametric instabilities to consider the natural

oscillations of unforced spherical elastic membranes. We present a linear stability analysis

to obtain a dispersion relation for immersed membrane oscillations for both inviscid and

viscous fluids, as well as a nonlinear analysis of immersed membrane oscillations in an

inviscid fluid. We then present an experiment where we measure oscillation frequencies of

immersed water balloons in an attempt to corroborate the analytical results.
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“To explain all nature is too difficult a task for any one man or even for any one age.

Tis much better to do a little with certainty and leave the rest for others that come after,

than to explain all things by conjecture without making sure of any thing.”

— Sir Isaac Newton
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Chapter 1

Introduction

Fluid-structure interaction (FSI) problems are ubiquitous in scientific and industrial appli-

cations. Owing to the complex coupling that occurs between the fluid and moving structure,

FSI presents formidable challenges to both mathematical modellers and computational sci-

entists. Of particular interest in this thesis are systems involving a highly deformable elastic

structure immersed in a viscous incompressible fluid, which is common in biofluid systems

such as blood flow in the heart or arteries, dynamics of swimming or flying organisms, and

organ systems [61, 75, 122].

One approach that has proven particularly effective at capturing FSI with highly de-

formable structures is the immersed boundary method (or IB method) [102]. This approach

was initially developed by Peskin [101] to study the flow of blood in a beating heart, and

has since been employed in a wide range of other biological and industrial applications.

The beating heart is an example of a fluid-structure system where the immersed structure

applies a periodic force onto the surrounding fluid. The heart muscle fibres repeatedly con-

tract and relax to pump blood through its chambers without any external forcing, hence

the blood flow is driven by an internal or parametric force. It is then natural to wonder if

this internal periodic forcing can give rise to an instability known as parametric resonance.

Parametric resonance in fluid dynamics was first observed by Faraday [27] in an ex-

periment where a fluid layer on a vertically vibrating plate revealed peculiar yet beautiful

patterns. Faraday noticed that the surface of the fluid oscillates at half the frequency of the

vibrating plate whenever these patterns occurred. This period-doubling phenomenon was

later verified by Benjamin and Ursell [10] who performed a mathematical analysis based

on an inviscid fluid and is now known to be a characteristic signature of parametric res-

onance. Parametric resonance has since been identified in a wide range of fluid systems.

1



CHAPTER 1. INTRODUCTION 2

Other examples are a liquid thread immersed in a shear flow arising in industrial polymer

blending [41], interfacial dynamics of two immiscible fluids in a vibrating tank [64], and

oscillatory flow of large-scale geophysical fluids [105].

Motivated by the beating heart, we investigate parametric resonance in a fluid-structure

system where a spherical elastic shell is immersed in a viscous incompressible fluid. This is

an extension of a study by Cortez et al. [18] where they examine parametric instabilities of

an internally-forced elastic membrane in two dimensions, in which the forcing appears as

a periodic modulation of the elastic stiffness parameter. These authors showed that such

systems can give rise to parametric resonance, which overcomes viscous fluid damping and

thereby cause the elastic structure to become unstable. Furthermore, Cottet et al. [21]

presented computational evidence for the existence of parametric instabilities in 3D elastic

shells, but no analysis has yet been done on the complete three-dimensional governing

equations to confirm the presence of these instabilities. One of the objectives of this thesis

is to extend the work of Cortez et al. [18] by presenting a rigorous mathematical analysis of

the existence of parametric instabilities in 3D elastic shells. The analysis incorporates the

full two-way fluid-structure coupling by formulating the model in an IB framework.

Other studies of parametric resonance in fluid-structure systems include the work by

Semler and Päıdoussis [115] where they examine the stability of a flow through a cantilevered

pipe fixed on one end. They show that an imposed periodic velocity induces a flutter

instability in the free end of the pipe. Another example is the study by Wang [126] where

high-speed fluid flow causes vibrations in long, flexible vanes in a paper making machine.

The purpose of the vane is to ensure a uniform distribution of fibres in the machine headbox,

however a turbulent flow may induce a flutter instability in the vane which affects the quality

of the paper. Both of these studies impose a periodic fluid velocity, but the solid structure

has no influence on the fluid motion and so the two-way fluid-structure interaction is ignored.

Resonant instabilities arise due to an intrinsic relationship between the natural frequency

of the oscillating membrane and the imposed forcing frequency, thus in this thesis we include

an analysis of the natural oscillations of unforced immersed spherical elastic shells. There

have been numerous studies of oscillations or vibrations of thin spherical elastic shells, for

example [5, 9, 55, 78, 94], however none of these studies incorporate any hydrodynamic

effects due to the surrounding fluid. In the acoustics literature, mathematical models of

immersed spherical shells have been used to study the propagation of pressure waves in a

fluid medium [43, 116, 132], but the fluid is often assumed to be inviscid and the fluid-

structure coupling is not considered.

There is relatively little mathematical analysis on FSI problems owing to the complex
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nonlinear coupling between the equations governing the elastic structure and the fluid.

Stockie and Wetton [118] performed a linear stability analysis of the IB model in two

dimensions for a simple geometry in which a flat fibre is immersed in fluid. They also pre-

sented asymptotic results on the frequency and rate of decay of membrane oscillations that

depends on the wavenumber of the sinusoidal perturbation, as well as validating their ana-

lytical results using 2D numerical simulations with the IB method. Cortez and Varela [19]

performed a nonlinear analysis of a perturbed circular elastic membrane immersed in an

inviscid fluid to validate simulations using the impulse method. In this thesis, we extend

the linear stability analysis in [118] to three spatial dimensions and derive a dispersion rela-

tion that describes the oscillation frequencies and decay rates of immersed spherical shells.

Furthermore, we extend the nonlinear analysis of [19] to investigate nonlinear effects in

spherical shells immersed in an inviscid fluid.

Some researchers have studied oscillations of spherical elastic shells experimentally. Kuo

and Hunt [65] performed an experiment with a helium-filled rubber balloon and contrasted

their results with a soap bubble model by Grinfeld [40]. However, they found that the

theory consistently under-predicted the experimental results. They later develop a new

model that incorporates the nonlinear elasticity of the balloon material and achieve a better

agreement between model and experiment [66]. Lund and Dalziel [79] examined the fluid

dynamic phenomena that are present at different stages of a bursting water balloon. In

their experiments, they found that the oscillation frequencies of the surface waves on a

water balloon in its “pre-burst” stage are consistent with the dispersion relation derived

by Lamb [69] for spherical drops in an inviscid fluid. In this thesis, we present our own

experiment on the oscillations of immersed water balloons in an attempt to validate our

analytical results with data.

1.1 Thesis Outline

In Chapter 2, we define parametric resonance and introduce Floquet theory with an illus-

trative model problem: a pendulum with a vertically moving support. Next we provide an

overview of the immersed boundary method in Chapter 3.

The following three chapters delve into parametric resonance in fluid-structure systems.

In Chapter 4, we revisit the paper by Cortez et al. [18] where they investigate parametric

resonance in immersed elastic fibres in 2D. Next we explore an application of parametric

resonance to a biological system in Chapter 5 where we develop and analyze a 2D model of

the cochlea (inner ear) with internal forcing. In Chapter 6, we extend the work of [18] to
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spherical immersed elastic shells in 3D.

In Chapter 7, we present some results on the natural oscillations of unforced immersed

spherical elastic shells. Finally, we present conclusions and discuss future work in Chapter 8.



Chapter 2

Parametric Resonance

and Floquet Theory

Parametric resonance is an instability in a dynamical system that is caused by periodic

variations in a system parameter. In this chapter, we illustrate parametric resonance and

introduce Floquet theory by examining a simple model problem that exhibits parametric

instability: a pendulum with vertically moving support [8].

2.1 A Pendulum with Vertically Moving Support

Consider a rigid pendulum with length ℓ connecting a point mass m to a support at posi-

tion y(t) as illustrated in figure 2.1. The angle that the pendulum makes with the vertical,

u(t), is governed by the second-order differential equation

mℓ
d2u

dt2
+m

(
g +

d2y

dt2

)
sinu = 0, (2.1)

where g is the acceleration due to gravity. If the support of the pendulum is fixed (i.e.

y(t) = y0) and the initial angle is small then the pendulum swings with natural frequency

ω0 =
√
g/ℓ. Now suppose the support is moving vertically with a prescribed periodic mo-

tion y(t) = A sin(ωt) + y0. How does the moving support affect the dynamics of the swinging

pendulum? The vertically moving support induces an internal or parametric force by pe-

riodically modulating the gravitational restoring force of the pendulum. This parametric

force can lead to an instability depending on the specific relationship between the forcing

frequency ω and the natural oscillation frequency ω0. We shall conduct an analysis to

elucidate these instabilities.

5



CHAPTER 2. PARAMETRIC RESONANCE AND FLOQUET THEORY 6

u ℓ

m

y(t)

g

Figure 2.1: A rigid pendulum with a vertically moving support. Here, ℓ is the rod length,
m is the mass, u(t) is the angle measured from the rest position, y(t) is the position of the
support, and g is the acceleration due to gravity.

2.2 The Mathieu Equation

Consider the small angle approximation (u ≈ 0) to the pendulum equation (2.1)

d2u

dt2
+ κ(1 + 2τ sin t)u = 0, (2.2)

where we have performed a change of variable t̃ = ωt, dropped the tilde, and introduced

two nondimensional parameters

κ =
g

ℓω2
and τ = −Aω

2

2g
.

Equation (2.2) is the well-known Mathieu equation [84, 91] which determines the stability

of the pendulum when the initial angle is small. Specifically, an unbounded solution to the

linear equation implies a resonant solution to the original nonlinear problem.

The Mathieu equation is a second-order ODE which can be written as a first-order

system

d

dt


u
v


 =


 0 1

−κ(1 + 2τ sin t) 0




u
v


 , (2.3)

with a coefficient matrix that is a periodic function of time. We now invoke Floquet the-

ory [16, 31].

Theorem. (Floquet’s Theorem [54]) Consider the ODE system

du

dt
= C(t)u(t),
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where C(t) is a periodic matrix function with minimal period T . There exists a nontrivial

solution of the form

u(t) = eγtP (t), (2.4)

where P (t) is periodic with period T and γ ∈ C.

The Floquet exponent γ determines the stability of the system (2.3) as t → ∞. In

particular, if ℜ{γ} > 0 then the solutions to the Mathieu equation are unbounded, which

in turn leads to unstable motions in the pendulum problem. We apply Floquet theory to

the Mathieu equation and look for nontrivial solutions of the form

u(t) = eγt
∞∑

n=−∞
une

int, (2.5a)

v(t) = eγt
∞∑

n=−∞
vne

int, (2.5b)

where we have written the components of the periodic function P (t) in (2.4) as a Fourier

series. Substituting the Floquet-Fourier solution into the system (2.3) and writing sin t in

terms of complex exponentials yield

γun = −inun + vn,

γvn = −invn − κun + iκτ(un−1 − un+1)

for n ∈ Z. This system has the form of an eigenvalue problem with eigenvector [. . . , un, vn, . . .]
T

and eigenvalue γ, and so we can immediately determine the stability of the Mathieu equa-

tion (2.2) by truncating the above linear system at some finite n, solving the resulting

eigenvalue problem, and examining the computed eigenvalues. Another approach is to treat

the forcing amplitude τ as an unknown and γ as a parameter. This approach is more suit-

able when the Floquet exponent appears nonlinearly in the analysis [18, 64, 88] and thus

will be the method used in this thesis. The above system can be rearranged to eliminate

vn to obtain

−i

(
(γ + in)2

κ
+ 1

)
un = τ(un−1 − un+1), (2.6)

which is a generalized eigenvalue problem with eigenvalue τ and eigenvector [. . . , un, un+1, . . .]
T.

When choosing a value for the parameter γ, we restrict ourselves to periodic solutions

with ℜ{γ} = 0. In particular, we choose from two special values: γ = 0, referred to

as harmonic solutions; and γ = 1
2 i, called subharmonic. These choices of harmonic and

subharmonic γ can be justified as follows. The Floquet-Fourier solution form (2.5) implies

u(t+ kT ) = eγ(t+kT )
∞∑

n=−∞
une

in(t+kT ) = eγkT eγt
∞∑

n=−∞
une

int = qku(t)
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for any positive integer k where T = 2π is the period and q = eγT with q ∈ R. As

k → ∞, the long-term behaviour of the solution depends on the value of q. We conclude

that solutions are stable if |q| < 1 and unstable if |q| > 1, where the special values q = ±1

correspond to periodic solutions that define the marginal stability boundaries separating

stable and unstable solutions. If γ = 0, then q = 1 and

u(t+ T ) = u(t),

which is the T -periodic harmonic solution. If γ = 1
2 i, then q = −1 and

u(t+ T ) = −u(t),
u(t+ 2T ) = u(t),

which is the period-doubling subharmonic solution.

To ensure that the resulting solutions are real-valued functions, we impose a set of reality

conditions on the Fourier series coefficients, which for the harmonic case are

u−n = un, (2.7)

whereas for the subharmonic case

u−n = un−1, (2.8)

for all n ∈ Z, where the overbar denotes the complex conjugate. Either set of reality

conditions implies that it is only necessary to consider nonnegative values of n.

In practice, we approximate the infinite linear system (2.6) by truncating at a finite

number of Fourier modes n = 0, 1, . . . , N . The resulting equations may be written compactly

in matrix form as

Av = τBv,

where the unknown series coefficients are collected together in a vector of length 2(N + 1)

v =




...

ℜ{un}
ℑ{un}

...



,

and A = diag{A0,A1, . . . ,AN} is a block diagonal matrix consisting of 2 × 2 blocks. If

γ = 0, then the block matrices are

A0 = I2, An =


 0 −n2

κ
+ 1

n2

κ
− 1 0


 for n > 0,
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whereas if γ = 1
2 i we have

An =


 0 − (n+ 1

2
)2

κ
+ 1

(n+ 1
2
)2

κ
− 1 0


 for n ≥ 0.

Matrix B has a block tridiagonal structure of the form

B =




B̂ B̃

I2 02 −I2
. . .

. . .
. . .

I2 02 −I2

I2 02




,

where 02 and I2 denote the 2× 2 zero and identity matrices respectively. The sub-matrices

making up the first block row depend on the value of γ, so that for the harmonic case

(γ = 0) we have

B̂ = 02 and B̃ =


 0 2

0 0


 ,

while for the subharmonic case (γ = 1
2 i) we have

B̂ =


 1 0

0 −1


 and B̃ = −I2.

Determining the stability of the Mathieu equation reduces to finding all values of τ and v

for the two Floquet exponents γ = 0 and 1
2 i.

An effective way of visualizing these solutions is to vary κ and to consider the stability

regions that are generated as the eigenvalues trace out curves in parameter space. This

diagram is referred to as an Ince-Strutt diagram [16], and is depicted in figure 2.2 as a

plot of κ versus τ . The stability boundaries take the form of “fingers” or “tongues” that

extend downward in parameter space. There are clearly two distinct sets of alternating

fingers corresponding to harmonic and subharmonic modes, which we denote using the two

point types + and ◦ respectively. Parameter values lying above and inside any given finger

correspond to unstable solutions, whereas all parameters lying below the fingers correspond

to stable solutions. The left-most contour is called the principal subharmonic mode and

tends to be the most prominent instability.

For the Mathieu problem, the eigenvalues touch the κ-axis (τ = 0) at well-defined

locations
√
κ = k

2 , where k is any positive integer. From these points, slightly increasing
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0
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1
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κ

τ
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stable stable stable stable

Figure 2.2: Ince-Strutt diagram for the Mathieu equation. Periodic solutions trace out sta-
bility contours in parameter space. Harmonic solutions are denoted by + and subharmonic
solutions are denoted by ◦. Unstable or resonant solutions of the Mathieu equation lie
within each stability “finger”.

τ brings us into the region in parameter space where unstable solutions to the Mathieu

equation reside. This implies that for |τ | ≪ 1, resonance occurs when

ω0 =
k

2
ω

for any positive integer k; that is, the natural frequency of the unforced pendulum is an

integer multiple of half the parametric forcing frequency. Subharmonic modes (odd k),

where the response frequency is half the forcing frequency, are a characteristic feature of

parametric resonance.

2.3 The Damped Mathieu Equation

Now suppose we include the effect of damping in the pendulum problem that is proportional

to the angular velocity by a damping coefficient µ:

mℓ
d2u

dt2
+ µ

du

dt
+m

(
g +

d2y

dt2

)
sinu = 0.

The corresponding linearized equation is the damped Mathieu equation [54]

d2u

dt2
+ ν

du

dt
+ κ(1 + 2τ sin t)u = 0, (2.9)
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Figure 2.3: Ince-Strutt diagrams for the damped Mathieu equation with damping parameter
ν = 10−2 (left) and ν = 10−1 (right). Harmonic and subharmonic solutions are denoted by
+ and ◦, respectively. Observe that stable region increases with ν but unstable solutions
still exist.

where ν = µ/m is a scaled damping parameter. Following the same procedure as the

previous section, we obtain the infinite linear system

−i

(
(γ + in)2

κ
+ ν

γ + in

κ
+ 1

)
un = τ(un−1 − un+1)

for n ∈ Z. Truncating this system, imposing reality conditions and solving the generalized

eigenvalue problem results in the Ince-Strutt diagram for the damped Mathieu equation

in figure 2.3. We observe similar stability fingers as in the undamped case, however these

fingers no longer touch the κ-axis. The region in parameter space where stable solutions exist

increases in size as the viscosity coefficient ν increases. Furthermore, we see that unstable

solutions persist at sufficiently high forcing amplitudes in spite of damping forces. Therefore,

the damped Mathieu equation can exhibit instabilities with unbounded amplitude, even

in the presence of damping. Moreover, the principal subharmonic mode always extends

downward the furthest and is therefore the most prevalent response observed. This ability

to overcome damping is a characteristic feature of parametric resonance. In contrast, a

pendulum with external or additive forcing always exhibits bounded oscillations if damping

is present.



Chapter 3

The Immersed Boundary Method

Fluid-structure interaction problems present formidable challenges to both mathematical

modellers and computational scientists. One approach that has proven effective at capturing

fluid-structure interactions is the immersed boundary method (or IB method) [102]. This

approach was initially developed to study the flow of blood in a beating heart [101], and

has since been employed in a wide range of other biological and industrial applications,

for example, biofilm aggregation [25], sperm motility [28], parachute descent [59], insect

flight [86], and pulp fibre suspensions [117]. The primary advantage of the IB method

is its ability to capture the full two-way interaction between an elastic structure and a

surrounding fluid in a simple manner using Dirac delta function source terms, which leads

to a simple and efficient numerical algorithm.

This thesis is concerned with incompressible, Newtonian fluids and we restrict our at-

tention to structures having co-dimension one (that is, curves in 2D or surfaces in 3D). The

fluid dynamics are described by the incompressible Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u+ f , (3.1)

∇ · u = 0 for x ∈ Ω, (3.2)

where u(x, t) is the velocity, p(x, t) is the pressure, ρ is the density, µ is the viscosity

and f(x, t) is the force exerted on the fluid by the immersed boundary. The density and

viscosity are assumed constant and the fluid domain, denoted Ω, is taken to be a subset of

either R
2 or R

3. The external force is due to deformations of the elastic structure and is

given by

f(x, t) =

∫

Γ
F (X, s, t) δ(x −X) dΓ, (3.3)

where X(s, t) ∈ Γ is the position of the elastic solid, F (X, s, t) is the force density, δ(x)

12
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is the Dirac delta function, and s is a Lagrangian variable that parametrizes the elastic

solid. Owing to the Dirac delta function in (3.3), the force is singular and is only applied

where the immersed structure is present. The force density, F (X, t), comes from taking a

variational derivative of an energy functional [102]

F (X, t) = − ℘E

℘X
. (3.4)

Here, E(X, t) denotes an energy functional and we use ℘ to denote the variation of the

functional as opposed to the conventional δ which we have already used for the Dirac delta

function. The energy functional incorporates the physics of the elastic structure and depends

on the problem at hand. Finally, the evolution of the immersed boundary is described by

∂X

∂t
= u(X, t) =

∫

Ω
u(x, t) δ(x −X) dΩ, (3.5)

which implies that the structure moves with the local fluid velocity, and effectively imposes

a no-penetration flow condition across the boundary and a no-slip condition tangential to

the boundary. Equations (3.1)–(3.5) are referred to as the delta function formulation of the

IB method.

In lieu of singular force terms, the IB method can be reformulated in terms of jump

conditions across the boundary which is more amenable to analysis. In this formulation,

the fluid equations are satisfied away from the immersed structure

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u,

∇ · u = 0 for x ∈ Ω \ Γ.

In a two-dimensional fluid, the immersed boundary is a one-dimensional fibre parametrized

by a single Lagrangian variable, X = X(s, t). The jump conditions across the fibre are [72,

103]

JuK = 0,

µτ̂ · Jn̂ · ∇uK = − F · τ̂∥∥∥∂X∂s
∥∥∥
,

JpK = F · n̂∥∥∥∂X∂s
∥∥∥
,

where n̂ is the outward unit normal vector, and τ̂ is the unit tangent vector. The double

brackets J·K indicate the jump in a quantity across the fibre Γ, which can be written more

precisely as

J·K := lim
̺→0

(
(·)|x+ − (·)|x−

)
,
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x
•

x+

•

x−•

Γ

∂Ω+
̺

∂Ω−
̺

Ω̺

Figure 3.1: Diagram of the immersed boundary Γ and subdomain Ω̺(t), having inner and
outer boundaries ∂Ω−

̺ (t) and ∂Ω+
̺ (t) respectively, which illustrates the limiting process

x+,x− → x as ̺→ 0.

where we have introduced a thin strip region Ω̺(t) surrounding Γ that extends a distance

̺ on either side of the fibre, with inner boundary ∂Ω−
̺ (t) and outer boundary ∂Ω+

̺ (t)

as illustrated in figure 3.1. The jump in a quantity at location x ∈ Γ is the difference

between values at x+ ∈ ∂Ω+
̺ (t) and x− ∈ ∂Ω−

̺ (t), taken in the limit as ̺ → 0 where both

x+,x− → x. In three dimensions, the elastic structure is a surface parametrized by two

variables, s = (ξ, η) with X = X(ξ, η, t), and the appropriate jump conditions are [67, 131]

JuK = 0,

µJn̂ · ∇uK = (F · n̂)n̂ − F∥∥∥∂X∂ξ × ∂X
∂η

∥∥∥
,

JpK = F · n̂∥∥∥∂X∂ξ × ∂X
∂η

∥∥∥
.

The presence of the Dirac delta kernel in the external force (3.3) and the fibre evo-

lution equation (3.5) provide a means for developing a numerical scheme for computing

fluid-structure interaction problems. The external force is approximated by replacing the

Dirac delta function with a smooth regularization and applying a quadrature scheme to

approximate the integral. Once the force is obtained, the fluid variables can be computed

using any fluid solver such as Chorin’s projection algorithm [17]. Finally, the membrane

is evolved by interpolating the fluid velocity onto the immersed structure locations using

the regularized Dirac delta function. Numerous implementations of the IB method exist
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in the literature, many of which combat issues such as fluid leakage, and numerical stiff-

ness [39, 68, 87, 103, 128]. This thesis is not concerned directly with addressing these

algorithmic issues although numerical simulations will be used to verify the analytical re-

sults.



Chapter 4

Parametric Resonance

in Circular Fibres

In this chapter, we revisit the paper by Cortez et al. [18] where they investigate parametric

resonance in a circular elastic fibre immersed in a two-dimensional fluid. The elastic fibre is

given a time-periodic elastic stiffness parameter which introduces an internal (parametric)

forcing in the problem. This fluid-structure system exhibits parametric instabilities, which

were uncovered through a Floquet stability analysis and validated in numerical simulations.

We reproduce the analytical results obtained by Cortez et al., however our analysis differs in

two key aspects. First, we describe the fluid using a velocity-pressure formulation, instead

of a streamfunction-vorticity formulation used in [18]. Second, we derive the necessary

jump conditions across the fibre by multiplying the governing equations with a smooth test

function, instead of directly integrating the equations. These changes provide a framework

that is more easily extended to three dimensions, as seen in Chapter 6. Furthermore, by

reproducing the analysis, we uncover several errors in the original paper [18] which are

discussed in section 4.3.

4.1 Immersed Boundary Model

We consider a circular elastic fibre with radius R that is immersed in a viscous incom-

pressible fluid occupying the domain Ω = R
2. The same fluid is present both inside and

outside the fibre and the material making up the fibre is assumed to be neutrally buoyant.

The fibre location is given by X(s, t) ∈ Γ and is parametrized by the Lagrangian coordi-

nate s ∈ [0, 2π). The governing equations in the delta function formulation described in

16



CHAPTER 4. PARAMETRIC RESONANCE IN CIRCULAR FIBRES 17

Chapter 3 are

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u+ f , (4.1a)

∇ · u = 0, (4.1b)

f(x, t) =

∫ 2π

0
F (X, t) δ(x −X) ds, (4.1c)

∂X

∂t
= u(X, t), (4.1d)

F (X, t) = − ℘E

℘X
. (4.1e)

We choose a simple energy functional

E(X, t) =
1

2
K(t)

∫ 2π

0

∥∥∥∥
∂X

∂s

∥∥∥∥
2

ds, (4.2)

which describes a fibre that resists stretching but not bending. Therefore, the force density

becomes

F (X, t) = K(t)
∂2X

∂s2
. (4.3)

with the time-dependent stiffness function K(t). We define the stiffness function as

K(t) = σ
(
1 + 2τ sin(ωt)

)
,

where σ is the elastic stiffness parameter, ω is the forcing frequency and τ is the forcing

amplitude.

4.1.1 Nondimensionalization

To simplify the analytical derivation to follow, we first nondimensionalize the problem by

introducing the scalings

x = R x̃, X = R X̃, t =
1

ω
t̃, u = U ũ, p = P p̃,

where the variables with tildes denote nondimensional quantities. The characteristic velocity

and pressure scales are chosen to be

U = Rω and P = ρR2ω2.



CHAPTER 4. PARAMETRIC RESONANCE IN CIRCULAR FIBRES 18

Substituting the above quantities into the governing equations (4.1) and (4.3) yields

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇̃p̃+ ν∆̃ũ+ f̃ , (4.4a)

∇̃ · ũ = 0, (4.4b)

∂X̃

∂t̃
= ũ( X̃, t̃ ), (4.4c)

f̃( x̃, t̃ ) =

∫ 2π

0
F̃ ( X̃, t̃ ) δ̃( x̃− X̃ ) ds, (4.4d)

F̃ ( X̃, t̃ ) = K̃( t̃ )
∂2X̃

∂s2
, (4.4e)

K̃( t̃ ) = κ
(
1 + 2τ sin t̃

)
, (4.4f)

where

ν =
1

Re
=

µ

ρR2ω
(4.5)

is the dimensionless viscosity (or reciprocal Reynolds number) and

κ =
σ

ρR2ω2
(4.6)

is the dimensionless IB stiffness parameter. To simplify our notation, we drop the tildes

from all variables from this point onward.

4.1.2 Linearization

To make the problem more tractable, we linearize the governing equations by considering

small perturbations of the fibre from its equilibrium state. The equilibrium state of the

system is a circular fibre with a pressurized interior immersed in a motionless fluid and is

given by

u0 = 0, p0 = K(t)H(1 − r) + pa, X0 = r̂,

whereH(r) is the Heaviside step function and pa represents some constant ambient pressure.

We wish to investigate the stability of the fibre when its initial configuration is of the form

X(s, 0) =
(
1 + ǫg(s)

)
r̂(s)

for an arbitrary function g(s) and |ǫ| ≪ 1 is a perturbation parameter. We then assume a

solution in the form of a regular perturbation expansion

u = u0 + ǫu1 +O
(
ǫ2
)
,

p = p0 + ǫp1 +O
(
ǫ2
)
,

X = X0 + ǫX1 +O
(
ǫ2
)
.
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Substituting these expressions into the governing equations and retaining only those terms

of O(ǫ), we obtain the following system for the perturbations

∂u1

∂t
= −∇p1 + ν∆u1 + f1, (4.7a)

∇ · u1 = 0, (4.7b)

∂X1

∂t
= u1(X0, t). (4.7c)

4.1.3 Jump Condition Formulation

We next reformulate the equations by replacing the singular forcing term in lieu of suitable

jump conditions across the fibre. We follow the approach used by LeVeque and Li [72] where

a smooth test function is used to eliminate the Dirac delta functions from the momentum

equations. We first present the jump condition for the fluid variables u and p, and then

extract the jump conditions for the perturbation quantities u1 and p1. Furthermore, the

jumps in velocity are written in terms of components in polar coordinates

u1(r, θ, t) = ur(r, θ, t) r̂ + uθ(r, θ, t) θ̂.

Observe that equation (4.1d) implies that the fibre must move with the local fluid

velocity. Because the fibre is infinitesimally thin, the velocity must be continuous across Γ,

or

JuK = 0.

For the perturbation quantities, continuity of velocity across the fibre implies that

JurK = JuθK = 0. (4.8)

Note the jump condition for the O(ǫ) quantities are taken across a circular fibre defined

by r = 1 and θ = s. The divergence-free condition (4.4b) must be zero everywhere, so that

J∇ · uK = 0.

In terms of the components of the perturbation we have

s
∂ur

∂r
+

2

r
ur +

1

r

∂uθ

∂θ

{
= 0.

The jump (4.8) eliminates the second term in the above expression. The third term also

reduces to zero since uθ is continuous and the jump is taken across a circular fibre, so that
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derivatives with respect to θ are continuous. We are then left with
s
∂ur

∂r

{
= 0. (4.9)

The remaining jump conditions are derived from the momentum equations (4.4a). Let

Ω̺(t) be a subdomain that encompasses the fibre as in figure 3.1. Let ϕ(x) be a smooth test

function with compact support. Multiply the momentum equations by ϕ(x) and integrate

over Ω̺(t) to obtain

∫

Ω̺(t)

(
∂u

∂t
+ u · ∇u

)
ϕ(x) dA =

∫

Ω̺(t)
(−∇p+ ν∆u+ f)ϕ(x) dA. (4.10)

We now examine each term in this equation in the limit as ̺ → 0. Starting with the

left-hand side, we apply the Reynolds transport theorem to rewrite the acceleration term:
∫

Ω̺(t)

(
∂u

∂t
+ u · ∇u

)
ϕ(x) dA =

d

dt

∫

Ω̺(t)
uϕ(x) dA−

∫

Ω̺(t)
u(u · ∇ϕ) dA.

Because ϕ(x) is smooth and u is continuous, we have that

lim
̺→0

d

dt

∫

Ω̺(t)
uϕ(x) dA = 0 and lim

̺→0

∫

Ω̺(t)
u(u · ∇ϕ) dA = 0,

hence
∫

Ω̺(t)

(
∂u

∂t
+ u · ∇u

)
ϕ(x) dA→ 0 as ̺→ 0.

Considering next the pressure term in the right-hand side of (4.10), integrate by parts to

obtain
∫

Ω̺(t)
−∇pϕ(x) dA = −

∫

∂Ω+
̺ (t)

p n̂ϕ(x) dℓ

+

∫

∂Ω−

̺ (t)
p n̂ϕ(x) dℓ+

∫

Ω̺(t)
p∇ϕ(x) dA,

(4.11)

where n̂ is the outward unit normal vector and ∂Ω−
̺ (t) and ∂Ω

+
̺ (t) are the inner and outer

surfaces of Ω̺(t), respectively. Because p is also bounded, the last term in (4.11) vanishes

as ̺→ 0 and we are left with the difference between two boundary integrals, which reduces

to a jump in pressure; in other words,
∫

Ω̺(t)
−∇pϕ(x) dA → −

∫

Γ
JpK n̂ϕ(x) dℓ as ̺→ 0.

In an analogous manner, the viscous term in (4.10) can be integrated by parts to yield
∫

Ω̺(t)
ν∆uϕ(x) dA →

∫

Γ
νJn̂ · ∇uKϕ(x) dℓ as ̺→ 0.
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Finally, we consider the forcing term in (4.10) and apply the sifting property of the Dirac

delta function to obtain
∫

Ω̺(t)
f ϕ(x) dA =

∫

Ω̺(t)

(∫ 2π

0
F δ(x−X) ds

)
ϕ(x) dA =

∫ 2π

0
F ϕ(X) ds.

Taking the limit as ̺→ 0 and making use of the identity

dℓ =

∥∥∥∥
∂X

∂s

∥∥∥∥ ds,

the integral (4.10) becomes

0 =

∫ 2π

0

(
−JpK

∥∥∥∥
∂X

∂s

∥∥∥∥ n̂+ νJn̂ · ∇uK
∥∥∥∥
∂X

∂s

∥∥∥∥+ F

)
ϕ(X) ds.

Since ϕ(x) is arbitrary and smooth, the integrand must be identically zero, so that

0 = −JpK
∥∥∥∥
∂X

∂s

∥∥∥∥ n̂+ νJn̂ · ∇uK
∥∥∥∥
∂X

∂s

∥∥∥∥+ F . (4.12)

Before proceeding further, we need to derive the perturbation expansion for the unit normal

vector n̂, and the force density F , in order to find the remaining jump conditions for the

O(ǫ) quantities. To find an expansion for the normal vector, we first find the expansion for

the tangent vector τ̂ , which is given by

τ̂ =
∂X
∂s∥∥∥∂X∂s
∥∥∥
.

Substituting the perturbation expansion for X and writing

X1(s, t) = Xr(s, t) r̂ +Xθ(s, t) θ̂

gives

∥∥∥∥
∂X

∂s

∥∥∥∥ τ̂ = θ̂ + ǫ

[(
∂Xr

∂s
−Xθ

)
r̂ +

(
Xr +

∂Xθ

∂s

)
θ̂

]
+O

(
ǫ2
)
.

The outward pointing normal must satisfy n̂ · τ̂ = 0, and so using the above expansion for

the tangent vector, we get

∥∥∥∥
∂X

∂s

∥∥∥∥ n̂ = r̂ + ǫ

[(
Xr +

∂Xθ

∂s

)
r̂ −

(
∂Xr

∂s
−Xθ

)
θ̂

]
+O

(
ǫ2
)
.

Furthermore, the expansion for the force density is

F = K(t)
∂2

∂s2

[
r̂ + ǫ

(
Xrr̂ +Xθθ̂

)
+O

(
ǫ2
)]
,

= −K(t)r̂ + ǫK(t)

[(
∂2Xr

∂s2
− 2

∂Xθ

∂s
−Xr

)
r̂ +

(
∂2Xθ

∂s2
+ 2

∂Xr

∂s
−Xθ

)
θ̂

]
+O

(
ǫ2
)
.
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The leading order quantities in (4.12) give

Jp0K = −K(t), (4.13)

which agrees with the equilibrium state. The O(ǫ) quantities in equation (4.12) satisfy

0 = −Jp1K r̂ + ν

s
∂u1

∂r

{
+K(t)

[(
∂2Xr

∂s2
− ∂Xθ

∂s

)
r̂ +

(
∂Xr

∂s
+
∂2Xθ

∂s2

)
θ̂

]
. (4.14)

The radial component of the above equation, along with the jump (4.9), gives a jump

condition for pressure

Jp1K = K(t)

(
∂2Xr

∂s2
− ∂Xθ

∂s

)
. (4.15)

The angular component of (4.14) gives the jump condition for the radial derivative of uθ

ν

s
∂uθ

∂r

{
= −K(t)

(
∂Xr

∂s
+
∂2Xθ

∂s2

)
. (4.16)

We now have a complete set of equations for the O(ǫ) quantities. To summarize, the

linearized system of equations in component form is

∂ur

∂t
= −∂p

∂r
+ ν

(
∆ur − ur

r2
− 2

r2
∂uθ

∂θ

)
, (4.17a)

∂uθ

∂t
= −1

r

∂p

∂θ
+ ν

(
∆uθ − uθ

r2
+

2

r2
∂ur

∂θ

)
, (4.17b)

∇ · u1 =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
= 0, (4.17c)

∂Xr

∂t
= ur(1, s, t), (4.17d)

∂Xθ

∂t
= uθ(1, s, t), (4.17e)

subject to jump conditions (4.8), (4.9), (4.15) and (4.16) where the linearized immersed

boundary is a unit circle. Moving forward, we omit the subscript ‘1’ when referring the

O(ǫ) variables.

4.2 Floquet Analysis

Our next goal is to investigate the stability of solutions to the linearized system (4.17).

Owing to the presence of a time-periodic parameter in the jump conditions, we invoke Flo-

quet theory and adopt the Floquet-Fourier form for the time-dependence in our solutions.
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For the angular dependence, we consider a single Fourier mode with integer wavenumber

m. Since we are only interested in real-valued solutions, the Fourier modes are written as

trigonometric functions instead of complex exponentials. Moreover, to allow the incom-

pressibility condition (4.17c) to be satisfied, we write the radial component of velocity as a

cosine mode and the angular component as a sine mode. Consequently, we look for solutions

of the form

ur(r, θ, t) = eγt
∞∑

n=−∞
urn(r)e

int cos(mθ), (4.18a)

uθ(r, θ, t) = eγt
∞∑

n=−∞
uθn(r)e

int sin(mθ), (4.18b)

p(r, θ, t) = eγt
∞∑

n=−∞
pn(r)e

int cos(mθ), (4.18c)

Xr(s, t) = eγt
∞∑

n=−∞
Xr

ne
int cos(ms), (4.18d)

Xθ(s, t) = eγt
∞∑

n=−∞
Xθ

ne
int sin(ms). (4.18e)

The Fourier coefficients in the the above series are functions of r (or constant) that remain

to be determined.

We begin by first finding the Fourier coefficients for the pressure pn(r). Away from the

fibre these coefficients satisfy
(
1

r

d

dr

(
r
dpn
dr

)
− m2

r2
pn

)
cos(mθ) = 0,

which yields an ODE for pn(r) that must be satisfied for r < 1 and r > 1. The pressure

solution that is bounded for all r is

pn(r) =




anr

m, if r < 1,

bnr
−m, if r > 1,

(4.19)

where an and bn are coefficients yet to be determined. We next solve for the radial velocity

coefficients urn. Substituting the Floquet-Fourier series (4.18a) into the radial momentum

equation (4.17a) yields

(γ + in)urn = −dpn
dr

+ ν

(
1

r

d

dr

(
r
durn
dr

)
− m2 + 1

r2
urn +

2m

r2
uθn

)
.

To obtain an ODE for urn only, we use the incompressibility condition
(
1

r

d

dr
(rurn)−

m

r
uθn

)
cos(mθ) = 0.
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By orthogonality, we find the expression for uθn in terms of urn to be

uθn(r) =
1

m

d

dr
(rurn). (4.20)

Hence, the Fourier coefficients urn satisfy

r2
d2urn
dr2

+ 3r
durn
dr

+
(
−β2nr2 + 1−m2

)
urn =

r2

ν

dpn
dr

,

where

βn =

√
γ + in

ν
with ℜ{βn} > 0.

We first consider the case βn 6= 0. The solution of the the radial velocity is given by

urn(r) =

∫ ∞

0
G(r, z)

z2

ν

dpn(z)

dz
dz, (4.21)

where G(r, z) is the Green’s function that satisfies

r2
∂2G

∂r2
+ 3r

∂G

∂r
+
(
−β2nr2 + 1−m2

)
G = δ(r − z), (4.22)

with jump conditions

G|r=z+
r=z− = 0 and r2

∂G

∂r

∣∣∣∣
r=z+

r=z−
= 1. (4.23)

Applying the change of variable G(r, z) = w(r, z)/r transforms ODE (4.22) into

r2
∂2w

∂r2
+ 2r

∂w

∂r
+
(
−β2nr2 −m2

)
w = rδ(r − z),

which yields Bessel’s equation [1] on the left-hand side. The Green’s function is found to

be

G(r, z) =





c1
Jm(iβnr)

r
, if r < z,

c2
Hm(iβnr)

r
, if r > z,

where c1 and c2 are undetermined constants, Jm and Hm denote the mth-order Bessel and

Hankel functions of the first kind respectively (see Appendix A for a list of useful properties

and identities). The constants c1 and c2 can be found by imposing the jump conditions for

the Green’s function (4.23):

c1 =
Hm(iβnz)

iβn(H ′
m(iβnz)Jm(iβnz)−Hm(iβnz)J ′

m(iβnz))
,

c2 =
Jm(iβnz)

iβn(H ′
m(iβnz)Jm(iβnz)−Hm(iβnz)J ′

m(iβnz))
.
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These coefficients can be simplified using the Wronskian identity for Bessel functions (A.13)

to

c1 = − iπ

2
Hm(iβnz), c2 = − iπ

2
Jm(iβnz),

which gives a simpler form of the Green’s function

G(r, z) =





− iπ

2r
Jm(iβnr)Hm(iβnz), if r < z,

− iπ

2r
Hm(iβnr)Jm(iβnz), if r > z.

Owing to the pressure discontinuity (4.19), we must consider two cases when solving for

urn(r). For r < 1, we have

urn(r) =

∫ r

0
− iπ

2

Hm(iβnr)

r
Jm(iβnz)an

1

ν
mzm+1 dz

+

∫ 1

r
− iπ

2

Jm(iβnr)

r
Hm(iβnz)an

1

ν
mzm+1 dz

+

∫ ∞

1
− iπ

2

Jm(iβnr)

r
Hm(iβnz)bn

1

ν
(−m)z−m+1 dz.

The above integrals can be simplified using the identities (A.8) and (A.9) to obtain

urn(r) = −an
πm

2νβn

[
rmHm(iβnr)Jm+1(iβnr) + Jm(iβnr)

(
Hm+1(iβn)

r
− rmHm+1(iβnr)

)]

+ bn
πm

2νβn

[
Jm(iβnr)

r
Hm−1(iβn)

]
.

A similar procedure for the case r > 1 yields

urn(r) =− bn
πm

2νβn

[
Hm(iβnr)

(
Jm−1(iβnr)

rm
− Jm−1(iβn)

)
− Jm(iβnr)

rm
Hm−1(iβnr)

]

− an
πm

2νβn

[
Hm(iβnr)

r
Jm+1(iβn)

]
.

The above solutions can be simplified further using (A.11) and expressed more compactly

as

urn(r) =





πm

2νβn

Jm(iβnr)

r

(
bnHm−1(iβn)− anHm+1(iβn)

)− an
m

νβ2n
rm−1, if r < 1,

πm

2νβn

Hm(iβnr)

r

(
bnJm−1(iβn)− anJm+1(iβn)

)
+ bn

m

νβ2n
r−m−1, if r > 1.

We check to ensure that this result is indeed continuous and satisfies the first jump condi-

tion (4.8):

urn(1
+) = urn(1

−) = − πm

2νβn

(
anHm(iβn)Jm+1(iβn)− bnJm(iβn)Hm−1(iβn)

)
.
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The coefficients uθn(r) can be found using equation (4.20) and therefore

uθn(r) =





iπ

2ν
J ′
m(iβnr)

(
bnHm−1(iβn)− anHm+1(iβn)

)− an
m

νβ2n
rm−1, if r < 1,

iπ

2ν
H ′

m(iβnr)
(
bnJm−1(iβn)− anJm+1(iβn)

)− bn
m

νβ2n
r−m−1, if r > 1.

Calculating the limit of uθn(r) as r → 1− and r → 1+ yields

uθn(1
+) = uθn(1

−) = − iπ

2ν

(
anH

′
m(iβn)Jm+1(iβn)− bnJ

′
m(iβn)Hm−1(iβn)

)
.

which verifies that the angular velocity is also continuous.

The next step is to solve for the undetermined coefficients an and bn. The evolution

equations for the membrane, (4.17d) and (4.17e), lead to an algebraic system

(γ + in)Xr
n = − πm

2νβn

(
anHm(iβn)Jm+1(iβn)− bnJm(iβn)Hm−1(iβn)

)
,

(γ + in)Xθ
n = − iπ

2ν

(
anH

′
m(iβn)Jm+1(iβn)− bnJ

′
m(iβn)Hm−1(iβn)

)
.

This is a 2× 2 linear system that can be inverted to find an and bn

an =
ν2β4n
m

J ′
m(iβn)

Jm+1(iβn)
Xr

n + ν2iβ3n
Jm(iβn)

Jm+1(iβn)
Xθ

n,

bn =
ν2β4n
m

H ′
m(iβn)

Hm−1(iβn)
Xr

n + ν2iβ3n
Hm(iβn)

Hm−1(iβn)
Xθ

n.

We are now ready to impose the jump conditions. The Floquet-Fourier solution for

pressure implies

JpK = eγt
∞∑

n=−∞
eint

(
pn(1

+)− pn(1
−)
)
cos(ms),

= eγt
∞∑

n=−∞
eint(bn − an) cos(ms).

Furthermore, by rewriting the stiffness function K(t) in terms of complex exponentials as

K(t) = κ
(
1− iτeit + iτe−it),
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the right-hand side of the pressure jump (4.15) can be simplified as

JpK = K(t)

(
∂2Xr

∂s2
− ∂Xθ

∂s

)
,

= κ
(
1− iτeit + iτe−it

)
eγt

∞∑

n=−∞
eint

(
−m2Xr

n +mXθ
n

)
cos(ms),

= κeγt
∞∑

n=−∞

(
eint − iτei(n+1)t + iτei(n−1)t

) (
−m2Xr

n +mXθ
n

)
cos(ms),

= κeγt
∞∑

n=−∞

[
−m2

(
Xr

n − iτXr
n−1 + iτXr

n+1

)
+m

(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)]
cos(ms).

By orthogonality, the pressure jump reduces to

bn − an = −m2κ
(
Xr

n − iτXr
n−1 + iτXr

n+1

)
+mκ

(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
.

To apply the next jump condition (4.16), we first need to find duθ
n

dr

duθn
dr

=





−πβn
2ν

J ′′
m(iβnr)

(
bnHm−1(iβn)− anHm+1(iβn)

)− an
m(m− 1)

νβ2n
rm−2, if r < 1,

−πβn
2ν

H ′′
m(iβnr)

(
bnJm−1(iβn)− anJm+1(iβn)

)
+ bn

m(m+ 1)

νβ2n
r−m−2, if r > 1.

Upon simplifying the Bessel function derivatives, the jump (4.16) reduces to

−(bn + an) = mκ
(
Xr

n − iτXr
n−1 + iτXr

n+1

)
+m2κ

(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
.

Substituting an and bn into the simplified jump conditions yields

[
i
β4n
2m

ν2

κ

(
2− Hm+1(iβn)

Hm−1(iβn)
− Jm−1(iβn)

Jm+1(iβn)

)
+ im2

]
Xr

n

+

[
−i

β4n
2m

ν2

κ

(
Hm+1(iβn)

Hm−1(iβn)
− Jm−1(iβn)

Jm+1(iβn)

)
− im

]
Xθ

n

= −m2τ
(
Xr

n−1 −Xr
n+1

)
+ kτ

(
Xθ

n−1 −Xθ
n+1

)
,

(4.24)

[
−β3n

ν2

κ

(
Hm(iβn)

Hm−1(iβn)
− Jm(iβn)

Jm+1(iβn)

)
− im

]
Xr

n

+

[
β3n
ν2

κ

(
Hm(iβn)

Hm−1(iβn)
+

Jm(iβn)

Jm+1(iβn)

)
− im2

]
Xθ

n

= mτ
(
Xr

n−1 −Xr
n+1

)
+m2τ

(
Xθ

n−1 −Xθ
n+1

)
.

(4.25)
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Now consider the special case βn = 0 which only occurs when both γ = 0 and n = 0.

The equation for the radial velocity in this case reduces to

d2ur0
dr2

+
3

r

dur0
dr

−
(
m2 − 1

r2

)
ur0 =

1

ν

dp0
dr

.

Following the same steps as before, we first find the Green’s function

G(r, z) = − 1

2k





rm−1

zm−1
, if r < z,

zm+2

rm+1
, if r > z,

and then the coefficient for the radial velocity using the integral (4.21)

ur0(r) =





a0
ν

(
m

4m+ 4
rm+1 − 1

4
rm−1

)
− b0
ν

1

4m− 4
rm−1, if r < 1,

−a0
ν

1

4m+ 4
r−m−1 +

b0
ν

(
m

4m− 4
r−m+1 − 1

4
r−m−1

)
, if r > 1.

From the incompressibility condition (4.20) we obtain the angular velocity component

uθ0(r) =





a0
ν

(
m+ 2

4m+ 4
rm+1 − 1

4
rm−1

)
− b0
ν

1

4m− 4
rm−1, if r < 1,

a0
ν

1

4m+ 4
r−m−1 − b0

ν

(
m− 2

4m− 4
r−m+1 − 1

4
r−m−1

)
, if r > 1.

To ensure continuity at the interface r = 1 we must have a0 = b0 = 0. Hence the jump

conditions (4.15) and (4.16) are simply

0 = −m2(Xr
0 − iτXr

−1 + iτXr
1

)
+m

(
Xθ

0 − iτXθ
−1 + iτXθ

1

)
, (4.26)

0 = m
(
Xr

0 − iτXr
−1 + iτXr

1

)
+m2(Xθ

0 − iτXθ
−1 + iτXθ

1

)
. (4.27)

Our aim now is to determine for which parameters (if any) instabilities occur. We follow

the approach illustrated in Chapter 2 and in other studies of parametric instabilities [64].

The linear system of equations equations (4.24)–(4.27) can be written in the form

AnX
r
n +BnX

θ
n = −m2τ

(
Xr

n+1 −Xr
n−1

)
+mτ

(
Xθ

n+1 −Xθ
n−1

)
,

CnX
r
n +DnX

θ
n = mτ

(
Xr

n+1 −Xr
n−1

)
+m2τ

(
Xθ

n+1 −Xθ
n−1

)
.

where An, Bn, Cn and Dn depend on m, βn, ν and κ. To ensure real-valued solutions, we

impose reality conditions to the Fourier series coefficients:

Xr
−n = X

r
n, Xθ

−n = X
θ
n for the harmonic case (γ = 0),

Xr
−n = X

r
n−1, Xθ

−n = X
θ
n−1 for the subharmonic case (γ = 1

2 i).
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To solve the linear system numerically, we truncate the number of temporal modes in the

Floquet-Fourier series such that 0 ≤ n ≤ N . We now have a generalized eigenvalue problem

Av = τBv, (4.28)

where

v =




...

ℜ{Xr
n}

ℑ{Xr
n}

ℜ{Xθ
n}

ℑ{Xθ
n}

...




is a vector of length 4N + 4 and A and B are (4N + 4) × (4N + 4) matrices. The matrix

A = diag{A0,A1, . . . ,AN} is block diagonal consisting of 4× 4 blocks

An =




ℜ{An} −ℑ{An} ℜ{Bn} −ℑ{Bn}
ℑ{An} ℜ{An} ℑ{Bn} ℜ{Bn}
ℜ{Cn} −ℑ{Cn} ℜ{Dn} −ℑ{Dn}
ℑ{Cn} ℜ{Cn} ℑ{Dn} ℜ{Dn}



,

except in the harmonic case where

A0 =




−m2 0 m 0

0 −m2 0 m

m 0 m2 0

0 m 0 m2



.

The matrix B is a block tridiagonal matrix of the form

B =




B̂ B̃̂
B 04 −

̂
B

. . .
. . .

. . .̂
B 04 −

̂
B̂

B 04




,

where 04 denotes the 4× 4 zero matrix. The first block row depends on the choice of γ. In
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the harmonic case

B̂ = 04 and B̃ =




0 −2m2 0 2m

0 0 0 0

0 2m 0 2m2

0 0 0 0



,

whereas in the subharmonic case

B̂ =




−m2 0 m 0

0 m2 0 −m
m 0 m2 0

0 −m 0 −m2




and B̃ = −
̂
B.

Below the first block row we have

̂
B =




−m2 0 m 0

0 −m2 0 m

m 0 m2 0

0 m 0 m2



.

Figure 4.1 shows the Ince-Strutt diagrams for wavenumbers m = 2, 3 and 4 and with

viscosity parameter ν = 2×10−4 and 10−3. Because m = 1 corresponds to a translation and

hence remains in equilibrium, we do not consider its stability. The generalized eigenvalue

problem (4.28) is computed using MATLAB’s built-in linear system solver. The harmonic

and subharmonic solutions are marked by the point types + and ◦ respectively. In these

diagrams, only parameters lying below the horizontal line τ = 1
2 are physically relevant,

since these values of τ correspond to a fibre stiffness K(t) that remains positive for all time.

Within the physically relevant region, we observe stability fingers that extend downward in

parameter space similar to what was seen for the damped Mathieu equation in Chapter 2.

As ν increases, the stability fingers lift up away from the axis and eventually only stable

solutions remain in the physically relevant region. Hence, parametric instabilities arise for

sufficiently small ν (or high Reynolds number).

In the jump formulation of the IB model, there are actually two sources of internal forcing

induced by the time-variation in the elastic stiffness: the jump in pressure (4.15) and the

jump in the tangential stress (4.16). For this reason there lies a secondary instability in the

unphysical region (τ > 1
2) the boundary of which is depicted by the subharmonic modes

that sweep across parameter space. To illustrate the source of the secondary instability,

we “turn off” the time-variation in the jump in tangential stress, and then recompute the
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Figure 4.1: Ince-Strutt diagrams for a 2D immersed fibre undergoing a periodic modulation
in elastic stiffness. Results are plotted on for dimensionless viscosity parameters ν = 2×10−4

(left) and 10−3 (right) with wavenumbers m = 2 (top), 3 (middle) and 4 (bottom). Only
the τ < 1

2 region correspond to positive stiffness.
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Figure 4.2: Left: Ince-Strutt diagram for the 2D IB system with m = 3 and ν = 0.0002.
Centre: Ince-Strutt diagram for periodic modulation in pressure jump only. Right: Ince-
Strutt diagram for periodic modulation in tangential stress only.

eigenvalue τ . The resulting Ince-Strutt diagrams are shown in figure 4.2. When we only

consider variations in the pressure jump, the result is an Ince-Strutt diagram with disjoint

stability contours similar to the damped Mathieu equation. Furthermore, the physically

relevant stability fingers match that of the full system. If we only consider periodic variation

in the jump in tangential stress, the instabilities tend to occur in unphysical region. Hence

we conclude that the physical instabilities are due to the variation in the pressure jump.

4.3 Corrections to “Parametric Resonance in Immersed Elas-

tic Boundaries” [18]

During the course of this work, three errors were uncovered in the paper by Cortez et al. [18].

The first error is a bug in the original MATLAB code to generate the Ince-Strutt diagrams

which results in the principal subharmonic mode (left-most subharmonic contour) to be

absent. Figures 4.3 and 4.4 reproduce figures from the earlier paper [18, Fig. 8.2] and [18,

Fig. 8.3] alongside the corrected plots. The Ince-Strutt diagrams are plotted here against

wavenumber m, rather than stiffness κ. This alternate view shows which integer mode

number is unstable for given values of parameters ν and κ. It is clear that the original paper

misses the principal subharmonic mode, although the remaining physical modes appear to

agree qualitatively with our corrected analysis.

The second error is found in Appendix B of [18], where the gradient of the Dirac delta
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function is improperly transformed from Cartesian to polar coordinates, leading to an er-

ror in the perturbation expansion of the immersed boundary forcing term. The correct

transformation [46] is

∇δ(x− r̂) =
1

r
∇(δ(r − 1)δ(θ − s)

)
.

This modifies the second equation in Claim 1, from

(
ẑ · ∇ × f (1)) = K(t)

(
Xθ

ss +Xr
s

) (δ(r − 1)

r

)

r

−K(t)
(
Xr

sss −Xθ
ss

)δ(r − 1)

r
,

to

(
ẑ · ∇ × f (1)) = K(t)

(
Xθ

ss +Xr
s

)δr(r − 1)

r
−K(t)

(
Xr

sss −Xθ
ss

)δ(r − 1)

r
,

where the only change is the location of the r-derivative in the first instance of the Dirac

delta function. In our analysis, we derive the jump conditions via multiplying by test

functions and removing the Dirac delta functions which eliminates this coordinate transfor-

mation altogether.

Lastly, a third error was introduced in the imposed reality condition. The spatial mode in

the original analysis is written as a complex exponential and therefore the reality condition

for the harmonic case

Xr
−n = X

r
n,

is not suitable. For harmonic solutions (γ = 0), the complex-valued mode should be viewed

as a single mode in a double Fourier series

Xr(s, t) =
∞∑

n=−∞

∞∑

k=−∞
Xr

n,k e
int+iks,

and for this reason the appropriate reality condition is

Xr
−n,−k = X

r
n,k,

which involves both spatial and temporal mode numbers. A similar argument holds for

the subharmonic solutions (γ = 1
2 i). In our analysis, we employ real-valued Fourier modes

(trigonometric functions) in space which only requires a reality condition in the temporal

modes.

The errors in the original analysis only result in minor changes to the results so that

other than the missing principal subharmonic mode, the Ince-Strutt diagrams from [18] are

still qualitatively correct.
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Figure 4.3: Top: Ince-Strutt diagrams for a 2D immersed fibre undergoing a periodic mod-
ulation in elastic stiffness. Results are plotted for ν = 2×10−4 and κ = 0.02, 0.04 and 0.08.
Bottom: Ince-Strutt diagrams by Cortez et al. [18, Fig. 8.2] (Copyright c© 2004 Society
for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved).
Note the wavenumber is denoted by p instead of m.
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Figure 4.4: Top: Ince-Strutt diagrams for a 2D immersed fibre undergoing a periodic mod-
ulation in elastic stiffness. Results are plotted for κ = 0.04 and ν = 5 × 10−5, 10−3 and
5× 10−3. Bottom: Ince-Strutt diagrams by Cortez et al. [18, Fig. 8.3] (Copyright c© 2004
Society for Industrial and Applied Mathematics. Reprinted with permission. All rights re-
served). Note the wavenumber is denoted by p instead of m.
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ν κ τ ρ (g/cm3) R (cm) ω (1/s) µ (g/cm s) σ (g cm/s2)

Case 1 0.0002 0.02 0.45 1 0.2 2500 0.02 5× 103

Case 2 0.0002 0.08 0.45 1 0.2 2500 0.02 2× 104

Table 4.1: Physical parameters used in numerical simulations of the 2D immersed boundary
equations.

4.4 Numerical Simulations

We perform numerical simulations of the full IB equations (4.1) to verify our analytical

stability results. In particular, we wish to confirm the existence of the principal subharmonic

mode that was uncovered in this chapter but missing in [18]. We use the IB algorithm

implemented in the freely-available MATLAB software package MatIB developed by Froese

and Wiens [33]. The fluid domain is chosen to be [−1.5, 1.5] and is discretized uniformly

with 256 grid points in each direction. The elastic fibre is discretized with 768 IB nodes

and the time step is 5×10−6 s for each simulation. We consider two cases listed in table 4.1

which correspond to the left and right Ince-Strutt diagrams in figure 4.3. The fibre is given

the initial configuration

X(s, 0) = R
(
1 + 0.05 cos(ms)

)
r̂,

with m chosen as the resonant mode number predicted by our analysis. From figure 4.5,

we expect m = 3 to be resonant in case 1 and m = 2 to be resonant in case 2. Figure 4.5

also shows the simulated growth in the radial component of the resonant m-mode, which

we depict using

X̂r(t) =
1

π

∫ 2π

0
|X(s, t)| cos(ms) ds.

From the simulations, we see the expected growth in the mode with a period-doubling

response that is consistent with the principal subharmonic mode. For more numerical

simulations of resonant elastic fibres, the reader is referred to the original paper [18].
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Figure 4.5: Left: Ince-Strutt diagrams for the parameters in table 4.1, zoomed in on the
principal subharmonic mode. The physically relevant instabilities (for integer m) are high-
lighted by a vertical green line. Right: Plots of X̂r(t) depicting the expected period-doubling
response, where the period of the stiffness modulation is 2π/ω ≈ 2.51× 10−3 s.



Chapter 5

A Cochlea Model

with Parametric Forcing

The cochlea is a fluid-filled, spiral-wound cavity in the inner ear and is the central source

of frequency selectivity in the hearing system of humans and many other animals. The

cochlea is divided length-wise into three fluid chambers as illustrated in figure 5.1. The

scala vestibuli and the scala media are separated by the Reissner’s membrane (RM), and

between the scala media and the scala tympani is a structure known as the cochlear partition

(CP). The CP itself consists of an elastic membrane known as the basilar membrane (BM),

on top of which is mounted the organ of Corti containing the mechano-sensitive outer hair

cells (OHC) that are the primary sensory receptors in the ear. Figure 5.2 depicts the

structure of the CP.

Sound vibrations entering the outer ear are transferred to the cochlear duct by the stapes,

and then propagate from base to apex along the basilar membrane and the surrounding

fluid. The cochlea has a remarkable ability to amplify self-induced oscillations of the basilar

membrane in spite of viscous forces arising from the cochlear fluid. Many authors have

attributed this amplification ability to some active process related to resonance, which

experiments have connected with mechanical properties of various structures making up

the CP [22, 49, 50, 95]. In particular, the OHC in the organ of Corti are stimulated by

BM deflections caused by pressure waves travelling through the cochlear fluid. The hair

cell stimulation leads to either somatic motility, wherein the hair cell changes its length

in response to electrical signals induced when the hair bundle on its tip is deflected; or

active hair bundle motility in which the hair bundle itself generates additional forces that

initiate a shearing action between the BM and the overlying tectorial membrane. Both

38



CHAPTER 5. A COCHLEA MODEL WITH PARAMETRIC FORCING 39

scala vestibuli scala media

scala tympani
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    basilar membrane

organ of Corti
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Figure 5.1: Diagram of a cross-section of the cochlear duct showing the the three fluid
chambers: scala vestibuli, scala media and scala tympani. These chambers are separated by
the Reissner’s membrane and the cochlear partition which consists of the basilar membrane,
the orgran of Corti and the tectorial membrane. Source: [97, Fig. 21.8]

of these effects are believed to contribute to the cochlear active process, but the precise

causes of BM amplification remain a topic of debate [4, 111]. Hence we explore the idea of

parametric resonance as a possible mechanism that amplifies BM oscillations. We extend

the two-dimensional IB model of the cochlea from LeVeque et al. [74] by introducing a

parametric or internal forcing via a periodic time-variation of the BM stiffness. This forcing

is inspired by experiments showing that the OHC within the CP change their lengths when

the ear is stimulated, which can in turn cause periodic distortions of the BM and modify the

membrane tension [80, 83]. We present a Floquet analysis of the linearized equations that

demonstrates the existence of resonant solutions within the range of physical parameters

corresponding to human and other mammalian auditory systems.

Another notable feature of the cochlea is its ability to distinguish between different

frequencies by localizing the peak amplitude of incident travelling waves wherein the peak

location is closer to the base for high frequencies and to the apex for low frequencies, as

illustrated in figure 5.3. This “place principle” was validated by von Békésy [124] and is

primarily due to the spatially varying stiffness of the BM. Hence, an additional contribution

of this chapter is to extend the parametric resonance analysis from [18] for an elastic fibre
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Figure 5.2: Diagram showing a close-up of the cochlear partition. The outer hair cells are
embedded in the organ of Corti which sits on top of the basilar membrane. Source: [3,
Fig. 1]

to the case where stiffness depends on both time and space. The spatial dependence of

stiffness leads to coupling of spatial modes that introduces new challenges in the Floquet

analysis.

The results in this chapter will appear in the SIAM Journal on Applied Mathematics [62].

5.1 Background on the Cochlea

The first prominent resonance theory of hearing was developed by Helmholtz [44] in the mid-

1800’s. His theory was based on a place principle where he assumed that the cochlea consists

of an array of resonating elements, much like the strings in a piano. When stimulated,

resonanting elements will vibrate in synchrony with the input sound and their locations

determine the pitch. However, a flaw in Helmholtz’s theory is that it requires the BM

to be under high tension which does not match the actual anatomical structure of the

cochlea. In the early 1900’s, travelling wave theory began to succeed resonance theory

in the hearing literature, the most famous work being by von Békésy [123] who was the

first to observe travelling waves in the cochlea in human and animal cadavers. He also

observed travelling waves in large-scale physical models using rubber membranes in a water
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Figure 5.3: Diagram of a simplified view of an uncoiled cochlea and BM, showing the relative
location of maximal BM response for several sound frequencies in the human audible range.
Source: [58, Fig. 2]

tank [124]. Moreover, von Békésy’s experiments show that a place principle still holds in

travelling wave theory in that the wave peak systematically shifts from the base to the apex

with decreasing excitation frequency. As a result, Helmholtz’s resonance theory began to

wane and travelling wave theory became the prevailing opinion on the theory of hearing.

A proponent for a resonance theory of hearing was Gold who claimed that resonance

must account for the acute frequency differentiation ability of the ear [37, 38]. Gold hy-

pothesized that the cochlea is an active system that employs positive feedback to overcome

damping due to the cochlear fluid and achieve its fine frequency tuning ability. Gold and

Pumphrey [38] performed an experiment to test this new resonance theory by exposing

listeners to a sequence of pulsating and continuous tones, and assessing the volume gain.

If hearing depends on resonating elements that build strength with incoming sound, like

the swing of an externally forced pendulum, then the amplitude gain can be predicted. A

consequence of Gold’s theory is the “ringing in the ear” phenomenon or otoacoustic emis-

sion, wherein the ear itself produces a sound. This prediction was verified by Kemp [57]

who recorded sounds emitted by the ear in several human subjects and therefore further

supported a resonance theory of hearing. The state of the art of cochlea modelling combines

von Békésy’s travelling wave theory with an active process proposed by Gold [4, 95, 111].
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Many mathematical and computational models of the cochlea have appeared since the

seminal work of von Békésy [124]. The earliest two-dimensional models of the cochlea de-

scribe the BM as a collection of damped mass-spring systems and also reduce the fluid

dynamics to a simple linear potential flow [2, 71, 93]. The spring constant decreases ex-

ponentially along the BM from base to apex, which coincides with BM stiffness values

measured in experiments [124]. The BM is treated as a passive structure to which is ap-

plied a sinusoidal external forcing term that mimics the input of sound energy from the

stapes. These models give predictions of BM dynamics that agree qualitatively with the

behaviours observed by von Békésy. Inselberg and Chadwick [51] proposed a similar model

in which the BM is represented as an Euler-Bernoulli beam, and showed not only that the

place principle still holds but also that fluid viscosity is required to obtain travelling wave

solutions along the BM as opposed to standing waves [15]. Pozrikidis [106] revisited this

last approach by replacing the sinusoidal stapes motion with a point source at the stapes

position and a point sink at the round window, and then solving the resulting equations

using a boundary integral method. Another noteworthy class of models based on transmis-

sion line equations was introduced in the pioneering work of Zweig [133] and de Boer [23]

and has since been applied in many more recent studies such as [26, 121].

To obtain a more realistic model of the fluid dynamics in the cochlea as well as the

hydrodynamic interactions between the fluid and BM, several authors have exploited the

IB method. LeVeque et al. [73, 74] employed an IB model in which the fluid obeys the

unsteady Stokes equations and the elasticity of the cochlea is treated using simple springs.

They derived an asymptotic solution for travelling waves along the BM, from which they

drew conclusions regarding the effects of fluid viscosity on these waves. Beyer [11] performed

numerical simulations of a related IB model, with the primary difference being that their

fluid obeys the full (nonlinear) Navier-Stokes equations. All of the aforementioned immersed

boundary models approximate the geometry of the cochlea and BM by a straight (uncoiled)

configuration. Although the curvature of the cochlear duct has a relatively small influence

on the fluid dynamics [34], there is nonetheless some evidence to suggest that within the

most tightly coiled apical region of the BM that is stimulated by the lowest frequency sounds,

curvature cannot be ignored [82]. To this end, a much more detailed IB model capturing the

full 3D geometry of the cochlea was developed in [36] that reproduced important features

of BM dynamics.



CHAPTER 5. A COCHLEA MODEL WITH PARAMETRIC FORCING 43

y

x

(+∞)
↑

0

↓

(−∞)  0  L 

Γscala vestibuli

scala tympani

Figure 5.4: Geometry of the 2D immersed boundary model for the cochlea. The deformed
BM is represented by a solid line Γ, and the flat equilibrium state by a dashed line. The
depth of the cochlear chambers are taken to be infinite and Neumann boundary conditions
are imposed at x = 0 and x = L.

5.2 Immersed Boundary Model

The IB cochlea model was first derived by Peskin in [100] and developed in more detail by

LeVeque et al. [73, 74]. We consider a simple 2D geometry pictured in figure 5.4 in which

the cochlear duct of length L is treated as a rectangular strip Ω = [0, L]×R, along the centre

of which lies the BM. Another simplification in our model is that we neglect the structural

components of the organ of Corti in the CP and only consider the BM. Furthermore, we

only consider two fluid-filled chambers, the scala vestibuli (above) and the scala tympani

(below), and ignore the scala media. In other cochlea models, the scala media is either

merged with the scala vestibuli or neglected entirely since the RM that separates these two

chambers is thin and soft and is thought by many to have little influence on the fluid and

BM motion [51, 81]. However, a recent study [112] has shown that wave motions on the

Reissner’s membrane may play a role in otoacoustic emissions in the ear, hence including

the Reissner’s membrane in our IB model is an interesting possible extension for future

study.

This work is primarily concerned with the effects of parametric forcing on BM oscillations

and so we simplify the model by isolating the membrane from any boundary effects due

to the cochlear walls. For the purposes of the mathematical analysis, we take the depth

of the cochlear chambers to be infinite in the vertical direction (y → ±∞) as various

authors [56, 73] have shown that taking the depth beyond the physical value has little

influence on the BM motion. Furthermore, we impose Neumann boundary conditions in
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the x-direction to permit solutions to be written as an even Fourier series which simplifies

the analysis in section 5.3. This choice is in lieu of the more physical Dirichlet condition,

however it has been shown that this change in boundary condition has little influence on

the BM motion [93, 130].

The delta function formulation of the IB equations in physical variables is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u+ f , (5.1a)

∇ · u = 0, (5.1b)

∂X

∂t
= u(X, t). (5.1c)

The elastic force exerted on the fluid by the membrane is given by

f(x, t) =

∫ L

0
K(s, t) (X0 −X) δ(x −X) ds, (5.2)

whereX(s, t) is the position of the BM parameterized by the Lagrangian coordinate s ∈ [0, L],

and X0(s) = s x̂ is the horizontal equilibrium or rest state. This force was derived by Pe-

skin [100] using an elastic plate model which was then reduced to the above form in the

narrow plate limit. Hence this force can be thought of as arising from a membrane that is

connected to its resting position via a series of Hookean springs with “spring constant” or

stiffness K(s, t). The elastic stiffness parameter is a function of time and space given by

K(s, t) = σe−λcs
(
1 + 2τ sin(ωt)

)
, (5.3)

where σ is the time-averaged elastic stiffness constant (units of g cm−2 s−2) and λc captures

the spatial variation in stiffness along the BM. The value of λc ≈ 1.4 cm−1 has been deter-

mined for a human cochlea experimentally by von Békésy [124], based on the observation

that the BM stiffness at the apex is approximately two orders of magnitude smaller than

that at the base, and that it decays roughly exponentially. The time-dependent factor in

the stiffness encapsulates the parametric forcing with amplitude τ and frequency ω aris-

ing from OHC that contract/expand in response to BM oscillations [14, 47, 49]. Note in

particular that the forcing frequency ω is taken to be the same as that of the input sound

signal and is also constant in space, which assumes that the outer hair cells contract in

synchrony along the entire CP. This is in contrast with most other models of the cochlea

that consider hair cell contractions in response to local stimuli, which would correspond to

a stiffness parameter having spatiotemporal dependence that is not separable. The values

of the remaining physical parameters are taken from [74] (listed in table 5.1) that are also

consistent with parameters reported elsewhere in the literature for the human cochlea, with
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Physical parameters (cgs units):

fluid density ρ = 1.0 g cm−3

fluid viscosity µ = 0.02 g cm−1 s−1

elastic stiffness σ = 6× 105 g cm−2 s−2

elastic stiffness decay rate λc = 1.4 cm−1

basilar membrane length L = 3.5 cm

forcing frequency ω ∈ [400, 1600] s−1

Dimensionless parameters:

dimensionless decay rate α = 1.56

forcing amplitude τ ∈ [0, 0.5]

dimensionless viscosity ν ∈ [8.06× 10−6, 1.61× 10−4]

dimensionless stiffness κ ∈ [0.135, 53.9]

Table 5.1: Parameter values (or ranges) used in the analysis and simulation of the cochlea
model. Values are taken from [74] and (with the exception of σ) correspond to the human
cochlea.

the only exception being the elastic stiffness value. Other cochlea models take values of

σ that range from 1 × 107 [71] to 2 × 109 g cm−2 s−2 [2]; however, in this chapter we use

σ = 6× 105 g cm−2 s−2 to permit a direct comparison with the results in [74] for a similar

IB model.

For the purpose of making the Floquet analysis tractable, we linearize the governing

equations. The typical vertical displacement of the BM is approximately 10−6 cm which is

six orders of magnitude smaller than its length of 3.5 cm [124]. Therefore a typical velocity

scale characterizing BM oscillations is U = ǫLω, where ǫ≪ 1 is the ratio between the typical

BM displacement size and the BM length. This implies that the flow Reynolds number is

low, on the order of 10−6 or less, and the Strouhal number

St =
Lω

U
=

1

ǫ

is high and so the nonlinear term in the Navier-Stokes equations can be ignored [106] to

yield the unsteady Stokes equations

ρ
∂u

∂t
= −∇p+ µ∆u+ f .

We next proceed to nondimensionalize the problem by introducing the following scalings

x =
Lx̃

π
, t =

t̃

ω
, u =

Lω

π
ũ, p =

ρL2ω2

π2
p̃, X =

LX̃

π
, s =

Ls̃

π
,

where a tilde denotes a nondimensional quantity. The horizontal extent of the rescaled

domain Ω̃ = [0, π] × R is chosen for reasons of mathematical convenience, in order to

eliminate a factor of π that would otherwise appear in the solutions derived in section 5.3.
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Substituting the above variables into the governing equations (5.1)–(5.3) yields

∂ũ

∂t̃
= −∇̃p̃+ ν∆̃ũ+ f̃ ,

∇̃ · ũ = 0,

f̃( x̃, t̃ ) =

∫ π

0
K̃(X̃0 − X̃) δ̃(x̃− X̃) ds̃,

K̃(s̃, t̃) = κe−αs̃(1 + 2τ sin t̃ ),

∂X̃

∂t̃
= ũ( X̃ , t̃ ).

We reduce the number of dimensionless parameters appearing in the equations to four,

consisting of τ plus the three new quantities

ν =
µπ2

ρL2ω
, κ =

σπ

ρLω2
, α =

λcL

π
.

From this point onwards, the tildes will be dropped.

Assuming that there is negligible coupling in the membrane along the longitudinal (x)

direction, we only consider membrane displacements in the y-direction. Another simplifica-

tion is achieved by eliminating the delta functions and reformulating the problem in terms

of linearized jump conditions across the BM. To do so, we integrate the governing equations

across the membrane at its linearized rest state y = 0 [103], yielding the unsteady Stokes

equations

∂u

∂t
= −∇p+ ν∆u, (5.4a)

∇ · u = 0, (5.4b)

on either side of the BM which are linked by a normal jump condition for the pressure

JpK = −κe−αx(1 + 2τ sin t)h(s, t), (5.5a)

and

u(x, 0, t) = 0, (5.5b)

v(x, 0, t) =
∂h

∂t
. (5.5c)

Here, h(s, t) represents the vertical membrane displacement, JpK(s, t) = p(s, 0+, t)−p(s, 0−, t)
is the jump in pressure across the membrane, and u(x, y, t) and v(x, y, t) are the horizon-

tal and vertical components of the vector velocity u. Equations (5.4)–(5.5) were studied

analytically in [74] without the time-varying stiffness parameter (that is, with τ = 0).
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5.3 Floquet Analysis

Owing to the presence of a time-varying parameter in the system, we invoke Floquet theory

to analyze the stability of perturbations of the membrane from its resting state. For the

purposes of our analysis, we extend the x-domain to [−π, π] and impose even symmetry

across x = 0. We then take the dependent variables to be of the form

u(x, y, t) = eγt
∞∑

n=−∞

∞∑

k=−∞
unk(y) e

inteikx, (5.6a)

v(x, y, t) = eγt
∞∑

n=−∞

∞∑

k=−∞
vnk (y) e

inteikx, (5.6b)

p(x, y, t) = eγt
∞∑

n=−∞

∞∑

k=−∞
pnk(y) e

inteikx, (5.6c)

h(s, t) = eγt
∞∑

n=−∞

∞∑

k=−∞
hnk e

inteiks. (5.6d)

Our solution approach is similar to that of Cortez et al. [18] and the previous chapter. In

contrast, here we must represent each solution mode as an infinite Fourier series because of

the mode-coupling through the spatial non-uniformity in the stiffness parameter which will

be shown later in this section. However, the simple rectangular geometry permits writing

solutions in terms of elementary functions rather than Bessel and Hankel functions.

We begin by finding solutions for the y-dependent Fourier coefficients unk(y), v
n
k (y) and

pnk(y). Take the divergence of the momentum equations (5.4a) and apply the incompress-

ibility condition (5.4b) to arrive at a Poisson problem for pressure

∆p =
∞∑

n,k=−∞

(
d2pnk
dy2

− k2pnk(y)

)
En
k = 0.

Here we have simplified notation by setting En
k (x, t) := exp[(γ + in)t+ ikx]. The expo-

nentials En
k are all linearly independent and so we have a decoupled system of ordinary

differential equations for the coefficients pnk(y), that is

d2pnk
dy2

− k2pnk(y) = 0 for all n, k ∈ Z,

which after imposing boundedness in y yields the pressure solution

pnk(y) =




ank e

ky, if y < 0,

bnk e
−ky, if y > 0,
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for each n, k ∈ Z, with constants ank and bnk yet to be determined. Note that taking k = 0

is valid in the above expression since this implies simply a constant pressure in each sub-

domain.

We can now solve for the Fourier coefficients of the vertical velocity component vnk (y)

by substituting the series (5.6b) into the momentum equation to obtain

∞∑

n,k=−∞
(γ + in)vnk (y)En

k =
∞∑

n,k=−∞

[
−dpnk

dy
+ ν

(
d2vnk
dy2

− k2vnk (y)

)]
En
k .

This is equivalent to the infinite system of linear ordinary differential equations

d2vnk
dy2

− (βnk )
2vnk (y) =

1

ν

dpnk
dy

for all n, k ∈ Z,

where

βnk =

√
γ + in

ν
+ k2 with ℜ{βnk } > 0.

The solution is given by

vnk (y) =

∫ ∞

−∞
G(y, z)

1

ν

dpnk(z)

dz
dz,

where G(y, z) is the Green’s function satisfying

∂2G

∂y2
− (βnk )

2G = δ(y − z),

with jump conditions

G|y=z+
y=z−

= 0 and
∂G

∂y

∣∣∣∣
y=z+

y=z−
= 1.

Assuming that γ + in 6= 0 and k 6= 0, the Green’s function is

G(y, z) = − 1

2βnk




eβ

n
k
(y−z), if y < z,

e−βn
k
(y−z), if y > z,

and the solution to the vertical velocity is

vnk (y) =
1

2νβnk





− 2kβnk a
n
k

(βnk )
2 − k2

eky +

(
kank

βnk − k
+

kbnk
βnk + k

)
eβ

n
k
y, if y < 0,

2βnk b
n
k

(βnk )
2 − k2

e−ky −
(

kbnk
βnk − k

+
kank

βnk + k

)
e−βn

k
y, if y > 0.
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The incompressibility condition (5.4b) reduces to

ikunk(y) +
dvnk
dy

= 0 for all n, k ∈ Z,

from which unk(y) are found to be

unk(y) = − i

2kν





− 2k2ank
(βnk )

2 − k2
eky +

(
kank

βnk − k
+

kbnk
βnk + k

)
eβ

n
k
y, if y < 0,

− 2kbnk
(βnk )

2 − k2
e−ky +

(
kbnk

βnk − k
+

kank
βnk + k

)
e−βn

k
y, if y > 0.

We then impose the membrane evolution equations (5.5b) and (5.5c) to obtain

unk(0
+) = unk(0

−) =
i

2ν

(
ank

βnk + k
+

bnk
βnk + k

)
= 0,

vnk (0
+) = vnk (0

−) =
1

2νβnk

(
−kank
βnk + k

+
kbnk

βnk + k

)
= (γ + in)hnk ,

which can be solved in terms of the hnk as

ank = −ν(γ + in)
βnk + k

k
βnk h

n
k ,

bnk = ν(γ + in)
βnk + k

k
βnk h

n
k .

Using the jump condition (5.5a), we can now formulate an infinite system of linear equations

that connects all of the membrane coefficients hnk . Substituting the solution for pressure

into (5.5a), we obtain

∞∑

n,k=−∞
2ν(γ + in)

βnk + k

k
βnk h

n
k En

k =
∞∑

n,k=−∞
−κe−αx (1 + 2τ sin t)hnk En

k ,

provided that γ + in 6= 0 and k 6= 0.

We next consider two special cases, the first of which is γ + in = 0 (both γ = 0 and

n = 0) and k ∈ Z. The vertical velocity coefficients satisfy

d2v0k
dy2

− k2v0k(y) =
1

ν

dp0k
dy

for all k ∈ Z.

Following the Green’s functions approach as in the previous case, the solution is

vnk (y) =





ka0k
2ν

yeky + c0ke
ky, if y < 0,

−kb
0
k

2ν
ye−ky + c0ke

−ky, if y > 0,



CHAPTER 5. A COCHLEA MODEL WITH PARAMETRIC FORCING 50

where we have introduced a third set of undetermined coefficients c0k. From the incompress-

ibility condition, we find the horizontal velocity coefficient to be

unk(y) =





ia0k
2ν

(
eky + ykeky

)
+ c0kke

ky, if y < 0,

− ib0k
2ν

(
e−ky − yke−ky

)
− c0kke

−ky, if y > 0.

The membrane evolution equations (5.5b) and (5.5c) imply a0k = b0k = c0k = 0 for all k,

hence the pressure jump condition (5.5a) reduces to

0 =
∞∑

n,k=−∞
−κe−αx(1 + 2τ sin t)h0k E0

k .

The second special case to consider is γ + in 6= 0 and k = 0. The pressure coefficients

pn0 reduce to a piece-wise constant function and thus the Fourier coefficients for the vertical

velocity component satisfy

d2vn0
dy2

− (βn0 )
2vn0 (y) = 0 for n 6= 0,

away from the membrane. The solution for the velocity coefficients is

vn0 (y) =




cn0e

βn
0
y, if y < 0,

cn0e
−βn

0
y, if y > 0.

The incompressibility condition leads to cn0 = 0 and so the vertical velocity component is

zero. Therefore the k = 0 mode is motionless and hn0 = 0.

In order to proceed any further, we need to expand the exponential (e−αx) and sinusoidal

(sin t) terms in their respective Fourier series. For the time-dependent factor, we can write

1 + 2τ sin t = 1 − iτeit + iτe−it, but the Fourier series for the exponential function does

not converge uniformly because e−αx is not a periodic function on [0, π]. It is for this

reason that we have extended the spatial domain to [−π, π] and have chosen to impose

Neumann boundary conditions. We instead use the even periodic extension e−α|x| of the

elastic stiffness function on this extended interval. We then simply need to remember that

only the portion with x ∈ [0, π] that is of physical interest. Then, for γ + in 6= 0 and k 6= 0

we have

∞∑

n,k=−∞
2ν(γ + in)

βnk + k

k
βnk h

n
k En

k

=
∞∑

n,k=−∞
−κ




∞∑

j=−∞
cje

ijx


(1− iτeit + iτe−it)hnk En

k ,

(5.7)
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while for γ + in = 0,

0 =
∞∑

n,k=−∞
−κ




∞∑

j=−∞
cje

ijx


(1− iτeit + iτe−it)h0k E0

k , (5.8)

where

cj = α
1− (−1)je−απ

π(α2 + j2)

are the Fourier coefficients of e−α|x| on [−π, π]. The complex exponential terms involving

x and t in equations (5.7) and (5.8) introduce a shift in the indices of En
k in both n and k,

which has the effect of coupling the corresponding modes. We can then rearrange the sum

in order to gather together all terms involving the common expression En
k , and hence obtain

2ν2

κ
(βnk − k) (βnk + k)2

βnk
k
hnk +

∞∑

j=−∞
ck−jh

n
j = iτ

∞∑

j=−∞
ck−j

(
hn−1
j − hn+1

j

)
(5.9)

for γ + in 6= 0 and k 6= 0 and

∞∑

j=−∞
ck−jh

0
j = iτ

∞∑

j=−∞
ck−j

(
h−1
j − h1j

)
(5.10)

for the special cases γ+in = 0. These last two equations comprise an infinite linear system

for the hnj in which the spatially dependent stiffness introduces a simultaneous coupling

between all spatial modes that is not present in the spatially uniform (α = 0) case from [18].

Because we are interested in investigating the stability of the parametrically forced

problem, and in particular finding the stability boundary in parameter space, we look

for harmonic (γ = 0) and subharmonic (γ = 1
2 i) solutions of equations (5.9)–(5.10). To

ensure that the solution h(s, t) is real-valued, we impose reality conditions for the Fourier

coefficients that apply to both time and space indices. In general, the reality condition for

a two-dimensional Fourier series is hnk = h̄−n
−k , however, we have to consider the harmonic

and subharmonic cases separately when applying the condition in the temporal modes.

Furthermore, we want to ensure an even spatial symmetry in our solutions which leads to

a decoupling in the reality condition. Consequently, the reality conditions that we impose

are

hn−k = hnk ,

h−n
k =




h̄nk for the harmonic case (γ = 0),

h̄n−1
k for the subharmonic case (γ = 1

2 i).
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As a result, the reality conditions introduce a certain symmetry between the Fourier coef-

ficients such that we only need to consider nonnegative values of n and k.

To solve the system (5.9)–(5.10), we truncate at values of n = 0, 1, . . . , N and k =

1, 2, . . . ,M and then approximate the solutions numerically. Recall that for k = 0, we have

that hn0 = 0 for each n and so there is no need to include them in the linear system. The

truncated system of equations can therefore be represented as a matrix equation

Av = τBv, (5.11)

where

v =




...

ℜ{hnk}
ℑ{hnk}
ℜ{hnk+1}
ℑ{hnk+1}

...




is a vector of length 2M(N + 1) containing all unknown coefficients, A is a block diagonal

matrix and B is a block tridiagonal matrix. Both A and B have block dimension (N +1)×
(N +1) where each block is size 2M × 2M . The block diagonal matrix A can be expressed

as A = diag{A0,A1, . . . ,AN} where each block has the form

An =




C1,1 +Dn
1 C1,2 . . . C1,M

C2,1 C2,2 +Dn
2 C2,M

...
. . .

...

CM,1 CM,2 . . . CM,M +Dn
M



,

with

Ck,j =


ck−j + ck+j 0

0 ck−j + ck+j


 ,

Dn
k =

2ν2

kκ


 ℜ{(βnk − k)(βnk + k)2βnk } −ℑ{(βnk − k)(βnk + k)2βnk }

ℑ{(βnk − k)(βnk + k)2βnk } ℜ{(βnk − k)(βnk + k)2βnk }


 . (5.12)

For the harmonic case, D0
k is simply the 2× 2 zero matrix. The block tridiagonal matrix B
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has the form

B =




̂
B B̃

B̂ 0 −B̂

. . .
. . .

. . .

B̂ 0 −B̂

B̂ 0




,

where

B̂ =




Ĉ1,1 Ĉ1,2 . . . Ĉ1,M

Ĉ2,1 Ĉ2,2 Ĉ2,M

...
. . .

...

ĈM,1 ĈM,2 . . . ĈM,M



, (5.13)

Ĉk,j =


 0 −ck−j − ck+j

ck−j + ck+j 0


 .

The reality conditions determine the first block row of B. For harmonic solutions,

̂
B is the

2M × 2M zero matrix while B̃ has the same form as B̂ in (5.13) except that the 2 × 2

sub-blocks are

C̃k,j =


0 2ck−j + 2ck+j

0 0


 .

For subharmonic solutions, B̃ = −B̂ and

̂
B consists of the 2× 2 sub-blocks

̂
Ck,j =


 0 ck−j + ck+j

ck−j + ck+j 0


 .

Next we investigate the convergence behaviour of the eigenvalues in equation (5.11).

Let τNM denote the lowest eigenvalue computed for a series truncation n = 0, 1, . . . , N and

k = 1, 2, . . . ,M . To examine how the computed eigenvalue depends on N , we fix M = 100

and compute τNM with N = 4× 2j for j = 0, . . . , 4, and estimate the error by

εN =
∣∣∣τ2NM − τNM

∣∣∣ .

Figure 5.5 shows the error using parameters from table 5.1 with ω = 1600 s−1. Similarly,

figure 5.6 shows the error estimate defined by

εM =
∣∣∣τN2M − τNM

∣∣∣ ,
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when fixing N = 20 and taking M = 16 × 2j for j = 0, . . . , 4. It is clear from the plots

that the error reduces more quickly when increasing the number of temporal modes than

increasing the number of spatial modes. Hence, we take a larger value of M than N in our

eigenvalue calculations.
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Figure 5.5: Error in the computed eigenvalue τNM for the harmonic (left) and subharmonic
(right) cases. The matrix truncation is chosen to beM = 100 andN = 4×2j for j = 0, . . . , 4.

The error is estimated by
∣∣∣τ2NM − τNM

∣∣∣.

5.4 Natural Modes for an Unforced Membrane

Before solving the parametrically forced problem, we first examine the stability of the

unforced membrane corresponding to τ = 0. Previous stability analyses of the immersed

boundary method showed that unforced membranes are always stable [18, 118] and we

expect a similar result here. The Fourier coefficients of the unforced solution satisfy

2ζγ

k
√
κ

√
γ

ζ
√
κ
+ k2

(
k +

√
γ

ζ
√
κ
+ k2

)
h0k +

∞∑

j=−∞
ck−jh

0
j = 0 (5.14)

when k 6= 0 and

∞∑

j=−∞
ck−jh

0
j = 0 (5.15)

when k = 0. We have introduced the new dimensionless parameter

ζ =
ν√
κ
=

µ√
ρσ(L/π)3

,
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Figure 5.6: Error in the computed eigenvalue τNM for the harmonic (left) and subharmonic
(right) cases. The matrix truncation is chosen to beN = 20 andM = 16×2j for j = 0, . . . , 4.

The error is estimated by
∣∣∣τN2M − τNM

∣∣∣.

which is a measure of the relative importance of viscous fluid force relative to elastic mem-

brane force. The system of equations (5.14) and (5.15) can be written simply as a matrix

system Tv0 = 0, where the entries of the matrix T depend on the parameters ζ, γ/
√
κ

and α. This linear system has non-trivial solutions only if det(T) = 0, and so by fixing

values of ζ and α we can determine values of γ/
√
κ such that solutions to the homoge-

neous system exist. In practice, we proceed by first truncating the infinite series in (5.14)

and (5.15) to M terms and then computing the determinant numerically.

Figure 5.7 depicts the zero contours of the real and imaginary parts of det(T) for the

specific choice of parameters α = 1.56 and M = 20, and two values of ζ = 2× 10−5 (using

parameters from table 5.1) and 10−2. The points where the contours intersect correspond

to the natural modes of the system. Observe that ℜ{γ} at the intersection points is always

negative, from which we conclude that all solution modes are stable. We see next how the

behaviour of the natural modes depends on ζ, the relative strength of fluid viscosity to

membrane stiffness. For the relatively small value of ζ = 2 × 10−5, the dominant modes

(which are slowest to decay) have non-zero ℑ{γ} and are therefore oscillatory. When ζ

is increased to 10−2, viscosity has a much stronger influence and the dominant (lowest

wavenumber) modes decay without oscillations, although decaying oscillatory solutions still

do exist. In both cases, the unforced modes always decay in time and hence any periodic

or unstable solutions must arise from a periodic modulation of the membrane stiffness.
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Figure 5.7: Zero contours of the real (thick, blue) and imaginary parts (thin, red) of det(T)
for: ζ = 2 × 10−5 (left) and ζ = 10−2 (right). In both cases, α = 1.56 and M = 20. The
natural modes correspond to intersection points between the real and imaginary contours.

5.5 Parametrically Forced Pure-Tone Response

In this section, we demonstrate that an internally-forced membrane can generate travelling

wave solutions that are similar to solutions obtained from another model [74] that imposes

an external forcing. We compute solutions to (5.9)–(5.10) numerically and then choose the

smallest physically-allowable value of τ along with its corresponding eigenvector. We can

reconstruct a periodic solution for h(s, t) using the series representation (5.6d), which is

then compared to the travelling wave solutions from LeVeque et al. [74] obtained when a

pure-tone external forcing is applied.

Figure 5.8 shows solution profiles of the BM displacement curve h(x, tpeak) for forcing

frequencies ω = 400, 800, 1200 and 1600 s−1, where tpeak represents the time when the

maximum vertical BM displacement occurs. The wave envelope is determined by computing

the absolute value of a complex-valued function whose real part is the BM profile and the

imaginary part is its Hilbert transform [12, 60]. The envelope is normalized so that the

maximum height is one. These wave envelopes have the characteristic asymmetric shape

seen in experiments [110], exhibiting an amplitude that increases gradually from base to

peak, followed by a sharp decline at the apical end. The solid curve in each case corresponds

to the harmonic mode for which the response frequency is equal to the forcing frequency.

A qualitatively similar result is obtained for subharmonic solutions (dashed curves) except

that the response occurs at a frequency equal to half that of the internal forcing and so the
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wave profiles are shifted. This indicates that the location of the envelope peak depends on

the response frequency and not the forcing frequency.

Through a combination of experiments and analysis, von Békésy [124] showed that

the peak location of the travelling wave envelope depends logarithmically on the external

stimulus frequency. Figure 5.9 depicts the computed peak locations at various response

frequencies, and our results lie nearly on a straight line which is consistent with the loga-

rithmic dependence. This plot also includes the asymptotic results derived from the model

in [74] as a solid line, which is clearly very close to our own results. As a further validation,

figure 5.10 compares our BM displacement curve with the corresponding result from [74]

for the frequency ω = 400 s−1. Both profiles are shifted so that the wave envelope peak

occurs at x = 0, after which we can see that the qualitative shape and solution envelope are

quite similar. These numerical results demonstrate that external forcing is not required to

obtain a realistic travelling wave solution on the BM, and indeed that parametric (internal)

forcing in the BM stiffness can generate pure-tone solutions that are consistent with results

of another model [74].

5.6 Parametric Resonance in the Cochlea Model

5.6.1 Spatially Uniform Stiffness

To gain more insight into solutions of the eigenvalue problem (5.11), we begin by considering

the simple case α = 0 where the elastic stiffness does not depend on BM location and thus

the spatial Fourier modes are decoupled. For each spatial wavenumber k we have

2ν2

kκ
(βnk − k)(βnk + k)2βnk h

n
k + hnk = iτ

(
hn−1
k − hn+1

k

)
,

for n = 0, 1, . . . , N . This equation may be rewritten in matrix form as

Akvk = τBkvk,

where for each value of k we have

vk =
[
ℜ{h0k}, ℑ{h0k}, . . . , ℜ{hNk }, ℑ{hNk }

]T
,

Ak = diag
{
I2 +D0

k, I2 +D1
k, . . . , I2 +DN

k

}
,
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Figure 5.8: Normalized BM displacement profiles for the harmonic (solid) and subharmonic
(dashed) cases at forcing frequencies ω = 400, 800, 1200 and 1600 s−1.

200 400 800 1600
0

0.5

1

1.5

2

2.5

3

3.5

Response frequency

P
ea

k 
lo

ca
tio

n

 

 

Harmonic
Subharmonic
Line of best fit
LeVeque et al. ’88

Figure 5.9: BM envelope peak location plotted against response frequency, with the hori-
zontal axis (frequency) plotted on a log scale. Harmonic (+) and subharmonic (◦) solutions
have response frequencies ω and ω/2 respectively.



CHAPTER 5. A COCHLEA MODEL WITH PARAMETRIC FORCING 59

−2 −1 0 1
−1

−0.5

0

0.5

1

Current Model

Relative distance from peak (cm)
−2 −1 0 1

−1

−0.5

0

0.5

1

LeVeque et al. 1988

Relative distance from peak (cm)

Figure 5.10: Normalized BM displacement profiles from the current IB model (left) and the
model by LeVeque et al. [74] (right) at a frequency of ω = 400 s−1.

Dn
k defined by (5.12), and I2 is the 2× 2 identity matrix. The matrix Bk has the form

Bk =




̂
Bk B̃k

B̂k 0 −B̂k

. . .
. . .

. . .

B̂k 0 −B̂k

B̂k 0




,

and we need to consider separately the two cases corresponding to harmonic solutions where

̂
Bk =


 0 0

0 0


 , B̃k =


 0 2

0 0


 and B̃k =


 0 −1

1 0


 ,

and subharmonic solutions where

̂
Bk =


 0 1

1 0


 , B̃k =


 0 1

−1 0


 and B̃k =


 0 −1

1 0


 .

Figure 5.11 contains Ince-Strutt diagrams that depict τ plotted against the spatial

wavenumber k for two values of the frequency ω = 500 and 1000 s−1. Harmonic and

subharmonic solutions are labelled + and ◦ respectively. Although we can expect para-

metric resonance to occur for any choice of parameters located inside one of the unstable

fingers, the parameters are further constrained by the fact that the forcing amplitude must

satisfy τ ≤ 1
2 so that the BM stiffness K(s, t) remains nonnegative. To get a clearer idea of

the unstable modes that correspond to physical BM oscillations, we fix k at integer values

ranging from 1 through 6 and display in figure 5.12 the stability plots as a function of
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Figure 5.11: Ince-Strutt diagrams showing the eigenvalues τ (corresponding to the critical
forcing amplitude) for α = 0 plotted against spatial wavenumber when ω = 500 s−1 (left)
and ω = 1000 s−1 (right). Harmonic and subharmonic solutions are labelled + and ◦, re-
spectively. The physically relevant parameters for instability are highlighted by the vertical
solid green lines.

frequency ω on the horizontal axis. In each case the right-most contour or finger is the prin-

cipal subharmonic mode and the subsequent fingers moving to the left alternate between

harmonic and subharmonic modes. We observe that as k increases, the contours tend to

widen and shift downward and to the right; consequently, it is higher frequency modes that

are more susceptible to resonant instabilities. Indeed, the lowest wavenumber modes can

be excited at very low values of the forcing amplitude τ provided the forcing frequency is

high enough.

To verify the existence of these resonant solutions from our linear analysis in the case α =

0, we next perform numerical simulations of the full governing IB equations (5.1), that now

include nonlinearities from both the advection terms and the Dirac delta function integral

terms. We use the MATLAB implementation of the IB method, MatIB [33]. Simulations

are performed on a doubly-periodic fluid domain of size [−L,L] × [−L,L] and we use the

forcing parameters ω = 900, 1000, 1100 s−1 and τ = 0.1, 0.2, with all other parameters listed

in table 5.1. Although the analysis assumes an infinite domain in the vertical direction, we

find that the square domain is sufficiently large to avoid significant interference from the

neighbouring periodic copies of the membrane. The fluid grid is chosen to be 128 × 128

while the BM is discretized with 384 IB points. Figure 5.13 depicts the time evolution of

the peak BM amplitude for an initial membrane displacement corresponding to a k = 1

cosine wave with amplitude 10−6 cm. For the parameter values chosen, the results exhibit a
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Figure 5.12: Ince-Strutt diagram showing the eigenvalues τ (corresponding to the critical
forcing amplitude) for α = 0 plotted against forcing frequency when k varies from 1 to 6.
Harmonic and subharmonic solutions are labelled + and ◦ respectively.
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ω = 900 s−1 ω = 1000 s−1 ω = 1100 s−1

τ = 0.1 stable unstable stable
τ = 0.2 stable unstable unstable

Table 5.2: Analytical stability behaviour predicted for the k = 1 mode and the parameters
used in figure 5.13 for spatially uniform membrane stiffness α = 0.

range of behaviour including stable (non-resonant) solutions in which the amplitude decays

over time, as well as resonant solutions that experience growth in amplitude by up to two

orders of magnitude for the largest values of forcing frequency ω and amplitude τ . The

Ince-Strutt diagram corresponding to k = 1 from figure 5.12 may be used to predict the

solution stability in these simulations, and the expected solution behaviour is summarized

in table 5.2 for the parameter values corresponding to the simulations. Clearly, the linear

analysis matches the stability behaviour observed in simulations. Most notably, for the

case of amplitude τ = 0.1 we capture for increasing ω how the k = 1 mode transitions from

stable, through the marginal stability boundary into an unstable finger, and then returns

again to the stable region.

5.6.2 Exponentially Varying Stiffness

We next investigate the stability of solutions in the spatially coupled case (α 6= 0) where

the BM stiffness varies exponentially along its length. The stability contours are shown as

plots of τ versus ω in figure 5.14 using the same parameters listed in table 5.1. Here we

present three sets of results that truncate the series solutions at different numbers of spatial

modes, M = 5, 10 and 250 (in all cases using N = 20 temporal modes), and have displayed

the harmonic and subharmonic mode plots separately for M = 5 and 10. In contrast with

the α = 0 results from the previous section where stability contours are disjoint and the

behaviour of a given mode is easy to identify, we observe that contours overlap due to

the coupling between spatial modes. A similar “mode-mixing” effect has been observed in

another physical system: the double pendulum [52]. Furthermore, we find that the number

of stability contours depends strongly on the number of spatial modes M included in the

truncated series expansion; in particular, increasing M gives rise to more stability contours

that tend to pack more closely together. As M gets large, the contour “finger tips” sweep

out a smooth curve that divides parameter space into stable and unstable solutions as seen

in the bottom plot in figure 5.14 for M = 250. We note that convergence in the time modes

is much faster than in the spatial modes, thereby requiring that M be taken significantly

larger than N in order to achieve accurate results. We note in particular that when either
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k > 250 or n > 20, all coefficients satisfy |hnk | < 10−4 and so the neglected modes have

negligible effect on our computed results.

Although it is no longer possible to predict the growth or decay of a single given

wavenumber mode as in the α = 0 case, we can nevertheless still identify the region in

parameter space corresponding to stable solutions. Figure 5.14 (bottom plot) shows that

for each forcing frequency there is a critical value of τo in the interval [0, 12 ] for which a

forcing amplitude 0 < τ < τo yields a stable solution whereas amplitudes τo < τ < 1
2 lead

to resonance. Again, viscosity acts as a stabilizing mechanism in the sense that increasing

µ will increase τo and consequently increase the size of the region in parameter space where

solutions are stable. Varying σ has the effect of changing the range of resonant frequencies:

increasing σ causes the contours to spread out, thereby increase the range of frequencies

that result in unstable solutions.

Once again, we use numerical simulations of the full IB model equations to validate

the existence of resonant modes found analytically. We compute on the same domain and

grid resolution as in the spatially uniform case. For the initial membrane configuration, we

use the same cosine wave with amplitude 10−6 cm and wavenumber k = 1. Figures 5.15,

5.16 and 5.17 display the time variation of the amplitude for the first three Fourier cosine

modes with forcing frequencies ω = 400, 600 and 800 s−1 respectively. In each case we also

choose three different values of the forcing amplitude, τ = 0.05, 0.08 and 0.1. Even though

the initial condition contains a pure wavenumber k = 1 mode, all k-modes are eventually

excited because of the mode-coupling that arises through the spatially dependent stiffness.

According to figure 5.14, we expect the τ = 0.05 cases to be stable (since the tips of all

fingers lie above this value of τ) while taking τ any larger should destabilize the solution.

Indeed, numerical simulations with τ = 0.05 do show that BM oscillations decay in time and

that the parametric forcing is insufficient to initiate an instability. Furthermore, when τ is

increased to 0.08, the solutions become unstable and sustained oscillations appear, and for

the largest value of τ = 0.1 the peak amplitude grows even larger. It is important to note

that in all of the resonant cases simulated, the oscillation frequency is half of the internal

forcing frequency, which is a common signature of parametric resonance.

Slight differences arise from the fact that our numerical simulations are on a doubly-

periodic domain of finite length, whereas the analysis assumes a fluid domain of infinite

extent in y. Although we have chosen the domain size to be large enough that boundary

effects are kept to a minimum, there are still interactions between periodic BM copies that

cannot be completely eliminated in our simulations.

We conclude by discussing the existence of parametric resonances in our cochlea model
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Figure 5.15: Time evolution of the amplitude of Fourier cosine coefficients from numerical
simulations for internal forcing frequency ω = 400 s−1 and stiffness forcing amplitude τ =
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Figure 5.16: Time evolution of the amplitude of Fourier cosine coefficients from numerical
simulations for internal forcing frequency ω = 600 s−1 and stiffness forcing amplitude τ =
0.05, 0.08 and 0.1 (top, middle, bottom).
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Figure 5.17: Time evolution of the amplitude of Fourier cosine coefficients from numerical
simulations for internal forcing frequency ω = 800 s−1 and stiffness forcing amplitude τ =
0.05, 0.08 and 0.1 (top, middle, bottom).
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for the full range of physically-relevant BM parameters (namely σ). Figure 5.18 displays

the smallest τ resulting in resonance predicted by our analysis using N = 20, M = 250

for a human cochlea (top) and a gerbil cochlea (bottom). The parameters for the human

cochlea are taken from table 5.1 except for the membrane stiffness. Experimental val-

ues for σ reported in the literature for human cochleas exhibit a large variation, ranging

from σ = 1 × 107 g cm−2 s−2 from [71] to as high as 2 × 109 g cm−2 s−2 in other two-

dimensional models (see [93, Table 1], for example). We consider this entire range on

the vertical axis of figure 5.18, while the horizontal axis covers the entire range of au-

dible frequencies ω ∈ [50, 20000] Hz for humans. Stiffness values for the gerbil cochlea

were extracted from [96, Fig. 8] where several experiments are summarized and show

σ ∈ [1.5×108 , 2.0×109] g cm−2 s−2 (a wider range is plotted). The stiffness decay parameter

for the gerbil BM is approximately λc = 3.7 cm−1 and the length is L = 1.3 cm [90]. The

horizontal axis of the right plot covers the audible range for a gerbil ω ∈ [100, 50000] Hz.

The dark (blue) region in each plot correspond to parameters where a small value of τ leads

to resonance, whereas the light (green) region require larger values of τ , but still within the

physically relevant range. Any regions in parameter space where the BM oscillations are

not resonant are coloured white. From these plots, we observe that parametric resonance

is possible (τ < 1
2) for nearly all parameter values corresponding to the human cochlea,

except at the highest frequencies and the lowest values of σ. Therefore, we can conclude

that parametric resonance arising from fluid-structure interaction effects is possible in our

cochlea model for most sounds in the human audible range, similarly for the gerbil cochlea.

5.7 Summary and Future Work

An immersed boundary model was developed for the basilar membrane in the cochlea, for

the purpose of investigating the relevance of parametric resonance as a novel mechanism for

amplification of BM oscillations. Our model captures the fluid-structure interaction that

occurs between the basilar membrane and the surrounding cochlear fluid. The proposed

model is based on the model from [74], but includes the additional effects of internal (para-

metric) forcing due to variations in the elastic properties of the BM. The prime motivation

for introducing such a parametric forcing derives from the work of Mammano and Ash-

more [80] who have uncovered experimental evidence that oscillations of the outer hair cells

embedded in the CP can lead to periodic modulation of the tension across the BM.

We demonstrated that a parametrically-forced membrane can produce travelling wave

solutions that are similar to those observed in [74] for a passive BM. A Floquet stability
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Figure 5.18: Plot of minimum τ required for parametric resonance with physically relevant
parameters for the human cochlea (top) and the gerbil cochlea (bottom). The parameters
for which resonance does not occur are coloured white and so only those parameters lying in
the lower right corner of the diagram for the human cochlea (small stiffness, large frequency)
correspond to stable or non-resonant solutions.
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analysis was then used to demonstrate the existence of resonant solutions in the linearized

IB equations. The results were presented as plots of the marginal stability contours in τ -ω

(forcing amplitude-frequency) parameter space. For a spatially homogeneous membrane

with a constant value of stiffness, the stability contours in the corresponding Ince-Strutt

diagram are disjoint for each Fourier mode similar to the damped Mathieu equation. How-

ever, for the realistic case of a BM stiffness that varies exponentially along its length, there

is a mode-mixing effect in which the stability contours overlap in parameter space. We

conclude that internal forcing through via the BM stiffness at sufficiently large amplitudes

can induce parametric instability for any frequency in the physiological range of human

hearing. These existence of these resonances is verified using numerical simulations of a full

two-dimensional immersed boundary model of the cochlea.

Our main conclusion is that parametric resonances arising from fluid-structure inter-

actions in the cochlea are worthy of further study as a possible contributing factor in the

amplification ability of human and other mammalian hearing systems. One focus for future

research is to develop a more complete cochlea model that couples the fluid-structure in-

teraction effects (giving rise to parametric resonance) along with an existing model for BM

amplification [80, 83, 93, 107, 110], which would thereby allow a comparison of the relative

importance of the combined effects. Furthermore, this will permit us to replace the BM

stiffness parameter (5.3) with a more physiologically relevant (non-separable) function of

the form

K(s, t) = σe−λcs
(
1 + 2τ sin(ωt)χ(s)

)

in which the spatial dependence χ(s) is determined by an existing model that has been

validated against experiments.

Our 2D IB model is an ideal framework to investigate other features of a cochlea. For

example, we can impose more realistic Dirchlet conditions on the ends of the BM and include

the helicotrema which is a small opening near the apex that joins the scala vestibuli to the

scala tympani (see figure 5.3). Another extension that can be easily included in our IB

framework is the RM which is a passive, spatially uniform elastic structure. The motion of

the RM is often neglected in cochlear models, however there is evidence that wave motion

on the RM plays a role in otoacoustic emissions [112] which merits further study of RM

dynamics.



Chapter 6

Parametric Resonance

in Spherical Shells

In this chapter, we extend the analysis for immersed 2D fibres from [18] to three dimensions

where we consider parametric resonance in immersed spherical elastic shells. We perform

a Floquet stability analysis, considering both inviscid and viscous fluids, and demonstrate

that a parametrically forced fluid-structure system gives rise to resonances in which the

linear solution becomes unbounded even in the presence of viscosity. The analytical results

are validated using numerical simulations with a 3D immersed boundary code for a range

of mode numbers and physical parameter values. Finally, a potential application to cardiac

fluid dynamics is discussed.

The results in this chapter have been submitted for publication to the SIAM Journal on

Applied Mathematics [63].

6.1 Immersed Boundary Model

We consider a closed elastic membrane that encompasses a region of viscous, incompress-

ible fluid and is immersed in an infinite domain containing the same fluid (Ω = R
3). At

equilibrium, the membrane takes the form of a pressurized sphere with radius R that is

centred at the origin. Considering the geometry of the equilibrium state, it is natural to

formulate the governing equations in a spherical coordinate system. We therefore introduce

coordinates (r, θ, φ), where r ∈ [0,∞) is the distance from the origin, θ ∈ [0, 2π) is the

azimuth angle in the horizontal plane, and φ ∈ [0, π] is the polar angle measured downward

from the vertical axis. The elastic membrane, X(ξ, η, t), is parametrized by two Lagrangian

72
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coordinates; ξ ∈ [0, 2π) and η ∈ [0, π], that are analogous to spherical coordinates (θ, φ).

The IB equations are

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u+ f , (6.1a)

∇ · u = 0, (6.1b)

f(x, t) =

∫ π

0

∫ 2π

0
F (X, t) δ(x −X) sin η dξ dη, (6.1c)

∂X

∂t
= u(X, t), (6.1d)

for x ∈ Ω. Recall that the force density can be derived by taking a variational derivative

of the membrane elastic energy functional E(X, t)

F (X, t) = − ℘E

℘X
.

As in the 2D case, we choose an energy functional that incorporates the effect of membrane

stretching but ignores any resistance to bending motions. Hence, we assume the form

E(X, t) =
1

2
K(t)

∫ π

0

∫ 2π

0

(∥∥∥∥
1

sin η

∂X

∂ξ

∥∥∥∥
2

+

∥∥∥∥
∂X

∂η

∥∥∥∥
2
)
sin η dξ dη,

together with

K(t) = σ
(
1 + 2τ sin(ωt)

)
.

This choice of functional was motivated by Terzopoulos and Fleischer [119] who simulated

deformable sheets in computer graphics. This expression for E(X, t) is also a simplified

version of other energy functionals used in fluid-structure interaction problems [48]. As a

result

F (X, t) = K(t)∆SX, (6.2)

where

∆S =
1

sin2 η

∂2

∂ξ2
+

1

sin η

∂

∂η

(
sin η

∂

∂η

)

denotes the spherical (or angular) Laplacian operator, which is clearly a natural generaliza-

tion of (4.3) for an elastic fibre in 2D.
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6.1.1 Nondimensionalization

To simplify the model and the analysis, we nondimensionalize the problem by introducing

the following scalings

x = R x̃, X = R X̃, t =
1

ω
t̃, u = U ũ, p = P p̃,

where a tilde denotes a nondimensional quantity and the characteristic velocity and pressure

scales are

U = Rω and P = ρR2ω2.

Substituting the above quantities into the governing equations (6.1)–(6.2) yields

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇̃p̃+ ν∆̃ũ+ f̃ , (6.3a)

∇̃ · ũ = 0, (6.3b)

∂X̃

∂t̃
= ũ( X̃, t̃ ), (6.3c)

f̃( x̃, t̃ ) =

∫ π

0

∫ 2π

0
F̃ ( X̃, t̃ ) δ̃( x̃− X̃ ) sin η dξ dη, (6.3d)

F̃ ( X̃, t̃ ) = K̃( t̃ )∆SX̃, (6.3e)

K̃( t̃ ) = κ
(
1 + 2τ sin t̃

)
, (6.3f)

where we have introduced the dimensionless viscosity (or reciprocal Reynolds number)

ν =
1

Re
=

µ

ρR2ω
, (6.4)

and the dimensionless IB stiffness parameter

κ =
σ

ρR3ω2
. (6.5)

Note that ν is the same as equation (4.5) in the 2D case but κ has an extra factor of R in

the denominator of (6.5) in contrast with the 2D case in equation (4.6) due to the increase

in dimension of the Dirac delta function.

6.1.2 Linearized Vector Spherical Harmonic Expansion

Consider small deformations to the spherical equilibrium configuration characterized by the

parameter |ǫ| ≪ 1. We assume a solution in the form of a regular perturbation expansion

u = u0 + ǫu1 +O
(
ǫ2
)
,

p = p0 + ǫp1 +O
(
ǫ2
)
,

X = X0 + ǫX1 +O
(
ǫ2
)
,
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where the 0 subscript denotes the equilibrium solution

u0 = 0, p0 = 2K(t)H(1 − r) + pa, X0 = r̂(ξ, η).

Here, H(r) is the Heaviside step function and pa is some constant ambient pressure. Sub-

stituting these expressions into the governing equations and retaining only those terms of

O(ǫ), we obtain the following system for the first-order quantities:

∂u1

∂t
= −∇p1 + ν∆u1 + f1, (6.6a)

∇ · u1 = 0, (6.6b)

∂X1

∂t
= u1(X0, t). (6.6c)

The stability of the fluid-membrane system may then be determined by studying so-

lutions of this simpler linearized system for the O(ǫ) variables. Owing to the rotational

symmetry in the problem we look for solutions in terms of spherical harmonics, which are

eigenfunctions of the spherical Laplacian operator ∆S and form an orthonormal basis for

sufficiently smooth functions of (θ, φ). The normalized scalar spherical harmonic of degree

m and order k is

Ym,k(θ, φ) = (−1)k

√
2m+ 1

4π

(m− k)!

(m+ k)!
eikθ Pm,k(cosφ), (6.7)

where Pm,k denotes the associated Legendre polynomial [1]. The natural generalization

to vector-valued functions (in our case, the fluid velocity and IB position) are the vector

spherical harmonics (or VSH) for which various definitions have been proposed in the lit-

erature [7, 42, 45, 53]. For example, the VSH proposed by Hill [45] are eigenfunctions of

the angular Laplacian and thus fully decouple the components of the vector Laplacian in

the diffusion term in equation (6.6a). For this reason, Hill’s VSH has proven effective in

studying problems in fluid dynamics [29, 32] and other areas of physics [24, 129]. However,

the VSH basis derived by Barrera et al. [7] decomposes vectors into a normal component

and two tangential components to the sphere, which provides a more intuitive geometric

interpretation of the basis vectors. This is a more fitting choice for our analysis since the

jump conditions in the IB model naturally separate the force density into a normal compo-

nent and tangential components [67]. Therefore, we use the VSH by Barrera et al. that is
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defined in terms of the scalar spherical harmonics (6.7) as follows:

Ym,k(θ, φ) = Ym,k r̂,

Ψm,k(θ, φ) = r∇Ym,k =
ik

sinφ
Ym,kθ̂ +

∂Ym,k

∂φ
φ̂,

Φm,k(θ, φ) = r̂ ×Ψm,k =
∂Ym,k

∂φ
θ̂ − ik

sinφ
Ym,k φ̂,

where θ̂ and φ̂ are the other two unit vectors in spherical coordinates. This choice of basis

re-introduces a coupling between velocity components in the momentum equations but we

will see later on that it has the advantage of decoupling the jump conditions. Finally,

because we require real-valued solutions, we write the velocity, IB position and pressure

variables, without loss of generality, as

u1 = ur(r, t)Y c
m,k + uΨ(r, t)Ψc

m,k + uΦ(r, t)Φc
m,k,

p1 = p̂(r, t)Y c
m,k,

X1 = Xr(t)Y c
m,k +XΨ(t)Ψc

m,k +XΦ(t)Φc
m,k,

where the superscript c denotes the real (cosine) part of each spherical harmonic. We then

consider a particular initial membrane configuration with the form

X(ξ, η, 0) =
(
1 + ǫY c

m,k(ξ, η)
)
r̂(ξ, η),

and examine the stability of each (m,k)-mode. Several possible membrane configurations

corresponding to spherical harmonics are illustrated in figure 6.1. Note that m = 0 corre-

sponds to a radial expansion of the membrane which is forbidden due to the incompressibility

condition. Moreover, m = 1 is a simple translation of the spherical membrane for which the

system remains in equilibrium. Therefore we are only concerned with modes with m ≥ 2

that are capable of generating nontrivial oscillations.

6.1.3 Jump Condition Formulation

We next reformulate the equations by eliminating the delta function forcing term and re-

placing it with suitable jump conditions across the membrane, following the approach used

by Lai and Li [67].

The evolution equation (6.1d) is a statement that the membrane must move with the

local fluid velocity. Because the membrane is infinitesimally thin, the velocity must be

continuous across the membrane, which leads immediately to the jump conditions

JurK = JuΨK = JuΦK = 0. (6.8)
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m = 2
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m = 4

Figure 6.1: Spherical shells perturbed by a spherical harmonic mode (real part) with non-
negative order k.

Next, consider the divergence condition (6.3b) which must be satisfied identically on either

side of the membrane so that

J∇ · uK = 0.

Rewriting this condition in terms of the components of u1, we have
s
∂ur

∂r
+

2

r
ur − m(m+ 1)

r
uΨ

{
=

s
∂ur

∂r

{
= 0, (6.9)

where the last equality follows from (6.8).

The remaining jump conditions are derived from the momentum equations (6.3a). Let

Ω̺(t) be a thin annular shell surrounding the membrane Γ with ̺ characterizing the thick-

ness of the shell. Letting ϕ(x) be a smooth test function with compact support, we multiply

the momentum equations by ϕ(x) and integrate over Ω̺(t) to obtain
∫

Ω̺(t)

(
∂u

∂t
+ u · ∇u

)
ϕ(x) dV =

∫

Ω̺(t)
(−∇p+ ν∆u+ f)ϕ(x) dV. (6.10)

Following the same procedure as in section 4.1.3, we arrive at the limits
∫

Ω̺(t)

(
∂u

∂t
+ u · ∇u

)
ϕ(x) dV → 0, (6.11)

∫

Ω̺(t)
−∇pϕ(x) dV → −

∫

Γ
JpK n̂ϕ(x) dA, (6.12)

∫

Ω̺(t)
ν∆uϕ(x) dV →

∫

Γ
νJn̂ · ∇uKϕ(x) dA, (6.13)
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as ̺→ 0 where

n̂ =

∂X
∂η

× ∂X
∂ξ∥∥∥∂X∂η × ∂X
∂ξ

∥∥∥
(6.14)

is the outward unit normal vector to the membrane surface. Furthermore, the sifting prop-

erty of the Dirac delta function simplifies the forcing term in (6.10) to

∫

Ω̺(t)
fϕ(x) dV =

∫

Ω̺(t)

(∫ π

0

∫ 2π

0
F δ(x−X) sin η dξ dη

)
ϕ(x) dV,

=

∫ π

0

∫ 2π

0
F ϕ(X) sin η dξ dη. (6.15)

The limits (6.11)–(6.13) and equation (6.15) reduce the integral (6.10) to

0 =

∫ π

0

∫ 2π

0

(
−JpK n̂

∥∥∥∥
∂X

∂η
× ∂X

∂ξ

∥∥∥∥+ νJn̂ · ∇uK
∥∥∥∥
∂X

∂η
× ∂X

∂ξ

∥∥∥∥+ F sin η

)
ϕ(X) dξ dη

as ̺→ 0, where we have also made use of the identity for the area element

dA =

∥∥∥∥
∂X

∂η
× ∂X

∂ξ

∥∥∥∥ dξ dη.

Because ϕ(x) is arbitrary and smooth, the integrand must be identically zero which yields

0 = −JpK
(
∂X

∂η
× ∂X

∂ξ

)
+ ν

s(
∂X

∂η
× ∂X

∂ξ

)
· ∇u

{
+ F sin η, (6.16)

where the normal vector has been replaced using (6.14). Decomposing the above expres-

sion into its normal and tangential components leads to the jump conditions derived by

Lai and Li [67]. However, our aim is to derive jump conditions for the VSH components so

we further linearize equation (6.16).

We now make use of the perturbation expansion for X to write the terms arising from

the normal vector as

∂X

∂η
× ∂X

∂ξ
=

∂

∂η

(
r̂ + ǫX1 +O

(
ǫ2
))× ∂

∂ξ

(
r̂ + ǫX1 +O

(
ǫ2
))
,

= sin η r̂ + ǫ sin η
[(
2Xr −m(m+ 1)XΨ

)
Y c
m,k

+
(
XΨ −Xr

)
Ψc

m,k +XΦΦc
m,k

]
+O

(
ǫ2
)
.

Similarly, the force density can be expanded as

F = K(t)∆S

(
r̂ + ǫX1 +O

(
ǫ2
))
,

= −2K(t)r̂ + ǫK(t)
[(
2m(m+ 1)XΨ − (m2 +m+ 2)Xr

)
Y c
m,k

+
(
2Xr −m(m+ 1)XΨ

)
Ψc

m,k −m(m+ 1)XΦΦc
m,k

]
+O

(
ǫ2
)
.
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The remaining jump conditions are obtained by substituting these last two equations along

with the perturbation expansions for u and p into (6.16). The radial component of (6.16)

gives two jump conditions for the pressure variables

Jp0K = −2K(t),

Jp1K = −K(t)(m− 1)(m + 2)XrY c
m,k, (6.17)

while the Ψm,k and Φm,k components give jump conditions for the radial derivatives of uΨ

and uΦ

ν

s
∂uΨ

∂r

{
= K(t)(m− 1)(m+ 2)XΨ, (6.18)

ν

s
∂uΦ

∂r

{
= K(t)(m− 1)(m+ 2)XΦ. (6.19)

Note that the jump conditions (6.17)–(6.19) are separated into normal and tangential com-

ponents, and as a result are decoupled from each other, which is the advantage to our

particular choice of VSH basis that we referred to earlier in section 6.1.2.

We can now summarize the system of equations that will be analyzed in this chapter:

∂ur

∂t
= −∂p̂

∂r
+ ν

(
∂2ur

∂r2
+

2

r

∂ur

∂r
− m(m+ 1)

r2
ur − 2

r2
ur +

2m(m+ 1)

r2
uΨ
)
,(6.20a)

∂uΨ

∂t
= − p̂

r
+ ν

(
∂2uΨ

∂r2
+

2

r

∂uΨ

∂r
− m(m+ 1)

r2
uΨ +

2

r2
ur
)
, (6.20b)

∂uΦ

∂t
= ν

(
∂2uΦ

∂r2
+

2

r

∂uΦ

∂r
− m(m+ 1)

r2
uΦ
)
, (6.20c)

∇ · u1 =

(
1

r2
∂

∂r
(r2ur)− m(m+ 1)

r
uΨ
)
Y c
m,k = 0, (6.20d)

∂X1

∂t
= u1|r=1. (6.20e)

The O(ǫ) quantities X1, u1 and p1 are subject to the jump conditions (6.8), (6.9) and

(6.17)–(6.19). Note that the equation for uΦ only involved Φm,k quantities which is another

advantage of our choice of VSH basis. We also observe that the dynamics of the linearized

solution depend only on the degree m of the spherical harmonic and not on its order k;

hence solution modes are characterized by a single integer m.

In the remainder of this chapter, we will drop the subscript “1” that until now has

distinguished the O(ǫ) quantities.
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6.2 Floquet Analysis for an Inviscid Fluid

To afford some insight into parametric instabilities occurring in a simpler version of the

immersed membrane problem, we first consider an inviscid fluid for which the governing

equations reduce to

∂ur

∂t
= −∂p̂

∂r
, (6.21a)

∂uΨ

∂t
= − p̂

r
, (6.21b)

∂uΦ

∂t
= 0, (6.21c)

∇ · u = 0, (6.21d)

dXr

dt
= ur(1, t), (6.21e)

JurK = 0, (6.21f)

Jp̂K = −K(t)(m− 1)(m+ 2)Xr. (6.21g)

Notice that in the absence of viscosity, we are only permitted to impose the zero normal

flow condition (6.21e) at the fluid-membrane interface instead of the usual no-slip condition.

We begin by solving for the pressure away from the membrane, which satisfies

r2
∂2p̂

∂r2
+ 2r

∂p̂

∂r
−m(m+ 1)p̂ = 0. (6.22)

Imposing the requirement that the pressure be bounded at r = 0 and as r → ∞ yields

p̂(r, t) =




a(t) rm, if r < 1,

b(t) r−m−1, if r > 1,

where a(t) and b(t) are as-yet undetermined functions of time. Substituting the pressure

solution into the inviscid momentum equation (6.21a) yields the radial fluid acceleration

∂ur

∂t
=




−ma(t) rm−1, if r < 1,

(m+ 1)b(t) r−m−2, if r > 1.

Since the fluid cannot pass through the membrane, the radial acceleration of the fluid and

membrane must match and

d2Xr

dt2
=
∂ur

∂t

∣∣∣∣
r=1

= −ma(t) = (m+ 1)b(t),
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where the last equality follows from continuity of ur at the interface. This allows us to

determine the functions

a(t) = − 1

m

d2Xr

dt2
and b(t) =

1

m+ 1

d2Xr

dt2
,

after which the pressure jump (6.21g) may be expressed as

b(t)− a(t) = −K(t)(m− 1)(m+ 2)Xr(t).

We then have the following equation for the membrane location

d2Xr

dt2
+ λ20(1 + 2τ sin t)Xr = 0, (6.23)

where

λ20 =
κm(m+ 1)(m− 1)(m+ 2)

2m+ 1
.

Here, λ0 is the dimensionless natural oscillation frequency. Recalling the definition of κ in

(6.5), we may write λ0 = ω0/ω as the ratio of the natural frequency ω0 for the unforced

problem to the forcing frequency ω, where

ω2
0 =

σm(m+ 1)(m− 1)(m+ 2)

ρR3(2m+ 1)
. (6.24)

This natural oscillation frequency matches with the classical result by Lamb [69, Art. 253]

for oscillations of a spherical liquid drop, with the only difference being that a surface

tension force replaces the elastic restoring force in our IB context.

We now focus on (6.23) which takes the form of the Mathieu equation which we know

from Chapter 2 exhibits parametric resonance. Figure 6.2 shows the Ince-Strutt diagrams

as plots of κ versus τ for three different spherical harmonics, m = 2, 3 and 4. In each plot,

the eigenvalues τ divide parameter space into stable and unstable regions as for the Mathieu

equation. It is essential to keep in mind that only parameters lying below the horizontal line

τ = 1
2 are physically relevant, since these values of τ correspond to a membrane stiffnessK(t)

that remains positive. It is evident from these diagrams that for a given forcing amplitude

τ , an immersed spherical shell can experience parametric instability for a disjoint set of κ

ranges (with corresponding ranges of the physical parameters ω, ρ, R and σ according to

(6.5)). For example, different unstable modes (corresponding to different integer values of

m) can be excited by forcing the system within a given range of ω. Furthermore, there is an

infinite number of unstable modes that can be excited since the harmonic and subharmonic

fingers continue to alternate to the right forever as κ increases.
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Figure 6.2: Ince-Strutt diagrams for the inviscid problem, showing stability contours for
spherical harmonics m = 2 (top), 3 (middle) and 4 (bottom). Harmonic modes are denoted
with + and subharmonic modes with ◦, and only modes with τ < 1

2 are physically relevant.
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These membrane instabilities exist for all values of forcing amplitude 0 < τ < 1
2 since

each of the stability fingers extends downward and touches the κ-axis as τ → 0. The points

at which the fingers touch the κ-axis correspond to the natural oscillation frequencies ω0

for the unforced problem given in (6.24). Indeed, we see that for |τ | ≪ 1, resonances occur

at forcing frequencies that satisfy

ω0 ≈
ℓω

2

for any positive integer ℓ; that is, the natural frequency for a given m-mode is an integer

multiple of half the parametric forcing frequency.

6.3 Floquet Analysis for a Viscous Fluid

We next apply Floquet theory to the original governing equations with viscosity by looking

for series solutions of the form

u(r, θ, φ, t) = eγt
∞∑

n=−∞
eint

(
urn(r)Y

c
m,k + uΨn (r)Ψ

c
m,k + uΦn (r)Φ

c
m,k

)
, (6.25a)

p(r, θ, φ, t) = eγt
∞∑

n=−∞
eintpn(r)Y

c
m,k, (6.25b)

X(ξ, η, t) = eγt
∞∑

n=−∞
eint

(
Xr

nY
c
m,k +XΨ

n Ψc
m,k +XΦ

n Φ
c
m,k

)
. (6.25c)

The pressure coefficients pn(r) satisfy the same ODE (6.22) and boundedness conditions as

in the inviscid case, and so the solution has the same form

pn(r) =





anr
m, if r < 1,

bnr
−m−1, if r > 1,

with the only difference being that an and bn are constants. Next, combining the radial mo-

mentum equation (6.20a) with the divergence-free condition (6.20d) and then substituting

the Floquet-Fourier series (6.25a) and (6.25b) yields the ODE

r2
d2urn
dr2

+ 4r
durn
dr

+
(
2−m(m+ 1)− β2nr

2
)
urn − r2

ν

dpn
dr

= 0,

where

βn =

√
γ + in

ν
with ℜ{βn} > 0.
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We first consider the situation where the quantity βn 6= 0, in which case the radial

velocity components can be expressed as

urn(r) =

∫ ∞

0
G(r, z)

z2

ν

dpn(z)

dz
dz, (6.26)

where G(r, z) is the Green’s function satisfying

r2
∂2G

∂r2
+ 4r

∂G

∂r
+
(
2−m(m+ 1)− β2nr

2
)
G = δ(r − z)

along with the two jump conditions

G|r=z+

r=z− = 0 and r2
∂G

∂r

∣∣∣∣
r=z+

r=z−
= 1.

The Green’s function can be obtained explicitly as

G(r, z) =





zβnhm(iβnz)
jm(iβnr)

r
, if r < z,

zβnjm(iβnz)
hm(iβnr)

r
, if r > z,

where jm and hm denote the mth-order spherical Bessel and Hankel functions of the first

kind, respectively. The expression in (6.26) can be integrated explicitly to obtain the radial

velocity as

urn(r) =





− ijm(iβnr)

νr

(
manhm+1(iβn)− (m+ 1)bnhm−1(iβn)

)

− man
νβ2n

rm−1, if r < 1,

− ihm(iβnr)

νr

(
manjm+1(iβn)− (m+ 1)bnjm−1(iβn)

)

+
(m+ 1)bn

νβ2n
r−m−2, if r > 1.

It is then straightforward to show that radial velocity coefficients are continuous across the

membrane and satisfy

urn(1
+) = urn(1

−) = − iman
ν

hm(iβn)jm+1(iβn) +
i(m+ 1)bn

ν
jm(iβn)hm−1(iβn).

The coefficient uΨn can be obtained from the incompressibility condition

(
1

r2
d

dr

(
r2urn

)− m(m+ 1)

r
uΨn

)
Y c
m,k = 0,
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so that

uΨn (r) =
1

rm(m+ 1)

d

dr

(
r2urn

)
,

=





− i

ν

(
jm(iβnr)

r
+ iβnj

′
m(iβnr)

)(
an

m+ 1
hm+1(iβn)−

bn
m
hm−1(iβn)

)

− an
νβ2n

rm−1, if r < 1,

− i

ν

(
hm(iβnr)

r
+ iβnh

′
m(iβnr)

)(
an

m+ 1
jm+1(iβn)−

bn
m
jm−1(iβn)

)

− bn
νβ2n

r−m−2, if r > 1.

Here, primes denote derivatives with respect to the argument. The analogous equation for

the third velocity coefficient uΦn (r) is

r2
d2uΦn
dr2

+ 2r
duΦn
dr

− (β2nr2 +m(m+ 1)
)
uΦn = 0,

which can be solved to obtain

uΦn (r) =





cnjm(iβnr), if r < 1,

cn
jm(iβn)

hm(iβn)
hm(iβnr), if r > 1,

where cn are arbitrary constants.

The next major step is to determine values of the constants an, bn and cn by imposing

the interface conditions (6.20e). By orthogonality, the radial coefficients for the membrane

position satisfy

(γ + in)Xr
n = urn(1),

= − iman
ν

hm(iβn)jm+1(iβn) +
i(m+ 1)bn

ν
jm(iβn)hm−1(iβn),

with similar expressions holding for the other two sets of coefficients

(γ + in)XΨ
n = − ian

(m+ 1)ν

(
hm(iβn) + iβnh

′
m(iβn)

)
jm+1(iβn)

+
ibn
mν

(
jm(iβn) + iβnh

′
m(iβn)

)
hm−1(iβn),

(γ + in)XΦ
n = cnjm(iβn).
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These three equations may then be solved to obtain

an = − iν2β3n
m

jm(iβn) + iβnj
′
m(iβn)

jm+1(iβn)
Xr

n + iν2β3n(m+ 1)
jm(iβn)

jm+1(iβn)
XΨ

n , (6.27a)

bn = − iν2β3n
m+ 1

hm(iβn) + iβn h
′
m(iβn)

hm−1(iβn)
Xr

n + iν2β3nm
hm(iβn)

hm−1(iβn)
XΨ

n , (6.27b)

cn =
νβ2n

jm(iβn)
XΦ

n . (6.27c)

We are now prepared to impose the jump conditions (6.18) and (6.19), which yield

ν

(
− an
m+ 1

− bn
m

)
= κ(m− 1)(m+ 2)

(
XΨ

n − iτXΨ
n−1 + iτXΨ

n+1

)
,

ν

(
iβn

jm(iβn)

hm(iβn)
h′m(iβn)− iβnj

′
m(iβn)

)
cn = κ(m− 1)(m+ 2)

(
XΦ

n − iτXΦ
n−1 + iτXΦ

n+1

)
.

After replacing an, bn and cn in these last two expressions with (6.27), we obtain the

following linear system of equations relating the coefficients Xr
n, X

Ψ
n and XΦ

n :

β3n
(m− 1)(m+ 2)

ν2

κ

(
hm(iβn)

(m+ 1)hm−1(iβn)
− jm(iβn)

mjm+1(iβn)

)
Xr

n

+

[
β3n

(m− 1)(m+ 2)

ν2

κ

(
hm(iβn)

hm−1(iβn)
+

jm(iβn)

jm+1(iβn)

)
− i

]
XΨ

n

= τ
(
XΨ

n−1 −XΨ
n+1

)
, (6.28)

[
iβn

(m− 1)(m + 2)jm(iβn)hm(iβn)

ν2

κ
− i

]
XΦ

n = τ
(
XΦ

n−1 −XΦ
n+1

)
. (6.29)

In a similar manner, the final jump condition for the pressure (6.17) yields

[
− iβ4n
(2m+ 1)(m− 1)(m+ 2)

ν2

κ

(
2− m

m+ 1

hm+1(iβn)

hm−1(iβn)
− m+ 1

m

jm−1(iβn)

jm+1(iβn)

)
− i

]
Xr

n

− iβ4n
(2m+ 1)(m− 1)(m+ 2)

ν2

κ

(
1−m

hm+1(iβn)

hm−1(iβn)
+ (m+ 1)

jm−1(iβn)

jm+1(iβn)

)
XΨ

n

= τ
(
Xr

n−1 −Xr
n+1

)
. (6.30)

When taken together, equations (6.28)–(6.30) represent a system for Xr
n, X

Ψ
n and XΦ

n in

the case when βn 6= 0.

We now consider the special case βn = 0, which occurs only when n = 0 and γ = 0 (i.e.,

for harmonic modes) and the equation for radial velocity reduces to

r2
d2ur0
dr2

+ 4r
dur0
dr

+
(
2−m(m+ 1)

)
ur0 − r2

dp0
dr

ν = 0.
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The corresponding Green’s function is

G(r, z) = − 1

2m+ 1





rm−1

zm
, if r < z,

zm+1

rm+2
, if r > z,

from which we obtain

ur0(r) =





ma0
ν(2m+ 3)

rm+1

− 1

ν(2m+ 1)

(
ma0
2

− (m+ 1)b0
2m− 1

)
rm−1, if r < 1,

(m+ 1)b0
ν(2m− 1)

r−m

− 1

ν(2m+ 1)

(
ma0

2m+ 3
+

(m+ 1)b0
2

)
r−m−2, if r > 1.

Applying the incompressibility condition as before, we find that

uΨ0 (r) =





(m+ 3)a0
ν(2m+ 3)(m+ 1)

rm+1

− 1

νm(2m+ 1)

(
ma0
2

− (m+ 1)b0
2m− 1

)
rm−1, if r < 1,

− (m− 1)b0
νm(2m− 1)

r−m

+
1

ν(m+ 1)(2m + 1)

(
ma0

2m+ 3
+

(m+ 1)b0
2

)
r−m−2, if r > 1.

To ensure continuity across the membrane, we must have a0 = b0 = 0. The remaining

velocity coefficients are given simply by

uΦ0 (r) =





c0 r
m, if r < 1,

c0 r
−m−1, if r > 1.

From the membrane evolution equation (6.20e), we find that c0 = 0. Therefore, in the

special case βn = 0, the jump conditions (6.17)–(6.19) reduce to

Xr
n − iτXr

n−1 + iτXr
n+1 = 0, (6.31)

XΨ
n − iτXΨ

n−1 + iτXΨ
n+1 = 0, (6.32)

XΦ
n − iτXΦ

n−1 + iτXΦ
n+1 = 0. (6.33)

To investigate the stability of a parametrically-forced elastic shell, we now need only

consider the Ym,k and Ψm,k solution components. This is because the Φm,k component is
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completely decoupled in the momentum equations and neither is it driven by a pressure

gradient, so that it evolves independently. In particular, if the Φm,k component of the

initial membrane position is zero, then it will remain zero for all time (this is closely related

to the fact that the linear equations (6.29) and (6.33) for XΦ
n are decoupled from the other

equations). As a result, it is only necessary to consider equations (6.28), (6.30), (6.31) and

(6.32), which can be written as

AnX
r
n +BnX

Ψ
n = τ

(
Xr

n−1 −Xr
n+1

)
, (6.34a)

CnX
r
n +DnX

Ψ
n = τ

(
XΨ

n−1 −XΨ
n+1

)
, (6.34b)

for suitably defined constants An, Bn, Cn and Dn. We again impose reality conditions for

either harmonic solutions (γ = 0)

Xr
−n = X

r
n,

XΨ
−n = X

Ψ
n ,

or subharmonic solutions (γ = 1
2 i)

Xr
−n = X

r
n−1,

XΨ
−n = X

Ψ
n−1.

We only need to consider nonnegative integer values of n = 0, 1, . . . , N , so that system (6.34)

take the form of a generalized eigenvalue problem Av = τBv, where the solution vector

v =




...

ℜ{Xr
n}

ℑ{Xr
n}

ℜ{XΨ
n }

ℑ{XΨ
n }

...




is of length 4(N + 1). The matrix A = diag(A0,A1, . . . ,AN) is block diagonal consisting

of 4× 4 blocks

An =




ℜ{An} −ℑ{An} ℜ{Bn} −ℑ{An}
ℑ{An} ℜ{An} ℑ{Bn} ℜ{Bn}
ℜ{Cn} −ℑ{Cn} ℜ{Dn} −ℑ{Dn}
ℑ{Cn} ℜ{Cn} ℑ{Dn} ℜ{Dn}



,
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and B is a block tridiagonal matrix of the form

B =




B̂ B̃

I4 04 −I4
. . .

. . .
. . .

I4 04 −I4

I4 04




,

where in the harmonic case

B̂ = 04 and B̃ =




0 2 0 0

0 0 0 0

0 0 0 2

0 0 0 0



,

whereas in the subharmonic case

B̂ =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




and B̃ = −I4.

To illustrate the stability of the viscous problem, we solve the eigenvalue equations for

two values of dimensionless viscosity, ν = 10−3 and 6 × 10−3, and for spherical harmonics

with degree m = 2, 3, 4. In the numerical calculations, we use a truncation size of N = 80

so that all neglected coefficients of {Xr
n,X

Ψ
n } for n > 80 are smaller than 10−9 and so can

be neglected. The corresponding Ince-Strutt diagrams are shown in figure 6.3 where again

we observe a clearly defined sequence of alternating harmonic and subharmonic fingers of

instability in parameter space. These results reinforce one of the defining characteristics of

parametric resonance, namely that such linear systems can experience instabilities leading

to unbounded growth even in the presence of damping.

There are a few key comparisons that can be drawn with the inviscid results from

section 6.2. First of all, the stability fingers do not touch the κ-axis as they did in the

inviscid case, but instead are shifted vertically upwards. As a result, there is a minimum

forcing amplitude required to initiate resonance for any given value of κ. For the value of

viscosity ν = 10−3 the fingers appear most similar to the inviscid case, while for larger ν

the fingers deform upwards away from the κ-axis and shift outward to the right. Indeed, for

large enough values of either viscosity or mode number m the fingers can lift entirely above
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Figure 6.3: Ince-Strutt diagrams for the viscous problem with dimensionless viscosities
ν = 10−3 (left) and ν = 6 × 10−3 (right). Stability contours are shown for spherical
harmonics m = 2 (top), 3 (middle) and 4 (bottom). Subharmonic solutions are denoted
with ◦ and harmonic solutions with +.
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the line τ = 1
2 so that resonance is no longer possible. This should be contrasted with the

inviscid case where resonances exist for any value of m.

The second distinction from the inviscid results is that within the non-physical region

τ > 1
2 , an additional subharmonic solution appears as a curve of circular points that cuts

across the finger-shaped contours. These unstable modes occur due to the periodic modu-

lation in the tangential stress across the membrane (6.19) and thus are not observed in the

inviscid case. However, all of these modes are restricted to the non-physical region τ > 1
2

and so they can be considered as spurious and safely ignored. A similar result was observed

in the 2D case in Chapter 4 where we have have showed that the physical instabilities are

due to periodic modulation of the pressure jump, and the same conclusion holds in the 3D

case.

6.4 Numerical Simulations

Our next aim is to verify the existence of parametric instabilities for an internally forced

spherical membrane using numerical simulations of the full governing equations (6.3). We

use a parallel implementation of the immersed boundary algorithm developed by Wiens [127,

128] that utilizes a pseudo-compressible Navier-Stokes solver having particular advantages

in terms of parallel speed-up on distributed clusters. The algorithm exploits a rectangular

fluid domain with periodic boundary conditions, but we found that a cubic computational

domain with side length 6R is sufficiently large to avoid significant interference from the

adjacent periodic shells, where R is the equilibrium radius of the spherical membrane. The

fluid domain is discretized uniformly with 128 grid points in each direction.

The spherical shell is discretized using a triangulated mesh generated with the MATLAB

code distmesh [99] (see figure 6.4), wherein each vertex is an IB node and each edge in the

triangulation is a force-generating spring link that joins adjacent nodes. The discretized

shell in our simulation consists of 30054 IB nodes with mean equilibrium spring length

0.022R. The elastic force generated by the deformed membrane is then simply the sum of

all spring forces arising from this network of stretched springs. However, the spring constant

used in the numerical simulation is not necessarily equivalent to elastic stiffness parameter

σ in the analysis. Hence, in order for the numerical simulations to agree with the analysis,

we must derive a relationship between the analytical membrane stiffness and the numerical

spring constant.
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Figure 6.4: An example of a discretized membrane, where the mesh triangulation is gener-
ated using distmesh [99]

6.4.1 Relating the Membrane Stiffness to the Numerical Spring Constant

Let H be a connected subset of the membrane Γ and let S be a parameterization of H. In

other words, for H ⊂ Γ, we have

S =
{
(ξ, η) | X(ξ, η) ∈ H}.

The force density in the IB framework is defined such that the net force acting on the

surface patch H is given by
∫∫

S
F (X, t) sin η dξ dη. (6.35)

Now suppose the set of nodes {X∗
j }NIB

j=0 represent a membrane discretization where we use

the superscript ∗ to denote numerical quantities and distinguish them from their continuous

counterparts. The elastic force in the 3D code [128] is generated by a network of Hookean

springs that connect adjacent IB nodes. That is, the force density (assuming constant spring

constant σ∗ ) between node i and node j is simply

F ∗
ij = σ∗

(
X∗

i −X∗
j

)
,

and so the total force acting on node X∗
j is

f∗
j =

∑

i

σ∗
(
X∗

i −X∗
j

)
, (6.36)
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where the sum is taken over all i such that X∗
i is connected to X∗

j . Our aim now is to

find an approximate relationship between the membrane stiffness σ and the spring constant

σ∗. To this end, we derive a discretization of the integral (6.35) and contrast it with the

sum (6.36).

Let Γ∗ be a piecewise linear surface that represents the discretization of the membrane Γ.

Moreover, we subdivide Γ∗ into pyramidal surfaces, denoted H∗
j , with node X∗

j at its apex

such that

Γ∗ =
NIB⋃

j=0

H∗
j and

NIB⋂

j=0

H∗
j = ∅.

Each vertex of H∗
j is the centroid of the triangle formed by the apex X∗

j and its surrounding

nodes as in figure 6.5. Furthermore, the surfaceH∗
j is the effective area in which the net force

f∗
j is applied to the membrane. Now let Hj be a smooth patch of Γ with a parameterization

given by Sj , and having the same boundary as H∗
j . Then the net force acting on Hj is

approximated by

σ

∫∫

Sj

∆SX sin η dξ dη ≈ σ∗
∑

i

(
X∗

i −X∗
j

)
,

where the sum is taken over all i such that X∗
i is connected to X∗

j . Now consider a single

node, say X∗
0 , as in figure 6.5. Without loss of generality, suppose X∗

0 is located on the

positive z-axis. Moreover we assume

• The spring length, denoted ∆s, is small.

• The membrane is in near equilibrium (sphere with radius R).

• The membrane stiffness is spatially uniform.

• Each X∗
j is connected to six other nodes.

In practice, the last two assumptions do not always hold as there are nodes that have either

five or seven connections that can be seen in figure 6.4. This will cause a non-uniformity in

the force induced by the springs, however the vast majority of the nodes have six connections

and so we assume that the force is spatially uniform.

For nodes near the z-axis, that is η ≈ 0, the following approximation of the spherical

Laplacian operator holds

sin η∆S =
1

sin η

∂2

∂ξ2
+ sin η

∂2

∂η2
+ cos η

∂

∂η
≈ ∂

∂η
.
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This is justified by the fact that

∂X

∂ξ

∣∣∣∣
η=0

= lim
∆ξ→0

X(ξ +∆ξ, 0) −X(ξ, 0)

∆ξ
= 0,

since X(ξ +∆ξ, 0) = X(ξ, 0) at the pole η = 0 for any choice of ξ ∈ [0, 2π), and so

∂2X

∂ξ2

∣∣∣∣
η=0

= lim
∆ξ→0

∂X
∂ξ

(ξ +∆ξ, 0)− ∂X
∂ξ

(ξ, 0)

∆ξ
= 0.

Therefore, the numerical force density is estimated by

f∗
0 ≈ σ

∫∫

S0

∂X

∂η
dξ dη.

The above integral can be approximated on each planar face of H∗
0. For example, if we

assume that ∆s is small and H0 is nearly flat, then we can roughly parametrize the shaded

triangular region in figure 6.5 by

−π
6
≤ ξ ≤ π

6
and 0 ≤ η ≤ ∆s

2R
sec ξ.

In this region, the net force can be approximated using the midpoint quadrature rule

σ

∫ π
6

−π
6

∫ ∆s
2R

sec ξ

0

∂X

∂η
dη dξ ≈ σ

ln 3

2

∆s

R

∂X

∂η

∣∣∣∣
(ξ,η)=(0,0+)

.

Using finite differences, the derivative can be approximated by

∂X

∂η

∣∣∣∣
(ξ,η)=(0,0+)

≈ X1 −X0

∆η
,

where ∆η is the polar angle measured between X∗
0 (or the z-axis) and X∗

1 . A similar result

is obtained for all of the other nodes connected to X∗
0 . So the total force on node X∗

0 is

estimated by

f∗
0 ≈ σ

ln 3

2

6∑

i=1

(
X∗

i −X∗
0

)
.

where we use ∆η ≈ ∆s
R
. Comparing this result with the sum (6.36) we get

σ∗ ≈ ln 3

2
σ.

This implies that a desired membrane stiffness σ must be scaled by ln 3
2 in order for the

analysis to agree with the simulation. Since the membrane force is assumed to be uniform,

this approximation holds for any node on the mesh for small spring size ∆s.
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Figure 6.5: The node X∗
0 connected to six other nodes X∗

j for j = 1, . . . , 6. The solid lines
represent the springs and the dashed hexagon represents the effective pyramidal surface H∗

0.

6.4.2 Simulation Results

The membrane is given an initial configuration

X(ξ, η, 0) = R
(
1 + ǫY c

m,k(ξ, η)
)
r̂(ξ, η),

corresponding to a chosen scalar spherical harmonic of degree m and order k with pertur-

bation amplitude

ǫ =
0.05

maxξ,η
∣∣∣Y c

m,k(ξ, η)
∣∣∣
.

We then performed numerical simulations for four different sets of parameters listed in

table 6.1, which we refer to as cases 1–4. This table lists the physical parameters used

in the simulations (ρ, µ, R, ω, σ) as well as the corresponding dimensionless parameters

appearing in our analytical results (ν, κ). The corresponding stability contours for each

case 1 to 4 are shown in figure 6.6, this time in terms of plots of τ versus m holding the

values of ν and κ fixed. This alternate view of the stability regions allows us to identify

the unstable modes that correspond to physical oscillations, since only modes with integer

values of m are actually observable.

Numerical simulations are performed by initializing the membrane with various (m,k)-

modes lying inside and outside the highlighted unstable fingers so that direct comparisons

can be drawn with our analytical results. Figure 6.7 depicts several snapshots of the nu-

merical solution for case 1, where the membrane was perturbed by a (3, 0)-mode. The
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Case ν κ ρ (g/cm3) R (cm) ω (1/s) µ (g/cm s) σ (g/s2)

1 0.006 0.02 1 1 1 0.006 0.02
2 0.002 0.06 1 0.5 20 0.01 3
3 0.001 0.0075 1 0.5 20 0.005 0.375
4 0.004 0.25 1 10 0.05 0.02 0.625

Table 6.1: Dimensionless and physical parameters for the four cases used in the numerical
simulations of the 3D immersed boundary equations.

(a)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

m

τ

case 1: ν = 0.006, κ = 0.02

(b)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

m

τ

case 2: ν = 0.002, κ = 0.06

(c)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

m

τ

case 3: ν = 0.001, κ = 0.0075

(d)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

m

τ

case 4: ν = 0.004, κ = 0.25

Figure 6.6: Ince-Strutt plots showing stability contours for each test case 1–4. Parameters
that give rise to observable instabilities (i.e., corresponding to integer values of m) are
highlighted by a vertical green line.



CHAPTER 6. PARAMETRIC RESONANCE IN SPHERICAL SHELLS 97

parametric forcing amplitude was set to τ = 0.45 which is well within the stability finger in

figure 6.6a. Over time, the small initial perturbation grows and oscillates with a frequency

equal to one-half that of the forcing frequency, as expected from the (3, 0) subharmonic

response predicted by the linear analysis. To help visualize the growth of this mode over

time, we compute the radial projection

Xr(t) =

∫ π

0

∫ 2π

0
X · Y c

m,k sin η dξ dη

at each time. This integral is computed by first interpolating the IB mesh values of X onto

a regular (ξ, η) grid and then approximating the integral numerically using a Fast Fourier

Transform in ξ and Gauss-Legendre quadrature in η. Figure 6.8 depicts the evolution

of Xr(t) for the (3, 0)-mode, from which it is easy to see the expected period-doubling

response to a waveform with period 4π. To illustrate that the membrane instability depends

sensitively on the choice of mode, figure 6.8 also shows simulations that were perturbed with

(2, 0) and (4, 0)-modes; neither of these two other modes exhibits any evidence of instability,

which is also predicted by the stability plots in figure 6.6a.

One conclusion from our analysis is that for each m, the stability of the linearized dy-

namics does not depend on the order k of the spherical harmonic. This result is investigated

in figure 6.9, where we display the projected radial amplitude Xr for two simulations us-

ing the case 1 parameters and two initial membrane shapes corresponding to modes (3, 0)

and (3, 1). The analytical solution is provided for comparison, and we observe that the

behaviour of all three solution curves is nearly indistinguishable at early times. However, as

time goes on the perturbations grow and nonlinear effects come into play in the simulations,

so that the growth rates eventually deviate from the linear analysis.

As another illustration of the dependence of stability on system parameters, we perform a

series of simulations to investigate the “sharpness” of the stability fingers. Using parameters

from case 2, we fix τ = 0.25 and then investigate the behaviour of the numerical solution

as κ is varied. Based on figure 6.6b, we expect case 2 to be unstable if the membrane

configuration is an m = 2 mode, but if parameters are changed sufficiently then the stability

fingers can shift enough that the 2-mode stabilizes. Figure 6.10a shows the Ince-Strutt

diagram as a plot of τ versus κ for ν = 0.002 and m = 2. The parameter values used in this

series of tests are denoted by△ in figure 6.10a, with the centre point located in the middle of

the subharmonic finger corresponding to case 2, and the remaining parameters lying either

on the border of the stability region (κ ≈ 0.048 and 0.074) or outside. Figures 6.10b-6.10f

depict the radial projection Xr for each of the five simulations from which we can clearly see

that as κ increases the solutions transition from stable to unstable and then back to stable
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Figure 6.7: Several snapshots from the case 1 simulation where the membrane was initialized
with a (3, 0)-mode and the forcing amplitude is set to τ = 0.45. Colour map depicts the
distance from the origin.
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Figure 6.8: Radial amplitude projection Xr for the numerical result from case 1, with the
spherical shell perturbed by three different (m,k)-modes. The results are all rescaled to
start at Xr = 1.
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Figure 6.9: Radial amplitude projection Xr in case 1, showing a simulated spherical shell
perturbed by a (3, 0)-mode (dashed) and a (3, 1)-mode (dash-dot). The exact result from
the linear analysis is shown as a solid line. All curves are rescaled to start at Xr = 1.
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Figure 6.10: (a) Ince-Strutt diagram for m = 2 and ν = 0.002 but with varying κ. The
parameters used are denoted by △, with the centre point κ = 0.06 corresponding to case 2.
(b)–(f) Radial projection of X from simulations for a range of κ values. The membrane
was initialized with a (2, 0)-mode and all curves are rescaled to start at Xr = 1.

again. The computed stability boundaries do not correspond exactly with the analytical

results, particularly for the upper stability limit κ ≈ 0.074; however, the match is still

reasonable considering that the analysis is linear.

Finally, we show in figure 6.11 plots of the radial amplitude projection in cases 1–4,

perturbing the spherical shell in each case with a mode that we know from the analysis

to be unstable. The forcing amplitude is set to τ = 0.45 in all four cases. Snapshots of

the membrane evolution are also given for each simulation to illustrate the growth of the

given modes. All simulations exhibit the expected unstable growth in solution amplitude,

although we stress that the numerical results do not lead to unbounded growth (or blow-

up) in the amplitude as suggested by the linear analysis. We attribute this discrepancy in

behaviour to nonlinear effects that become important later in the simulation and limit the

solution growth when the amplitude of oscillations become large enough. We also note that

the correct frequency response is observed in all four tests, with cases 1–3 exhibiting the
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expected period-doubling subharmonic response, while case 4 oscillates with a harmonic

response.

6.5 Application to Cardiac Fluid Dynamics

This study of parametric forcing of immersed elastic shells was originally motivated by

the actively-beating heart muscle fibres that interact with surrounding blood and tissue.

Heart muscle contractions are initiated by complex waves of electrical signals that propagate

through the heart wall, which should be contrasted with the spatially-uniform coordinated

contractions analyzed in this chapter. Furthermore, the heart chambers have an irregular

shape and a thick wall that differ significantly from a spherical shell with zero thickness.

Nonetheless, it is natural to ask whether our analysis of spherical immersed elastic shells

with a periodic internal forcing could still yield any useful insights into the nature of the

complex fluid-structure interaction between a beating heart and the surrounding fluid.

To this end, we consider an immersed spherical shell with parameters that correspond

to the human heart under two conditions: first, a normal healthy heart; and second, an

abnormal heart undergoing a much faster heartbeat. We then ask whether our analysis

gives rise to resonant behaviour in either case for physiologically relevant heart beat fre-

quencies. There are a wide range of abnormal heart rhythms classified under the heading

of supraventricular tachycardia or SVT [77, 104], corresponding to a heart rhythm that

is either irregular or abnormally rapid and occurs in the heart’s upper chambers (called

the left and right atria). In contrast with ventricular tachycardias, which are much more

dangerous, many SVTs are non-life-threatening and can persist for long periods of time.

Therefore, we will focus on SVTs (and the atria) where fluid dynamic instabilities are more

likely to have the time to develop.

We next discuss the choice of parameters that is appropriate for applying our IB model

to study FSI in the heart. The resting heart rate for a healthy person ranges from 60 to

100 beats per minute (bpm) and both atria and ventricles beat in synchrony. In contrast, a

heart characterized by SVT can exhibit two separate beats in the atria and ventricles, and

can have an atrial rhythm that lies anywhere between 100 to 600 bpm. A clinical study

by Wang et al. [125] surveyed 322 patients suffering from atrial fibrillation (one sub-class

of SVT) and obtained measurements of atrial wall stiffness σ varying between 1× 103 and

2×104 dyn cm−1. We have found no evidence to suggest that the stiffness varies significantly

between hearts with normal and abnormal rhythms, and so we use the same range of σ for

all cases. Although hearts suffering from conditions such as atrial fibrillation are often



CHAPTER 6. PARAMETRIC RESONANCE IN SPHERICAL SHELLS 102

Figure 6.11: Simulation results for all four cases where a spherical shell is perturbed by a
mode that is expected to be unstable, with τ = 0.45. The left column shows the radial
projection Xr, while snapshots from the corresponding simulations are shown on the right.
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characterized by an increased size [125], we elect to use a single representative value of the

radius R = 2.0 cm for an atrium in both normal and diseased hearts. In terms of the fluid

properties, blood has density similar to water with ρ = 1 g cm−3 but has a significantly

higher dynamic viscosity of µ = 0.04 g cm−1 s−1. We choose a representative SVT rhythm

with frequency ω = 400 bpm, which translates into a dimensionless viscosity parameter

ν = 2.39 × 10−4.

Substituting the parameter values and ranges just described into our analytical results

from section 6.3 for the first three modes numbered m = 2, 3, 4, we obtain the Ince-Strutt

plots in figure 6.12. The stability fingers are depicted with the elastic stiffness parameter

σ plotted along the horizontal axis, and the results show that parametric instabilities can

arise for most values of σ under consideration. Because these resonant instabilities occur

over such a wide range of stiffness values covered by the measurements in [125] from the left

atrium, it is reasonable to hypothesize that it may be possible for FSI-driven parametric

instability to influence the dynamics of the beating heart.

We now delve further into the finger plots in figure 6.12 and remark that experiments

suggest the heart muscle is seldom (if ever) completely slack; therefore, we expect that the

forcing amplitude parameter τ lies significantly below the threshold value of 1
2 . Indeed,

an estimate of τ ≈ 0.3 can be extracted from measurements of pressure in the left atrium

from [13, Fig. 1]. Figure 6.13 provides an alternate view of the dependence of resonant

instabilities on the parameters by depicting the minimum τ giving rise to resonance for a

function of elastic stiffness and beat frequency (using modes in the range m = 2, . . . , 6).

We are especially interested in the dark (blue) bands that correspond to smaller values of

τ and hence more prominent instabilities. Taking a value of τ = 0.3, our analysis predicts

“valleys” of instability corresponding to discrete ranges of the parameters ω and σ. For

fixed σ, we observe that at low frequency these valleys are very narrow and steep, while

as the forcing frequency increases the width of the unstable bands likewise increases. In

particular, if we consider an intermediate value of σ for “normal” heart beating in the range

of 60–100 bpm, then the unstable bands are relatively small and so resonances would seem

to be less likely. On the other hand, if the frequency is increased to 300–600 bpm then we

begin to encounter wider valleys that suggest instabilities for a smaller value of τ .

In summary, we have found that resonant instabilities are possible for a wide range of

parameters corresponding to both normal and abnormal hearts; furthermore, for higher

frequencies corresponding to SVT, instabilities are not only more likely to occur but also

persist over wider ranges of parameter space. As suggestive as these results are, we refrain

from making any specific claims or predictions regarding resonance in the actual beating
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Figure 6.12: Stability contours for physical parameters corresponding to a human heart
undergoing an abnormal heart rhythm (ν = 2.39×10−4) for modes m = 2 (top), 3 (middle)
and 4 (bottom).
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Figure 6.13: Minimum value of τ required for parametric resonance across modes m =
2, . . . , 6. White areas represent parameters for which no physical instability exists. Each
dark (blue) band is labelled by its corresponding unstable m-mode and response frequency
(‘H’ for harmonic or ‘S’ for subharmonic). The boxes indicate parameter ranges for a healthy
heart (solid, blue) and for a heart with SVT (dashed, red).

heart since we have made so many simplifications and assumptions here: the applied periodic

forcing is oversimplified, nonlinearities are neglected, a spherical shell is a far cry from an

atrium, and parameter values are still quite uncertain. Nonetheless, the fact that our

analysis predicts resonances for such a wide range of physiologically relevant parameters is

compelling enough to suggest that this problem merits further investigation. Moreover, it

should be possible to test for the presence of isolated parametric instabilities in carefully

designed experiments, and our parameter study above provides guidance in what ranges of

parameters are most worthy of investigation.



Chapter 7

Natural Oscillations

in Unforced Spherical Shells

We digress from the topic of parametric instabilities in this chapter to consider the natural

oscillations of unforced spherical immersed elastic shells. By reducing the Floquet analysis

in the previous chapter to the unforced case, setting τ = 0, we obtain a dispersion relation

for oscillations of immersed membranes in both inviscid and viscous fluids. Furthermore,

we extend the linear inviscid theory to include nonlinear effects and show that nonlinearity

has little influence on the membrane oscillations. Finally, we perform an experiment where

we measure oscillation frequencies of immersed water balloons and compare them to the

frequencies predicted by the aforementioned theories. Although ultimately we find that the

experiments do not match closely with the theory, the results nonetheless match qualita-

tively and we provide a number of possible sources of the discrepancy that are worthy of

future study.

The governing equations of the fluid-structure system in the dimensionless delta function

formulation are

∂u

∂t
+ u · ∇u = −∇p+ ν∆u+ f , (7.1a)

∇ · u = 0, (7.1b)

f(x, t) =

∫ π

0

∫ 2π

0
F (X, t) δ(x−X) sin η dξ dη, (7.1c)

∂X

∂t
= u(X, t), (7.1d)

F (X, t) = κ∆SX. (7.1e)

These equations are the same as in Chapter 6, with the exception of the constant stiffness

106
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in the force density. In the absence of a forcing frequency parameter ω to define a velocity

scale, we redefine the dimensionless viscosity as

ν =
µ

ρUR
, (7.2)

and the dimensionless stiffness as

κ =
σ

ρU2R
, (7.3)

where U is a characteristic velocity. Moreover, we have a new characteristic time scale R/U ,

and pressure scale ρU2.

7.1 Linear Oscillations in an Inviscid Fluid

We have already shown in section 6.2 that the oscillations of an internally forced membrane

immersed in an inviscid fluid are governed by the Mathieu equation (6.23). In the absence

of any forcing, the Mathieu equation simplifies to the harmonic oscillator equation

d2Xr

dt2
+
κm(m+ 1)(m− 1)(m + 2)

2m+ 1
Xr = 0,

with dimensionless frequency of oscillation λ0 satisfying

λ20 =
κm(m+ 1)(m− 1)(m+ 2)

2m+ 1
. (7.4)

Substituting the definition of κ from (7.3) and replacing λ0 with ω0R/U yields

ω2
0 =

σm(m+ 1)(m− 1)(m+ 2)

ρR3(2m+ 1)
, (7.5)

which is the dispersion relation for a spherical elastic shell immersed in an inviscid fluid in

dimensional form. This is a well-known result that also arises in oscillations of inviscid fluid

drops, where σ represents surface tension. Rayleigh [109] derived a similar result for an

inviscid drop surrounded by a medium with negligible density, which Lamb [69] generalized

to an inviscid drop immersed in another fluid with non-zero density. Lamb’s result reduces

to (7.5) in the special case where the inner and outer fluids have the same density. Both

Rayleigh and Lamb assume axisymmetric drop shapes, however the dispersion relation holds

for a degree m spherical harmonic of any azimuth order k [70].
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7.2 Linear Oscillations in a Viscous Fluid

We next show how the Floquet analysis in section 6.3 can be applied to derive a linear

theory for oscillations of spherical elastic shells immersed in a viscous, incompressible fluid.

The derivation of the dispersion relation is similar to the analysis in section 6.3 so that

many of the details will be omitted.

We begin with the dimensionless, linearized governing equations that describe the fluid-

structure interaction

∂ur

∂t
= −∂p̂

∂r
+ ν

(
∂2ur

∂r2
+

2

r

∂ur

∂r
− m(m+ 1)

r2
ur − 2

r2
ur +

2m(m+ 1)

r2
uΨ
)
,

∂uΨ

∂t
= − p̂

r
+ ν

(
∂2uΨ

∂r2
+

2

r

∂uΨ

∂r
− m(m+ 1)

r2
uΨ +

2

r2
ur
)
,

0 =
1

r2
∂

∂r
(r2ur)− m(m+ 1)

r
uΨ,

∂Xr

∂t
= ur(1, t),

∂XΨ

∂t
= uΨ(1, t),

where the IB variables are written in terms of vector spherical harmonics as

u = ur(r, t)Y c
m,k + uΨ(r, t)Ψc

m,k,

p = p̂(r, t)Y c
m,k,

X = Xr(t)Y c
m,k +XΨ(t)Ψc

m,k.

The Φm,k component is ignored since we already showed in the Chapter 6 that this compo-

nent is completely uncoupled from the linearized system. Furthermore, if we assume that

the Φm,k component is initially zero then it will remain zero for all time. It is for this reason

that we only consider the Ym,k and Φm,k components of velocity and membrane position.

We look for solutions of the form

ur(r, t) = eγt
̂
ur(r),

and similarly for the other coefficient functions. Here, γ ∈ C characterizes the natural modes

of the system in terms of decay rate ℜ{γ} and oscillation frequency ℑ{γ}. Substituting this
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solution form yields the differential-algebraic system

γ
̂
ur = −d

̂
p

dr
+ ν

(
d2
̂
ur

dr2
+

2

r

d
̂
ur

dr
− m(m+ 1)

r2

̂
ur − 2

r2

̂
ur +

2m(m+ 1)

r2

̂
uΨ
)
, (7.6a)

γ
̂
uΨ = −

̂
p

r
+ ν

(
d2
̂
uΨ

dr2
+

2

r

d
̂
uΨ

dr
− m(m+ 1)

r2

̂
uΨ +

2

r2

̂
ur
)
, (7.6b)

0 =
1

r2
d

∂r
(r2
̂
u
r
)− m(m+ 1)

r

̂
u
Ψ
, (7.6c)

γ

̂
Xr =

̂
ur(1), (7.6d)

γ

̂
XΨ =

̂
u
Ψ
(1), (7.6e)

which is subject to the jump conditions

J
̂
urK = 0, (7.7a)

J
̂
u
ΨK = 0, (7.7b)

J
̂
pK = −κ(m− 1)(m + 2)

̂
Xr, (7.7c)

s
d
̂
ur

dr

{
= 0, (7.7d)

s
d
̂
uΨ

dr

{
= κ(m− 1)(m+ 2)

̂
XΨ. (7.7e)

The solution procedure mirrors that in the previous chapter. The pressure is a solution

of Laplace’s equation

̂
p(r) =





̂
a rm, if r < 1,̂
b r−m−1, if r > 1,

where
̂
a and

̂
b are unknown constants that will be determined later. Following section 6.3,

the radial velocity is

̂
u
r
(r) =





− ijm(iβr)

νr

(̂
amhm+1(iβ)−

̂
b(m+ 1)hm−1(iβ)

) −
̂
am

νβ2
rm−1, if r < 1,

− ihm(iβr)

νr

(̂
amjm+1(iβ)−

̂
b(m+ 1)jm−1(iβ)

)
+

̂
b(m+ 1)

νβ2
r−m−2, if r > 1,

(7.8)

where

β =
√
γ/ν with ℜ{β} > 0, (7.9)
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and the tangential velocity is

̂
uΨ(r) =





− i

ν

(
jm(iβr)

r
+ iβj′m(iβr)

)(̂
a
hm+1(iβ)

m+ 1
−
̂
b
hm−1(iβ)

m

)
−

̂
a

νβ2
rm−1, if r < 1,

− i

ν

(
hm(iβr)

r
+ iβh′m(iβr)

)(̂
a
jm+1(iβ)

m+ 1
−
̂
b
jm−1(iβ)

m

)
−

̂
b

νβ2
r−m−2, if r > 1.

(7.10)

The membrane evolution equations reduce to the algebraic expressions

γ

̂
Xr = − i

̂
am

ν
hm(iβ)jm+1(iβ) +

i

̂
b(m+ 1)

ν
jm(iβ)hm−1(iβ),

γ

̂
XΨ = − i

̂
a

(m+ 1)ν

(
hm(iβ) + iβh′m(iβ)

)
jm+1(iβ) +

i

̂
b

mν

(
jm(iβ) + iβh′m(iβ)

)
hm−1(iβ),

from which we find solutions for
̂
a and

̂
b to be

̂
a = − iν2β3

m

jm(iβ) + iβj′m(iβ)

jm+1(iβ)

̂
Xr + iν2β3(m+ 1)

jm(iβ)

jm+1(iβ)

̂
XΨ,

̂
b = − iν2β3

m+ 1

hm(iβ) + iβ h′m(iβ)

hm−1(iβ)

̂
Xr + iν2β3m

hm(iβ)

hm−1(iβ)

̂
XΨ.

Next we substitute the above expressions into the jump in pressure (7.7c)

0 =

[
ζ2β4

2m+ 1

(
2− m

m+ 1

hm+1(iβ)

hm−1(iβ)
− m+ 1

m

jm−1(iβ)

jm+1(iβ)

)
+ (m+ 2)(m − 1)

] ̂
Xr

+
ζ2β4

2m+ 1

(
1−m

hm+1(iβ)

hm−1(iβ)
+ (m+ 1)

jm−1(iβ)

jm+1(iβ)

) ̂
XΨ,

(7.11)

and the jump in tangential stress (7.7e)

0 = −iζ2β3
(

hm(iβ)

(m+ 1)hm−1(iβ)
− jm(iβ)

mjm+1(iβ)

) ̂
Xr

+

[
−iζ2β3

(
hm(iβ)

hm−1(iβ)
+

jm(iβ)

jm+1(iβ)

)
− (m+ 2)(m− 1)

] ̂
XΨ.

(7.12)

The dimensionless parameter ζ = ν√
κ
determines the relative importance of the fluid viscos-

ity and membrane stiffness. A similar parameter was introduced in section 5.4 describing

the natural modes of the basilar membrane in the cochlea. Recalling the definition of ν

in (7.2) and κ in (7.3), ζ can be written in terms of dimensional quantities as

ζ =
µ√
ρσR

=

√
ρR3/σ

ρR2/µ
. (7.13)

Hence, ζ can be interpreted as a ratio of two time scales: a stiffness time scale divided by

a viscous time scale.
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Equations (7.11) and (7.12) can be written as a matrix equation

M




̂
Xr̂
XΨ


 = 0,

where M is a 2× 2 matrix that depends on ζ, β and m. Nontrivial solutions to this system

exist only if

det(M) = 0, (7.14)

which defines a dispersion relation for the natural (unforced) oscillations of the fluid-

structure system. To calculate the decay rate and oscillation frequency of the natural

modes, we find β by numerically solving equation (7.14) for given ζ and m, and then com-

puting γ via (7.9). Figure 7.1 shows the decay rates and oscillation frequencies plotted

against ζ for m = 2, 3 and 4. As expected, all decay rates are negative which implies that

all perturbed membrane configurations tend toward the equilibrium state over time. For

small ζ, damping effects are negligible and we observe that solutions are nearly periodic,

that is ℜ{γ} ≈ 0. Moreover, the oscillation frequency approaches the value predicted by the

inviscid theory, which is denoted by dashed lines in figure 7.1. For intermediate values of ζ,

viscous effects become more significant and as a result the oscillation frequency decreases

and solutions decay more rapidly. Finally, for large enough ζ viscosity dominates the system

and solutions decay exponentially in time with no oscillations.

7.2.1 Numerical Simulations

To validate the analytical results just derived, we perform numerical simulations of the

immersed boundary equations (7.1) with the same 3D code described in Chapter 6. The

membrane is given the initial configuration

X(ξ, η, 0) =
(
1 + ǫY c

m,k(ξ, η)
)
r̂,

where

ǫ =
0.1

maxξ,η
∣∣∣Y c

m,k(ξ, η)
∣∣∣
.

Computations are performed for several choices of ν and κ corresponding to ζ ∈ [10−2, 2×
10−1], and for mode numbers m = 2, 3 and 4. To visualize the behaviour of a particular

mode, we again compute the radial projection

Xr(t) =

∫ π

0

∫ 2π

0
X · Y c

m,k sin η dξ dη.
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Figure 7.1: Decay rates (top) and oscillation frequency (bottom) of the natural modes for
various m and ζ. The horizontal dashed lines in the lower plot indicate the oscillation
frequency predicted by the linear inviscid theory (7.4).
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Figure 7.2: Comparison of Xr(t) from a numerical simulation with the analytical results,
for parameters ν = 0.01 and κ = 0.05 (ζ = 0.0447). The membrane is initialized with a
(2,0)-mode.

Figure 7.2 plots a simulation using parameters ν = 0.01 and κ = 0.05, where the membrane

is initialized with a (2, 0)-mode. The predicted result from the analysis (solid line) is

also plotted. We observe a similar qualitative behaviour between analytical and simulated

results, however the simulation appears to have a slightly longer period. For a quantitative

comparison, we approximate the decay rate and oscillation frequency from simulations by

performing a least-squares fit to the function

Xr∗(t) = ǫecrt
(
cos(cit)−

cr
ci

sin(cit)

)
,

which satisfies the initial conditions

Xr∗(0) = ǫ and
dXr∗

dt

∣∣∣∣
t=0

= 0,

and the fitting parameters give

γ√
κ
≈ (cr + ici)

√
ρR3

σ
.

The least-squares fit is performed over the first complete oscillation and the results are plot-

ted in figure 7.3 where the points indicate the numerical result and solid lines are from the

analysis. The simulations follow the analytical results closely as ζ varies, however the decay

rate and the oscillation frequency are slightly under-estimated by the numerical simulation.

There are several factors that could account for this discrepancy, such as nonlinearity in

the governing equations, interference due to periodic copies of the elastic shell, or errors

introduced through the regularized Dirac delta function.
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Figure 7.3: Decay rates and oscillation frequencies from numerical simulations denoted by ◦.
The results from the linear viscous theory (solid curves) are plotted for comparison.
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7.3 Nonlinear Oscillations in an Inviscid Fluid

In order to determine the relevance of nonlinearity in the membrane oscillation frequencies,

we next extend the inviscid linear theory in section 7.1 to consider nonlinear effects. In

particular, we incorporate the convective terms in the Navier-Stokes equations (7.1a) as

well as previously neglected terms arising from the Dirac delta function in the singular

forcing (7.1c). For simplicity, we assume the fluid to be irrotational and replace velocity

with a potential function ψ(x, t) such that u = ∇ψ and ψ satisfies

∆ψ = 0, (7.15)

∂ψ

∂t
+

1

2
|∇ψ|2 = −p+ p0, (7.16)

away from the membrane. The first equation is the incompressibility condition and the latter

is Bernoulli’s equation [70] where p0 is the equilibrium pressure satisfying Jp0K = −2κ. The

pressure jump across the membrane is derived in [67] and also in Chapter 6 but we write it

again for convenience as

1

sin η

∥∥∥∥
∂X

∂ξ
× ∂X

∂η

∥∥∥∥ JpK = n̂ · F . (7.17)

Because the fluid is inviscid, we are only concerned with the radial component of the mem-

brane position vector; that is, X = X r̂ where X(ξ, η, t) is the radial distance from the

origin. At the membrane-fluid interface, we impose the no-penetration condition, which in

terms of the potential function is

n̂ ·
(
∂X

∂t
− ∇ψ|r=X

)
= 0. (7.18)

In the absence of viscosity, we assume that solutions do not decay but instead are periodic

functions of time with dimensionless frequency λ:

ψ(x, t) = ψ(x, t+ 2π/λ),

p(x, t) = p(x, t+ 2π/λ),

X(x, t) = X(x, t+ 2π/λ).

Nonlinear oscillations of elastic fibres in an inviscid two-dimensional fluid have been in-

vestigated by Cortez and Varela [19]. Moreover, Tsamopoulos and Brown [120] performed a

nonlinear analysis of axisymmetric drops and bubbles in inviscid fluids. Both studies employ

the Lindstedt-Poincaré technique [92], which will be the method used in this analysis. The
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Lindstedt-Poincaré method finds an approximate relationship between the membrane per-

turbation size ǫ and the oscillation frequency λ, for which we assume a regular asymptotic

expansion

λ = λ0 + ǫλ1 + ǫ2λ2 + . . . ,

where λ0 is the frequency from the linear theory (7.4) and the remaining λj for j = 1, 2, . . .

are to be determined. Next, we perform the following change of variables to simplify the

problem: let t = t⋆/λ so that solutions are 2π-periodic in time, and then let r = Xr⋆ so that

the membrane location is determined by r⋆ = 1. We then drop the superscript ⋆ to simplify

notation. Upon substituting Bernoulli’s equation (7.16) into the pressure jump (7.17), we

arrive at a system of equations governing the oscillations:

∆ψ = 0, (7.19a)

0 =

s
λ
∂ψ

∂t
+

|∇ψ|2
2X2

− p0

{ ∥∥∥∥
∂X

∂η
× ∂X

∂ξ

∥∥∥∥
2

+

(
∂X

∂η
× ∂X

∂ξ

)
·∆SX sin η, (7.19b)

0 =

(
∂X

∂η
× ∂X

∂ξ

)
·
(
λ
∂X

∂t
− 1

X
∇ψ|r=1

)
, (7.19c)

where

n̂ =

∂X
∂η

× ∂X
∂ξ∥∥∥∂X∂η × ∂X
∂ξ

∥∥∥
.

Consider an initial membrane configuration deformed by an axisymmetric mode given

by

X(ξ, η, 0) =
(
1 + ǫYm,0(ξ, η)

)
r̂

for |ǫ| ≪ 1. We look for a perturbation expansion of the potential function

ψ = ǫψ1 + ǫ2ψ2 + ǫ3ψ3 + . . . ,

where each ψj satisfies Laplace’s equation (7.19a). Furthermore, we expand the membrane

configuration as

X = 1 + ǫX1 + ǫ2X2 + . . . .

Next, we examine the governing equations at each power of ǫ starting with the O(ǫ) quan-

tities governed by

∆ψ1 = 0, (7.20a)

0 =

s
λ0
∂ψ1

∂t

{
− κ(m+ 2)(m− 1)X1, (7.20b)

0 = λ0
∂X1

∂t
− ∂ψ1

∂r

∣∣∣∣
r=1

, (7.20c)
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and employ a spherical harmonic decomposition for the remaining unknowns

ψ1(r, θ, φ, t) = ψ(1)
m (r, t)Ym,0(θ, φ) and X1(ξ, η, t) = X(1)

m (t)Ym,0(ξ, η).

The potential function satisfies Laplace’s equation (7.20a), hence

ψ(1)
m (r, t) =




a(1)m (t) rm, if r < 1,

b(1)m (t) r−m−1, if r > 1,

where the unknown functions a
(1)
m (t) and b

(1)
m (t) are found from the no-penetration condi-

tion (7.20c) as

a(1)m (t) =
λ0
m

dX
(1)
m

dt
and b(1)m (t) = − λ0

m+ 1

dX
(1)
m

dt
.

Substituting the potential function ψ
(1)
m into the pressure jump (7.20b) yields

d2X
(1)
m

dt2
+
κm(m+ 1)(m+ 2)(m − 1)

λ20(2m+ 1)
X(1)

m = 0.

Using the definition of λ0 in (7.4), the coefficient multiplyingX
(1)
m in the second term reduces

to one and hence the solutions to this ODE are 2π-periodic, as required. Thus, the solution

for X
(1)
m subject to initial conditions

X(1)
m (0) = 1 and

dX
(1)
m

dt

∣∣∣∣∣
t=0

= 0,

is X
(1)
m (t) = cos(t), so that the leading-order potential function is

ψ1(r, θ, φ, t) =





− sin t
λ0
m
rm Ym,0(θ, φ), if r < 1,

sin t
λ0

m+ 1
r−m−1 Ym,0(θ, φ), if r > 1.

In order to find the frequency correction λ1, we now examine O(ǫ2) quantities and

represent the unknown functions as spherical harmonic expansions

ψ2(r, θ, φ, t) =
∞∑

n=2

n∑

ℓ=−n

ψ
(2)
n,ℓ(r, t)Yn,ℓ(θ, φ) and X2(ξ, η, t) =

∞∑

n=2

n∑

ℓ=−n

X
(2)
n,ℓ(t)Yn,ℓ(ξ, η),

with the coefficients ψ
(2)
n,ℓ given by

ψ
(2)
n,ℓ =




a
(2)
n,ℓ(t) r

n, if r < 1,

b
(2)
n,ℓ(t) r

−n−1, if r > 1.
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To find expressions for functions a
(2)
n,ℓ(t) and b

(2)
n,ℓ(t) we take the inner product of equa-

tion (7.19c) with the spherical harmonic Yn,ℓ to obtain

a
(2)
n,ℓ(t) =

λ0
n

dX
(2)
n,ℓ

dt
− λ1

n
sin t 〈Ym,0, Yn,ℓ〉 −

λ0
2n

sin(2t)〈Y 2
m,0, Yn,ℓ〉,

b
(2)
n,ℓ(t) = − λ0

n+ 1

dX
(2)
n,ℓ

dt
+

λ1
n+ 1

sin t 〈Ym,0, Yn,ℓ〉+
λ0

2(n + 1)
sin(2t)〈Y 2

m,0, Yn,ℓ〉,

where 〈·, ·〉 is the inner product defined by

〈f, g〉 =
∫ π

0

∫ 2π

0
f g sinφ dθ dφ.

Furthermore, taking the inner product of the jump condition (7.19b) with Yn,ℓ yields

db
(2)
n,ℓ

dt
−

da
(2)
n,ℓ

dt
− κ(n+ 2)(n − 1)

λ0
X

(2)
n,ℓ +

2m+ 1

m(m+ 1)
λ1 cos t 〈Ym,0, Yn,ℓ〉

+
m2 +m− 1

λ0

(
1 + cos(2t)

)〈Y 2
m,0, Yn,ℓ〉+

λ0
4(m+ 1)2

(
1− cos(2t)

)〈|Ψm,0|2, Yn,ℓ〉 = 0.

Substituting the functions a
(2)
n,ℓ(t) and b

(2)
n,ℓ(t) into the above equation leads to the second-

order ODE

d2X
(2)
n,ℓ

dt2
+
κn(n+ 1)(n + 2)(n − 1)

λ20(2n+ 1)
X

(2)
n,ℓ = 2

λ1
λ0

cos t 〈Ym,0, Yn,ℓ〉+ cos(2t)〈Y 2
m,0, Yn,ℓ〉

+
m2 +m− 1

λ20

n(n+ 1)

2n+ 1

(
1 + cos(2t)

)〈Y 2
m,0, Yn,ℓ〉

+
1

(m+ 1)2
n(n+ 1)

4(2n + 1)

(
1− cos(2t)

)〈|Ψm,0|2, Yn,ℓ〉.

(7.21)

If n = m and ℓ = 0, then the first term on the right-hand side of (7.21) will lead to non-

periodic, unbounded solutions to X
(2)
n,ℓ since cos t is a homogeneous solution. For this reason

we set λ1 = 0 to eliminate that term and hence guarantee 2π-periodic solutions.

The nonlinear projection terms in (7.21) can be expressed as

〈Y 2
m,0, Yn,ℓ〉 = (−1)ℓ

√
(2m+ 1)2(2n+ 1)

4π


m m n

0 0 0




m m n

0 0 −ℓ


 ,

〈|Ψm,0|2, Yn,ℓ〉 =





−m(m+ 1)

√
(2m+ 1)2(2n+ 1)

4π


m m n

1 −1 0




m m n

0 0 0


 , if ℓ = 0,

0, otherwise,
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where each 2 × 3 array is a Wigner 3-j symbol [113] and represents a scalar quantity. In

general, the 3-j symbol is a function of six variables

m1 m2 m3

k1 k2 k3


 ,

and is nonzero when all of the following conditions on mj and kj are met:

• k1 + k2 + k3 = 0,

• m1 +m2 +m3 is an integer, and is even if k1 = k2 = k3 = 0,

• |m1 −m2| ≤ m3 ≤ m1 +m2 and,

• |kj | ≤ mj for each j = 1, 2 or 3.

Hence the right-hand side of ODE (7.21) is nonzero if ℓ = 0 and n is even with 2 ≤ n ≤ 2m.

For example, if the membrane is initialized with a (2, 0)-mode, then

d2X
(2)
2,0

dt2
+X

(2)
2,0 =

23

56

√
5

π
cos(2t)− 9

56

√
5

π
, (7.22a)

d2X
(2)
4,0

dt2
+

25

3
X

(2)
4,0 =

403

378
√
π
cos(2t) +

425

378
√
π
, (7.22b)

while for all other (n, ℓ) we have

d2X
(2)
n,ℓ

dt2
+
κn(n+ 1)(n + 2)(n − 1)

λ20(2n + 1)
X

(2)
n,ℓ = 0. (7.22c)

The initial O(ǫ) perturbation transfers energy to the O(ǫ2) terms via nonlinear interactions.

In the above ODEs (7.22), we see that only the (2, 0)- and (4, 0)-modes are excited by the

nonlinear terms and so we assume that solutions to the remaining O(ǫ2) equations, governed

by the homogeneous equation (7.22c), are zero since they are not driven by the X
(1)
2,0 (t) term.

Continuing with the example, we take the inner product of the O(ǫ3) terms of equa-

tions (7.19b) and (7.19c) with Y2,0 to obtain the ODE

d2X
(3)
2,0

dt2
+X

(3)
2,0 =

(
√
κ
π
√
30

6
λ2 + κ

3531

784

)
cos t+ κ

8364

4704
cos(3t).

Again, we must eliminate the cos t term on the right-hand side to ensure periodicity by

setting

λ2 = −3531
√
30

3920π

√
κ
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Therefore, the frequency of the membrane oscillation up to O(ǫ2) is

λ = λ0

(
1− 7061

3136π
ǫ2
)
≈ λ0

(
1− 0.7167 ǫ2

)
.

Following the same procedure, a membrane initialized with a (3, 0)-mode oscillates with

frequency

λ = λ0

(
1− 529881455

198772992π
ǫ2
)
≈ λ0

(
1− 0.8485 ǫ2

)
.

Similarly, for a (4, 0)-mode

λ = λ0

(
1− 60326472574591

18039224403200π
ǫ2
)
≈ λ0

(
1− 1.0645 ǫ2

)
.

In the above examples, we see that nonlinear terms decrease the oscillation frequency of an

immersed shell, but this effect is on the order of ǫ2 which is small for even moderately small

perturbations ǫ.

For an initial configuration perturbed by a non-axisymmetric mode, that is k 6= 0, the

inner product in the last term of (7.21) is replaced by 〈|Ψm,k|2, Yn,ℓ〉 which is nonzero for

an infinite number of (n, ℓ). This introduces a new challenge in the analysis which we do

not consider in this thesis, but is nonetheless worthy of possible future study.

7.4 An Experimental Study of Immersed Water Balloons

In this section, we present an experiment with immersed water balloons where we consider

natural, 2-mode oscillations for a range of balloon types and inflation radii R. The goal

of this experiment is corroborate the theoretical results presented in the previous sections

using data.

7.4.1 Materials and Methods

We use three types of latex balloons, each with various characteristics. The first type,

which we label “A”, is a regular party balloon with maximum inflated radius of 15 cm. The

second, “B”, is a “punch” balloon which also has a maximum inflated radius of 15 cm but

is thicker than type “A”. Lastly, balloon “C” is a large party balloon which can be as large

as 45 cm radially when fully inflated and is thicker than the previous two (see table 7.1).

Our IB model of an immersed spherical shell uses a simple force density which leads to

the Young-Laplace equation

JpK = 2σ

R
, (7.23)
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Identifier Description Thickness (cm) Maximum inflated radius (cm)

A Regular party balloon 0.0203 15
B “Punch” balloon 0.0279 15
C Large party balloon 0.0381 45

Table 7.1: List of balloon types used in the oscillation experiment.

Balloon Type R (cm) JpK (dyn/cm2) σ (dyn/cm)

A 6 30990 92970
A 9 21900 98550
A 12 25900 155400

B 9 25300 113850
B 12 21720 130320
B 15 20500 153750

C 15 19850 148875
C 20 14970 149700
C 25 12530 156625

Table 7.2: Pressure difference and effective membrane stiffness corresponding to the sam-
ple data. The pressure difference is measured with a digital manometer and the effective
membrane stiffness is calculated with the Young-Laplace equation.

at equilibrium. However, rubber is often treated as a Mooney-Rivlin type material [89] and

follows a pressure curve

JpK = 2s1
d0
R0

(
R0

R
−
(
R0

R

)7
)(

1− s−1

s1

(
R

R0

)2
)
,

where R0 and d0 are the radius and thickness of the balloon prior to inflation respectively,

and s1 and s−1 are material constants. In order to compare the experimental results to our

IB model, we interpret σ as an effective stiffness that varies with inflation radius R, instead

of an actual material stiffness. To measure the effective stiffness, we fill the balloon with air

and use a digital manometer to measure the pressure difference between the interior of the

ballon and the atmosphere. We then calculate σ with the aforementioned Young-Laplace

equation (7.23) assuming the balloon is a sphere. The pressure measurements and effective

stiffnesses are summarized in table 7.2.

We perform the experiment in the Simon Fraser University swimming pool, where we

inflated each balloon to a desired radius and then lightly squeeze the balloon on oppo-

site sides in order to excite a 2-mode. The oscillations are filmed using a Nikon Coolpix

AW120 Waterproof Camera with the image capture rate set to 30 frames per second. A

few snapshots covering a single oscillation are shown in figure 7.4.
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According to equations (7.8) and (7.10), the fluid velocity decays at rate O(r−4) for a

2-mode as r increases. At a distance R away from the membrane, the velocity is about 6%

smaller than that at the membrane. Therefore to reduce any boundary effects we ensure

that the balloon is at least a distance R from either the pool floor or upper surface.

The video data is analyzed with the image processing toolbox in MATLAB. For a single

movie frame, we first isolate the balloon from the rest of the image using a colour-based

segmentation technique [85]. An example of an image segmentation is shown in figure 7.5.

We then convert the segmented balloon image to a binary image (black and white) and

extract the edge using MATLAB’s bwboundaries. From this curve we can then calculate

the maximum diameter of the balloon.

7.4.2 Results and Discussion

Figure 7.6 shows a plot of the maximum diameter for a complete video sequence from which

the period of oscillation can be estimated by the length of time between alternating local

maxima in the plot. The plot shows a fairly consistent period throughout, however there

is a clear downward trend in the maximum radius which can be attributed to the balloon

drifting away from the camera.

Using typical parameters for water, ρ = 1.00 g cm−3 and µ = 0.01 g cm−1 s−1, we find

that the dimensionless parameter ζ is small, with ζ ∈ [5.05 × 10−6, 1.34 × 10−5]. This

implies that the elastic force dominates the system and fluid viscosity is negligible. Hence,

the experimental results can be predicted by the inviscid theory of oscillation. The results of

the experiment are summarized in table 7.3 along with the predicted results from the linear

inviscid theory, linear viscous theory, and the nonlinear inviscid theory. At its greatest

extent, the diameter of the balloon can be up to 13% larger than the equilibrium diameter,

hence

ǫ ≈ 0.13

max |Y2,0|
= 0.13

√
4π

5
≈ 0.20609.

It is for this reason that we use a representative value of ǫ = 0.2 for the nonlinear theory

in table 7.3. We plot both experimental and analytical results in figure 7.7 which clearly

shows that there is a relatively large discrepancy between the experimental and theoretical

results, however the error appears to be consistent within each balloon type. This suggests

a shortcoming in either our mathematical model or experimental procedure.

Lund and Dalziel [79] performed an experiment where a small water-filled balloon with

maximum inflated radius of 6.5 cm is placed on a support inside a water tank. The balloon
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(a) (b)

(c) (d)

Figure 7.4: A sequence of images showing an oscillation of an immersed water balloon of
type C with R = 25 cm.
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(a) (b)

Figure 7.5: An example of the colour-based segmentation technique applied to a single video
frame. (a) Original image. (b) Segmented image.
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Figure 7.6: Maximum diameter measured in pixels for a single experiment (Balloon type C,
R = 25 cm). The period of oscillation is estimated as the time between alternating local
maxima. The downward trend in diameter is due to the balloon drifting away from the
camera after it is released.
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Frequency (1/s)
Type, R (cm) Experiment Inviscid Theory Viscous Theory Nonlinear Theory (ǫ = 0.2)

A, 6 31.4 45.45 45.35 44.15
A, 9 18.9 25.47 25.42 24.74
A, 12 13.8 20.78 20.74 20.18

B, 9 15.7 27.38 27.33 26.59
B, 12 11.1 19.03 18.99 18.48
B, 15 9.4 14.79 14.76 14.36

C, 15 8.6 14.55 14.53 14.13
C, 20 5.5 9.48 9.46 9.21
C, 25 4.2 6.94 6.93 6.74

Table 7.3: Balloon oscillation frequencies measured from the experiment. The predicted
frequencies from the linear inviscid theory, the linear viscous theory, and the nonlinear
theory are also shown for comparison.
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linear inviscid theory
linear viscous theory
nonlinear inviscid theory (ε=0.2)

Figure 7.7: Comparison of analytical and experimental frequencies plotted against ζ on
a log scale. The experimental results are scaled to be dimensionless and are denoted by
balloon type: A ©, B �, and C △.
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was periodically forced by a rod attached to a speaker. The pressure difference was measured

with a water column manometer that is connected to the balloon through the small support

in the tank. The balloon oscillations were captured with a high-resolution camera and the

oscillation frequency and spatial wavenumber were measured from the resulting footage.

Their result shows good agreement with Lamb’s inviscid linear theory of oscillation for a

range of wavenumbers 6 ≤ m ≤ 13. Comparing our experiment with that by Lund and

Dalziel [79], there are several notable differences that may account for the discrepancy in

our result:

• Balloon perturbation — The experimental setup by Lund and Dalziel [79] allowed

consistent small amplitude surface waves so that their experimental results remain

within the linear regime. Our initial perturbations may be too large such that the

simple force density (7.1e) in our model may not be suitable to describe the elastic

force for large balloon deformations. A nonlinear elasticity, for example neo-Hookean

or Mooney-Rivlin, may be required in our model to accurately capture the behaviour

of our balloon oscillations.

• Pressure measurement — The pressure data in table 7.2 was measured by filling the

balloon with air while our oscillation experiments were performed underwater. The

fact that the pressure data was taken in a completely different environment could

introduce an error in our effective stiffness σ.

• Boundary effects — The boundary effects due to the arms and body of the balloon

holder may impede the velocity field near the balloon and decrease the oscillation

frequency. Lund and Dalziel [79] placed the balloon on a small stationary support to

minimize boundary effects.

Any or all of these factors may contribute to the discrepancy between our analytical and

experimental results and resolving this discrepancy is ongoing work.



Chapter 8

Conclusions

In this thesis, we have demonstrated the existence of parametric instabilities in a spherical

elastic shell immersed in an incompressible viscous fluid, wherein the motion is driven by

periodic contractions of the shell. A mathematical model was derived using an immersed

boundary framework that captures the full two-way interaction between the elastic mate-

rial and the surrounding fluid. A Floquet analysis of the linearized governing equations

is performed using an expansion in terms of vector spherical harmonics. We obtained re-

sults regarding the stability of the internally forced system with and without viscosity, and

showed with the aid of Ince-Strutt diagrams that fluid-mechanical resonance exists regard-

less of whether viscous damping is present. Numerical simulations of the full IB model were

performed that confirm the presence of these parametric resonances. Moreover, in Chap-

ter 5 we propose an IB model of the cochlea, for the purpose of investigating the relevance

of parametric resonance as a novel mechanism for amplification of basilar membrane oscil-

lations. A summary of our findings and concluding remarks on the cochlea can be found in

section 5.7.

Because our original motivation for considering this problem derived from the study of

periodic contractions driving blood flow in the heart, we also discussed the relevance of

our stability analysis to cardiac fluid dynamics. Indeed, our analysis suggests that peri-

odic resonances can occur in an idealized spherical shell geometry for physical parameters

corresponding to the heart and provides possible parameter ranges to investigate in an ex-

perimental study that could test for resonant solutions. These results are preliminary and

much more work needs to be done to determine whether fluid-structure driven resonances

can actually play a role in cardiac flows.

In Chapter 7, we considered the natural oscillations of unforced spherical membranes.

127
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We derived a dispersion relation for an oscillating membrane that gives the decay rate and

oscillation frequency depending on the fluid parameters, membrane stiffness and spherical

harmonic mode number. We also performed a nonlinear analysis without viscosity and de-

rived a correction term to the oscillation frequency up to O(ǫ2) for a perturbation amplitude

|ǫ| ≪ 1. Lastly, we presented an experiment of the oscillations of immersed water balloons

and compared the data to the analytical results. Although the experimental data do not

match the analytical results, the discrepancy between the two is consistent and resolving

this issue is ongoing work.

8.1 Future Work

Our cochlea model in Chapter 5 proposes a novel hypothesis that parametric resonance

contributes to the active process that amplifies basilar membrane oscillations and is the

contribution in this thesis that has the greatest potential impact. Future work and exten-

sions to our cochlea model are discussed in section 5.7.

One major step in bringing our results in Chapter 6 closer to the actual heart is to

generalize our time-periodic (but spatially uniform) driving force to include the effect of

spiral waves of contraction that are initiated through electrical signals propagating in the

heart wall [30]. Including such spatiotemporal variations in the driving force would naturally

couple together the radial and angular VSH components, but generalizing the analysis to

handle this fully coupled problem could lead to significant new insights into a more realistic

model of FSI in the beating heart.

One possible area of application is the study of cell membrane protrusions appearing in

the process of cell locomotion, which although still not well understood are thought to be

a mechanism for cells to move by deforming their membrane. Cottet et al. [21] considered

parametric resonance as a possible cause of cell membrane protrusions, but a thorough

analysis has yet to be done. Another possible biological application is cellular cytokinesis

which is the separation of the cell cytoplasm into two daughter cells. It has been observed

that an asymmetric cell division may lead to a shape instability and cause cytokinesis

to fail [114]. Hence it is interesting to consider if parametric resonance contributes to

these instabilities. Cellular dynamics have already been investigated extensively using an

IB approach [28, 102] and so analyzing membrane protrusions and cytokinesis in the IB

framework appears to offer significant promise.

The results in this thesis can benefit the scientific computing community with the de-

velopment of a 3D FSI benchmark problem. A common test case that is often employed to
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validate numerical algorithms in FSI problems involves an oscillating spherical elastic shell

immersed in a fluid [20, 35, 108], however these tests are not compared to any benchmark

problem. Using the approximate analytical solution derived in this thesis, together with the

IB implementation by Wiens [127, 128], we can design and validate a benchmark problem

to which FSI software developers can compare their simulations. We proposed one such

benchmark computation problem in [63].

Chapters 6 and 7 focussed on spherical membranes but it is worth exploring other

geometries such as a (periodic) cylinder or a torus. The former would be a simple extension

of the analysis by Cortez et al. [18]. Both of these geometries allow unidirectional fluid flow

and provide an ideal setting to study new areas of application, for example fluid flow via

valveless pumping which may explain blood flow in the early developmental stages of the

human embryo [76, 98].
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Appendix A

Bessel Functions

and Spherical Bessel Functions

This thesis makes extensive use of both Bessel functions (in Chapter 4) and spherical Bessel

functions (in Chapters 6 and 7). Many useful properties and recurrence relations for both

types of Bessel functions can be found in the classic handbook by Abramowitz and Stegun [1]

and are reproduced in this appendix. To avoid repetition, this discussion of Bessel functions

and spherical Bessel functions is consolidated by considering generalized Bessel functions [6].

Consider the ODE

z2w′′(z) + azw′(z) +
(
z2 −m(m+ d− 1)

)
w(z) = 0. (A.1)

If d = 1, we have Bessel’s ODE with two linearly independent solutions denoted Jm(z)

and Ym(z), called the mth-order Bessel functions of the first and second kind respectively.

There is another pair of linearly independent solutions called Hankel functions of the first

and second kind (or Bessel functions of the third and fourth kind)

H(1)
m (z) = Jm(z) + iYm(z),

H(2)
m (z) = Jm(z)− iYm(z).

If d = 2 in ODE (A.1), the solutions are called mth-order spherical Bessel functions of the

first and second kind, which are denoted by jm and ym respectively. The Bessel functions

and spherical Bessel functions are related by

jm(z) =

√
π

2z
Jm+ 1

2

(z),

ym(z) =

√
π

2z
Ym+ 1

2

(z).
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The spherical Hankel functions of the first and second kind are defined in an analogous way

h(1)m (z) = jm(z) + iym(z),

h(2)m (z) = jm(z)− iym(z).

Note that the ODE (A.1) can be generalized further to incorporate modified Bessel functions

and modified spherical Bessel functions [6].

We present a list of properties of generalized Bessel functions that are used in this thesis,

using wm(z) to denote any solution to ODE (A.1) and d ∈ {1, 2}.

• Recurrence relation for generalized Bessel functions

wm+1(z) =

(
2m+ d− 1

z

)
wm(z)− wm−1(z). (A.2)

• Derivative of generalized Bessel functions

w′
m(z) =

m

z
wm(z)− wm+1(z), (A.3)

w′
m(z) = wm−1(z)−

(
m+ d− 1

z

)
wm(z), (A.4)

w′
m(z) =

1

2

(
wm−1(z)− wm+1(z)

)−
(
d− 1

2z

)
wm(z). (A.5)

• Derivative of a product of a power function and a generalized Bessel function

(
zm+2wm+1(βz)

)′
= βzm+2wm(βz), (A.6)

(
z1−mwm−1(βz)

)′
= −βz1−mwm(βz), (A.7)

where β ∈ C.

• Integral of a product of a power function and a generalized Bessel function
∫
wm(βz)zm+2dz =

1

β
zm+2wm+1(βz) + C, (A.8)

∫
wm(βz)z1−mdz = − 1

β
z1−mwm+1(βz) + C, (A.9)

where β ∈ C and C is an arbitrary constant of integration.

• Second derivative of a generalized Bessel function

w′′
m(z) =

(
d2 − 1− 2z2

4z2

)
wm(z)−

(
d− 1

2z

) (
wm−1(z)− wm+1(z)

)

+
1

4

(
wm−2(z) + wm+2(z)

)
.

(A.10)
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The following combinations between (spherical) Bessel functions and (spherical) Hankel

functions of different orders can be simplified dramatically

Jm+1(z)H
(1)
m (z)− Jm(z)H

(1)
m+1(z) =

2i

πz
, (A.11)

jm+1(z)h
(1)
m (z) − jm(z)h

(1)
m+1(z) =

i

z2
. (A.12)

Lastly, the Wronskian of a (spherical) Bessel function and a (spherical) Hankel function can

be simplified

Jm(z)H(1)
m

′
(z)− J ′

m(z)H
(1)
k (z) =

2i

πz
, (A.13)

jm(z)h(1)m

′
(z) − jm(z)h(1)m

′
(z) =

i

z2
. (A.14)

More properties of Bessel and spherical Bessel functions can be found in [1].



Appendix B

Spherical Harmonics

and Vector Spherical Harmonics

Owing to the spherical geometry and the rotational symmetry of the elastic membrane

in Chapters 6 and 7, we decompose solutions in terms of spherical harmonics and vector

spherical harmonics. For the reader’s convenience we provide a brief description of these

functions and a list of properties used in this thesis.

The spherical harmonics are eigenfunctions of the spherical Laplacian

∆SYm,k =
1

sinφ

∂

∂φ

(
sinφ

∂Ym,k

∂φ

)
+

1

sin2 φ

∂2Ym,k

∂θ2
= −m(m+ 1)Ym,k,

hence these functions greatly simplify problems that involve the Laplacian operator. For

example, given a scalar function f(r), the Laplacian of f(r)Ym,k is

∆
(
f(r)Ym,k

)
=

(
1

r2
d

dr

(
r2

df

dr

)
− m(m+ 1)

r2
f

)
Ym,k, (B.1)

which reduces to a differential operator with respect to r only. The normalized spherical

harmonic of degree m and order k is

Ym,k(θ, φ) = (−1)k

√
2m+ 1

4π

(m− k)!

(m+ k)!
eikθ Pm,k(cosφ),

where Pm,k(x) is the associated Legendre polynomial of degree m and order k [1]. The set

{Ym,k} forms an orthonormal basis in L2 with respect to the inner product

〈g, h〉 =
∫ π

0

∫ 2π

0
g h sinφ dθ dφ,

where the bar denotes the complex conjugate. This property permits any scalar field in L2

to be written as a linear combination of spherical harmonics.
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The vector spherical harmonics (or VSH) are an extension of spherical harmonics to

vector-valued functions. Several definitions are proposed literature [7, 42, 45, 53], however

the definitions presented by Hill [45] and Barrera et al. [7] are the most prominent in the

fluid mechanics literature. Hill [45] defines VSH in terms of spherical harmonics by

Vm,k = −
√
m+ 1

2m+ 1
Ym,k r̂ +

ik√
(m+ 1)(2m+ 1) sinφ

Ym,k θ̂

+
1√

(m+ 1)(2m + 1)

∂Ym,k

∂φ
φ̂,

Xm,k = − i√
m(2m+ 1)

∂Ym,k

∂φ
θ̂ − k√

m(2m+ 1) sinφ
Ym,k φ̂,

Wm,k =

√
m

2m+ 1
Ym,k r̂ +

ik√
m(2m+ 1) sinφ

Ym,k θ̂

+
1√

m(2m+ 1)

∂Ym,k

∂φ
φ̂.

The above are eigenfunctions of the spherical Laplacian operator that satisfies

∆SVm,k = −(m+ 1)(m+ 2)Vm,k,

∆SXm,k = −m(m+ 1)Xm,k,

∆SWm,k = −m(m− 1)Wm,k.

In this thesis we instead use the basis presented by Barrera et al. [7]

Ym,k(θ, φ) = Ym,kr̂,

Ψm,k(θ, φ) = r∇Ym,k =
ik

sinφ
Ym,kθ̂ +

∂Ym,k

∂φ
φ̂,

Φm,k(θ, φ) = r̂ ×Ψm,k =
∂Ym,k

∂φ
θ̂ − ik

sinφ
Ym,kφ̂.

The VSH basis by Barrera et al. is related to Hill’s by

Ym,k = −
√
m+ 1

2m+ 1
Vm,k +

√
m

2m+ 1
Wm,k,

Ψm,k = m

√
m+ 1

2m+ 1
Vm,k + (m+ 1)

√
m

2m+ 1
Wm,k,

Φm,k = i
√
m(2m+ 1)Xm,k.

For a scalar function f(r), the gradient of a scalar field is given by

∇(f(r)Ym,k

)
=

df

dr
Ym,k +

f

r
Ψm,k. (B.2)
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The divergence and curl of a vector u = ur(r)Ym,k + uΦ(r)Ψm,k + uΨ(r)Φm,k are

∇ · u =

(
1

r2
d

dr

(
r2ur

)− m(m+ 1)

r
uΦ
)
Ym,k, (B.3)

∇× u = −m(m+ 1)

r
uΨ Ym,k −

1

r

d

dr

(
ruΨ

)
Ψm,k +

(
−1

r
ur +

1

r

d

dr

(
ruΦ

))
Φm,k. (B.4)

Observe that the divergence of a vector has no contribution from the uΨ term because Φm,k

is always divergence free

∇ ·Φm,k = 0.

Using (B.2), (B.3) and (B.4), we derive the vector Laplacian

∆u = ∇(∇ · u)−∇× (∇× u),

=

(
d2ur

dr2
+

2

r

dur

dr
− m(m+ 1)

r2
ur − 2

r2
ur +

2m(m+ 1)

r2
uΦ
)
Ym,k

+

(
d2uΦ

dr2
+

2

r

duΦ

dr
− m(m+ 1)

r2
uΦ +

2

r2
ur
)
Ψm,k

+

(
d2uΨ

dr2
+

2

r

duΨ

dr
− m(m+ 1)

r2
uΨ
)
Φm,k.

(B.5)

The set {Ym,k,Ψm,k,Φm,k} forms an orthogonal basis in L2 because

〈Ym,k,Ym′,k′〉 = δmm′δkk′ ,

〈Ψm,k,Ψm′,k′〉 = m(m+ 1)δmm′δkk′ ,

〈Φm,k,Φm′,k′〉 = m(m+ 1)δmm′δkk′ ,

〈Ym,k,Ψm′,k′〉 = 0,

〈Ψm,k,Φm′,k′〉 = 0,

〈Φm,k,Ym′,k′〉 = 0,

where 〈·, ·〉 is the L2 inner product

〈g,h〉 =
∫ π

0

∫ 2π

0
g · h sinφ dθ dφ,

and δmm′ is the Kronecker delta.
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