
LATTICE BASIS REDUCTION AND SHORT VECTORS

NILS BRUIN

Disclaimer: This is a first draft which hasn’t even been carefully proofread–you guys
will be doing that! There could be gross typos here.

1. A little motivation: rational and integer approximations

Sometimes surprising relations between mathematical constants arise. For instance, we
have

ζ(2) =
1

6
π2,

∫ ∞
−∞

e−x
2
dx =

√
π

and, if {Fn}n = {1, 1, 2, 3, 5, 8, 11, 13, . . .} is the fibonacci series then

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2

Each of these relations has its own proof. However, before you can set of to find a proof,
you’d first need to find the relation that you’re trying to prove. In each of these cases, it is
fairly easy to find numerical approximations to the constants involved. So perhaps we can
try and let a computer try and find likely relations from these approximations?

Definition 1. Let α1, . . . , αr ∈ R. We say that α1, . . . , αr are linearly dependent over Q
(or Z) if there are x0, . . . , xr ∈ Q (or Z), not all zero, such that

x0 + x1α1 + · · ·+ xrαr = 0

Lemma 2. The numbers α1, . . . , αr ∈ R are linearly dependent over Q if and only if they
are over Z.

Proof. Since Z ⊂ Q, we see that a Z-linear dependency is also a Q-linear dependency. It
remains to show that a Q-linear dependency gives rise to a Z-linear dependency. But this
is straightforward by clearing denominators: For each xi ∈ Q there is a denominator, i.e.,
a number di ∈ Z such that dixi ∈ Z. But then for d = lcm(d0, . . . , dr) we have dxi ∈ Z for
all i, and if the xi is non-zero then so is dxi. Hence

(dx0) + (dx1)α1 + · · ·+ (dxr)αr = d0 = 0

yields a Z-linear dependency. �

Finding a linear dependency is now a matter of finding a vector (x0, . . . , xr) ∈ Zr such
that

x0 + x1α1 + · · ·+ xrαr = 0.

That’s a useful formulation to have, but it does not help us much with actually solving
the problem. We would like to be able to find likely solutions to this equation using approx-
imations of the αi. That means we can only hope for the equation to approximately hold
too. That’s a problem: we can make that value as small as we like:
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Theorem 3. Let α0, . . . , αr ∈ R with M = maxi |ai|. Let B > 1. Then there are
x0, . . . , xi ∈ Z with |xi| ≤ B such that

|x0α0 + · · ·+ xrαr| < ε =
(r + 1)M

Br−1(B + r + 1)

Proof. First consider xi ∈ {0, . . . , B}. Then

|x0α0 + · · ·+ xrαr| < (r + 1)MB

Note that if we split the interval (0, (r + 1)MB) into subintervals of length ε, then we end
up with less than (B + 1)r+1 intervals. That is less than the number of choices we have for
the xi. Hence, two choices y0, . . . , yr and z0, . . . , zr must yield a value in the same interval
and hence we have

|y0α0 + · · ·+ yrαr| − |z0α0 + · · ·+ zrαr| < ε

Hence, taking xi = yi − zi gives us the desired solution. �

Remark 4. Note that ε ∼ 1/Br as B →∞.
Results like this are basically quantitative versions of the statement that Q lies dense in

Z: they give you a sense of how dense they are. Indeed, the first proof of density usually
gives you a result using rational numbers where the denominators are only, say, powers of
10. Quantitative version of that are not good enough for our application.

Corollary 5 (Dirichlet). Let α ∈ R be an irrational number. Then there are infinitely
many fractions p/q ∈ Q such that

|α− p

q
| < 1

q2

Exercise 1. Prove this. Beware that it’s more a corollary of the method of proof than of
the actual statement here. The most direct application would be from considering |qα− p|
and then divide by q. That would give the right kind of result if q = B. So in particular,
you shouldn’t bound the numerator p (which indeed Dirichlet doesn’t say anything about).

It may be worth observing too that Dirichlet’s result is not quite the sharpest possible:
Continued fractions give approximations with |α− p

q | <
1

2q2
. Lagrange proved that |α− p

q | <
1√
5q2

is in fact possible and for α = 1+
√
5

2 this is best possible. In that sense, the golden

ratio is the worst rationally approximable number.

Anyway, for us the main lesson from this is that we shouldn’t just look for integers
that make |x0α0 + · · ·+ xrαr|, we should be looking for integers x0, . . . , xr that make this
expression small compared to the size of x0, . . . , xr. One way of doing that is by choosing
N > 0 and trying to find integers x0, . . . , xr (not all zero) that make the following expression
small:

x20 + x21 + · · ·+ x2r + (N
r∑

i=0

xiαi)
2

Note that this amounts to finding a vector of small norm, i.e., a short vector. The set in
which we try to find such a vector can be written using linear algebra as a set of row-vectors:

{(x0, . . . , xr)


1 0 · · · 0 Nα0

0 1 · · · 0 Nα1
...

...
0 0 · · · 1 Nαr

 : x0, . . . , xr ∈ Zr+1}
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2. Lattices

In the previous section we saw that we are interested in finding short vectors in sets that
are described by integer linear combinations over vectors in Rn. We refer to this vector
space as the ambient vector space.

Definition 6. A lattice Λ ⊂ Rn is a finitely generated discrete subgroup of Rn. Equivalently,
(this uses the structure theorem for finitely generated abelian groups!) a lattice is a group
Zr, together with a group homomorphism Zr → Rn such that the image is discrete.

The discrete part is important, For instance, {a +
√

2b : a, b ∈ Z} ⊂ R1 is a finitely
generated subgroup of the 1-dimensional vector space R1, but, as we’ve seen, it contains
arbitrarily short vectors, so it isn’t a discrete subgroup.

Remark 7. Note that Rn as an additive group doesn’t contain any finite order elements
(when you add a nonzero vector to itself repeatedly, you never get the zero vector), so any
subgroup is also torsion-free. The structure theorem for finitely generated abelian groups
tells us then that the subgroup is isomorphic to Zr, and also that Zr and Zs are isomorphic
if and only if r = s. This is called the rank of a lattice.

Given a lattice Λ ⊂ Rn of rank r, we can consider the R-span of Λ: the set of R-linear
combinations of elements of Λ. This is the smallest R-sub vector space of Rn that contains
Λ. We write RΛ for this.

Lemma 8. Let Λ ⊂ Rn be a lattice of rank r. Then dimRRΛ = r.

Exercise 2. Prove this. You can do so by adapting the proof strategy of Theorem 3:
assume that dimRRΛ < r and show that the number of lattice elements that you can make
using Z-linear combinations of bounded size from generators grows faster than the volume
of the ball in which you know they lie, so they need to accumulate somewhere.

For now we will concentrate on full rank lattices, i.e., lattices Λ ⊂ Rn with rank n.
Lattices like this can be represented by a square n × n matrix, of rank n, such that Λ
consists exactly of the Z-linear combinations of the rows of the matrix. We say that the
rows for a lattice basis of Λ. As we have formulated above, the discreteness of the basis
implies thatr the lattice basis is also R-linearly independent, and hence a basis for RΛ. For
a full rank lattice, a lattice basis is also a basis of the ambient vector space.

Almost all elementary linear algebra algorithms depend on gaussian elimination: Per-
forming elementary row operations on a matrix to get the matrix in a particular form. The
key is that row operations do not change the vector space spanned by the row vectors. We
can do something similar with lattice bases:

Proposition 9. Let {b1, . . . ,br} ⊂ Rn be a lattice basis. The following operations do not
change the lattice generated by these vectors:

(1) Replace bi by bi + cbj, where j 6= i and c ∈ Z
(2) Swap bj with bj

(3) Replace bi by −bi.

These are almost the same row operations as in linear algebra, except that we can only
add an integer multiple of one row to another and that we can’t scale basis vectors: we can
only multiply by ±1. That is of course because ±1 are the only invertible elements in Z.

Proposition 10. Let B be a square n× n matrix, whose rows span a lattice Λ ⊂ Rn. Let
C be another n × n matrix. Then the rows of C span Λ if and only if there is an integer
valued matrix A with det(A) = ±1 such that C = BA.

In particular, we see that the (absolute) determinant | det(B)| is a property of Λ itself.
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3. Inner products and orthogonalization

In the previous section we have seen that the (squared) norm function on Rn is important
for us. In fact, the standard inner product is even more important. One can be derived
from the other, though. Let v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Rn and consider

||v||2 = v21 + · · ·+ v2n
v ·w = v1w1 + · · ·+ vnwn

Naturally, the norm can be recovered from the dot product via ||v|| = v · v. The converse
also works:

v ·w =
1

2
||v + w||2 − ||v||2 − ||w||2

Definition 11 (Gram-Schmidt). Let b1, . . . ,bn be an independent set of vectors. We
defined the associated Gram-Schmidt basis by

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j where µi,j =

bi · b∗j
b∗j · b∗j

for 1 ≤ j < i ≤ n

Proposition 12. The subspace spanned by b1, . . . ,br equals the subspace spanned by b∗1, . . . ,b
∗
r.

Furthermore, ||b∗i ||2 ≤ ||bbi||2. If B is a square matrix with rows b1, . . . ,bn and B∗ is the
matrix with rows b1, . . . ,b

∗
n then det(B) = det(B∗).

Lemma 13. Let b1, . . . ,bn be orthogonal non-zero vectors in Rn , i.e., bi ·bj = 0 for i 6= j.
Then

det(B)2 = ||b1||2 · · · ||bn||2

Proof. Use that det(B2) = det(BBT ). �

Theorem 14 (Hadamard’s inequality).

det(B)2 ≤ ||b1||2 · · · ||bn||2

Proof. Use Gram-Schmidt orthogonalization. �

This gives us an important hint on how to find short vectors in a lattice: The determinant
is a property of the lattice and the product of the norms of a Z-basis of the lattice will
never be smaller than the determinant and, if we can find an orthogonal basis, then we
have equality. We even have a way of getting an orthogonal set of vectors out of a given
set: Apply Gram-Schmidt orthogonalization. The problem is that Gram-Schmidt does not
apply lattice-preserving operations: The multiple µi,j is likely not an integer.

4. LLL-reduced basis

In general it is too much to ask that we find an orthogonal basis for a lattice: there may
just not exist one. Therefore, we formulate a weaker property, in the hope that it is still
good enough for our applications and that it is still attainable:

Definition 15. Let b1, . . . ,bn be a lattice basis and let b∗1, . . . ,b
∗
n be the corresponding

orthogonalized basis (which is not a basis of the same lattice!). We say the basis b1, . . . ,bn

is LLL-reduced if

|µi,j ≤
1

2
| for 1 ≤ j < i ≤ n

and

||b∗i + µi,i−1b
∗
i−1||2 ≥

3

4
||b∗i−1||2
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or equivalently

||b∗i ||2 ≥ (
3

4
− µ2i,i−1)||b∗i−1||2

We’ll see later that every lattice indeed has an LLL-reduced basis, but first we show that
we have the right properties.

Theorem 16. Suppose b1, . . . ,bn is an LLL-reduced basis of a lattice Λ ⊂ Rn. Then

(1) det(Λ)2 ≤
∏n

i=1 ||bi||2 ≤ 2n(n−1)/2 det(Λ)2

(2) ||bj ||2 ≤ 2i−1||b∗i || for 1 ≤ j < i <≤ n
(3) ||b1||2 ≤ 2(n−1)/2 det(Λ)2/n

(4) For every non-zero vector v ∈ Λ we have ||b1||2 ≤ 2n−1||v||2.
(5) For any linearly independent vectors v1, . . . ,vt ∈ Λ we have

||bj ||2 ≤ 2n−1 max(||v1||2, . . . , ||vt||2) for 1 ≤ j ≤ t
So we see that, in a very precise sense, b1 is not too much bigger than the shortest vector

in Λ.
The algorithm is now quite straightforward, although the proof that it actually terminates

and does so quickly, is quite involved. We write bαe for the nearest integer to α (break tie
however you like).

LLL-algorithm
Input: Sequence of independent vectors b1, . . . ,bn ⊂ Rm

Output: LLL-reduced basis for lattice spanned by input.

(1) Set k = 2
(2) Ensure first LLL-condition holds at k: Set

bk := bk −

⌊
bk · b∗k−1
||b∗k−1||2

⌉
bk−1

(3) Swap if second condition requires it: If ||bk||2 < (3/4− µ2k,k−1)||b∗k−1||2, swap bk−1
and bk, decrease k (unless k was already 2), and go to step (3). Otherwise set

bk := bk −
k−2∑
i=1

⌊
bk · b∗i
||b∗i ||2

⌉
bi

and increment k.
(4) If k ≤ n go to step 2. Otherwise the bi form an LLL-reduced basis.

It is fairly easy to check that if this algorithm finishes, then the returned basis does
satisfy the LLL properies. So the art is in proving that the algorithm finishes.

We will not do the proof in detail (you can look it up!). The trick is to show that the
number of swaps that occur (in step (3)) must be finite. That means that k only gets
decreased a finite number of times, and since the alternative is increasing k, we see that
k > n at some point.

The trick is to look at
di = det(br · bs)1≤r,s≤i

It is straightforward to check that

di =
i∏

j=1

||b∗j ||2

and in particular that d0 = 1, dn = det(Λ)2. One now needs to show that the di are bounded
below in terms of Λ and that step (3) will decrease di by a non-negligible amount.
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Remark 17. Note that the above asserts that we can find a LLL-reduced basis; not that
such a basis is in any way unique. The result one gets back in practice is quite dependent
on the basis you start with.

Remark 18. The argument above gives a suggestion that the algorithm finishes. In fact,
one of the key results is that it does so fairly quickly : The runtime can be proven to be
O(n6 ln3B) if |bi|2 ≤ B for all i and the vectors are integer valued (this is less of a restriction
than it may seem), and in practice is often much better.

The algorithm above can be tweaked quite a bit. There is a large literature on finding
optimized algorithms to compute reduced bases.

5. Applications to finding integer relations

Going back to the original problem, say for finding an integer relation between 1, π, π2, ζ(2),
we set up a matrix: 

1 0 0 0 N
0 1 0 0 Nπ
0 0 1 0 Nπ2

0 0 0 1 Nζ(2)


for some large number N (perhaps N = 10100 if we can get 100 digits for each?). The
larger N , the less our concept of ”short vector” is influenced by the size of the integers
x0, x1, x2, x3 that we hope to find.

We take the lattice generated by the rows of this matrix and compute an LLL-reduced
basis for it. If there is a relation

x0 + x1π + x2π
2 + x3ζ(2) = 0

with the xi much smaller than N , then this relation would likely show up as the first vector
in an LLL-reduced basis.

In many implementations of the LLL algorithm, an integer-valued matrix is required.
Note that once N is chosen large enough, rounding the last column to integers should
hardly affect the shape of the lattice.

6. Further exercises

Exercise 3. The extended Euclidean algorithm, which takes as input a, b ∈ Z and pro-
duces x, y ∈ Z such that xa + yb = gcd(a, b), can also be considered as finding a Z-linear
dependence between a, b, 1. Take your favourite a, b and try and determine x, y using LLL.
How does that compare to running the Euclidean algorithm? (the Euclidean algorithm is a
source of inspiration for LLL)

Exercise 4. You may know that arctan(1) = π/4 and that the taylor-series obtained from
arctan(x) =

∫ x
0

1
1+t2

dt converges for x = 1. This gives a series that converges to π/4 and
hence gives a way to approximate π. The series only converges conditionally as a harmonic
series, though, so convergence is quite slow. Much better results arise from

π/4 = arctan(1/2) + arctan(1/3)

(can you prove that identity?) because for x = 1/2 and x = 1/3 the series converge
geometrically (and hence quite well). Even better results can be obtained from Machin’s
formula:

π

4
= 4 arctan(1/5)− arctan(1/239)

(convergence is better for smaller numbers).
Can you find similar formulas? Can you find better ones?
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Look up the Borwein-Borwein-Plouffe formula. It is a similar formula for π but with
some extra, interesting (binary) property. Integer relation finding algorithms played an
important role in finding this formula.

Exercise 5. Experiment with trying to (re)discover relations between multiple zeta values.
The recipe is simple: Concoct a nice collection of values you conjecture an integer relation
between (make sure you can compute plenty of digits of each of these values!), place them
into a matrix in the appropriate way, and try and find relations.

Exercise 6. Look up the PSLQ algorithm by Ferguson-Bailey-Arno. It is a close cousin to
LLL, but it is purpose-built for finding integer relations, so it may do a more efficient job
at it.
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