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Abstract: The question of how to control arobotic welding torch to trace the joint between two cylindrical
pipes can bereduced to a problemin algebra. Maple can be utilised to derive the parametric equationsdescrib-
ing the curve of intersection between the two cylinders, and then to explorethe solution graphically for various
physical parameters. This problem can serve as an excellent introduction to the use of Maple for simplifying
and solving systems of equations, and offers several straightforward extensionsthat increase its applicability

to more advanced mathematics courses.
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Introduction: A welding problem

Many problemsarising in engineering and physics haveamath-
ematical description that istoo complicated for consideration
in lower—evel mathematics courses. It is often possible to
make simplifying assumptionsthat reducethe problemto man-
ageable proportions, but it is often the case that these sm-
plifications are made at the expense of physical significance.
Consequently, it is very rewarding for an educator to find an
applicationthat can serve asauseful illustrativeexample, while
till retainingitsfull physical interpretation. Thesituation pre-
sented here is one such application.

Thisisaproblemthat arosefrom an actual consulting con-
tract with the welding industry. The question is this: How
does one control a robotic welding torch so that the welder
follows precisely the joint between two cylindrical pipes? A
typical pipeweldispicturedinthephotographin Fig. 1, where
the joint between the two pipes is clearly seen to describe a
closed curve. Inthemost general situation, the company must

beableto form weldsbetween pipeswith differing cross—sectional

radius and arbitrary joint angle.

The problem of controlling the welding machine reduces
mathematically to finding the equation of thecurvein 3—space
describing thejoint between two cylinders. Thesolutionisan
exercisein geometry and requires only a knowledge of basic
trigonometry, parametric equations, and rotations in three di-
mensions. It istherefore suitable for presentation in a calcu-
lus (or pre—calculus) course, and is an excellent introduction
to the use of Maplein solving systemsof equations. Owingto
the simple geometric interpretation of the solution, it isaso
very easy to motivate studentsto experiment graphically with
thesolutionin Maple. Furthermore, thereare several straight-
forward extensions of the problem that lend themselves natu-
rally to moreadvanced mathematics, including multi—variable
calculus, and numerical integration. The M aple code presented
in this paper is available in worksheet form from the follow-
ing Web site:
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Figure1: A photograph of aweldingjoint betweentwo cylin-
drical pipesintersecting at an angle of 7.

http://ww. mat h. sfu. ca/™j ms/ wel d/

It isimportant at thisjuncture to point out the added value
of using symbolic algebrato derive a closed-form expression
for the curvesof intersection, rather thanaCAD (or Computer-
Aided Design) software package, which is already designed
to deal with exactly this type of problem. After defining the
cylinder surfaces, a CAD package typically approximatesthe
curve of intersection by splines. The spline coefficients can
then be coded in the software used to control theroboticweld-
ing arm. The disadvantage to this CAD-based approach is
that the spline coefficients need to be regenerated for every
changein pipe geometry (radius or weld angle), and the con-
trol algorithms modified and retested. On the other hand, if
we can use Maple to obtain a single expression that includes
the geometric parameters, then the robot arm can be repro-
grammed on-the-fly for any desired pipe weld.

The computation of curves of intersection between cylin-
dersand other surfacesof revolutionisonethat isvital to other
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fields aswell. Similar calculations are required in computer
graphics[5, 4] where simple geometric shapes such as planes,
cones and cylinders are used as the building blocks for con-
structing approximationsof more complicated surfaces. There
are numerous applicationsin engineering, such as stressanal-
ysis of shells [10], where determination of surface intersec-
tionsisanimportant first stepin analysing the problem. While
the discussion in this paper isinterpreted in terms of welding
cylindrical pipes, the results can be applied to awide range of
industrial situations.

The mathematical for mulation

Thefirst step in solving any engineering problem isto define
the geometry and relevant physical parameters, and equally
important, to clearly identify what constitutesasolutiontothe
problem.

L et us assumethat the computer softwarethat controlsthe
welding arm does so using a parametric representation of the
curvedescribing thejoint. Because of the cylindrical symme-
try of the pipes, it isnatural to describe thewelding joint as a
curve written in terms of polar coordinates, (r, 0), as

(z(r,0),y(r, 0),z(r, 0)). 1)

Thethree component functionswill formtheinputsto thecon-
trol algorithm.

L et usnow moveto a mathematical description of the ge-
ometry, which is pictured in Fig. 2. From the discussion in
the Introduction, we saw that thethree main parametersinthe
problem are the radii of the two pipes, labeled R; and R in
the diagram, and the angle of intersection, ®. For the sake
of simplicity, assume that the first cylinder (with radius R;)
has an axis of symmetry coincident with the z—axis. Wetake
the second cylinder with itsaxisof symmetry lyinginthe zz—
plane, and rotated about the y—axis by an angle ® with respect
to the vertical cylinder. We will also assume that the vertical
cylinder has the largest radius (i.e. R > R3), for reasons
which will be made clear later on.

The parametric equations for cylinder 1 are given by

z Ry cos
y | = Risinty |, (2
z z1

where §; and z; are the two free parameters describing the
surface. Theequationsfor the second cylinder can be obtained
from that of thefirst by applying the rotation matrix

Figure 2: Definition of the physical parametersdescribing the
cylindrical pipe intersection, projected onto the = z—plane.

where 6, and z, are also free parameters.

The parametric equationsfor theintersection curve between
the cylinders, pictured in Fig. 3, are derived in the following
section.

Derivation of thewelding curve

Other problemsinvolving theintersection of solidsof revolu-
tion (such as cylinders, cones or tori) with a plane have been
proposed as instructional toolsin the “ Classroom Capsules”
column of the College MathematicsJournal [2, 11]. Thesitu-
ation we consider hereisamore complicated one, sinceit in-
volves two solids of revolution. However, the basic solution
procedureisquite similar, and so these simpler plane—cutting
problems could be introduced first as a preliminary motiva-
tion for the pipe welding problem.

We begin by defining the parametric equationsfor thetwo
cylinders:

> cyll := { x=Rl*cos(thetal),
> y=R1*sin(thetal), z=z1 };
eyll =

y=Risin(01),z=2z1,2 = RIcos(f1)}

cos® 0 —sind > cyl2 1= { x=R2*cos(theta2)*cos(Phi)
0 1 0 > -z2*sin(Phi), y=R2*sin(theta2),
sin® 0 cos® ) ) )
> z=R2*cos(t het a2) *si n( Phi ) +z2*cos(Phi) };
to Egs. (2) to obtain
z Ry cosfly cos ® — zysin @ cyl2 = {l‘:.RQ C.OS(QZ)COS(CI)) — 22sin(®),
y | = Ry sin 6, , (3) y = R2sin(02),
z Ry cosfysin @ + 25 cos @ z=R2cos(02)sin(®)+ 22 cos(P)}
2 MapleTech
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Figure 3: A Maple plot of two cylinders with radii R; = 1

and Ry = 19—0 meeting at anangleof ® = 7. Theintersection

curveisplotted asadark line.

The curves of intersection are found by equating the z, y
and >z components of each surface:

> eqns = subs( cyl2, cyll);

eqns := {R2sin(02) = R1sin(01),
R2 cos(02)sin(®) + 22 cos(P) = 21,
R2 cos(62)cos(®) — 22sin(P) =
R1 cos(61)}

The ensuing equations can then be solved for theunknowns
1, z; and z5 interms of 6, and the cylinder parameters R,
R and @:

> soln := solve( eqns, {thetal, z1,z2} );

soln = {z? = (—R2sin(#2)
+ R2cos(602)cos(®) %1 + RI %1)/(
sin(®)%1),z1 = (

R2 cos(62)sin(® )2 %1

—cos(®) R2sin(62)

+ R2 cos(62) cos(® )2 %1

+ cos(®) RI %1) /(sin(<I>)%1)7

61 = 2 arctan( %1 )}

%1 := RootOf (
R2sin(62) + R2sin(02)_Z° — 2RI _7)

(though we could equally well have solved for any of the
three unknowns in terms of the fourth).

Noticethe presenceof theRoot OF () expressionappear-
inginthelabel %4 , whose argument isaquadratic polynomial
having two roots:

> ztenp := R2*sin(theta2) - 2*Rl*_Z
> + R2*sin(theta2)*_ 7" 2:
> zsoln := solve( ztenp, _Z);
| 2R1+2/R1% — R2?sin(02)?
zsoln 1= — - ;
2 R2sin(62)
12R1 — 2\/312 — R2%sin(62)?
2 R2sin(62)

Consequently, there are two distinct solution curves, cor-
responding to the fact that cylinder 2 passesthrough cylinder
1in two places (refer to Fig. 2). Looking at the functional
form of therootsabove, it should now be clear why it was nec-
essary to make the earlier assumption of R; > Rs: without
thisrestriction, the squareroot termsin zsol n are undefined
for some values of #, intheinterval [0, 27].

Our next step isto derive the parametric equations of the
welding joint by taking the expressionsin sol n and substi-
tuting them into Egs. (2). Not surprisingly, the resulting ex-
pressions are quite lengthy and benefit from some simplifica-
tion. Thefollowing function definition will prove very useful
in thisregard:

> readlib( rationalize ):
> trigsinp := proc( a)
trig ):
> rationalize( " ):
simplify( ", trig);
> end:

Therationalize() procedureis employed because

of the presence of squareroots of trig functionsin the denom-

inator of the expressionsin sol n. We now simplify the two
welding curvesin af or loop:

> expand( a,

\

> for i froml to 2 do

> subs( RootOf (ztenp) = zsoln[i], soln ):
> subs( ", cyll):

> weld[i] :=trigsinp( " ):

> od:

Thetwo setsof parametric equations describing the inter-
section curves on either side of cylinder 1 are
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> wel d[ 1] ;

{z = (RQ cos(62)

+cos(®)/RI* — R2” + R22cos(62)2) /
(sin(®)),y = R2sin(62),

r = _\/R12 — R2% 4+ R2? cos(€'2)2}

and
> wel d[ 2] ;

{y = R2sin(02),z = (RQ cos(62)

_COS((I))\/RIZ—R22+R22COS(92)2) /(

sin(®) ),z = \/312 — R2% 4 R2%cos(62)?

)

In practice, a pipe weld consists of asingle joint (as pic-
turedin Figs. 1 and 3), and so only one of thetwo sets of equa-
tions (either wel d[ 1] or wel d[ 2] ) is required. With this
in mind, we next generate a plot of a single pipe weld, con-
sisting of surface plots of cylinder 1 and the “physical half”
of cylinder 2, and a curve plot of theintersectionwel d[ 1],
for representative parameter values Ry = 1, Ry = % and

@:%Z

> with(plots): plotsetup( x11 ):

>vars :={ RL =1, RR =9/10, Phi =Pi/4 }:
> plotl := plot3d(

> subs( subs( vars, cyll), [Xx,y,z] ),

> t hetal=0..2*Pi, z1=-2..5):

> plot2 := plot3d(

> subs( subs( vars, cyl2), [x,y,z] ),

> t het a2=0. .2*Pi, z2=0..5):

> plot3 : = spacecur ve(

> subs( subs( vars, weld[1] ), [Xx,y,2z] ),

> t het a2=0. .2*Pi, thickness=3, color=red ):

> display( { plotl, plot2, plot3},
> orientation=[110, 60],

> scal i ng=CONSTRAI NED ) ;
This Maple code was used to generate the plot pictured in
Fig. 3.

GRAPHICAL EXPERIMENTATION

Students should be encouraged to explore the changing shape
and orientation of the welding joint curves as the parameters
Ry, Ry and @ are varied. Perhaps the easiest way to visu-
alisethe geometry iswithMaple’'sani mat e facility. For ex-
ample, the following code produces an animated plot of the
cylindersasthe radius of the second cylinder ranges between
Oand 1 and the other parametersare heldfixedat R; = 1 and
¢ = %Z

> with(plots):
;= {R1=1, Phi=Pi / 4}
> ani mat e3d( { subs( subs( vars4,

> subs( {thetal=theta2, z1=2*z2-5/2},

pl ot set up(x11):

> vars4

> cyll) ), [xy,z] ),

> subs( subs(vars4,cyl2), [x,y,z] ),

> subs( subs(vars4,weld[1]), [x,y,z] ),
> subs( subs(vars4,weld[2]), [x,y,z] )},
> t het a2=0. .2*Pi, z2=0..5/2, R2=1/4..1,
> scal i ng=CONSTRAI NED, franmes=12,

> views[-2..2,-2..2,-3..3] );

Both welding curves areincluded in these plots so that the
shape of theintersectionscan be moreeasily visualised. With
only minor modificationsto the above code, we canfix thean-
gle ® and instead visualise the effect of changesin the radius
R5 onthe weld.

Of particular interest is the case when R, = R;, where
the welding joints, which are normally two distinct curves,
actually merge together into a single branched curve as pic-
turedin Fig. 4(a). Thebranch pointsare also pointswherethe
two cylinders are tangent to each other.

On the other hand, when R, is taken significantly smaller
than R, then the portion of the surface of cylinder 1 on which
the welding curve lies is locally quiteflat in the region cov-
ered by the curve. As aresult, the joints are approximately
circular in shape, with the deformation from a circle becom-
inglesssignificant as R isreduced. Fig. 4(c) depictstheweld-
ingcurveswhen Ry = land Ry, = % and showsthat evenfor
this only moderately small value of R, the curvesare nearly
circular. Consequently, when R, is reduced, the pipe weld
approachesthe solution of the plane—cylinder intersection prob-
lem derived in[2].

Further investigation

1. Comparethe above expressions for the welding curves
tothosegivenin[?2] for a cylinder intersecting a plane.
Are they the samein the limit as 22 — 0?

MapleTech
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(8) Self—intersecting joint: Ry = Ry = 1.

(b) Intermediatecase: Ry = 1, Ry = 7.

(c) Nearly circular joint: Ry = 1, Ry = .

Figure4: Welding curvesfor anintersection angleof ® = 2.

2. Can you perform the same analysis when one or both
of the pipes has the shape of an dlliptic cylinder? Or a
tapered cylinder?

Extensions

There are two additional aspects of the welding problem that
can be studied to increase its applicability to more advanced
mathematics courses:

(i) finding an “optimal” angle at which the torch should
be held to minimiseinterference with the pipe surfaces,
drawing some basic formulas from multi—variable cal-
culus,

(if) determining the length of the welding joint, which re-
quiresthe arclength integral formulaand numerical in-
tegration techniques.

These problems are considered in the next two sections.
TORCH ANGLE

Thetip of ausual welding torch has a certain taper angle, and
soitisnecessary to approach theweldingjoint from asuitable
direction in order to avoid a situation such as that depicted in
Fig. 5 where the tip of the torch impinges on the surface of
one of the cylinders rather than tracing the joint itself. Fur-
thermore, the quality of theweld generated isgenerally higher
when the torch follows the joint at an angle which is not too
sharply inclined to either surface being welded. It is appar-
ent that the width of the torch places a physical limitation on
thesize of theintersection angle (precluding ® from being too
closeto 0 or 7), though we have ignored this difficulty in our
previous discussion.

torchmB— >

Figure 5: Definition of the torch angle, 3, showing the torch
can impinge on the pipe surfaceif 3 istaken too small.

Thetorch angle, therefore, is another important input pa-
rameter to the algorithm controlling the welding arm. A rea-
sonable strategy for choosing the angle at which the torch ap-
proaches the cylindersis the following: the axis of the torch
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should bisect the angle between the two cylinder sat each point
along the weld joint. We next formulate this criterion mathe-
matically.

The angle between the two cylinders at any point along
their intersection issimply the angle between the normal vec-
torsto each surfaceat that point. Weknow from multi—variable
calculus that the normal to a surface defined in polar coordi-
nates asin Eq. (1) isgiven by

(0 0y 0
"= \Gr o ar )

To compute the angle between the normals, we will use the
cosineformulafor the dot product, which statesthat the angle
between two unit vectors, # and ij isgiven by cos § = Z- /. If
i1 and 715 are the unit outward—pointing normalsto cylinders
1 and 2 respectively, we can write the optimum torch angle as

8= % [7r — cos_l(ﬁl . ﬁg)]

(wherethe extra 7 term accounts for the fact that the normals
are defined as outward—pointing).
The outward—pointing normal vector to cylinder 1 is

> di ff( subs( cyll, [x,y,2z] ), RL);
[cos(01),sin(6#1),0]
which in terms of the variable 6, isgiven by
= trigsimp(
> subs( Root Of (ztenp) =zsol n[ 1] ,
")) )

> nl

> subs( sol n,

ot = [

VRI® = R2% + R2? cos(62)?

R1 '
R2sin(62) 0]
R1 '
The second normal vector is
>n2 :=diff( subs( cyl2, [x,y,2] ), R );

n2 := [cos(#2) cos(P),sin(H2),
cos(#2)sin( @ )]
fromwhich we can usethel i nal g[ dot pr od] proce-
dure to compute the angle between two cylinders as
( Pi -

> arccos( |inal g[dotprod](ni,

> beta : =
n2) ) ) /2

1 1
8= 3 T — Earccos (—

\/R12 — R2% + R2? cos( 62 )2 cos(62)
R2 sin(92)2>

cos(<I>)/R1 + R

We can then plot a series of torch angle curves using the
Mapleseq() function:
> plotsetup(x11): i :="1i
> plot( { seq( subs( { R1=1, R2=1/3,
> Phi=i*Pi/12 }, beta ), i=1..6 ) },
> t het a2=0. .2*Pi, 'beta' =0..Pi /2 );

A series of torch angle curvesis shown in Fig. 6 for the
two situations R, = 5 and R, = 1.

1.

Further investigation

3. Realistically, therobot armwill also have physical con-
straints on its motion. What are the possible pipe an-
gles(that is, what limitsare there on @) if, for example,
thereisa congtraint like TOL < 8 < ® — TOL? Or
08 < Bmaz ? How might such constraintsbeinterpreted

physically?

LENGTH OF WELD

Another characteristic of this problem that isof geometricin-
terest isthe arclength of the curve of intersection betweenthe
cylinders. Whilethisquantity is perhapslesssignificanttothe
welding processthan the torch angle, the arclength might still
be reasonably motivated as a measure of the cost of welding
material used (e.g., electrical power, gas or filler metal), or
alternatively to gauge the wear and tear on the welding elec-
trode.

We know from multi—variable calculus that the arclength
of acurve, parametrised in terms of 4, isgiven as

m Ox Oy 2 92\ ?
- \/(% %) + (%) @
First, differentiatethe three componentsof theweld curve
with respect to 6

> diff( subs( weld[1],
[ R2?% cos (62)sin(62)
V/RI? = R2” + R27 cos(62)?
—R2sin(02)

B cos(<I>)R22cos(92)sin(62) )/(
V/RI* — R2* 1+ R2 cos(82)?

sin(®) )]

[x,y,2z] ), theta2);

, R2 cos(62), (
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90
—1g'8®a

140

/tzo

Figure 6: Torch angle plotted asafunction of 4,. Each curve
corresponds to a different value of the angle ® ranging be-
tween {5 and 7.

and then set up the integrand for the arclength integral:

> arclnt :=sqrt( "[1]72 + "[2]"2 + "[3]"2);

R2* cos( 02 )?sin( 62 )?
R1? — R2* + R2% cos(62)2

arcint := <

+ R27 cos(62)% + (- R2sin(62)

cos(<I>)R?2 cos( 62 )sin(62) )2/
V/RI? = R2% + R27 cos(62)?

sin( ® )2) v

Thisis an integral that cannot be evaluated explicitly in
terms of elementary functions. Inthe special casewhen R, =
Ry, theintegral can be written in terms of a special function
known as an dlliptic integral. These integrals are very well-
known functions (see [1]) that arisein physical situationsin-
volving such things as the oscillations of a pendulum and the
orbital motion of aplanet. When R, # R;, ontheother hand,
theintegral isnot elliptic.

However, regardless of whether or not we have an dllip-
ticintegral, we areforced to approximatethe integral numeri-
caly, which may be done using the Maple construct
eval f (Int(...)). Tothisend, we define an “arclength
function” that dependson R and & (with R, fixed at 1), and
whose third argument is the number of digits of accuracy re-
quired in the floating point answer:

> arcFunc := (r,p, acc) ->
> Int( subs( {Rl=1, R2=r, Phi=p}, arclnt ),

> t het a2=0. .2*Pi, acc );

arcFunc := (r,p, acc) — Int(
subs({R1 =1,® =p, R2 =r}, arcint),
62 = 0.2, acc)

To verify that the arclength formula returns a reasonable
result, we perform a calculation with Ry = 11—0 being signifi-
cantly smaller than R;:

> eval f( arcFunc( 1/10, Pi/2, 6 ) );
628713

In this situation, the welding curve is approximately cir-
cular, and so we expect the arclength to be very close to the
circumferenceof acircleof radiusll—o. Thisisvery easily tested
asfollows:

> eval f( 2*Pi/10, 6 );
628318
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Next, we produceasurface plot of the arclength asafunc-
tion of R, and &, whichispictured inFig. 7.

\

pl ot set up(x11);
pl ot 3d( arcFunc( r2,phi,3 ), r2=1/10..1,
> phi =Pi /20..Pi /2, grid=[10,10],

> styl e=patchcont our, axes=frane );

The number of digits of accuracy was chosen to be 3, so
that the cost of the computation is kept to a minimum while
at the same time being sufficiently accurate for plotting pur-
poses: Thebasic shapeof thissurfaceplot can bejustified us-

\

Figure 7: Surface plot of the arclength of thewelding joint as
afunction of R, and ®.

ing simple geometric reasoning: the arclengthislargest when
Ry = 1 and ® iscloseto zero (whenthejointsformvery long,
distended curves), and falls off toward zero when the radius
of the cylinder 2 becomes very small.

Further investigation

4. Ellipticintegrals and their numerical approximation:

(a8 Show that when R; = R, the arclength derived
above can bewritten in terms of elliptic integrals.

(b) Take the equations of the welding curves when the
two radii are equal, and show that they reduce to the
equations of two inter secting ellipses, rotated at an an-
gleof ® with respect to each other. Inlight of theresult
inpart (a), and the graphical evidencein Fig. 4(a), this
should not be surprising, since the term “elliptic inte-
gral” derives from the fact that this integral arises in
the calculation of the perimeter of an ellipse [3].

(c) MapleV includes several functionsdefining elliptic

integrals, viatheproceduresEl | i pti cEandEl | i pti cK.

Furthermore, Release 4 includes special eval f rou-
tines corresponding to these functions that implement
efficient numerical techniquesfor approximating ellip-
ticintegrals(see[1] for adiscussion). If you are using
an earlier release of Maple, the numerical code can be
obtained fromthe Maplesharelibrary[9], and hasalso
been made available ontheweb pageht t p: / / vwww.
mat h. sfu. ca/ " j ms/ wel d/ . Usetheseroutinesto
compute values of the integral from part (a) numeri-
cally, and compare the efficiency of this routine to the
result obtained with the standard eval f/ I nt func-
tion.

Concluding remarks

We have presented asimple geometricproblem arisinginrobotic
welding, and have shownthat M aple can be used both to solve
the problem, and to explore the solution graphically. It is our
hope that we have demonstrated the value of this problem as
aninstructional tool for motivating the applicationsof solving
systems of equationsin polar coordinates, and also some in-
troductory concepts from multi—variable calculus. The prob-
lemisparticularly easy to motivate, dueto its simple geomet-
ric interpretation and obvious application to modern industry.
Classdiscussions can al so be rai sed regarding more advanced
aspects of robotic welding such as intelligent joint tracking
and adaptive control of industrial robots (see[7]).
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