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Abstract. Given a metabolic network in terms of its metabolites and reactions, our goal
is to efficiently compute the minimal knock out sets of reactions required to block a given
behaviour. We describe an algorithm which improves the computation of these knock out
sets when the elementary modes (minimal functional subsystems) of the network are given.
We also describe an algorithm which computes both the knock out sets and the elementary
modes containing the blocked reactions directly from the description of the network and
whose worst-case computational complexity is better than the algorithms currently in use
for these problems. Computational results are included.

1. Introduction

Systems biology studies the complex systems which occur at many levels of biology. Such
systems involve large numbers of components and interactions. We consider metabolic net-
works, that is, a set of metabolites that can be interconverted by biochemical reactions. A
fundamental question about metabolic networks is to find knock out strategies that block
the operation of a given reaction or set of reactions. A target reaction is blocked if it can-
not operate in a steady state. Some reactions can be easily knocked out, while others may
be expensive or impossible to knock out directly. In this case, we consider the problem of
blocking target reactions by inhibiting other reactions so that the targets cannot continue
in a steady state. Some applications of this problem are outlined in [KG04] and [Kla06],
and an implementation has been included as part of CellNetAnalyzer [KSRG07], a MATLAB
package for analyzing cellular and biochemical networks.

In this paper, we consider methods of computing the minimal sets of reactions that need
to be disabled to block a given target. We call such a knock out set a cut set. We remark
that we focus only on the (inclusion-wise) minimal cut sets since these are the cheapest ways
of blocking reactions in terms of effort and impact on the system. The list of minimal cut
sets contains the same information as the full list of cut sets but is much shorter.

We consider two main approaches. The first is to build the hypergraph of elementary
modes and then compute the minimal cut sets as the transversal of this hypergraph. This
strategy has been employed successfully in [KG04], however we observe we can substantially
improve the computation of the transversal hypergraph. The second approach is to compute
the minimal cut sets directly using the ideas of Gurvich and Khachiyan [GK99] and others on
generating monotone boolean formulae. This procedure also generates the set of elementary
modes employing a given set of reactions as a by-product, which is a potentially useful
feature.

We expect that these methods can be adapted to more of the complex systems that are
typical at many levels of biology. Indeed, the question of finding minimal cut sets can be
abstracted to finding the minimal failure modes of a network, which is a natural question
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arising in various contexts. Some suggestions for using these methods in other types of
biochemical networks are presented in [KSRL+06].

2. Preliminaries

We model a metabolic network as a number m of metabolites involved in a set Q of q
reactions (where q is typically between m and 2m). For our purposes, these reactions can be
encoded in a m×q matrix N whose columns encode the metabolites produced and consumed
by a given reaction. The matrix N is known as the stoichiometric matrix. The reactions
may be divided into two types: reversible reactions that can either produce a given output
from a given input or vice-versa; and irreversible reactions which cannot operate in reverse.
Let S be the index set of the reversible reactions and U = Q \ S be the index set of the
irreversible reactions. We call our set of target reactions T , for simplicity we will usually
assume they are irreversible, i.e. T ⊆ U .

Given such a network, we are interested in its potential steady-state flux vectors. In steady
state, the reaction rates balance the metabolites, i.e. for each metabolite it holds that the
sum of the rates of all reactions consuming the metabolite equals the sum of the rates of the
reactions producing it. We can represent such a steady state as a vector x ∈ Rq s.t. Nx = 0
and xi ≥ 0 for all i ∈ U . Then we can formally define a cut set C ⊂ Q as a subset such that
the system:

{x ∈ Rq|Nx = 0, xi ≥ 0 ∀i ∈ U, xc = 0 ∀c ∈ C} (1)

has only solutions with xt = 0 for all t ∈ T . A minimal cut set (MCS) is simply a cut set
none of whose proper subsets is a cut set.

A concept closely related to minimal cuts sets is that of an elementary mode. An elemen-
tary mode (EM) is a minimal set of reactions that can exist in a steady state. The importance
of EM’s in metabolic networks is discussed, for example, in [SFD00] and [SKB+02]. EM’s
are, up to a scaling factor, support minimal solutions to the system:

{x ∈ Rq|Nx = 0, xi ≥ 0 ∀i ∈ U} (2)

The problem of computing the EM’s of a given system has a nice geometric formulation: it
reduces to finding the extreme rays of the cone {r|N̂r = 0, r ≥ 0}, where N̂ is N modified
to represent reversible reactions as opposite pairs of irreversible reactions. This is described
in [GK04]. The EM’s can then be computed by applying the double description method (see
for example [FP96]) to this cone. As observed in [GK04], EM’s are characterized up to a
constant by their binary support patterns. Hence we will also use the term EM to refer to
this support pattern, which we can view as a set of reactions.

For the purposes of finding cut sets for a given target T , we consider only the EM’s that
include at least one target reaction. Note that cut sets are exactly the sets of reactions that
intersect each of these EM’s. The collection E of these EM’s defines a Sperner hypergraph
H = (R, E) on the set of reactions. (A hypergraph is Sperner if it has no nested edges.)
The key observation is that cut sets are exactly the sets that intersect every edge of H. In
the terminology of hypergraphs such sets are known as hitting sets or vertex covers. The
collection of all minimal hitting sets for H is itself a hypergraph H′ = (R, E ′) which is dual
to H in the sense that its minimal hitting sets are the edges of H′. The hypergraph H′ is
known as the transversal hypergraph of H and is denoted Tr(H).
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The approach to computing minimal cut sets presented in [KG04] is to first compute the
EM’s hypergraph H via the double description method and then compute Tr(H). The com-
putation of Tr(H) is done through an enumeration scheme. This succeeds in solving four
large scale networks arising in biomass synthesis in E.coli. The computation benefits sub-
stantially from effective preprocessing, but nevertheless consumes a lot of time and memory.
A faster and more memory efficient algorithm is described in Section 3.

The double description method and the algorithms of Section 3 have uncertain complexity.
For this reason, we give in Section 4 an algorithm which generates both the EM’s and the
MCS’s directly from the stoichiometric matrix which has a surprisingly good complexity
bound of mpoly(log m) in the output size. See [CLMS+07] for an overview of the known
complexity results regarding EM and MCS algorithms.

Remark 2.1. We could consider weighting the reactions and looking for a single minimum
weight cut set. This assumes that the costs are independent, which is questionable - it may
be possible to attain some economies when knocking out multiple reactions. Additionally,
designing a weighting function for blocking a metabolic reaction requires quantifying the
costs to disable various reactions, which is a labour intensive task. Since we can in some
interesting cases produce the entire list of minimal cut sets, we view generating the entire
list as a suitable goal.

If we do want to find a minimum weight cut set, this problem is the minimum set cover
problem on the dual hypergraph produced by interchanging the roles of the vertices and edges
of H. Minimum set cover is a classical NP-complete problem, see for example [ADP80].

2.1. Characteristics of metabolic networks. In our model the stoichiometric matrix N
is a real m × q matrix. Typically, we would expect N to have many zero entries as any
particular reaction will only involve a few metabolites. Those non-zero entries will usually
be small integers since chemical reactions are discrete rearrangements of molecules. Note
that a column describes the same reaction when it is scaled by a positive factor. Recall
that reactions may be reversible or irreversible. The hypergraphs of EM’s and MCS’s are
0-1 matrices H and H′ determined by N . Each row of H (H′) is an indicator function for
a given EM (MCS), that is, a row indicates the complement of a maximal C such that (1)
has a solution with xt > 0 for some t ∈ T (indicates a minimal C such that (1) has only
solutions with xt = 0 for all t ∈ T ). Both H and H′ have the same number of columns as N ,
but in our applications they will have many more rows. The orders of the rows and columns
are arbitrary, but they can affect the performance of the algorithms.

2.1.1. Typical behaviour. We understand from biological considerations that we would expect
to get many small hitting sets. The intuition is that such networks have some important
reactions whose loss quickly impairs the operation of the network. This can be quantified
through “fragility coefficients” [KG04], which are an average of MCS sizes. Their examples
produced fragility coefficients in a narrow range.

2.1.2. Test cases. The motivating problems from [KG04] are four networks obtained from
studying biomass synthesis in E.coli. These are the growth modes for substrates acetate,
succinate, glycerol and glucose from the network presented in [SKB+02]. The objective is
to block the single target reaction representing growth in each of these networks. For the
purposes of this computation, a pair of reactions corresponding to the same multifunctional
enzyme (transketolase) has been combined. This modifies the input hypergraph by merging
a pair of vertices, creating some nested edges.
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3. Computing minimal cut sets via elementary modes

The method proposed in [KG04] to compute minimal cut sets involves two steps. The
first step is to compute the set of EM’s via polyhedral methods, and the second step is to
compute the transversal hypergraph of the EM’s hypergraph. Their method of computing
the transversal hypergraph requires enumerating many possible partial solutions. As a result
it consumes substantial time and memory, and is ripe for improvement.

3.1. Algorithms. In this section we sketch algorithms for the transversal hypergraph prob-
lem, including the enumeration algorithm of [KG04] and the algorithm described by Berge
in [Ber89]. For the latter, we describe several useful modifications.

3.1.1. Enumeration algorithm. This is the original algorithm implemented in FluxAnalyzer
[KG04], the predecessor to CellNetAnalyzer. Beginning at size 1, it tests for subsets of a
given size. It maintains a list of unused partial cut sets to avoid full enumeration of the
subsets.

The problem with this algorithm is that the list of partial cut sets can grow quite quickly.
Nevertheless, it can solve large problems. A major reason for this is the abundance of small
cut sets, which keeps the list of partial cut sets manageable.

3.1.2. Berge’s algorithm. This algorithm [Ber89] orders the edges e1, e2, . . . , er of the hyper-
graph H, and then computes in sequence the transversal of each hypergraph Hi consisting
of edges e1 through ei. This can be done by taking all the edges created by adding a vertex
from ei to an edge in Hi−1 and keeping all the inclusionwise-minimal edges. H1 has an edge
consisting of a single vertex for each vertex from e1.

The performance of this algorithm depends on the size of the intermediate transversals
generated, which in turn depends on the order of the vertices. Intuitively we do not expect
the size of a transversal of a subgraph to substantially exceed the larger of the size of the
initial graph and the size of the final transversal hypergraph. In practice this does often
turn out to be the case, but Takata exhibited an example where an intermediate transversal
will have size Θ(mlog(log(m))) in the combined size of the input and output for any ordering
of the edges, see [Hag07]. We do not know of any non-trivial upper bounds for the size of
intermediate transversals or how to produce favourable edge orderings when they exist.

A naive implementation of Berge’s algorithm will be slow, but there are a number of
modifications that can make it more effective. The main bottleneck is the removal of superset
rows from the list generated from Hi−1 and ei. We do this in time O(n2) in the length of the
list using the simple algorithm described below. There are algorithms for superset removal
that work in time O(n2/ log n) or slightly better, see [Pri95] and [SE96]. It is known, that
there is a lower bound of O(n2/ log2 n), if the complete subset lattice is constructed by
algorithm, see [Pri99]. It appears that no non-trivial lower bounds are known for superset
removal alone, and we remark that it is an interesting question.

When implementing Berge’s algorithm, we can avoid generating some edges that are clearly
supersets before entering the removal phase. For instance whenever an edge f of Hi−1

intersects ei, we can add only that edge to the list of candidates for Hi since f will be
generated as an edge using the common vertex with ei and all edges generated using the
other vertices of ei will contain this edge. Additionally, we can see that the list of edges
retained in this way will itself be superset free since it is a subhypergraph of Hi−1. Hence we
only need to check which of the new edges generated are supersets of these retained edges:
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newly generated edges cannot be subsets of edges from Hi−1 since they are edges from Hi−1

with an additional vertex, and if f1 ∪ v1 ⊂ f2 ∪ v2 in the new edge list, then f1 must contain
v2 and hence would in fact be in the retained edges list.

Our implementation of Berge’s algorithm is now included in CellNetAnalyzer.

3.1.3. Others. Several algorithms have recently been proposed which build on the Berge
algorithm and are effective for some problems, see for example [BMR03] and [KS05]. A nice
recent survey of methods for computing transversals is [EMG07]. It focuses on work based
on the ideas of Fredman and Khachiyan [FK96] concerning generation of logical formulae.
These methods provide better theoretical performance and we consider them in Section 4.

3.2. Implementation. While Berge’s algorithm is well known, naive implementations of
it are quite slow. Modifications of Berge’s algorithm, such as the ones mentioned in Sec-
tion 3.1.3 have apparently yielded good results, but we know of no public implementations of
such an algorithm. Thus we implemented our own version of the algorithm described in Sec-
tion 3.1.2. We used MATLAB because it is the platform for FluxAnalyzer and CellNetAnalyzer.
Our code is freely available for academic use [HKS07].

We tested our code on the examples of [KG04]. These are obtained from the growth-related
EM’s calculated in [SKB+02] via simple modifications described in Section 3.2.1. Our results
are presented in Section 3.2.4. Below we describe some details of our implementation, as well
as the original FluxAnalyzer implementation. We used as much of the FluxAnalyzer setup
as possible, including input data structures and pre- and post-processing code to facilitate
comparison between the core algorithms.

3.2.1. Preprocessing. Beginning from the computed full set of EM’s, we first select only those
containing at least one of the target reactions. As mentioned in Section 2.1, some groups
of reactions may be catalyzed by the same multifunctional enzyme. These reactions are cut
simultaneously by disabling such an enzyme. We combine the reactions corresponding to
such groups by a logical “or” operation as the corresponding elementary mode is disabled if
any of its constituent reactions are disabled. This merges vertices in the input hypergraph;
the merged vertices in the new modes represent the set of reactions blocked by the enzyme.
In our examples there is only one target reaction (biomass synthesis) and one multifunctional
enzyme (transketolase). This gives us our initial hypergraph H of modes that include the
target reaction.

There are several further preprocessing steps applied to H. The first is to scan for zero
rows and columns, which should not occur. The second is to find columns of ones, which
correspond to cut sets of size one and can be noted and removed until postprocessing. Next
duplicate columns are identified. They are treated as a single column and then reexpanded
during post-processing. In terms of the hypergraph, they represent vertices that are in
exactly the same set of edges, and can thus be merged during the calculation.

Finally, for Berge’s algorithm, we remove rows that are supersets of other rows. Our cur-
rent implementation does this in time Ω(m2). Superset or duplicate rows may be introduced
when merging vertices corresponding to multifunctional enzymes. In our examples, about
20% of the rows in H are supersets of other rows, these come from the pairs of EM’s that
contain only one of the transketolase reactions, each pair contains one EM using transketo-
lase1 and transaldo, and one EM instead using transketolase2. The first of these becomes
a superset of the second upon merging the two columns. Removing these supersets in pre-
processing cut the observed running time by about 30%. Removing superset rows does not
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speed up the algorithm in FluxAnalyzer, whose bottleneck is generating the possible cut sets
of a given size.

3.2.2. Postprocessing. Following the application of either algorithm to the hypergraph pro-
duced in Section 3.2.1, there is a small amount of postprocessing that needs to be done.
Merged vertices are reexpanded: each cut set containing a merged vertex v will be replaced
by cut sets containing exactly one of the vertices that were merged into v. Size one cut
sets will be introduced for each column of ones that was removed prior to the calculation.
Finally, the cut sets involving reactions corresponding to a multifunctional enzyme are split
into cut sets containing the constituent reactions.

3.2.3. Coding issues. Because we are working with large matrices, memory use is a key
consideration, it is essential to use a bit-level representation of the binary matrices describing
the EM’s and MCS’s. This is done in the implementation of [KG04].

We had to accommodate MATLAB’s strengths and weakness: we obtained substantial time
savings through small changes in the main bottleneck routine. This routine removes the rows
from one list that are supersets of rows from another. Since memory allocation in MATLAB
is slow rather than resizing the matrix when superset rows are identified, we mark rows for
removal in a pass through the matrix and then we generate a single new matrix containing
those rows. It is also useful to take advantage of MATLAB’s internal parallelization. MATLAB can
quickly check a single row for super- or sub-setness against an entire matrix using a couple
of bitwise comparisons. We always cycle through the rows of the shorter of the two lists and
check its rows against the longer list.

3.2.4. Computational results. In this section we compare the performance of the transversal
hypergraph code written for FluxAnalyzer to our implementation of Berge’s algorithm now
included in CellNetAnalyzer. Our test base is the four EM problems from [KG04] (see
Section 2.1.2) and their hypergraph transversals. The transversals are denoted by primes.

We first compare the algorithms from the point of view of the largest intermediate lists
generated. This tells us how much memory each algorithm uses, and gives an idea of how
fast it can run. In the case of the FluxAnalyzer algorithm, the measure is the largest list
of partial cut sets generated. In the case of the Berge algorithm, the measure is the largest
intermediate transversal generated before removing nested subsets. Due to the reductions
of Section 3.2.1, this sometimes turned out to be smaller than output it generated after
postprocessing. Results are in Table 1. We used as inputs both the EM’s found for the
networks described in Section 2.1.2 and the dual hypergraphs containing the MCS’s that we
computed (denoted with a ’).

We record the number of columns and rows both before and after preprocessing. The pre-
processing reduces the problem size substantially mainly by removing columns corresponding
to reactions which form cut sets by themselves. The number of output rows is given before
and after postprocessing.

The FluxAnalyzer routine was not able to solve the dual problems due to memory limita-
tions. This routine is much better at converting EM graphs to MCS graphs than vice versa
because many of the MCS’s are small in these instances. For the given examples, all the
EM’s are large, so the computation begins by building a long list of partial cut sets.

While Berge’s algorithm provides no complexity guarantees, it worked very well for these
problems. Of particular note is that, unlike the FluxAnalyzer algorithm, the information
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Problem: acet acet’ succ succ’ glyc glyc’ gluc gluc’

Input columns 104 104 104 104 105 105 105 105
Preprocessed columns 21 98 26 101 28 103 34 103
Input rows 363 245 3 421 1 255 9 479 2 970 21 592 4 225
Preprocessed rows 289 244 2 722 1 254 7 472 2 969 18 481 4 224
Raw output rows 54 280 159 2 589 376 7 047 918 18 481
Final output rows 245 289 1 255 2 722 2 970 7 472 4 225 18 481
FluxAnalyzer largest 3 563 – 69 628 – 342 025 – 902 769 –
Berge largest 94 296 304 2 669 657 7 047 1 714 18 569
FluxAnalyzer time 5.1 – 633.5 – 8 696.2 – 54 099.1 –
Berge time 0.7 1.1 7.1 35.8 29.6 215.0 206.5 727.4

Table 1. Sizes of intermediate lists generated in computing transversals and
computation times.

carried by Berge’s algorithm during its intermediate stages was never much larger than the
size of the final output prior to preprocessing.

We also give running times in seconds in Table 1. Both codes are written in MATLAB,
take identical inputs, and use the same preprocessing code as noted in Section 3.2.1. These
comparisons were run on a Sun Fire V890 with 32 GB memory and 16 1200 MHz processors.
Note that running times include some preprocessing, such as removing duplicate rows for
Berge, but excludes postprocessing. This method of reporting was used in [KG04].

4. Computing Minimal Cut Sets Directly

In this section, we consider methods of generating the MCS’s directly from the stoichio-
metric matrix. The techniques outlined here are based on an algorithm of Fredman and
Khachiyan [FK96] for dualizing boolean functions. They offer better complexity guaran-
tees than the algorithms of Section 3. They work directly from the stoichiometric matrix
for a network and generate the hypergraph of EM’s containing the blocked reactions as a
byproduct of the computation.

4.1. Algorithm. The cut sets generated by a given stoichiometric matrix define a boolean
function, that is a function that takes a binary pattern of included reactions as input, and
yields 1 if this set of reactions is a cut set, and 0 if it is not. Further, this is a monotone
function in the sense that if a given set is a cut set, then any superset of that set is also a cut
set. Thus the problem of finding minimal cut sets can be viewed as a problem of representing
such a boolean function via its minimal true assignments. The support of an EM is then the
complement of a maximal false assignment.

A monotone boolean function can be represented uniquely both by its minimal true assign-
ments and its maximal false assignments. The process of converting from one representation
to the other is sometimes called dualization, and is equivalent to the hypergraph transver-
sal problem. Fredman and Khachiyan [FK96] proposed an algorithm that generates the
transversal incrementally using an algorithm that is slightly superpolynomial in the size of
the graph and the transversal. This key idea in this algorithm is to recurse on a variable
that occurs with relatively high frequency.
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As described in [GK99], this algorithm can be implemented from a function evaluation
oracle, producing both the hypergraph of minimal true assignments and its transversal in
mo(log(m)) oracle calls, where m is the combined size of the two hypergraphs. This fits very
well with our problem: given the stoichiometric matrix, we want to generate both the MCS’s
and the EM’s. Note that the boolean function characterizing the cut set is monotone because
every superset of a cut set is again a cut set.

We remark that the amount of memory required to generate the next clause is bounded by
mpoly(log m), while the worst-case memory blow up for Berge is unknown, but not polynomial.

4.2. Implementation. The algorithm of [FK96] gives remarkable theoretical results, but
the only implementation we know of is that of [BEGK06]. Their code is not public and uses
hard-coded oracles different from the one for our problem. So we implemented a prototype of
the Fredman-Khachiyan algorithm with a suitable oracle, again in MATLAB for easy comparison
to FluxAnalyzer and the results in Section 3.2. We emphasize, though, that this algorithm
proceeds directly from the stoichiometric matrix, in contrast to the Berge algorithm, which
requires the completed computation of the EM’s as input.

4.2.1. Oracle. We test whether a given set C is a cut set by checking if the system (1) has
any solutions with xt > 0 for some t ∈ T . This is a linear programming feasibility problem,
and thus can be solved in polynomial time. We do this via an external call to CPLEX [ILO07],
which is known to have a fast and reliable LP solver. We can test for non-trivial solutions
by maximizing the sum of the target variables

∑
i∈T xi subject to (1). If this is greater than

zero or unbounded we have a non-trivial solution.

4.2.2. Duality checker. Using this oracle, we implemented a version of the “Algorithm A”
duality checker from [FK96]. This checker either verifies that our current collections of EM’s
and MCS’s form dual hypergraphs, in which case both sets are complete and we are done, or
it finds a set of reactions that is not a superset of any current EM, and whose complement
is not a superset of any current MCS. Given such a clause we use the oracle to check if it is
a mode or if its complement is a cut set. If it is a mode, we test whether it remains a mode
upon removing in turn each of its constituent reactions – if the resulting set is no longer
a mode, we return the removed reaction to the set, otherwise it stays out. In this way we
obtain an EM, which we add to our list. Similarly, given a cut set, we obtain an MCS.

The essence of the algorithm is to recurse on a frequently occurring reaction in one of the
lists until we arrive at a trivial case. The recursion then tests separately if duality holds
assuming that this variable is true and assuming that it is false. By taking a frequently
occurring variable, Fredman and Khachiyan ensure that the sizes of the lists decrease fast
enough to guarantee that the algorithm runs in time mO(log2(m)), where m is the current joint
length of the two lists. As with Berge’s algorithm, we find that the bottleneck is removing
supersets from lists: when we recurse on a reaction some of the elements of the reduced lists,
which omit this reaction, will no longer be minimal. These must be removed, and this takes
O(m2) time.

Fredman and Khachiyan also provide an “Algorithm B” which achieves further economy
through observing some interdependencies in the two subproblems. This reduces the time
guarantee to mo(log(m)), but the resulting algorithm is much more complicated, so we did not
implement a prototype.

We did try several variations of the simpler Algorithm A. We found some useful corners
to cut: it is helpful to short circuit the recursion by treating more base cases than suggested
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by the algorithm. We can substantially reduce the number of superset removal calls required
by doing them only when necessary before recursing rather than at the start of the checking
routine.

We ran our code on the stoichiometric matrices that are used to generate EM’s in [SKB+02].
Our oracle tests if a set of reactions blocks the growth reaction, the two transketolase re-
actions are treated as a single reaction for the purposes of blocking. Thus the EM’s we
generate use a single bit to indicate if either of the two reactions are active. As with the
preprocessing of Section 3.2.1 this merges certain EM’s.

Problem acet succ glyc gluc

EM’s 289 2 722 7 472 18 481
MCS’s 245 1 255 2 970 4 225

Total recursive calls 107 781 11 129 110 122 136 668 764 239 195
Time to generate 194.8 10 672.2 103 511.2 677 599.3

Table 2. Call counts for the Fredman-Khachiyan algorithms.

In Table 2 we record the number of calls to the (recursive) duality checker used in our
implementation of Fredman and Khachiyan’s algorithm. Each stoichiometric matrix has 89
metabolites and 105 or 106 reactions.

The algorithm is written in MATLAB and the oracle uses external calls to CPLEX when nec-
essary to solve linear programs. Running times are included in Table 2 above. We used the
same computer as in Section 3.2.4.

We remark that if our objective is to produce the EM’s containing the target reactions
rather than the MCS’s, we can compress the network as described in [KGvK06]. This speeds
up the computation, since it now needs to generate only the few cut sets for the compressed
modes (which are hard to interpret), see Table 3. In this case, since our objective is to
produce the EM’s, we did not merge the two transketolase reactions.

Problem acet succ glyc gluc

Compressed reactions 40 40 42 42
EM’s 363 3 421 9 479 21 592
Total recursive calls 38 503 3 487 200 20 971 005 217 252 316
Time to generate 45.8 2 707.0 17 202.0 210 749.8

Table 3. Data for generating the EM’s from the compressed network

In fact it is possible to do most of this compression in such a way that the cut sets generated
can be expanded to yield the MCS’s for the original system. Working with these partially
compressed networks takes less than 10% longer than the fully compressed networks reported
in Table 3.

We can also produce the full set of EM’s using this method by blocking the full set of
reactions. This requires modifying the oracle to check for non-trivial solutions to (1) via a
rank check. If we generate them from the compressed matrices, this is somewhat tractable,
but slower than generating only those containing the target reactions.
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5. Conclusions

As has been often seen in recent years, biological problems are ripe for the application of
mathematics. In Section 3, we use a non-trivial, but simple algorithm to compute MCS’s
from EM’s in minutes rather than hours in the context of a large metabolic network problem.
With such large data sets a careful implementation of the algorithm was as essential to make
it useful.

While Berge’s algorithm is successful in practice, it is poorly understood in theory, and
thus must be considered suspect. Additionally, it requires the precomputation of the EM’s
via an algorithm which also has uncertain worst-case complexity. Thus we also considered
algorithms based on the dual generation framework of Fredman and Khachiyan [FK96].
These offer a guaranteed theoretical performance which is close to polynomial, i.e. mpoly(log m)

where m is the joint size of the EM’s and MCS’s.
The Fredman-Khachiyan oracle-based algorithms also have the advantage that, unlike

Berge’s algorithm, the lists are generated incrementally - at each step a new EM or MCS is
added to the current collection, and in time and memory mpoly(log m) in the current joint size
of the lists. Thus if we only have the resources to do a partial computation, we will get a
partial answer. Indeed, much larger systems exists for which the full sets of EM’s and MCS’s
are too large to store. In this situation, even if we could compute a partial list of EM’s, its
dual is meaningless. In contrast, the oracle-based algorithm can produce a sampling of EM’s
and MCS’s as resources permit.

The oracle-based algorithms also provide a method of computing the EM’s containing
target reactions without computing the full set of EM’s. This is desirable since there may
be an enormous number of EM’s, only a small fraction of which contain the target reactions.
The double description algorithm can be modified to compute only the EM’s containing a
target, however as noted in [KGvK06], unless implemented carefully, this may be slower than
computing the full set of reactions.

However, there are several clear drawbacks to oracle-based algorithms. The obvious ones
are that they are more difficult to implement and slower. The high number of recursive
calls used to solve the small acet problem (see Table 2) suggests that it will be difficult to
make such an algorithm competitive with Berge, especially in the case where the EM’s are
given. It is encouraging that our simple implementation is able to solve even the largest
problem (gluc), although the time required was long. This gives us some hope that a
more advanced implementation of the oracle-based algorithm could be competitive in this
application. One place to start would be to implement Fredman and Khachiyan’s more
intricate, but theoretically faster mo(log(m)) algorithm.

The oracle-based methods could be improved by additional preprocessing as is done when
obtaining the EM’s from the MCS’s. For example, single reaction cut sets are treated
separately in the algorithms of Section 3, this could also be implemented in the Fredman-
Khachiyan framework. We expect this would yield a mild improvement in the running time.
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