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CHAPTER 1

The Lure of Multiple Zeta Values

1. Multiple zeta values

The principal source for this lecture is [7]. The Riemann zeta function is defined
by

ζ(z) =

∞∑
n=1

1

nz

for <(z) > 1. It’s called the “Riemann” zeta function since Bernhard Riemann
(1826-1866) called attention to its properties as a function of a complex variable
(and its relevance to the distribution of primes). But a century earlier, Leonhard
Euler (1707-1783) had proved some significant results about it, most notably that

(1) ζ(2) =

∞∑
n=1

1

n2
=
π2

6

and more generally

ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)!
,

where B2n is a Bernoulli number. The first case is equation (1), and the next three
are

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
.

(Euler didn’t prove any formula for the values of ζ at the odd integers, and indeed
none is known. It was only in 1976 that Roger Apéry (1916-1994) proved ζ(3) to
be irrational; the irrationality of ζ(5) remains an open question.)

Euler also considered the double series∑
i≥j≥1

1

injm
,

which in modern notation is ζ?(n,m) = ζ(n,m)+ζ(n+m). He corresponded about
it with Goldbach in 1742-43. Twenty years later Euler returned to this series and
wrote a paper about it [4]. One of the principal results of that paper is (in modern
notation)

n−2∑
i=1

ζ(n− i, i) = ζ(n), n > 2.

In 1988, my colleague Courtney Moen got me interested in generalizing this re-
sult. Define, for a sequence a1, a2, . . . , ak of positive integers with a1 ≥ 2, the
corresponding multiple zeta value (MZV) by

(2) ζ(a1, a2, . . . , ak) =
∑

n1>n2>···>nk≥1

1

na11 n
a2
2 · · ·n

ak
k

.
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6 1. THE LURE OF MULTIPLE ZETA VALUES

We call a1 + · · · + ak the “weight” of the MZV, and k its “depth”. Courtney
conjectured that the sum of all MZVs of weight n and fixed depth k ≥ 2 is ζ(n),
independent of k. (We dubbed this the “sum conjecture”.) Of course the depth 2
case is Euler’s result. Courtney eventually managed to prove the depth 3 case, but
his proof was rather long.

Exercise 1. The first case of the sum conjecture is ζ(2, 1) = ζ(3). Prove it.
I took up the problem in 1988, and immediately noticed that one can multiply

MZVs termwise: for example,

ζ(2)ζ(2) =
∑
m,n≥1

1

n2m2
=

∑
m>n≥1

1

n2m2
+

∞∑
n=1

1

n4

∑
n>m≥1

1

n2m2
= 2ζ(2, 2) + ζ(4).

From this we can conclude that

ζ(2, 2) =
1

2

[
ζ(2)2 − ζ(4)

]
=

π4

120
.

Exercise 2. Starting with ζ(2, 1) = ζ(3), prove that

2ζ(2, 2, 1) + ζ(2, 1, 2) + ζ(4, 1) = ζ(3, 2) + ζ(5)

2. Low weights

I started playing around with MZVs of low weight. Here are the MZVs of
weights 2 through 6.

ζ(2)

ζ(3), ζ(2, 1)

ζ(4), ζ(3, 1), ζ(2, 2), ζ(2, 1, 1)

ζ(5), ζ(4, 1), ζ(3, 2), ζ(2, 3), ζ(3, 1, 1), ζ(2, 2, 1), ζ(2, 1, 1, 1)

ζ(6), ζ(5, 1), ζ(4, 2), ζ(3, 3), ζ(2, 4), ζ(4, 1, 1), ζ(3, 2, 1), ζ(3, 1, 2), ζ(2, 3, 1),

ζ(2, 1, 3), ζ(2, 2, 2), ζ(3, 1, 1, 1), ζ(2, 2, 1, 1), ζ(2, 1, 2, 1), ζ(2, 1, 1, 2), ζ(2, 1, 1, 1, 1)

Exercise 3. Prove that there are
(
n−2
k−1
)

MZVs of weight n and depth k, and

hence 2n−2 MZVs of weight n.
Now let’s look at these low-weight MZVs in more detail. In weight 2 there is

just MZV, ζ(2); by Euler’s formula it equals π2

6 . In weight 3 we have ζ(3) and
ζ(2, 1), but by the relation mentioned above they’re equal. In weight 4 we have

ζ(4), ζ(3, 1), ζ(2, 2), ζ(2, 1, 1)

We’ve already seen that ζ(2, 2) = π4

120 = 3
4ζ(4). Accepting the sum conjecture for

depth 2, this means ζ(3, 1) = 1
4ζ(4). What about ζ(2, 1, 1)? I was able to prove

(using an old formula of L. J. Mordell [10]) that

(3) ζ(p+ 1, 1, . . . , 1︸ ︷︷ ︸
q−1

) = ζ(q + 1, 1, . . . , 1︸ ︷︷ ︸
p−1

)

for p, q ≥ 1. This implies that ζ(2, 1, 1) = ζ(4).
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In weight 5 we have eight MZVs, which we can arrange as follows.

ζ(5)

ζ(4, 1), ζ(3, 2), ζ(2, 3)

ζ(3, 1, 1), ζ(2, 2, 1), ζ(2, 1, 2)

ζ(2, 1, 1, 1)

(4)

Now equation (3) gives ζ(5) = ζ(2, 1, 1, 1) and ζ(4, 1) = ζ(3, 1, 1). I also proved the
“derivation theorem” that says, for any sequence of positive integers (i1, i2, . . . , ik)
with i1 > 1,

(5)

k∑
j=1

ζ(i1, . . . , ij−1, ij + 1, ij+1, . . . , ik) =

k∑
j=1

lj−2∑
p=0

ζ(i1, . . . , ij−1, ij − p, p+ 1, ij+1, . . . , ik)

where the empty sum is treated as zero. (For a proof see the section that follows.)
Applying this to (3, 1) gives

ζ(4, 1) + ζ(3, 2) = ζ(3, 1, 1) + ζ(2, 2, 1),

and so ζ(3, 2) = ζ(2, 2, 1). Apply equation (5) to the sequence (2, 2) to get

ζ(3, 2) + ζ(2, 3) = ζ(2, 1, 2) + ζ(2, 2, 1)

so that ζ(2, 3) = ζ(2, 1, 2). Hence the third row in the diagram (4) is term-for-term
identical to the second, and all the rows add up to ζ(5).

In weight 6 there are sixteen MZVs, which we arrange as follows.

ζ(6)

ζ(5, 1), ζ(4, 2), ζ(3, 3), ζ(2, 4)

ζ(4, 1, 1), ζ(3, 2, 1), ζ(3, 1, 2), ζ(2, 3, 1), ζ(2, 1, 3), ζ(2, 2, 2)

ζ(3, 1, 1, 1), ζ(2, 2, 1, 1), ζ(2, 1, 2, 1), ζ(2, 1, 1, 2)

ζ(2, 1, 1, 1, 1)

(6)

From equation (3) we match up entries in the first column: ζ(6) = ζ(2, 1, 1, 1, 1),
ζ(5, 1) = ζ(3, 1, 1, 1). The sum of the second row is ζ(6), and the derivation the-
orem (5) applied to (2, 1, 1, 1) says that the sum of the sum of the fourth row is
ζ(2, 1, 1, 1, 1) = ζ(6). Now apply the derivation theorem to (4, 1), (3, 2), and (2, 3)
to get

ζ(5, 1) + ζ(4, 2) = ζ(4, 1, 1) + ζ(3, 2, 1) + ζ(2, 3, 1)(7)

ζ(4, 2) + ζ(3, 3) = ζ(3, 1, 2) + ζ(2, 2, 2) + ζ(3, 2, 1)(8)

ζ(3, 3) + ζ(2, 4) = ζ(2, 1, 3) + ζ(2, 3, 1) + ζ(2, 2, 2)(9)

and similarly apply it to (3, 1, 1), (2, 2, 1), and (2, 1, 2) to get

ζ(4, 1, 1) + ζ(3, 2, 1) + ζ(3, 1, 2) = ζ(3, 1, 1, 1) + ζ(2, 2, 1, 1)(10)

ζ(3, 2, 1) + ζ(2, 3, 1) + ζ(2, 2, 2) = ζ(2, 1, 2, 1) + ζ(2, 2, 1, 1)(11)

ζ(3, 1, 2) + ζ(2, 2, 2) + ζ(2, 1, 3) = ζ(2, 1, 1, 2) + ζ(2, 1, 2, 1).(12)
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Add equations (7) and (9) to get

(13) ζ(6) = ζ(4, 1, 1) + ζ(3, 2, 1) + 2ζ(2, 3, 1) + ζ(2, 1, 3) + ζ(2, 2, 2).

Similarly, we can add equations (10) and (12) to obtain

(14) ζ(4, 1, 1) + ζ(3, 2, 1) + 2ζ(3, 1, 2) + ζ(2, 2, 2) + ζ(2, 1, 3) = ζ(6)

Comparing (13) and (14) gives

ζ(2, 3, 1) = ζ(3, 1, 2).

Using this fact, equation (13) says that the middle row of (6) adds to ζ(6). We can
also compare equations (7) and (10) to get

ζ(5, 1) + ζ(4, 2) = ζ(3, 1, 1, 1) + ζ(2, 2, 1, 1),

or ζ(4, 2) = ζ(2, 2, 1, 1).
Exercise 4. Conclude similarly that ζ(3, 3) = ζ(2, 1, 2, 1) by comparing equa-

tions (8) and (11), and that ζ(2, 4) = ζ(2, 1, 1, 2) by comparing equations (9) and
(12).

The term-by-term equalities among the lines of (6) made me think about the
correct generalization of (3). Here is one way to write it. Given a sequence I =
(i1, . . . , ik) with i1 > 1, let Σ(I) be the sequence of partial sums, i.e.,

Σ(I) = (i1, i1 + i2, . . . , i1 + · · ·+ ik).

Then Σ(I) is a strictly increasing sequece of positive integers. Now let In be the
set of (finite) strictly increasing sequences of positive integers whose last term is at
most n, and define functions Rn and Cn on In by

Rn(a1, . . . , ak) = (n+ 1− ak, . . . , n+ 1− a1)

Cn(a1, . . . , ak) = complement in {1, . . . , n} of {a1, . . . , ak} arranged in increasing order

Exercise 5. Show that R2
n = id = C2

n, and that RnCn = CnRn.
Then we can define an operation τ on sequences whose sum is n by

τ(I) = Σ−1RnCnΣ(I).

For example,

τ(3, 1, 2) = Σ−1R6C6(3, 4, 6) = Σ−1R6(1, 2, 5) = Σ−1(2, 5, 6) = (2, 3, 1).

Exercise 6. Check that τ(p+ 1, 1, . . . , 1︸ ︷︷ ︸
q−1

) = (q + 1, 1, . . . , 1︸ ︷︷ ︸
p−1

)

I made the “duality conjecture” that ζ(I) = ζ(τ(I)). The proof turns out to
be almost embarassing simple, but requires another representation of ζ(I).

Exercise 7. For sequences I, J , let IJ be their juxtaposition (so if I = (2, 1, 1)
and J = (3, 2), then IJ = (2, 1, 1, 3, 2)). Show that τ(IJ) = τ(J)τ(I).

3. Proof of the derivation theorem

We first note that the definition of MZVs can be written

ζ(i1, . . . , ik) =
∑

n1,...,nk≥1

1

si1k s
i2
n−1 · · · s

ik
1

,
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where sj = n1 + · · ·+ nj . Then evidently

(15)
∑

n1,...,nk≥1

1

si1k · · · s
ik
1

sk∑
j=1

1

j
=

ζ(i1 + 1, i2, . . . , ik) + ζ(i1, 1, i2, . . . , ik) + ζ(i1, i2 + 1, i3, . . . , ik)

+ · · ·+ ζ(i1, . . . , ik−1, ik + 1) + ζ(i1, . . . , ik, 1).

But the left-hand side of equation (15) can be written

(16)
∑

n1,...,nk≥1

1

sik1 s
ik−1

2 · · · si1k

∞∑
nk+1=1

(
1

nk+1
− 1

sk+1

)
,

and by partial fractions we have

1

nk+1s
i1
k+1

=
1

nk+1s
i1
k

−
i1−1∑
j=0

1

sj+1
k si1−jk+1

or
1

si1k

(
1

nk+1
− 1

sk+1

)
=

1

nk+1s
i1
k+1

+

i1−2∑
j=0

1

sj+1
k si1−jk+1

.

Hence (16) is∑
n1,...,nk+1≥1

1

sik1 · · · s
i2
k−1nk+1s

i1
k+1

+

i1−2∑
j=0

∑
n1,...,nk+1≥1

1

si11 · · · s
i2
k−1s

j+1
k si1−jk+1

or, since the first sum is unchanged by permuting nk and nk+1,∑
n1,...,nk+1≥1

1

sik1 · · · s
i2
k−1nks

i1
k+1

+

i1−2∑
j=0

ζ(i1 − j, j + 1, . . . , i2, . . . , ik).

Now use the partial-fractions expansion

1

nks
i2
k

=
1

nks
i2
k−1
−
i2−1∑
j=0

1

sj+1
k−1s

i2−j
k

to write the first sum as∑
n1,...,nk+1≥1

1

sik1 · · · s
i3
k−2nk−1s

i2
k s

i1
k+1

+

i2−1∑
j=0

ζ(i1, i2 − j, j + 1, i3, . . . , ik).

Continue in this way to write (16) as

k∑
p=1

ip−2∑
j=0

ζ(i1, . . . , ip−1, ip − j, j + 1, ip+1, . . . , ik) +
∑

n1,...,nk+1≥1

1

n1s
ik
2 · · · s

i1
k+1

,

with the last sum evidently equal to ζ(i1, . . . , ik, 1). Now replace the left-hand side
of equation (15) with this expression, and after cancellation equation (5) follows.

Historical note. The first publications to consider multiple zeta values of
arbitrary depth were my paper [7] and that by Don Zagier [17]. The sum conjecture
was proved by Andrew Granville [6] and Zagier (unpublished).





CHAPTER 2

The Depth Two Case

1. Tornheim sums

The following sums were introduced by Tornheim [15]:

T (p, q; r) =
∑

k1,k2≥1

1

kp1k
q
2(k1 + k2)r

.

Such a sum converges if p+ r, q + r, and p+ q + r are all ≥ 2. Clearly T (p, q; r) =
T (q, p; r), and T (p, 0, r) = ζ(r, p). The key facts about these sums are the following:
first,

(17) T (p, q; r) = T (p− 1, q; r + 1) + T (p, q − 1; r + 1).

whenever both side converge; second,

(18) T (1, q; 1) =
∑

k1,k2≥1

1

k1k
q
2(k1 + k2)

= ζ(q + 2) + ζ(q + 1, 1)

for q ≥ 1; and third,

(19) T (p, q; 0) = ζ(p)ζ(q) = ζ(p+ q) + ζ(p, q) + ζ(q, p).

if p, q ≥ 2.
Exercise 8. Prove equations (17), (18), and (19). Hint for (18): note that

∞∑
k1=1

1

k1(k1 + k2)
=

∞∑
k1=1

[
1

k1k2
− 1

k2(k1 + k2)

]
=

1

k2

k2∑
j=1

1

j
.

For multiple zeta values of depth two, we have the following set of identities
involving binomial coefficients.

Theorem 1. For integer 1 ≤ p ≤ q with p+ q = n ≥ 3,

(20) ζ(n) =

n−1∑
i=p+1

(
i− 1

p− 1

)
ζ(i, n− i) +

n−1∑
i=q+1

(
i− 1

q − 1

)
ζ(i, n− i),

where empty sums are interpreted as zero.

Proof. The theorem is then a consequence of the following result: if p, q ≥ 2
and r ≥ 0, or if p, q ≥ 1 and r ≥ 1, then

(21) T (p, q; r) =

p+q−1∑
i=p

(
i− 1

p− 1

)
ζ(r+ i, p+ q− i) +

p+q−1∑
i=q

(
i− 1

q − 1

)
ζ(r+ i, p+ q− i).

To obtain equation (20) in case p ≥ 2, set r = 0 in equation (21) and then use
equation (19). If p = 1, set r = 1 in equation (21) and use equation (18).

11
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We prove equation (21) by induction on p+ q. To start the induction we must
prove (21) for p = q = 2, r ≥ 0, and for q = 1, r ≥ 1. In the first case we have

T (2, 2; r) = T (1, 2; r + 1) + T (2, 1; r + 1)

= T (0, 2; r + 2) + 2T (1, 1; r + 2) + T (2, 0; r + 2)

= 2T (2, 0; r + 2) + 4T (1, 0; r + 3)

= 2

3∑
i=2

(
i− 1

1

)
ζ(r + i, 4− i)

In the second we have

T (p, 1; r) = T (p, 0; r + 1) + T (p− 1, 1; r + 1)

= ζ(r + 1, p) + ζ(r + 2, p− 1) + T (p− 2, 1; r + 2)

= · · ·

=

p∑
i=p

(
i− 1

p− 1

)
ζ(r + i, p+ 1− i) +

p∑
i=1

(
i− 1

0

)
ζ(r + i, p+ 1− i).

Finally, if p + q = n, p, q ≥ 2, and equation (21) holds for smaller values of p, q,
then

T (p, q; r) = T (p− 1, q; r + 1) + T (p, q − 1; r + 1)

=

n−2∑
i=p−1

(
i− 1

p− 2

)
ζ(r + i+ 1, n− 1− i) +

n−2∑
i=q

(
i− 1

q − 1

)
ζ(r + i+ 1, n− 1− i)

+

n−2∑
i=p

(
i− 1

p− 1

)
ζ(r + i+ 1, n− 1− i) +

n−2∑
i=q−1

(
i− 1

q − 2

)
ζ(r + i+ 1, n− 1− i)

=

n−2∑
i=p−1

(
i

p− 1

)
ζ(r + i+ 1, n− 1− i) +

n−2∑
i=q−1

(
i

q − 1

)
ζ(r + i+ 1, n− 1− i)

=

n−1∑
i=p

(
i− 1

p− 1

)
ζ(r + i, n− i) +

n−1∑
i=q

(
i− 1

q − 1

)
ζ(r + i, n− i).

�

If in the preceding result we set p = 1, q = n− 1, it reads

(22) ζ(n) =

n−1∑
i=2

ζ(i, n− i),

which is just the sum theorem for depth 2. But of course these relations give us
more: let’s look at the case n = 5. Besides the sum theorem for depth 2 (p = 1),
for p = 2 we have

(23) ζ(5) =

4∑
i=3

(
i− 1

1

)
ζ(i, 5− i) +

(
3

2

)
ζ(4, 1) = 6ζ(4, 1) + 2ζ(3, 2).

Subtract this from ζ(5) = ζ(4, 1) + ζ(3, 2) + ζ(2, 3) to get

ζ(4, 1) =
1

5
ζ(2, 3)− 1

5
ζ(3, 2).
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It then follows that

ζ(5) =
4

5
ζ(3, 2) +

6

5
ζ(2, 3),

so all the MZVs of weight 5 are rational linear combinations of ζ(2, 3) and ζ(3, 2).
Exercise 9. Work out the relations from Theorem 1 for weight 6.
Exercise 10. Multiply both sides of ζ(2, 2) = 3

4ζ(4) by ζ(2) to show that
3
16ζ(6) = ζ(2, 2, 2).

Since ζ(6) = π6

945 , it follows from the preceding exercise that

ζ(2, 2, 2) =
π6

5040
.

In fact, as shown in [7], there is a general result

(24) ζ(2, . . . , 2︸ ︷︷ ︸
n

) =
π2n

(2n+ 1)!
.

This can be expressed in terms of so-called generating functions as

∞∑
n=0

ζ(2, . . . , 2︸ ︷︷ ︸
n

)x2n =
sinπx

πx
.

In [1] further results of this kind are obtained, including

ζ(4, . . . , 4︸ ︷︷ ︸
n

) =
22n+1π4n

(4n+ 2)!
and ζ(6, . . . , 6︸ ︷︷ ︸

n

) =
6(2π)6n

(6n+ 3)!
.

Exercise 11. Using the previous two exercises and the results of the pre-
vious lecture, show that all MZVs of weight 6 can be written as rational linear
combinations of ζ(3, 3) and ζ(2, 2, 2).

In fact, all MZVs of weight n are rational linear combinations of the weight n
MZVs corresponding to sequences that only have 2’s and 3’s. I conjectured this in
[8], and it was proved recently by Francis Brown [3] with an essential contribution
from Don Zagier [18].

Exercise 12. (For those with some background in combinatorics) Prove that
the number of sequences of weight n that involve only 2’s and 3’s is the nth Padovan
number Pn, where P1 = 0, P2 = 1, P3 = 1, and Pn = Pn−2 + Pn−3 for n ≥ 4.

2. Weighted sum formulas

Gangl, Kaneko and Zagier [5] rewrote Theorem 1 in a clever way. First define,
for n ≥ 3,

Zn(x, y) =

n−1∑
j=2

xj−1yn−j−1ζ(j, n− j).

Then Theorem 1 can be expressed as

(25) Zn(x+ y, x) + Zn(x+ y, y) = Zn(x, y) + Zn(y, x)+

(xn−2 + xn−3y + · · ·+ xyn−3 + yn−2)ζ(n),

as can be seen by checking the coefficient of each monomial xp−1yq−1, for p+q = n.
Exercise 13. Do this.
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The advantage of equation (25) is that it makes it easy to prove various
“weighted sum formulas,” i.e., formulas of the type

n−1∑
j=2

ajζ(j, n− j) = f(n)ζ(n).

Euler’s sum theorem is just the case where aj = 1 for all j and f(n) = 1. This
follows upon setting y = 0 in equation (25). The following result was obtained by
Ohno and Zudilin [11].

Corollary 1. For n ≥ 3,

n−1∑
i=2

2iζ(i, n− i) = (n+ 1)ζ(n).

Proof. Set x = y = 1 in equation (25), and use equation (22). �

If n = 2m is even, we have the following, which was obtained by Euler [4].

Corollary 2. For m ≥ 1,

2m−2∑
i=1

(−1)iζ(2m− i, i) =
1

2
ζ(2m).

Proof. Set x = 1, y = −1 in equation (25). �

Notice that it follows from the preceding corollary and the sum theorem that

m−1∑
i=1

ζ(2i, 2m− 2i) =
3

4
ζ(2m)

and
m∑
i=2

ζ(2i− 1, 2m− 2i+ 1) =
1

4
ζ(2m),

though this seems not to have been noticed in print before [5].
For n odd, there are the following results. The first appears in Euler’s paper

[4].

Corollary 3. If n = 2m+ 1, then

2ζ(2, n− 2) +

2m∑
j=2

(−1)j(n− 2j)ζ(j, n− j) = mζ(n).

Proof. Differentiate both sides of equation (25) with respect to x, and then
set (x, y) = (1,−1). �

Corollary 4. If n = 4m+ 1, then

4m∑
j=2

[
2

j
2 cos

jπ

4
− 2

1
2 sin

(
jπ

2
+
π

4

)]
ζ(j, n− j) = 0.

If n = 4m+ 3, then

4m+2∑
j=2

[
2

j
2 sin

jπ

4
+ 2

1
2 cos

(
jπ

2
+
π

4

)]
ζ(j, n− j) = ζ(n).
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Proof. Set (x, y) = (1, i) in equation (25) and simplify. �

Exercise 14. Carry out the details of the last proof.

3. Which double zeta values are reducible?

It is natural to ask which double zeta values ζ(m,n) can be expressed (as
polynomials with rational coefficients) in terms of the single zeta values ζ(i). Call
such a double zeta value “reducible”. It is easy to see that ζ(n − 1, 1) is always
reducible, using equation (22) together with

ζ(i, n− i) = ζ(i)ζ(n− i)− ζ(n)

for all 2 ≤ i ≤ n− 2. The result is

ζ(n− 1, 1) =
n− 1

2
ζ(n)− 1

2

n−2∑
i=2

ζ(i)ζ(n− i),

which was given by Euler. In fact, all double zeta values (and indeed all multiple
zeta values) through weight 7 are reducible, but this seems to hit a brick wall at
weight 8: no one has been able to write ζ(2, 6) as a rational polynomial in the
single zeta values. Nevertheless, it is possible to reduce ζ(m,n) in the case where
m + n = 2k + 1 is odd, and indeed formulas can be extracted from Euler’s paper
[4]. If m is even and n is odd,

ζ(m,n) =
1

2

[(
m+ n

m

)
− 1

]
ζ(m+ n) + ζ(m)ζ(n)

−
k∑
j=1

[(
2j − 2

m− 1

)
+

(
2j − 2

n− 1

)]
ζ(2j − 1)ζ(m+ n− 2j + 1),

while if m is odd and n is even,

ζ(m,n) = −1

2

[(
m+ n

m

)
+ 1

]
ζ(m+ n)

+

k∑
j=1

[(
2j − 2

m− 1

)
+

(
2j − 2

n− 1

)]
ζ(2j − 1)ζ(m+ n− 2j + 1).

The generalization (due to Zagier and Tsumura idependently) is that a MZV can
be reduced to lower depth if its depth and weight have opposite parity.





CHAPTER 3

The Algebraic Approach

1. Iterated integral representation

Besides the series representation (2), MZVs can be written as iterated integrals.
For example,

(26)

∫ 1

0

dt2
t2

∫ t2

0

dt1
1− t1

=

∫ 1

0

dt2
t2

∫ t2

0

∞∑
j=1

tj−11 dt1 =

∫ 1

0

dt2
t2

∞∑
j=1

tj2
j

=

∞∑
j=1

∫ 1

0

tj−12

j
dt2 =

∞∑
j=1

1

j2
= ζ(2).

By making the associations

x↔ dt

t
and y ↔ dt

1− t
we can encode such integral representations algebraically: for example, the left-
hand side of equation (26) is encoded as xy. The iterated integral corresponding
to xn−1y, that is, ∫ 1

0

dtn
tn

∫ tn

0

dtn−1
tn−1

· · ·
∫ t3

0

dt2
t2

∫ t2

0

dt1
1− t1

,

gives ζ(n) for n ≥ 2.
Exercise 15. Prove this.
Now suppose we have xm−1yxn−1y, or∫ 1

0

dtn+m
tn+m

· · ·
∫ tn+3

0

dtn+2

tn+2

∫ tn+2

0

dtn+1

1− tn+1

∫ tn+1

0

dtn
tn
· · ·
∫ t3

0

dt2
t2

∫ t2

0

dt1
1− t1

.

This is evidently∫ 1

0

dtn+m
tn+m

· · ·
∫ tn+3

0

dtn+2

tn+2

∫ tn+2

0

dtn+1

1− tn+1

∞∑
j=1

tjn+1

jn
=

∫ 1

0

dtn+m
tn+m

· · ·
∫ tn+3

0

dtn+2

tn+2

∫ tn+2

0

∞∑
i=1

∞∑
j=1

ti+j−1n+1

jn
dtn+1 =

∫ 1

0

dtn+m
tn+m

· · ·
∫ tn+3

0

∞∑
i=1

∞∑
j=1

ti+j−1n+2

(i+ j)jn
dtn+2 =

∞∑
i=1

∞∑
j=1

1

(i+ j)mjn
= ζ(m,n).

More generally, the iterated integral xi1−1yxi2−1y · · ·xik−1y represents ζ(i1, . . . , ik)
(and converges exactly when i1 > 1).

We shall use monomials in noncommuting variables x and y to represent MZVs:
we denote the ring of such monomials (with rational coefficients) by Q〈x, y〉. Note

17
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that Q〈x, y〉 includes an identity element 1 as the empty monomial. We write H if
we just want to think about the rational vector space structure of Q〈x, y〉 and not
its (noncommutative) product. For our monomials to represent convergent MZVs,
they must always begin with x and end with y: the rational vector space generated
by such monomials (and 1) is denoted H0. We note that H0 is a subalgebra: that
is, ab ∈ H0 if a, b are in H0. The degree |w| of a monomial w of H is simply the
total number of x’s and y’s in w. We define the depth d(w) of a monomial w to
be the total number of y’s appearing in w. In this notation, the sum and duality
theorems mentioned in Lecture 1 can be stated as follows. The sum theorem is∑

w∈H0, |w|=n, d(w)=k

ζ(w) = ζ(n)

for n ≥ 2. For the duality theorem, define an antiautomorphism τ of the noncom-
mutative polynomial ring Q〈x, y〉 in x and y by τ(x) = y. τ(y) = x; note that
τ2 = id and tau preserves degree.

Exercise 16. Show that if I is associated to the monomial w, then τ(I) (as
defined in Lecture 1) is associated to τ(w).

Then the duality theorem becomes both very easy to state and to prove.

Theorem 2. For monomials w ∈ H0, ζ(w) = ζ(τ(w)).

Proof. Make the change of variable

(t1, . . . , tn)→ (1− tn, . . . , 1− t1)

and observe that it transforms the iterated integral corresponding to w into that
corresponding to τ(w). �

Another important fact about iterated integrals is how they multiply. For
example,∫ 1

0

f(x)dx ·
∫ 1

0

g(y)dy =

∫∫
0≤y≤x≤1

f(x)g(y)dxdy +

∫∫
0≤x≤y≤1

f(x)g(y)dxdy

=

∫ 1

0

f(x)dx

∫ x

0

g(y)dy +

∫ 1

0

g(y)dy

∫ y

0

f(x)dx.

More generally, this type of multiplication is called “shuffle product.” Thought of
on monomials, is consists of all the ways of “shuffling” them together. For example
the shuffle product of xy (associated with ζ(2)) and x2y (associated with ζ(3)) is

xyx2y+x2yxy+2x3y2 +x2yxy+2x3y2 +2x3y2 +x2yxy = xyx2y+3x2yxy+6x3y2

which is associated with ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1). So evidently

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1),

which is very different from the series multiplication

ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).

Exercise 17. Compare these two equations and deduce equation (23) from
the last lecture.

If we formulate the series multiplication (or “stuffle product”) in terms of the
algebraic notation, we get the “harmonic algebra” of [8].
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Another big advantage of this notation is that it makes the derivation theorem
of Lecture 1 much simpler to state. A derivation is just a linear function D from
an algebra to itself with the property that

D(ab) = D(a)b+ aD(b).

Exercise 18. Show that if the algebra has an identity element (that is, an
element 1 so that 1x = x1 = x for every x in the algebra), then any derivation
takes 1 to 0.

Let D be the derivation of Q〈x, y〉 with D(x) = 0 and D(y) = xy. Then D
takes H0 to itself, as does the derivation τDτ . We can state the derivation theorem
as

(27) ζ(D(w)) = ζ(D(τ(w)))

for monomials w ∈ H0.
Exercise 19. Check that if I is associated with the monomial w, then equation

(27) coincides with the derivation theorem (5) for I.
The proof of the derivation theorem in [7] is an elementary but messy partial-

fractions argument. (For a deeper but more transparent argument, see Exercise 23
below.) The derivation theorem seems to have nothing to do with iterated integrals,
but the algebraic notation is working some magic here–just compare equation (27)
with equation (5) in Lecture 1.

2. The shuffle algebra

As above, let H be the underlying graded rational vector space of Q〈x, y〉, with
x and y both given degree 1. We define a multiplication � on H by requiring that
it distribute over the addition, and that it satisfy the following axioms:

S1. For any monomial w, 1� w = w� 1 = w;
S2. For any monomial w1, w2 and a, b ∈ {x, y},

aw1 � bw2 = a(w1 � bw2) + b(aw1 � w2).

We have the following result.

Theorem 3. The �-product is commutative and associative.

Proof. The idea is to use induction on degree. First let’s consider commu-
tativity. It’s enough to show that u � w − w � u = 0 for any monomials u,w.
We induct on |u| + |w|. The result is obvious for |u| + |w| = 0 (since in that case
u = w = 1). Suppose monomials whose degrees sum to < n commute, and let
|u|+ |w| = n. Let u = au′ and w = bw′ for a, b ∈ {x, y}. Then

u� w − w� u = a(u′ � w) + b(u� w′)− b(w′ � u)− a(w� u′)

= a(u′ � w − w� u′) + b(u� w′ − w′ � u) = 0,

since u′ � w − w� u′ = 0 = u� w′ − w′ � u by the induction hypothesis.
For associativity, it is enough to show that

(u� v)� w − u� (v� w) = 0

for all monomials u, v, w. We use induction on |u|+|v|+|w|. The result is immediate
for |u|+ |v|+ |w| = 0, so suppose it holds for |u|+ |v|+ |w| < n and let u, v, w be
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monomials whose degrees sum to n. Write u = au′, v = bv′, and w = cw′. Then

(u� v)� w − u� (v� w) = (au′ � bv′)� cw′ − au′ � (bv′ � cw′)

= (a(u′ � v) + b(u� v′))� cw′ − au′ � (b(v′ � w) + c(v� w′))

= a((u′ � v)� w) + c(a(u′ � v)� w′) + b((u� v′)� w) + c(b(u� v′)� w′)

− a(u′ � (b(v′ � w)))− b(u� (v′ � w))− a(u′ � (c(v� w′)))− c(u� (v� w′))

= a((u′�v)�w−u′�(b(v′�w))−u′�(c(v�w′)))+b((u�v′)�w−u�(v′�w))

+ c(a(u′ � v)� w′ + b(u� v′)� w′ − u� (v� w′))

= a((u′ � v)� w − u′ � (v� w)) + b(0) + c((u� v)� w′ − u� (v� w′)) = 0

where we have used the induction hypothesis. �

So H with the multiplication� is a commutative algebra on the noncommuative
monomials. (This might seem weird at first, but one gets used to it.) When we
want to refer to the ring with additive group H and � as multiplication, we write
(H,�). Recall from the previous section that τ is the anti-automorphism of Q〈x, y〉
the exchanges x and y. It needn’t be true that τ is a homomorphism for the �
product, but it turns out to be.

Theorem 4. τ is an automorphism of (H,�).

Proof. Since evidently τ2 = id, it suffices to show that τ is a�-homomorphism.
Using the axioms S1, S2 above and induction on |w1w2|, it is straightforward to
prove that

w1a� w2b = (w1 � w2b)a+ (w1a� w2)b

for any monomials w1, w2 and a, b ∈ {x, y}. Now suppose inductively that τ(w1 �

w2) = τ(w1)�τ(w2) for |w1w2| < n, and let w1, w2 be monomials with |w1w2| = n.
We can assume both w1 and w2 are nonempty; write w1 = w′1a and w2 = w′2b. Then

τ(w1 � w2) = τ((w′1 � w2)a+ (w1 � w′2)b)

= τ(a)τ(w′1 � w2) + τ(b)τ(w1 � w′2)

= τ(a)(τ(w′1)� τ(w2)) + τ(b)(τ(w1)� τ(w′2))

= τ(a)τ(w′1)� τ(b)τ(w′2)

= τ(w1)� τ(w2).

�

Now order the monomials of H as follows. For any monomials w1, w2, w3, set
w1xw2 < w1yw3; and if u, v are monomials with v nonempty, set u < uv. A
nonempty monomial w is called Lyndon if it is smaller than any of its nontrivial
right factors; i.e., w < v whenever w = uv and u 6= 1 6= v.

Exercise 20. Find all the Lyndon monomials of weight 5.
From [12] we have the following result.

Theorem 5. The commutative algebra (H,�) is a polynomial algebra on the
Lyndon monomials.

The link between the shuffle algebra and MZVs is given by the iterated integral
representation, together with the fact that iterated integrals multiply by shuffle
product. We can state this as follows.



3. THE HARMONIC ALGEBRA 21

Theorem 6. The map ζ : (H0,�)→ R is a τ -equivariant homomorphism.

The shuffle-product structure has been used to prove some MZV identities. For
example, in [2] it is first established that

n∑
r=−n

(−1)r[(xy)n−r � (xy)n+r] = 4n(x2y2)n

in H, and then ζ is applied to get
n∑

r=−n
(−1)rζ((xy)n−r)ζ((xy)n+r) = 4nζ((x2y2)n).

Using the known result (24), which in the algebraic notation is

(28) ζ((xy)k) =
π2k

(2k + 1)!
,

one obtains from this the result conjectured by Zagier [17] several years earlier:

ζ((x2y2)n) =
1

2n+ 1
ζ((xy)2n).

In terms of the sequence notation, this is

ζ(3, 1, 3, 1, . . . , 3, 1︸ ︷︷ ︸
n blocks

) =
1

2n+ 1
ζ(2, . . . , 2︸ ︷︷ ︸

2n

) =
2π4n

(4n+ 2)!
.

3. The harmonic algebra

We can define another commutative multiplication ∗ on H by requiring that it
distribute over the addition and that it satisfy the following axioms:

H1. For any monomial w, 1 ∗ w = w ∗ 1 = w;
H2. For any monomial w and integer n ≥ 1,

xn ∗ w = w ∗ xn = wxn;

H3. For any monomials w1, w2 and integers p, q ≥ 0,

xpyw1 ∗ xqyw2 = xpy(w1 ∗ xqyw2) + xqy(xpyw1 ∗ w2) + xp+q+1y(w1 ∗ w2).

Note that axiom (H3) allows the ∗-product of any pair of monomials to be computed
recursively, since each ∗-product on the right has fewer factors of y than the ∗-
product on the left-hand side. We have the following counterpart of Theorem 3.

Theorem 7. The ∗-product is commutative and associative.

Exercise 21. To prove this it’s enough to show that

u ∗ v − v ∗ u = 0, u ∗ (v ∗ w)− (u ∗ v) ∗ w = 0

for all monomials u, v, w of H. Use induction on depth.
We refer to H together with its commutative multiplication ∗ as the harmonic

algebra (H, ∗).
Exercise 22. Show by example that τ is not a homomorphism of (H, ∗).
We do have counterparts of Theorems 5 and 6, which are proved in [8].

Theorem 8. The commutative algebra (H, ∗) is a polynomial algebra on the
Lyndon monomials.
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Theorem 9. (H0, ∗) is a subalgebra of (H, ∗), and ζ : (H0, ∗) → R is a homo-
morphism.

The axioms above may seem mysterious, but here is a simpler description. Let
H1 be the vector subspace Q1 + Hy of H; it is evidently a subalgebra of (H, ∗). In
fact, since x is the only Lyndon monomial ending in x, it is easy to see that H1 is
the subalgebra of (H, ∗) generated by the Lyndon monomials other than x. Note
that any monomials w ∈ H1 can be written in terms of the elements zi = xi−1y,
and that the y-degree d(w) is the number of factors in w when expressed this way.
We can rewrite the inductive rule (H3) for the ∗-product as

zpw1 ∗ zqw2 = zp(w1 ∗ zqw2) + zq(zpw1 ∗ w2) + zp+q(w1 ∗ w2).

Thus, for example,

z2z1 ∗ z3 = z2(z1 ∗ z3) + z3(z2z1 ∗ 1) + z5(z1 ∗ 1) =

z2(z1(1 ∗ z3) + z3(z1 ∗ 1) + z4(1 ∗ 1)) + z3z2z1 + z5z1 =

z2z1z3 + z2z3z1 + z2z4 + z3z2z1 + z5z1,

corresponding to the fact that

ζ(2, 1)ζ(3) = ζ(2, 1, 3) + ζ(2, 3, 1) + ζ(2, 4) + ζ(3, 2, 1) + ζ(5, 1).

Because the multiplications ∗ and � are quite different, Theorems 6 and 9
imply that the kernel of ζ (that is, the subspace of H0 that ζ sends to 0) is quite
large. At the beginning of this lecture we computed

xy� x2y = xyx2y + 3x2yxy + 6x3y2

and
xy ∗ x2y = xyx2y + x2yxy + x4y

from which follow
ζ(x4y − 2x2yxy − 6x3y2) = 0.

In fact, it has been conjectured that all identities of MZVs come from comparing
the two multiplications. One concrete example is the derivation theorem.

Exercise 23. Show that

y� w − y ∗ w = τDτ(w)−D(w)

for w ∈ H0.



CHAPTER 4

Cyclic Derivations and the Sum Theorem

1. The cyclic derivation theorem

In my first paper on multiple zeta values I discovered and proved the derivation
theorem, but this wasn’t sufficient to prove the sum theorem. But a few years later
I discovered an odd relative of the derivation theorem, which actually has the sum
theorem as a corollary: I call it the cyclic derivation theorem. The proof was
supplied by Yasuo Ohno, and appears in our joint paper [9]. The statement of this
theorem in the sequence notation should be compared to the statement (5) of the
derivation theorem in Lecture 1.

Theorem 10. For any sequence i1, . . . , ik of positive integers with some ij ≥ 2,

k∑
j=1

ζ(ij + 1, ij+1, . . . , ik, i1, . . . , ij−1) =

∑
{j|ij≥2}

ij−2∑
q=0

ζ(ij − q, ij+1, . . . , ik, i1, . . . , ij−1, q + 1).

To see why this is called the “cyclic” derivation theorem, let’s apply it to the
sequence (2, 1, 3, 1). In this case the theorem says

ζ(3, 1, 3, 1) + ζ(2, 3, 1, 3) + ζ(4, 1, 2, 1) + ζ(2, 2, 1, 3) =

ζ(2, 1, 3, 1, 1) + ζ(3, 1, 2, 1, 1) + ζ(2, 1, 2, 1, 2).

This may be contrasted with the derivation theorem applied to the same sequence:

ζ(3, 1, 3, 1) + ζ(2, 2, 3, 1) + ζ(2, 1, 4, 1) + ζ(2, 1, 3, 2) =

ζ(2, 1, 1, 3, 1) + ζ(2, 1, 3, 1, 1) + ζ(2, 1, 2, 2, 1).

In the next section I will give Yasuo’s proof of this result, and in the following one
I will give an algebraic presentation of the theorem very close to (27).

2. An unenlightening (but elementary) proof

Here is a proof of Theorem 10 using partial fractions. For positive integers
i1, . . . , ik, and a nonnegative integer ik+1, define

R(i1, . . . , ik) =
∑

n1>···>nk>nk+1≥0

1

(n1 − nk+1)ni11 · · ·n
ik
k

and

S(i1, . . . , ik, ik+1) =
∑

n1>···>nk+1>0

1

(n1 − nk+1)ni11 · · ·n
ik+1

k+1

.

23
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It is immediate from these definitions that

(29) S(i1, . . . , ik, 0) = R(i1, . . . , ik)− ζ(i1 + 1, i2, . . . , ik).

Also, from
1

n1(n1 − nk+1)
=

1

nk+1

(
1

n1 − nk+1
− 1

n1

)
it follows that

(30) S(i1, . . . , ik, ik+1) = S(i1 − 1, i2, . . . , ik, ik+1 + 1)− ζ(i1, . . . , ik, ik+1 + 1)

and that∑
n1>···>nk+1>0

1

(n1 − nk+1)n1n
i2
2 · · ·n

ik+1

k+1

=
∑

n1>···>nk+1>0

1

ni22 · · ·n
ik
k n

ik+1

k+1

(
1

n1 − nk+1
− 1

n1

)

=
∑

n2>···>nk+1>0

1

ni22 · · ·n
ik
k n

ik+1

k+1

∞∑
n1=n2+1

(
1

n1 − nk+1
− 1

n1

)

=
∑

n2>···>nk+1>0

1

ni22 · · ·n
ik
k n

ik+1

k+1

nk+1−1∑
j=0

1

n2 − j

=
∑

n2>···>nk+1>j≥0

1

(n2 − j)ni22 · · ·n
ik
k n

ik+1

k+1

or

(31) S(1, i2, . . . , ik, ik+1) = R(i2, . . . , ik, ik+1 + 1).

Now we prove two results.

Proposition 4.1. For positive integers i1, . . . , ik and a nonnegative integer
ik+1, the series R(i1, . . . , ik) converges if any of i1, . . . , ik exceeds 1, and S(i1, . . . , ik, ik+1)
converges if any of i1, . . . , ik, ik+1 + 1 exceeds 1.

Proof. First, from (29) we have

S(i1, . . . , ik, ik+1) ≤ S(i1, . . . , ik, 0) ≤ R(i1, . . . , ik)

so that S(i1, . . . , ik+1) is bounded if R(i1, . . . , ik) is. Also, if i1 = 1 equation (31)
implies S(1, i2, . . . , ik+1) ≤ R(i2, . . . , ik, ik+1 + 1), so the statement about the S’s
follows from the statement about the R’s. To bound the R’s, it suffices to treat the
case where i1 + · · ·+ ik = k + 1. Then

R(2, 1, . . . , 1︸ ︷︷ ︸
k

) =
∑

n1>···>nk+1≥0

1

n21(n1 − nk+1)n2 · · ·nk

≤
∑

n1>···>nk+1≥0, n1≥j>0

1

n21jn2 · · ·nk

= ζ(3, 1, . . . , 1︸ ︷︷ ︸
k−1

) + kζ(2, 1, . . . , 1︸ ︷︷ ︸
k

) +

k−1∑
i=1

ζ(2, 1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1︸ ︷︷ ︸
k−i−1

).

Finally, by equations (31) and (29) we have

R(1, 2, 1, . . . , 1) = S(1, 2, 1, . . . , 1, 0) + ζ(2, 2, 1, . . . , 1) =

R(2, 1, . . . , 1) + ζ(2, 2, 1, . . . , 1)
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and similarly we can bound all the sums R(1, . . . , 1, 2, 1, . . . , 1). �

Proposition 4.2. Suppose i1, . . . , ik are positive integers, at least one of which
exceeds 1. Then

R(i1, . . . , ik)−R(i2, . . . , ik, i1) = ζ(i1+1, i2, . . . , ik)−
i1−2∑
j=0

ζ(i1−j, i2, . . . , ik, j+1).

Proof. By the preceding result, R(i1, . . . , ik) converges. Now apply equation
(29), then equation (30) i1 − 2 times, and finally equation (31):

R(i1, . . . , ik) = S(i1, . . . , ik, 0) + ζ(i1 + 1, i2, . . . , ik)

= S(i1 − 1, i2, . . . , ik, 1)− ζ(i1, . . . , ik, 2) + ζ(i1 + 1, i2, . . . , ik) = · · · =

S(1, i2, . . . , ik, i1 − 1) + ζ(i1 + 1, i2, . . . , ik)−
i1−2∑
j=0

ζ(i1 − j, i2, . . . , ik, j + 1)

= R(i2, . . . , ik, i1) + ζ(i1 + 1, i2, . . . , ik)−
i1−2∑
j=0

ζ(i1 − j, i2, . . . , ik, j + 1).

The conclusion then follows. �

To obtain Theorem 10, note that

0 = (R(i1, . . . , ik)−R(i2, . . . , ik, i1)) + (R(i2, . . . , ik, i1)−R(i3, . . . , ik, i1, i2))

+ · · ·+ (R(ik, i1, . . . , ik−1)−R(i1, . . . , ik))

and apply the preceding result to each expresssion in parentheses.

3. Cyclic derivations

In the last lecture we introduced derivations of an algebra. More generally, if
B is a 2-sided A-algebra (that is, you can multiply an element of B on either side
by a element of A to get an element of B) and δ : A→ B is a linear function, then
we say that δ is a derivation if

δ(pq) = δ(p)q + pδ(q)

as elements of B for all p, q ∈ A.
Now we will define cyclic derivations (introduced by Rota, Sagan and Stein

[14], but we use the version due to Voiculescu [16]). Given a (noncommutative)
algebra A, we can make A⊗A a 2-sided A-algebra via

p(t⊗ s) = pt⊗ s, (t⊗ s)q = t⊗ sq

for any p, q, s, t ∈ A. Let µ : A⊗A→ A be the reverse of the multiplication on A,
i.e., µ(s ⊗ t) = ts. A cyclic derivation from A to itself is a composition µδ, where
δ : A → A ⊗ A is a derivation. Specifically, we are interested in the case where
A = H as in the last lecture, and δ = Ĉ is the derivation H→ H⊗H with Ĉ(x) = 0

and Ĉ(y) = y ⊗ x. Then, for example,

C(x3yxy) = µ(x3(y ⊗ x)xy + x3yx(y ⊗ x)) = µ(x3y ⊗ x2y + x3yxy ⊗ x)

= x2yx3y + x4yxy.
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Theorem 11. For any monomial w ∈ H1 that is not a power of y,

ζ(C(w)− τCτ(w)) = 0.

In the case above, we have

τCτ(x3yxy) = τC(xyxy3) =

τµ(x(y ⊗ x)xy3 + xyx(y ⊗ x)y2 + xyxy(y ⊗ x)y + xyxy2(y ⊗ x))

= τµ(xy ⊗ x2y3 + xyxy ⊗ xy2 + xyxy2 ⊗ xy + xyxy3 ⊗ x))

= τ(x2y3xy + xy2xyxy + xyxyxy2 + x2yxy3)

= xyx3y2 + xyxyx2y + x2yxyxy + x3yxy2

and so the theorem says

ζ(3, 4) + ζ(5, 2) = ζ(2, 4, 1) + ζ(2, 2, 3) + ζ(3, 2, 2) + ζ(4, 2, 1),

i.e., the result of Theorem 10 applied to the sequence (2, 4).
Exercise 24. Show that Theorem 11 implies Theorem 10.
Exercise 25. Contrast the derivation and cyclic derivation theorems as applied

to the sequence (3, 3, . . . , 3) (or equivalently as applied to the monomial (x2y)n).
Now we show that Theorem 11 implies the sum theorem. Let u = x+ ty. Then

the coefficient of tk in xun−2y is the sum of monomials w ∈ H0 with |w| = n and
d(w) = k. Also, computation shows

C(un−1) = (n− 1)txun−2y, τCτ(un−1) = (n− 1)xun−2y.

Then it follows from Theorem 11 that the coefficients of tk and tk−1 in xun−2y
are the same: i.e., this coefficient is independent of k. In particular, the coefficient
equals the constant term of xun−2y, which is ζ(n).
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