
PROBLEMS, SECTION I

Kn is the complete graph on n vertices. That is it is the graph which consists of n vertices
and all possible edges between them.

1. Graphs and Feynman graphs

A connected Feynman graph is 1PI if removing any one internal edge leaves the graph
connected. This property is called 2-edge-connected in graph theory.

A graph is internally 6-connected if the only ways to remove less than 6 internal edges
and disconnect the graph leave at most one component that is not an isolated vertex.

(1) Draw all graphs with at most 3 loops and at most 3 external edges in QED.
(2) Draw all photon propagator graphs with at most 5 loops in QED. How many are

connected? How many are 1PI? How many connected 1PI photon propagator graphs
are there at n loops.

(3) Draw all graphs in φ4 with 4 external edges at 4 loops. How many are connected?
How many are 1PI?

(4) Write a program to generate all connected 1PI graphs in φ4 with 4 external edges
and a given number of loops. How fast is your program? There are some things built
in to sage which might help you.

(5) Modify the previous program to generate only internally 6-connected graphs. What
proportion of all such graphs are internally 6-connected?

2. Graphs axiomatically

Suppose we have a set S with some structure. An automorphism is a set bijection from S
to S which preserves the structure. For example we can view graphs as a set V of vertices
with the edges as the added structure. Then an automorphism of a graph is a bijection f
from V to V with the property that if v1 and v2 were joined by an edge then f(v1) and f(v2)
are also joined by an edge and vice versa.

(1) Take a small graph like K3. Write it out in each of the axiomatic forms we discussed.
Can you think of more ways to axiomatize graphs?

(2) Draw a graph with no nontrivial automorphisms (axiomatized as in the above exam-
ple).

(3) Different ways of viewing graphs give different meanings of automorphism. Suppose
we view a graph as a set of half edges and the added structure is the pairing of half
edges into internal edges along with the collecting of half edges into vertices. Find a
graph with a different number of automorphisms this way than the other way. Can
you find a relation or inequality between these different ideas of automorphism?

(4) What happens to the idea of automorphism if we view a graph as a set of edges with
the structure those sets of edges which form vertices?

(5) Take your hand drawn φ4 graphs from the previous section and calculate the number
of automorphisms they each have.
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3. Spanning trees

(1) Find all spanning trees of K4. Find all cycles of K4.
(2) We commented that detL, detL′, and detM were all 0. Give an intuitive explanation

for this. Prove it.
(3) We built the graph Laplacian L out of E. Give a rule to read L directly off the graph.

Extend your rule to construct L′ directly from the graph.
(4) Consider random walks on a graph where if at a given step the walk is at vertex i

then at the next step we move to one of the neighbours of i with equal probability.
Let P be the matrix with

pi,j =

{
1/deg(i) if there is an edge from i to j

0 otherwise

Suppose the walk starts at vertex 1. Explain why the probabilities for where the
walk will end after one step are given by

P t


1
0
...
0


Explain why the probabilities for where the walk will end after n steps are given by

(P t)n


1
0
...
0


Relate P to the matrices we discussed.

(5) Take a large graph and implement the process from the previous question. What
does the result look like? Try different start vectors.

(6) Look up more about random walks on graphs. What are the key results? How are
they proved? What are random walks on graphs good for?

(7) Determine how to calculate Ψ in sage. How fast is it?

4. The Matrix-tree theorem

(1) How many different characterizations can you find for the sign of a permutation?
(2) Arguably the nicest formula for the determinant is

det


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2.n

...
...

. . .
...

an,1 an,2 · · · an,n

 =
∑
σ∈Sn

sign(σ)a1,σ(1)a2,σ(2) · · · an,σ(n)

where Sn is the set of permutations of {1, 2, . . . , n}. Prove this formula.
(3) How to computers calculate determinants?
(4) Take your favorite determinant fact and prove it just using multilinearity, alternation

and normalization. Did you need all the properties? If you don’t have a favorite
determinant fact try det(AB) = det(A) det(B).
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(5) Prove the Cauchy-Binet formula.

5. Feynman integrals

(1) In momentum space, how many variables are left to integrate once momentum con-
servation is taken into account? Try some examples until you see what’s going on.

(2) Write the Feynman integral for the following graph in momentum space, position
space, and parametric space.

(3) The matrix which shows up when converting from momentum space to parametric
is not the same as the other matrices we’ve seen so far. Starting with some small
examples can you relate this new matrix to one of the old matrices for some other
graphs? Does it always work?

(4) Try integrating K4 parametrically. Do as much as possible symbolically before you
work numerically? What number do you get in the end?

(5) Try two parametric integrations on some small graphs. Can you give some meaning
to the polynomials which appear in the denominator? What about after three?

(6) Try to integrate the graph from question 2. What goes wrong? Can you characterize
the graphs/subgraphs for which this problem will occur?

(7) Redo your characterization from the previous question using only the information of
the external edges of the graph (assuming all graphs are in φ4). This is related to
the question of renormalizability.
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