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Abstract

G.H. Hardy’s early career can be demarcated by his election to Trinity College in 1901 and

by the beginning of his collaboration, in 1911, with J.E. Littlewood. During this time he

wrote a textbook of enduring importance, established a reputation as an analyst, wrote five

papers on set theory, contributed to the Educational Times and wrote several book reviews.

He also began to play a role in political and social issues via his membership in the Apostles

and the London Mathematical Society, as well as through his work to abolish the Tripos

examinations.

I will discuss Hardy’s mathematical work during this early period including his work on

integration, his textbook, A Course of Pure Mathematics, and his five set theory papers.
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“The function of a mathematician, then, is simply to observe the facts about his own

intricate system of reality, that astonishingly beautiful complex of logical relations which

forms the subject-matter of his science, as if he were an explorer looking at a distant range

of mountains, and to record the results of his observations in a series of maps, each of

which is a branch of pure mathematics. Many of these maps have been completed, while in

others, and these, naturally, are the most interesting, there are vast uncharted regions.”

— G.H. Hardy, Nature, 1922
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Chapter 1

Introduction

Godfrey Harold Hardy (1877-1947) entered Trinity College, Cambridge in 1896 with an open

scholarship after attending Winchester College1 public school. He was 4th wrangler in the

Tripos examination of 1898 and was elected as a fellow of Trinity College in 1900. He was

subsequently awarded a Smith’s prize in 1901.

The first period of Hardy’s career can be delineated by his election as a fellow of Trinity

College and by the beginning of his collaboration, in 1911, with John Edensor Littlewood

(1885-1977).2

Hardy started to publish in 1899, prior to his election as a fellow. In the first two

years, all but one of his 18 papers appeared in the Educational Times. This was a venue

for posing questions and solutions to stated mathematical problems. The remaining paper,

on integration, was his “first substantial paper” [92, p. 6] and the first of many papers on

integration – most of which were published in the early period of Hardy’s career.

Integration was a mathematical interest throughout Hardy’s career and it was the main

interest of Hardy’s early career. His reputation as an analyst was established with these

early integration papers. In 1905, Hardy’s first book, titled The Integration of Functions

of a Single Variable was published as part of the Cambridge Tracts in Mathematics and

Mathematical Physics. This book, which was not an extension of or a summary of the

work present in the concurrent papers, presented integration in finite terms as a methodical,

algorithmic topic. This first mathematical interest of Hardy’s is discussed in chapter 2.

1widely regarded as the best school in England for mathematical training
2This collaboration, which will not be discussed in this thesis, was one of the most productive collabora-

tions in the mathematical history. Hardy and Littlewood wrote 94 joint papers.

1



CHAPTER 1. INTRODUCTION 2

A second early mathematical interest of Hardy’s was the topic of set theory. He was

one of a few British mathematicians to read and incorporate the work of Georg Cantor

(1845-1918) and Richard Dedekind (1831-1916) into his own. This interest led to five papers

on set theory published in the years between 1904 and 1910. Hardy’s role in bringing this

continental mathematics from Germany to Britain in the first decade of the 20th century

and the content of his five set theory papers is discussed in chapter 3.

The third theme in Hardy’s early career was his dominant role in the shift in Cambridge

mathematics that occurred during the early part of the 20th century. In 1908, Hardy wrote

a textbook titled A Course of Pure Mathematics. This book, in conjunction with Hardy

himself, is often credited3 with bringing rigour to and transforming British analysis. Some of

the new set theory material was introduced to British mathematicians through this textbook.

Another facet of Hardy’s impact on Cambridge mathematics was his role in the reform of

the mathematical examinations, called the Tripos examinations, administered at Cambridge.

Teaching was dominated by the preparation for these examinations. Hardy spent consider-

able time and energy to bring about reform to lessen the impact of these examinations on

the development of mathematical talent at Cambridge.

Both the role of Hardy’s text, A Course of Pure Mathematics, and the role of Hardy

himself in changing analysis at Cambridge is discussed in chapter 4.

Hardy said of the early period of his career that he “wrote a great deal. . . but very little of

any importance; there are not more than four or five papers which I can still remember with

some satisfaction” [54, p.147]. However, John Burkhill (1900-1993), who wrote the entry on

Hardy in the Dictionary of Scientific Biography, said of Hardy’s early career that he

wrote many papers on the convergence of series and integrals and allied topics.

Although this work established his reputation as an analyst, his greatest service

to mathematics in this early period was A Course of Pure Mathematics (1908).

This work was the first rigorous exposition of number, function, limit, and so on,

adapted to the undergraduate, and thus it transformed university teaching [10].

I will establish that these first 10 years of Hardy’s career were mathematically interesting,

productive, and that they justify Hardy’s reputation as a vector for continental mathematics

into Britain. During the 19th century,

3This will be established via a variety of quotations from numerous sources.
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in pure mathematics, England produced only a handful of algebraists, among

them Cayley and Sylvester, and failed to produce any notable analysts. This

sorry state of affairs was changed by Littlewood and Hardy: by 1930 the school

of analysis established by them was second to none.” [5, p. 2]

In this thesis I cover part of the story of how this happened – detailing the influence of

Hardy.



Chapter 2

Integration

In 1905, at the age of 28, Hardy published his first book – The Integration of Functions of

a Single Variable (subsequently called Integration). This publication represents one of the

major themes in Hardy’s early career as his reputation as an analyst was established with

a series of papers on series and integral convergence. This early interest in integration is

discussed here using Hardy’s Integration as a touchstone.

Integration seeks to present integration in finite terms as a coherent, methodical topic,

in contrast to other integration texts which Hardy felt presented integration as a series of

disconnected, clever tricks that must be learned. Without referring to specific textbooks1

on the integral calculus, Hardy said

the student who is only familiar with the latter [i.e. textbooks on integral calcu-

lus] is apt to be under the impression that the process of integration is essentially

‘tentative’ in character, and that its performance depends on a large number of

disconnected though ingenious devices. [41, p. v]

The view of indefinite integration as a collection of tricks is one that has prevailed. A 1992

text devoted to algorithmic solutions of algebraic problems stated:

Integration is typically not viewed as an algorithmic process, but rather as a

collection of tricks which can only solve a limited number of integration problems.

[25, p.18]

1However, in the footnotes of Integration, Hardy refers to both Chrystal’s Algebra and A.G. Greenhills’
1888 A Chapter in the Integral Calculus.

4



CHAPTER 2. INTEGRATION 5

Hardy’s insistence on rigorous proof, his clear expository style, and his confidence and

clarity in expressing what he felt to be the important issues about a topic are all easily seen

in this early work.

2.1 Background Information

2.1.1 The Cambridge Tracts

Hardy’s Integration is the second in a series of books collectively called the Cambridge

Tracts in Mathematics and Mathematical Physics. The general editors of the series were

J.G. Leathem (1871-1923) and E.T. Whittaker (1873-1956).2 Leathem, a fellow of St. John’s

College, was also the author of the first book in the series, a book of mathematical physics

titled Volume and Surface Integrals Used in Physics. This first tract was also published in

1905.

Whittaker, a fellow of Trinity College, Cambridge, was a contemporary of Hardy’s during

this early period of Hardy’s career. In fact, Hardy was originally one of Whittaker’s first

students. As such, Whittaker was undoubtedly aware of Hardy’s interests and abilities and

his appropriateness as the author of a tract on integration.

Starting in 1905 with tract one and ending in 1972 with tract 63, the Cambridge tracts

were intended to be concise summaries of a single topic. These were later supplanted by the

Cambridge Tracts in Mathematics3, which are still being published by Cambridge University

Press. As of 2010 there are 166 titles in the new series.

Hardy went on to author three additional Cambridge tracts. Tract number 12, titled

Orders of Infinity: The Infinitärcalcül of Paul du Bois-Reymond, was published in 1910. Its

purpose was to bring the work and symbolism of Paul du Bois-Reymond (1831-1889) to

a broader audience – an attempt that appears to have failed.4 The tract mostly concerns

2It is claimed in Leathem’s obituary that, under the care of Leathem and Whittaker, the Cambridge
tracts had become “an important survey, almost an encyclopedia, of domains of recent higher mathematics.”
[67, p. 437]

3This publication has the stated purpose of being “devoted to thorough, yet reasonably concise treatments
of topics in any branch of mathematics. Typically, a Tract takes up a single thread in a wide subject, and
follows its ramifications, thus throwing light on various of its aspects. Tracts are expected to be rigorous,
definitive and of lasting value to mathematicians working in the relevant disciplines. Exercises can be included
to illustrate techniques, summarize past work and enhance the book’s value as a seminar text.” [4]

4For example, this is a quote from a review done by Hurwitz [61, p. 202] “One is impelled to wonder how
much of the fairly extensive notation introduced will be found really desirable in actual use of the results.
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what today would be referred to as big O notation – the analysis of how fast a function of

a variable grows with increasing values of the variable.

A review of this book in 1915 noted Hardy’s high standards of proof, clarity and accuracy:

A great many theorems dealing with the limit-behavior of functions were obtained

by Du Bois-Reymond in a series of papers dating from 1871 to 1880. These

theorems have been collected, recast according to modern requirements of rigor,

and amplified by Hardy in No. 12 of the Cambridge Tracts in Mathematics

and Mathematical Physics. The work has been done in a manner admitting of

no criticism; the treatment is clear and readable; the proofs are accurate and

carefully worded. [61, p. 202]

Hardy’s third book in the series is Cambridge Tract number 18, titled The General

Theory of Dirichlet’s Series, was published in 1915 and coauthored by Marcel Riesz (1886-

1969). Riesz was a Hungarian born mathematician who spent nearly all of his working life

in Sweden.

Hardy’s fourth book in the series, coauthored by W. W. Rogosinski (1894-1964) and

published in 1944, is titled Fourier Series. It is of less interest here since it comes very late

in Hardy’s career.

2.1.2 Hardy’s Work on Integration prior to his Cambridge tract

A significant portion of the work that Hardy had done prior to publishing Integration was,

unsurprisingly, on integration. He published approximately thirty papers on integration

between 1900 and 1905 (see table 2.1 below)

Table 2.1: Number of Hardy’s Integration Papers by Year
Year 1900 1901 1902 1903 1904 1905
Papers 1 4 9 7 2 3

mostly in the Messenger of Mathematics as well as in the Quarterly Journal and in the

Proceedings of the London Mathematical Society. Integration was

The notions of inferior and superior limit have won a permanent place; Landau’s symbols O(f) and o(f)
have in a short time come into such wide use as apparently to insure their retention. It is doubtful whether
any further notation will be found necessary.”
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a subject which turned out to be one of his permanent minor interests, and on

which he was still writing in the last year of his life. [93, p. 448]

Hardy’s collected works span seven volumes and all of the fifth volume is devoted to the

integral calculus. The fifth volume is close to seven hundred pages, and half of the papers

in it were published prior to 1908 and all but two of them were published prior to 1920.

For example, Hardy’s first paper on integration, On a class of definite integrals containing

hyperbolic functions of 1900, concerns the evaluation of definite integrals of the form∫ ∞
−∞

eα+i·β

aex + b+ ce−x
R(x)dx

where a = ±c and R(x) is a rational function. Contour integration around a large semicircle

is used.

This type of paper seems to be typical of Hardy’s early work on integration and the topic

of indefinite integration in finite terms appears to be confined to Integration and does not

appear to be an extension of the work that Hardy was concurrently publishing in his papers.

An editorial comment appended to this 1900 paper stated

it already shows his ingenuity in devising methods for the evaluation of definite

integrals, a topic to which he returned again and again with obvious enjoyment5

2.1.3 Works to which Hardy refers

In the preface of Integration, Hardy acknowledged three authors to whom he owed a debt.

They are Charles Hermite (1822-1901), Edouard Jean-Baptiste Goursat (1858-1936) and

Joseph Liouville (1809-1882). Regarding both Hermite and Goursat, he referred to their

identically titled books Cours d’Analyse. About Liouville, he said:

my greatest debt is to Liouville, who published in the years 1830-40 a series of

remarkable memoirs on the general problem of integration which appear to have

fallen into an oblivion which they certainly do not deserve. [41, p.vi]

Hardy was correct in his analysis of Liouville’s papers. Liouville discontinued his research

into integration in finite terms early in the 1840’s, possibly discouraged by the limited impact

his theory had in his own time. Lützen, in his comprehensive biography of Liouville [69],

5See Hardy’s collected papers, volume 7, page 27.
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could only find two traces of contemporary interest in Liouville’s papers on integration in

finite terms.

The Lützen biography of Liouville claims that Hardy’s Integration was

the first work after Liouville to deal in full generality with the question of in-

tegration in finite terms. With its praise of Liouville, it probably recreated an

interest in this almost forgotten field. [69, p. 419]

This is a topic that gained increasing importance over the 20th century with the development

of computer algebra systems.

2.2 The Contents of The Integration of Functions of a Single

Variable

2.2.1 Overview of the text

Integration is a short book of 53 pages – Hardy refers to it as a pamphlet. His stated aim

is to “find a function whose differential coefficient is a given function”6 [41, p.1] in a manner

that shows that the

solution of any elementary problem of integration may be sought in a perfectly

definite and systematic way. [41, p. v]

The book has a table of contents but no index. The appendix lists the works of Abel,

Liouville and Chebyshev that Hardy refers to in the text, and to which the reader may refer

for further study. There is also a longer, but less detailed, list of works that relate to the

integration of algebraical functions.

Hardy then delineates the topic. In his view, the theory of the integral calculus is not a

subset of the theory of differential equations and it is not a subset of the theory of the definite

integral. He is not concerned with limits, continuity, or convergence. What is important is

the form of the solution, and the only proof of its existence which is of any value

to us is that which consists in actually expressing it in terms of x. [41, p.2]

6E.g. to solve the differential equation dy
dx

= f(x)
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2.2.2 Elementary Functions

Hardy first defines an elementary function as a “member of a class of functions” [Har05, p.

3] comprising rational functions, explicit or implicit algebraical functions, ex, ln(x) and all

finite combinations of the above. This is necessary because the rest of the book is “exclusively

concerned with the question of the integration of elementary functions” [41, p.7]

Note the set-theoretic language used in the definition of an elementary function – set

theory was still new at this time and a concurrent interest of Hardy’s which is discussed in

chapter 3. This is essentially the modern definition7 of an elementary function.

Further distinctions in the types of elementary functions are made. First, the elementary

functions that are not rational or algebraic are called elementary transcendental functions -

this is adopted from Liouville.8 The elementary transcendental functions are further classi-

fied into orders, again in a manner first indicated by Liouville. First order transcendental

functions are functions in which all of the arguments of the exponential and logarithmic

functions are rational or algebraic. Second order transcendental functions are functions in

which the arguments of the exponential and logarithmic functions are first order transcen-

dental functions and so on. Many functions of interest and importance are second order

transcendental functions – for example eex or ln(ln(x)). For Hardy, part of this interest was

in these functions’ application to classifying the orders of infinity which again is a reflection

of Hardy’s concurrent interest in set theory.

Hardy’s Integration tract and his Orders of Infinity tract both owe something to Liou-

ville’s classification of transcendents9. In a 1912 paper titled Properties of Logarithmico-

Exponential Functions, Hardy stated:

in my opinion, the main interest of Liouville’s classification lies in its application

to two special problems – indefinite integration in finite terms on one hand, orders

of infinity on the other. [48, p. 59].10

7For example, see [98] which states “A function built up of a finite combination of constant functions,
field operations (addition, multiplication, division, and root extractions – the elementary operations) - and
algebraic, exponential, and logarithmic functions and their inverses under repeated compositions”

8Following Liouville (1837, 1838, 1839), Watson (1966, p. 111) defines the elementary transcendental
function as l1(z) ≡ l(z) ≡ ln(z), e1(z) ≡ e(z) ≡ ez, ζ1f(z) ≡ ζf(z) ≡

∫
f(z)dz and lets l2 ≡ l(l(z)), etc.

9After some criticism of his classification scheme, Liouville published a very thorough paper on it in
1837 titled Mémoire sur la classification des transcendantes et sur l’impossibilité d’exprimer les raciness de
certaines équations en fonction finie explicite des coefficients in Liouville’s Journal 2 (1838), 523-547

10Du Bois-Reymond, in a paper published in 1877, used his Infinitärcalcül to investigate the behavior for
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It is important to note that functions defined by transcendental equations are not ele-

mentary. For example y = x ln(y) is not elementary, meaning that y cannot be explicitly

expressed in a finite number of terms of x. Liouville showed this in a paper published in the

Journal de Mathématiques.11

Hardy felt that the theorems stating that ex and ln(x) are not algebraical, that ln(x) is

not expressible as ey where y = f(x), f algebraic, and that transcendental functions actually

exist to be the foundation of his analysis and, as such, these should be proved by writers on

elementary analysis.

2.2.3 Integration of Elementary Functions – A Summary

For the purposes of this text, the fundamental question about integration is: given an

elementary function f(x) to first determine if its integral is elementary and, if so, to find it.

A precise statement of the integration question requires that both the mode of expression

to be used and the class of allowable functions be specified. Hardy specified that we are

considering closed form solutions using elementary functions. Hardy stated that “complete

answers to these questions have not and probably never will be given”. [41, p.7]

This was the case in 1905 but by 196912, Robert H. Risch had discovered a decision

procedure that determined whether or not a given integral is elementary. Further, if the

integral is elementary, a closed-form formula is determined. Hardy’s intuition was thus shown

to be incorrect; however, his insistence on a methodical approach to integration was prescient

since, with the advent of computer algebra systems, an algorithmic approach to integration is

absolutely necessary. Although currently the interest in methodical, algorithmic integration

techniques stems from computing applications, Hardy may have taken this approach in a

search for a "complete" theory of integration – one that would methodically find the solution

to all integration problems regarding elementary functions that could be asked.

The Risch algorithm builds a series of logarithmic and exponential functions with alge-

braic extensions as it solves the integration problem. As of 2008, the Risch algorithm has

not been fully implemented in any computer algebra system but it forms the backbone of

large values of λ of Dirichlet integrals
∫ ξ
0
sinλx
x

f(x)dx when f(x) contains factors such as cosψ( 1
x
, where

ψ is a function of the exponentio-logarithmic scale and ψ(u) → ∞ as u → ∞ . In 1909, 4 and 1909, 6
Hardy re-examines some of Du Bois-Reymond’s results, providing simpler proofs or obtaining more general
theorems [92, p.3]

11Journal de Mathématiques, t. III p. 523.
12See Robert H. Risch’s articles [79, 80, 78]
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the method used by computer systems once simple and quick heuristic methods have been

tried and found lacking.

Many introductory calculus courses teach and MAPLE – the computer algebra system

that will be used here as an example – uses a number of heuristic approaches to the inte-

gration problem including substitution, trigonometric substitution, integration by parts and

partial fractions. This is followed by a table lookup for approximately thirty-five simple func-

tions including the trigonometric functions. Then a technique called the “derivative-divides”

method is used which is a form of substitution aimed at determining whether or not the

integrand has a composite function structure. If the integrand has a composite structure, an

attempt is made to divide the integrand by the derivative of the composite function, f(x),

and produce an integrand that is independent of x after the substitution u = f(x).

Finally, if all of the above methods fail to produce a result, the Risch algorithm for

integrating elementary functions is used. The Risch algorithm is not directly employed

at the outset for reasons of time. It is desirable to solve simple problems quickly and a

“surprisingly large percentage of integral problems” [25, p. 474] are solved by MAPLE’s

heuristic methods.

Geddes et al [25, p. 512] in their text Algorithms for Computer Algebra provide a brief

history of the problem of integration in finite terms. Here is a quote from their work:

The problem of integration in finite terms (or integration in closed form) has

a long history. It was studied extensively about 150 years ago by the French

mathematician Joseph Liouville. The contribution of another nineteenth-century

mathematician, Charles Hermite, to the case of rational function integration is

reflected in computational methods used today. For the case of transcendental el-

ementary functions, apart from the sketch of an integration algorithm presented

in G.H. Hardy’s 1928 treatise, the constructive (computational, algebraic) ap-

proach to the problem received little attention beyond Liouville’s work until the

1940’s when J.F. Ritt13 started to develop the topic of Differential Algebra. With

the advent of computer languages for symbolic mathematical computation, there

has been renewed interest in the topic since 1960 and the mathematics of the

indefinite integration problem has evolved significantly. The modern era takes

as its starting point the fundamental work by Risch in 1968, where a complete

13J.F. Ritt, Integration in Finite Terms, Amer. Math Monthly, 79 pp. 963-927 (1972)
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decision procedure was described for the first time.

In the above quote, Hardy’s Integration is not mentioned by name but the second edition

of Integration was published in 1916 and then reprinted in 1928. Since there are no other

papers of Hardy’s published in 1928 concerning integration in finite terms, it is safe to assume

that Geddes et al are referring to Integration in the above quote.

A much longer, more thorough history of integration in finite terms is given by Lützen [69,

p. 351-422], and by Kasper [65]. What follows is a summary of these works, highlighting the

role of Hardy. Hardy’s Integration was the first work after Liouville’s to approach integration

in finite terms in a general way.

Both Kasper and Lützen credit Liouville with founding the theory of integration in finite

elementary terms – a theory that was created in a series of papers between 1833 and 1841.

Liouville used his theory to prove that elliptic integrals cannot be represented by explicit

finite elementary expressions. This was the first case of a proven, non-elementary integral. In

1923, Joseph Fels Ritt (1893-1951) proved elliptic integrals cannot be expressed as implicit

finite functions.

Ritt was an American mathematician who spent most of his professional life at Columbia

University. His study of elementary function integration culminated in a book, published

in 1948, titled Integration in Finite Terms; Liouville’s Theory of Elementary Methods. This

book was reviewed by Laurence Young, son of William and Grace Chisholm Young, contem-

poraries of Hardy, who said “This little book is the first treatise to deal with the theory of

elementary integrals according to Abel and Liouville”.14 It is worth noting that Ritt “took

an unusual interest in reading the great mathematical works of his predecessors. He drew

substantial inspiration from careful study of classic texts, especially those by the great fig-

ures of the eighteenth and nineteenth centuries. Among his heroes were Niels Henrik Abel,

Augustin Louis Cauchy, David Hilbert, Carl G. J. Jacobi, Joseph-Louis Lagrange, the mar-

quis Pierre-Simon de Laplace, Joseph Liouville and Jules Henri Poincaré”15 It may be that

the work of Hardy went unnoticed by Ritt .

During the time period between Liouville and Ritt, developments in integration in finite

terms took place in Russia. In the second half of the nineteenth century, Ostrogradsky,

Youschkevitch, and Chebyshev all published on this topic.

14http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Ritt.html
15J W Dauben, Joseph Fels Ritt, American National Biography 18 (Oxford, 1999), 550-551.
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Early in the twentieth century, Russian mathematician D.D. Mordukhai-Boltovskoi (1876-

1952) wrote and contributed much to the Liouville theory [65, p. 198]. And in 1946, A.

Ostrowski

broadened Liouville’s general theory (of 1835) and extended it to the wider class

of meromorphic functions (single-valued and analytic, except possibly for poles)

in regions of the complex plane. [65, p. 199].

This was done by using field extensions and was the genesis of the algebraic approach that

led to the final solution of the problem of indefinite integration.

Ritt’s 1948 monograph summarized the results to that date and led to the creation of the

modern theory. “By his own account, Risch was introduced to the subject of finite integration

by Ritt’s 1948 monograph” [65, p. 200].

Mirroring Hardy’s comment that the student of calculus does not view integration co-

herently and would benefit from seeing integration presented methodically, Risch

makes the interesting suggestion that some features of his algorithm are suitable

for presentation to calculus students. No calculus text at present provides this

material, an omission that not only leaves the story of finite elementary integra-

tion incomplete, but deprives the calculus student of some valuable insights. [65,

p 201]

Lützen considers the Ritt monograph to be the summary of Liouville’s work that Liouville

never wrote and claims that Ritt, like Hardy, stressed the functional-analytic aspects of the

theory.

2.2.4 Integration of Rational Functions

Hardy’s description of integration of rational functions is short (7 pages) and straightforward.

Using results from algebra16 that state that any polynomial of the form Q(x) = xn+b1x
n−1+

. . . + bn can be expressed as a product of n linear factors of the form (x − a), where a is a

root, and that any rational function R(x) = P (x)
Q(x) can be written in the form

A0x
p +A1x

p−1 + . . .+Ap +
r∑
s=1

{ β1
(x− αs)

+
β2

(x− αs)2
+ . . .+

βm
(x− αs)m

},

16Hardy references Chrystal’s Algebra.
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the integral in the general case is shown to be∫
R(x)dx = A0

xp+1

p+ 1
+A1

xp

p
+ . . .+Apx+ C +

r∑
s=1

{β1 log(x− αs)−
β2

x− αs
− . . .−

βs
(m− 1)(x− αs)m−1

}

The solution of the general case allows Hardy to claim that the integral of any rational

function is an elementary function. Integration of rational functions then is an exercise

in algebra. MAPLE, for example, can solve this problem using polynomial division with

remainder, GCD computation, polynomial factorization and equation solving.

However, there remains the problem of determining the constants in the above result,

which cannot be expressed explicitly as functions of the constants of the integrand. Hardy

describes Hermite’s17 method – a method that allows the integration of the rational part of

the integral without needing to factor the denominator of the rational function integrand.

Hermite’s method reduces the problem of
∫ P (x)
Q(x)dx to C(x)

D(x) +
∫ A(x)
B(x)dx using only polynomial

operations where the degree of A(x) is less than the degree of B(x) and B(x) is monic and

square-free. The remaining integral is solved using logarithms. Hardy takes two pages to

go through an example using Hermite’s method. He concludes that, for rational function

integration, the complete integral can be found if it is possible to find the roots of Q(x) = 0

and that it is always possible to find the rational part of the integral.

Hardy was, however, unable to obtain a general method and so he describes “the max-

imum of information which can be obtained about the logarithmic part of the integral in

the general case in which the factors of the denominator cannot be determined explicitly”

[41, p.16]. Some of the techniques for this include partial factoring of the denominator until

Q(x) is irreducible by the adjunction of any algebraic irrationality (that is, with coefficents

in Q(
√
p)), and the integration of rational functions when the result is only logarithmic.

The above suggestions, however, only solve specific cases that depend on the value of the

integrand.

The final part of Hardy’s discussion of the logarithmic part of the integration result have

been superseded by new techniques for integrating
∫ A(x)
B(x)dx where the degree of A(x) is

less than the degree of B(x) and B(x) is monic and square-free. This method is called the

17Hermite, Charles. Sur l’Integration des Fractions Rationelles, Nouvelles Annales de Mathematiques, pp.
145-148 (1872)
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Rothstein-Trager method discovered independently by M. Rothstein [82] and B. Trager[94]

in 1976. It solves the problem completely with the minimum number of algebraic extensions.

2.2.5 Integration of Algebraic Functions

The integration of algebraic functions, explicit or implicit, is the longest section of Integration

at 24 pages. It is far more difficult and Hardy gives only “a brief account of the most

important results and of the most obvious of their applications” [41, p. 18].

Hardy first discusses integrands that can be reduced to rational functions by a substitu-

tion, either real or imaginary. He notes that integrals of functions of the type
∫
R(x, y)dx

in which the x and y are connected by a variable t, such that x = R1(t), y = R2(t) with R1,

R2 rational, can be evaluated in finite terms by means of elementary functions. A variety of

specific substitutions are discussed for different integrands. Such a parameterization defines

a curve, and curves of this type are called unicursal.

Hardy then defines the deficiency of a curve as the number of possible double points

a curve can have minus the number of double points that it actually has.18 If a curve

has deficiency zero, then it is unicursal. For curves of deficiency zero, a general procedure

is described to determine the substitution required in order to reduce the integrand to a

rational function in the substituted variable.

When the curve is not unicursal, the integral is in general not an elementary function. If

the deficiency is one, then the integral will be expressible in terms of elementary functions and

elliptic integrals. As the deficiency increases, the complexity of required new transcendents

increases. However, there are many particular cases of curves with non-zero deficiency that

can be integrated in terms of elementary functions. Hardy attempts to classify which non-

unicursal curves are expressible in terms of elementary functions but he is well aware of

limitations saying, “It will be as well to say at once that this problem has not been completely

solved” [41, p. 30].

A modern algorithmic treatment (the Risch algorithm) of this topic [25, p.511-573],

handles the explicit algebraic function integration and transcendental function integration

together under elementary function integration with the special case of rational function

integration removed. Here the chief insight is that all of the algebraic or transcendental

functions are expressed using exponentials and logarithms (of complex numbers if necessary)

18A double point is a point that is traced out twice as a closed curve is traversed.
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so that special notation for trigonometric, inverse trigonometric, hyperbolic and inverse

hyperbolic functions is discarded. This allows the finite decision procedure to be invoked

and the integral to be expressed in exp-log notation. It is difficult to translate back from

exp-log notation in order express results in the more familiar form – for this reason, a

heuristic approach is applied first in an attempt to solve the integration problem with the

more familiar notation.

Implicit algebraic functions alone can be handled by an algorithm developed by Trager

[95] in 1984 and the case of an integrand consisting of mixed transcendental and algebraic

integrands was completely solved in 1987 by Bronstein. [7]

2.2.6 Integration of Transcendental Functions

When defining the class of elementary functions early in the book, Hardy was careful to note

that there is no general theory of transcendental functions in the way that there is a general

theory of algebraic functions. He said

The theory of integration of transcendental functions is naturally much less com-

plete than that of the integration of rational or even of algebraical functions. It

is obvious from the nature of the case that this must be so, as there is no general

theorem concerning transcendental functions which in any way corresponds to

the theorem that any combination of algebraical functions, explicit or implicit,

may be regarded as a simple algebraical function, the root of an equation of a

simple standard type [41, p.42]

By this he meant that there is no transcendental equivalent to the implicit definition of

algebraic functions. So, for the example of y = x ln(y) given earlier, y is incapable of a finite

explicit expression in terms of x.

The last chapter of the book, on the integration of elementary transcendental functions,

is short – just shy of ten pages. Hardy claims that the theory of integration of transcendental

functions is much less complete precisely because there is no general theory of transcendental

functions. In fact there is, for Hardy, no general theory. The theory of integration of

elementary transcendental functions is reduced to

an enumeration of the few cases in which the integral may be transformed by

an appropriate substitution into an integral of a rational or algebraical function.
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These few cases are however of immense importance in the applications of the

general theory of integration [41, p.42].

Here Hardy, in a sense, contradicts his original aim – to show that integration is not a series

of clever tricks.

This final section is just clever tricks that allow a very few of the possible integration

questions that can be asked to be solved. Among these are integration of functions of the

form F (eax, ebx, . . . , ekx) where F is an algebraic function and the constants are commen-

surable – this includes the particular case of sin, cos, sinh, and cosh. Functions of the type

P (x, eax, ebx, . . . , ekx) where P is a polynomial and the constants are any numbers are also

given a general treatment. But apart from these two types of functions, there are “no really

general classes of transcendental functions which we can always integrate in finite terms”

[41, p.45].

In the case of the innumerable other possible integrals where it is not possible to give

a general theory, Hardy seeks to apply a systematic reduction theory that will split up

the integral into a part that can be integrated and a part that cannot. The latter part is

minimized and proved to be incapable of further reduction.

The prime example here is an integral of the form
∫
exR(x)dx where R(x) is a rational

function of x. All integrals of this form can be made to depend on known functions and on

the single transcendent
∫
ex

x dx normally denoted li(ex). Hardy justified this result.

The concluding page compares these new types of transcendent functions with those

that arise from the integration of algebraic functions, notably elliptic integrals, and states

that they are often of great interest and importance. For example li(ex) is important in

describing the distribution of prime numbers. Often, these transcendents may be expressed

using definite integrals or by means of an infinite series.



Chapter 3

G.H. Hardy and Set Theory in

Britain, 1900-1910

In 1910, David Hilbert who was, at that time, arguably the world’s most influential mathe-

matician, claimed that set theory was

that mathematical discipline which today occupies an outstanding role in our

science, and radiates its powerful influence into all branches of mathematics.

[59].

In this chapter I examine how this branch of mathematics, which originated in the work

of Georg Cantor (1845-1918) and Richard Dedekind (1831-1916)1 was introduced to English

speaking mathematicians in Britain.

Specifically, I want to consider the earliest introduction of set theory into Britain during

the years 1900 to 1910 looking mainly at the work of Hardy, Philip Jourdain (1879-1919),

Bertrand Russell (1872-1970), and, to a lesser extent, William Henry (1863-1942) and Grace

Chisholm Young (1868-1944). All of these people wrote on set theory in the earliest part of

the 20th century in different ways and with differing impacts.

The Youngs, a married couple who frequently collaborated, wrote a textbook called The

Theory of Sets of Points, published in 1906. Hardy wrote a series of 5 papers on set theory

which were published between 1904 and 1910. Russell wrote Principles of Mathematics first

1Some historical accounts of set theory treat it as though it were the brainchild of Cantor alone whereas
other accounts emphasize the roles played by others, most notably Dedekind andWeierstrass. For a discussion
of this issue, see [21, p. xv-xvii].

18
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published in 1903, in which the philosophical point of view of set theory is discussed. And

the first volume of Russell and Whitehead’s Principia Mathematica appeared in 1910.

During the time interval under consideration, Jourdain maintained a large correspon-

dence with both Hardy and Russell and, in 1915, translated and wrote an 85-page introduc-

tion to Cantor’s Contributions to the Founding of the Theory of Transfinite Numbers. How

was this writing received and how did it influence the work of others?

Hardy went on to write A Course of Pure Mathematics in 1908, an enormously influential

textbook on analysis which is discussed in chapter 4. For the most part, he chose not to

introduce set theory in A Course of Pure Mathematics but instead2 took special care to

introduce the theory of real numbers developed by Dedekind. Ernest William Hobson (1856-

1933) actively engaged with Hardy’s papers, writing critically of Hardy’s work and refuting

some of Cantor’s statements in 1905. Then, in 1907, Hobson wrote a book titled The Theory

of Functions of a Real Variable and the Theory of Fourier Series which contained “copious

references to the literature of set theory” [103, p. viii].

I also discuss from where and from whom these authors informed themselves of set

theory and point to the common characteristic that all were fluent in German – a “skill

[fluency in reading French and German] which Whittaker claimed was at that time [1893]

almost unknown amongst mathematical lecturers, and which they showed little inclination

to learn.” [58, p.150]

Since it is mainly the work of Cantor and Dedekind that was brought to Britain at this

time, I outline some features of this work in order to provide background information. We

will see that the work of Schönflies is also cited by the British authors – this is work that

summarizes Cantor’s developments.

3.1 The Development of Set Theory in Late 19th Century Ger-

many

3.1.1 Short Summary of Cantorian Set Theory

This summary is based mainly on four sources: the historical work of Ferreirós [21], and

Dauben [17, 18] and the introduction that Jourdain provides in his translation of Cantor’s

Contributions to the Founding of the Theory of Numbers [64].

2beginning with the 2nd edition



CHAPTER 3. G.H. HARDY AND SET THEORY IN BRITAIN, 1900-1910 20

In 1869, Cantor, at the suggestion of Eduard Heine (1821-1881) began to consider if and

under what conditions Fourier series representations of functions are unique. By 1872, he was

able to prove that they were, first for trigonometric series that were everywhere convergent,

then for series with a finite number of exceptions and finally for series even with an infinite

number of exceptions if the exceptions were distributed in particular manner. In order to

form these proofs and to describe the distribution of an infinite number of exceptions, Cantor

developed the ideas of point-sets and their derived sets. In Cantor’s words of November 1871:

some explanations, or rather some simple indications, intended to put in a full

light the different manners in which numerical magnitudes, in number finite or

infinite, can behave [64, p. 25]

This in turn required him to develop a theory of real numbers, which he built from the

rational numbers.

In developing a theory of real numbers, Cantor relied on the work of Karl Weierstrass

(1815-1897) saying that:

I believe, a propos of Weierstrass’s theory, that this logical error3 which was first

avoided by Weierstrass, escaped notice almost universally in earlier time, and

was not noticed on the grounds that it is one of the rare cases in which actual

errors can lead to none of the more important mistakes in calculation [64, p. 18]

Jourdain describes Cantor’s theory of irrational numbers as a “happy modification of

Weierstrass” [64, p. 26]. Weierstrass developed his theory of real numbers, defined as the

limits of convergent series, beginning in 1859, in order to make his lectures in analytic

function theory systematic.

Cantor built the real numbers from the set A of the rationals, by associating real numbers

with sequences of rational numbers that were constructed such that after some number

of terms in the sequence, the difference between any two terms of the sequence remained

arbitrarily small. All such numbers constructed this way formed a set of new numbers, B.

Beyond this, a new domain was defined in a similar manner using sequences of numbers

from set B, and similarly on to further domains C through L. At this point it was by use

3There was a vicious circle in the definition of a real number that was considered to be the limit of a
convergent sequence since the limit itself involved the prior assumption of the existence of a real number.
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of an axiom4, “to every real number a definite point of the straight line corresponds, whose

ordinate is equal to that number” [18, p.183] that B was associated with what Cantor termed

the linear continuum.

Cantor then defined a limit-point as follows:

Given a point set P , if an infinite numbers of points of the set P lie within every

neighbourhood, however small, of a point p, then p is said to be a ‘limit-point’

of the set P . [18, p. 183 quoting Cantor]

The above definition is used to differentiate between point-sets of the first and second

species given that the elements of the (k+ 1)st set are the limit points of the kth set. Point-

sets of the first species have the property that the nth, with n finite, derived limit-points set

is the empty set. Point-sets with nonempty nth derived sets, for all finite n, are point-sets of

the second species. The proof of the uniqueness of trigonometric function representation used

point-sets of the first species whereas transfinite numbers were developed from point-sets of

the second species.

Ferreirós [21] divides Cantor’s work into four phases. The work on point-sets between

1870 and 1872 just described was the first phase. The second phase of Cantor’s work,

which lasted from 1873 to 1878, consisted of the work on sets of infinite cardinality. That

the rationals were dense but don’t form a linear continuum led Cantor to suspect that there

were more irrationals than rationals. He corresponded with Dedekind in 1873 about whether

it would be possible to have a one-to-one correspondence between the real numbers and the

integers and then found in 1874, that it was not possible. Cantor proved this by contradiction.

He assumed that a one-to-one correspondence was possible and then constructed a one-to-

one correspondence between the real numbers and the integers such that at least one number

was shown to be left out. Hence, the real numbers are non-denumerable - not able to be

counted by a one-to-one correspondence with the infinite set of integers. Immediately then,

given that the algebraic numbers are denumerable, transcendental numbers on any given

interval are infinite. This argument is a now standard method for proving the existence of

transcendental numbers. For example, it is used in Gelfond’s Transcendental and Algebraic

Numbers [26, p. 2].

Cantor then tried to generalize further, looking for distinct powers of infinity greater

4This axiom is now called the Cantor-Dedekind axiom - “the points on a line can be put into a one-to-one
correspondence with the real numbers” [97].
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than the power of the real numbers. Again, corresponding with Dedekind, in 1874, he asked

whether or not a square could be mapped one-to-one onto a line. He answered his own

question in the affirmative in 1877, but incredulously, saying “je le vois, mais je ne le crois

pas” [21, p. 171]. Dedekind found a minor error in the mapping Cantor first used to show

this, which Cantor subsequently fixed. This realization allowed Cantor to study continuity

in the linear continuum of the real numbers.

The third period, covering the interval from 1879 to 1884 was “guided by the core ob-

jective of proving the Continuum Hypothesis”5 [21, p. 257]. In 1880, Cantor introduced

transfinite numbers (originally just symbols but soon to be named transfinite ordinal num-

bers) from derived sets of the second species and showed that there was an unending sequence

of larger and larger transfinite symbols. It was here that Cantor moved from a potential to

an actual infinity:

I was logically forced, almost against my will, because in opposition to traditions

which had become valued by me in the course of scientific researches extending

over many years, to the thought of considering the infinitely great, not merely in

the form of the unlimitedly increasing, and in the form, closely connected with

this, of convergent infinite series, but also to fix it mathematically by numbers

in the definite form of a completed infinite [64, p. 53].

Arithmetic with transfinite ordinals is noncommutative and unlike finite sets where ordinal

and cardinal numbers coincide, Cantor said:

The conception of number which, in finito, has only the background of enumeral

[Jourdain’s invented word used to translate “Anzahl”, Dauben uses “numberings”]

splits, in a manner of speaking, when we raise ourselves to the infinite, into the

two conceptions of power. . . and enumeral . . . ; and, when I again descend to

the finite, I see just as clearly and beautifully these two conceptions again unite

to form that of the finite integer [64, p. 52]

It is at this time that Cantor invented his famous ternary set which is everywhere dense but

5the proposal that there is no cardinal number between the cardinal number of the integers and the
cardinal number of the reals. Symbolically this can be written as c = ℵ1. This remains unproven and
it has been shown that (Gödel/Cohen) no contraction will arise in Zermelo-Fraenkel set theory if either
the Continuum Hypothesis or its negation is added as an axiom. Set theoreticians generally feel that the
continuum hypothesis should be considered false [16, p. 282].
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has measure zero.6 By the end of this period, Cantor was having increasing mental health

problems, had a falling out with Gösta Mittag-Leffler7, and felt persecuted by Kronecker8.

The fourth period, from 1885 to the end of Cantor’s life, began with proof of the con-

tinuum hypothesis which was subsequently withdrawn. In an unpublished paper of 1885,

Cantor equated pure mathematics with pure set theory and his interest shifted from point-

sets to abstract set theory where the notions of cardinality and order are foremost. In the

late 1880’s, Cantor constructed the diagonalization proof, showing that the set of all subsets

is of a greater power than the parent set, which Hardy responded to. In 1895, Cantor’s last

major publication introduced the alephs for the cardinal numbers. This widely read work

was translated immediately into French and Italian, and defended by younger mathemati-

cians. Perhaps because Cantor realized how directly confrontational his transfinite numbers

were with regard to widely held beliefs about numbers and infinite, he was led to detailed

philosophical and theological discussions about the meaning of his work.

3.1.2 Short Summary of Dedekind’s contributions

To determine when a mathematician began using set theory, Ferreirós [21] has pointed to the

necessity of clarifying exactly what is meant by set theory. Set theory can be considered in

three different and somewhat overlapping ways: formally, as a foundation for mathematics,

or less formally, as a language for mathematics as in the “set-theoretical approach”, or as a

separate branch of mathematics typically called abstract set theory. However, in all three

cases, serious study of set theory appears to require the conception of the actual infinite. It

wasn’t until 1885 that Cantor began to distinguish abstract set theory from the theory of

point-sets [21, p. xix] by which time the set-theoretical approach had been established in

the work of Dedekind.

As with Weierstrass, Dedekind’s teaching motivated his foundational work. His lectures

on differential calculus made him keenly aware of “the lack of a really scientific foundation

6This set is sometimes called the Cantor set, the Cantor comb or the no middle third set. It is formed
by taking the interval [0,1] and removing the middle third. Then the middle third is removed from the two
remaining pieces and the process continues indefinitely. “The Cantor set is the only totally disconnected,
perfect, compact metric space up to a homeomorphism” [3]

7Mittag-Leffler was responsible for translating all of Cantor’s work into French and for providing a pub-
lication outlet for Cantor’s work via Acta Mathematica.

8Leopold Kronecker (1823-1891), a Berlin mathematician who believed that mathematics was about finite
numbers only and only finite numbers of operations were permissible. He was the editor of Crelle’s Journal
and tried to prevent publication of Cantor’s work because he was mathematically opposed to it.
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for arithmetic” [8, p. 221]. He wanted an arithmetical foundation for calculus founded

on the operations of natural numbers. Like Weierstrass, he sought and found a method of

constructing the real numbers from the rationals.9 The idea of a set was absent in Dedekind’s

work prior to 185510 but present in the work on irrational numbers where sets were used to

define new numbers, and in his algebraic work from 1856-58 [21, p. 77].

In this early work, Dedekind used the words ‘System’, ‘Klasse’ and ‘Complex’ for sets

and freely makes use of infinite classes, “tracing an analogy between these infinite classes and

the natural numbers, which were most concrete objects for a traditional mathematician” [21,

p. 88]. During the 1870’s and 1880’s, Dedekind began using a set-theoretical approach in

his writing. For example, in a work on Galois theory, where he used the word substitution

as we would now use mapping, Dedekind said:

By a substitution one understands, in general, any process by which certain

elements a, b, c . . . are transformed into others a′, b′, c′ . . . , or are replaced by

these; in what follows we shall consider only those substitutions in which the

complex of replacing elements a′, b′, c′ is identical with that of the replaced a, b, c.

[21, p. 88]

Or, in 1879, Dedekind said:

Upon this mental faculty of comparing a thing ω with a thing ω′, or relating ω

with ω′, or making ω′ correspond to ω, without which it is not at all possible to

think, rests also the entire science of numbers [21, p. 89].

When Cantor writes of point-sets between 1879 and 1884, he uses Dedekind’s terminology

introduced in Dedekind’s algebraic work. Cantor used divisor, greatest common divisor, and

multiple for set inclusion, intersection and union. These words had been introduced by

Dedekind to describe operations on a field, which was understood to be

every set of infinitely many real or complex numbers, which is so closed and

complete in itself, that addition, subtraction, multiplication, and division of any

of those numbers yields always a number of the same set . . . we call a field A

9Dedekind worked on this in 1858 but published it as Stetigkeit und Irrationalen Zahlen in 1872. Ferreirós
claims that for Dedekind “pure mathematics was the science of number in all its extension and derivations,
number systems being more basic than any possible abstract structure” [21, p. 81]

10For example, there is no mention of sets in his Habilitationsvortrag in 1854.
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divisor of field M , and this a multiple of that, if all the numbers contained in A

are also found in M . [21, p. 92]

In 1888, Dedekind published his most important foundational work, Was sind und was sollen

die Zahlen.11 This work was started in 1872, revised in 1878, and brought into its final form

in 1887. On the cover of the original German edition is the Greek phrase that translates to

“man eternally arithmetizes”. This is indicative of both the importance that Dedekind placed

on the concept of number and of his philosophical stance that numbers are the creation of

the human mind. From Plato’s position of “God eternally geometrizes” to Gauss’s “God

eternally arithmetizes” to Dedekind’s statement, a shift from geometry to arithmetic and

from God to man is seen.

Here is a long quote from Dedekind that nicely outlines his philosophical position and

demonstrates the fundamental position of the concept of a set:

numbers are free creations of the human mind; they serve as a means of ap-

prehending more easily and more sharply the difference of things. It is only

through the purely logical process of building up the science of numbers and by

thus acquiring the continuous number-domain that we are prepared accurately

to investigate our notions of space and time by bringing them into relation with

this number-domain created in our mind. If we scrutinize closely what is done

in counting an aggregate or number of things, we are led to consider the ability

of the mind to relate things to things, to let a thing correspond to a thing, or

to represent a thing by a thing, an ability without which no thinking is possible.

Upon this unique and therefore absolutely indispensable foundation, . . . , must,

in my judgment, the whole science of numbers be established [19, p. 32]

The work succinctly outlined the basic notions of set (‘thing’ or ‘system’), subset (‘part’

or ‘proper part’), union (‘compounded system’) and intersection (‘community of systems’).

This was followed by a definition of a mapping which appears quite modern.

by a transformation [Abbildung12] φ of a system S we understand a law according

to which to every determinate element s of S there belongs a determinate thing

11The Nature and Meaning of Numbers [19]
12This word can also be translated as ‘representation’ which then may better capture the idea of repre-

senting one thing by another (see [21, p. 229].)
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which is called the transform of s and denoted by φ(s); we say also that φ(s)

corresponds to the element s, the φ(s) results or is produced from s by the

transformation φ. [19, p. 50]

Given a particular transformation, φ, the question naturally arises as to whether the

transformation of a system S, φ(S), into a system S′, results in an S′ such that S′ is a

subset of S or not. If S′ is a subset of S, then S is a chain, with respect to the given

transformation [19, p. 56]. Two pages later, this notion is generalized and a “chain of

System A” [ibid, p.58] is defined as the intersection of all of the chains of A. Because this

theory of chains is built solely on the concept of a transformation, Ferreirós feels that this is

Dedekind’s “most original contribution to abstract set theory” [21, p. 230]. It is this concept

that allows construction of the set of natural numbers starting from 1 and a properly defined

mapping13.

Further, chains are then used to prove the mathematical validity of induction whether

based on the natural numbers or on an arbitrarily defined chain. Dedekind stated and proved

the

Theorem of complete induction. In order to show that the chain A0 is part of

any system Σ - be this latter part of S or not – it is sufficient to show,

ρ. that A0 ⊂ Σ14

σ. that the transform of every common element of A0 and Σ is likewise an element

of Σ. [19, p. 60-61].

The definition of an infinite set as a set which is “similar to a proper part of itself” [19,

p. 63] followed. This is, in modern terms, a set which can be mapped one-to-one onto a

subset of itself. Ferreirós claims that this idea was formed before any of Cantor’s work on

set theory and “can be seen as the first noteworthy and influential attempt to elaborate

an abstract theory of finite and infinite sets” [21, p. 109]. Dedekind, in a footnote to the

definition of an infinite set, pointed to the importance of this definition and to whom and

when he communicated it.

In this form I submitted the definition of the infinite which forms the core of my

whole investigation15 in September, 1882, to G. Cantor and several years earlier

13[21, p. 230-231]
14⊂ is not the symbol Dedekind uses for subset, he uses a 3.
15my emphasis
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to Schwarz and Weber. All other attempts that have come to my knowledge

to distinguish the infinite from the finite seem to me to have met with so little

success that I think I may be permitted to forego any criticism of them [19, p.

63]

Dedekind, unlike Cantor, did not explicitly develop point-sets and there is no develop-

ment of a transfinite number - instead set theory is used in a foundational manner and,

importantly, as a language to describe other mathematics. Beginning in the 1850’s, a set-

theoretic approach enters into Dedekind’s mathematics with sets and mappings becoming

“the central notions for Dedekind’s understanding of arithmetic, algebraic number theory,

algebra and also, one may safely conjecture, analysis”. [21, p. 90]

3.2 G.H. Hardy and Set Theory

It is during the early part of his career that Hardy published all five of his set theory papers.

Richard Rankin (1915-2001), a member of the editorial board for Hardy’s collected papers,

wrote a brief introduction to Hardy’s miscellaneous papers, which include the set theory

papers. He said that “Hardy’s direct contribution to set theory was not great” [77, p. 417].

But he also pointed out that Hardy, unlike many professional mathematicians at that time,

“fully accepted Cantor’s theories as a valid contribution to mathematics” [ibid].

In the winter of 1902-03, Hardy attended lectures on set theory given by Albert North

Whitehead (1861-1947). He referred to these lectures in a footnote while discussing the

construction of an aggregate16 whose cardinal17 is 2α1 :

Mr. Whitehead worked out some of the most interesting properties of such

aggregates in his lectures on the application of symbolic logic to the theory of

aggregates. [40, p. 94]

The first edition of Hardy’s A Course of Pure Mathematics, in 1908, assumed the ex-

istence of the real numbers. However, in a very positive (“his book seems to us the best

elementary treatise on the Calculus in the English language” [43, p. 308]) book review of A

First Course in the Differential and Integral Calculus by W.H. Osgood in 1907, Hardy said

16Aggregate is an early English translation of the German work menge - set is used now.
17Hardy used a lower case Greek alpha, rather than the now standard aleph, to denote a cardinal number.

Now we would see this as 2ℵ1 .
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we should have liked to have seen included at anyrate [sic] a short and popular

sketch of Dedekind’s theory of number. It is not very difficult to explain in general

terms and enables a good many gaps to be filled in, notably in connection with

the ‘Fundamental Principle’ that an increasing function approaches a limit or

tends to infinity. [43, p. 308]

Similarly, in another book review in 1909, this time of The Thirteen Books of Euclid’s

Elements by T.L Heath, in a context where it may not be expected, Hardy commented

again on the work of Cantor, Weierstrass and Dedekind. When talking about the theory of

proportion from Book V, Hardy said:

Rendered into a modern and a more convenient notation it may still stand,

almost word for word, as the one and only possible theory of proportion, as

irreproachable and in as little danger of supersession as when Barrow declared

that “there is nothing in the whole body of the elements of a more subtile [sic]

invention, nothing more solidly established and more accurately handled than

the theory of proportionals.” How subtle and accurate it is is clearer now, to

the mathematician familiar with the work of Weierstrass, Cantor and Dedekind,

than it can possibly have been to Barrow or even to De Morgan. There is, as Dr.

Heath points out, “an exact correspondence, almost coincidence between Euclid’s

definition of equal ratios and the modern theory of irrationals due to Dedekind.”

[45, p .857]18

By the second edition19 of A Course of Pure Mathematics in 1914, Hardy used Dedekind’s

method of constructing the real numbers from sections of the rationals using cuts and in-

troduced the theorem of Weierstrass20 on accumulation points. The two quotes below from

18It is, of course, possible that Hardy and or Heath are reading into Euclid the more modern theories and
that these ideas are not really present in the Greek work. Sabetai Unguru cautions against this in his article
On the Need to Rewrite the History of Greek Mathematics [96], where he refutes the claim that the Greeks
were, in essence, doing algebra when their work is translated into modern notation.

19In a 1916 article for Mind, Jourdain reviewed and compared the first and second editions of A Course
of Pure Mathematics.

20This is now known as the Bolzano-Weierstrass theorem and Hardy stated it thus: “If a set S contains
infinitely many points, and is entirely situated in an interval (α, β), then at least one point of the interval is
a point of accumulation of S” [56, p. 32]. By accumulation point, Hardy meant what Cantor termed a limit
point.
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the second edition of the book serve to show how Hardy’s perception of the importance of

set theory had increased in the six years between the two editions.

The idea of a ‘section’, first brought into prominence in Dedekind’s famous pam-

phlet Stetigkeit und irrationale Zahlen21 , is one which must be grasped by every

reader of this book. [56, p. 28]

The general theory of sets of points is of the utmost interest and importance in

the higher branches of analysis; but it is for the most part too difficult to be

included in a book such as this. [56, p. 31]

It is interesting that when Hardy chose to construct the real numbers in the second edition of

A Course of Pure Mathematics, he chose the method of Dedekind. He had three possibilities

to choose from: Dedekind’s method using cuts, Cantor’s method using Cauchy sequences,

or Weierstrass’s method using infinite series. Since Hardy introduced the construction of

real numbers very early on in his textbook (by page 30), I believe that Dedekind’s method

was the only possibility as Hardy had yet to talk about sequences (functions of an integral

variable in his text) or series; these were part of the material he was leading up to.

Hardy was not the first English author to choose this approach in a textbook. Thomas

l’Anson Bromwich (1875-1929) wrote An Introduction to the Theory of Infinite Series in

1908. He did not introduce the arithmetic treatment of limits in the main body of the text

but, in appendix 1, he defined the irrational numbers using Dedekind sections and stated

in a footnote that Meray, Weierstrass, and Cantor had framed other definitions. This work

was not done independently of Hardy. In the preface of the text, Bromwich credited Hardy

in particular:

[Hardy] has given me great help during the preparation of the book; he has read

all the proofs, and also the manuscript of Chapter XI and the Appendices. I

am deeply conscious that the value of the book has been much increased by

Mr. Hardy’s valuable suggestions and by his assistance in the selection and

manufacture of the examples [6, p. viii]

Perhaps it can also be argued that the method of cuts is the simplest of the three methods.

21Continuity and Irrational Numbers by Richard Dedekind, 1872, translated into English in 1901. [19]
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In this introductory section on Hardy and set theory, I have established that Hardy was

one of a small group of British mathematicians22 who were the first to engage with the new

ideas of number, point-sets and transfinite numbers. This can be seen from the following

facts: Hardy published papers on set theory, Hardy attended lectures on set theory, Hardy

introduced the construction of the real numbers into his influential textbook and, as I will

show below, Hardy corresponded with both Jourdain and Russell on set theory during this

initial period of his career. So far I have not identified set theory being used as a language

for mathematics (the set-theoretic approach) in England during the first decade of the 20th

century in the way in which it was described by Hilbert in the passage cited at the beginning

of the chapter. I would now like to look at the papers on set theory that Hardy published.

3.2.1 Hardy’s five set theory papers, 1904-1910

3.2.1.1 The first and fifth paper on convergence

Hardy’s first set theory paper was published in the Proceedings of the London Mathematical

Society in 1904 and is titled A General Theorem Concerning Absolutely Convergent Series.

Series convergence was a topic that was of considerable interest to him at this time as can

be seen from the many papers published in the years between 1901 and 1904 on absolute

and conditionally convergent series and integrals. In this paper, Hardy proved a general

theorem:

If a series is absolutely convergent in type β23 , it remains absolutely convergent

when its terms are rearranged in another type β′, and its sums in the two types

are the same [39, p .286]

This generalized more simply stated theorems about absolutely convergent series such

as: the sum of the series is independent of the permutation of the terms, double series can

be rearranged in any manner of simpler series, or double series may be summed by either

rows or columns.

The thrust of the argument is that any enumerably infinite set (or ordinary simply

infinite set with ordinal type < ω ) can be arranged in terms of type β so that, if a series is

22I will show that this group also includes Whitehead, Russell, Jourdain, the Youngs and to a lesser extent
Hobson.

23Hardy denoted “by Greek letters α, β, γ, . . . numbers of Cantor’s first and second classes 0, 1, 2, . . . , ω
, ω + 1 , . . . , ω ∗ 2 , . . . , ω2 , . . . , ωω , . . . When it is necessary to distinguish specially the finite numbers
(numbers of the first class) I shall use m,n, p, . . . ” [Har04a, p.286]
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absolutely convergent in type β and then can be shown to be convergent in type β′, then the

results apply for all ordinary infinite series. First the fact that the series being considered

are absolutely convergent for Cantor’s first number class is generalized to Cantor’s second

number class using induction. Then the converse is also shown to be true, so that an

absolutely convergent series of type β is shown to be convergent when arranged in type ω.

But, any rearrangement of an ordinary series of type ω must lead to an arrangement in some

type β. And so the desired result is obtained.

Lastly Hardy used a theorem of Cantor’s, which he stated as “any set24 of intervals on

a straight line must be enumerable” to justify that his theorem is the most general possible

theorem of its kind. For this theorem and its proof, Hardy referenced a work of Young where

the theorem, “Every set of intervals on a straight line is countable, provided no two overlap”

[101, p. 248], is stated. Young pointed out that he has stated and proved the theorem in

precisely the same way as Cantor.

In this first foray into set theory, Hardy used some newly established results in set theory

in order to prove a general theorem useful in analysis. Since the fifth and final set theory

paper is of a similar type, it will be discussed now, out of chronological order.

In the last set theory paper, published in 1910, again in the Proceedings of the London

Mathematical Society, titled The Ordinal Relations of the Terms of a Convergent Sequence,

Hardy discussed the question:

How far is it possible to discriminate, on the ground simply of the ordinal relations

that hold between their terms, between sequences which converge to a limit and

sequences which do not? And, in so far as this is possible, what is the simplest

expression of the ordinal relations which characterize convergent sequences? [46,

p. 295]

Hardy used the example of the two sequences 1− 1
n and n to show that it is not possible

to discriminate between convergent and divergent sequences simply on ordinal grounds since

both sequences have the ordinal relationship ap ≥ aq, p > q and the first sequence converges

and the second diverges to infinity. However, if diverging to plus or minus infinity can

be considered as a special type of convergence then ordinal relationships can be used to

discriminate between convergent and oscillatory sequences.

The answer to the question asked is

24Note: set not aggregate, even though Hardy’s still uses theory of aggregates in 1914.



CHAPTER 3. G.H. HARDY AND SET THEORY IN BRITAIN, 1900-1910 32

that the ordinal relations of convergent sequences do possess an exceedingly sim-

ple characteristic which distinguishes them from all other sequences except one

very special type of oscillatory sequence; but that this special type of oscillatory

sequence cannot be distinguished from a convergent sequence by any marks of

its ordinal relations [46, p. 296].

and it results in the theorem

the necessary and sufficient condition that a sequence should converge to a limit,

greater than any of its terms, is that it should be quasi-monotonic (increasing)

[46, p. 297]

This is a result Hardy had obtained previously, and it appeared as an example in

Bromwich’s Infinite Series text in the appendix on the Arithmetic Theory of Irrational Num-

bers and Limits discussed above. The novel idea in this paper is that the quasi-monotonic

sequences are defined using three ‘classes’25, such that the first two must be finite. The

proof that these quasi-monotonic sequences converge is based on the finiteness of the first

two classes. Again, set theory here is being used to obtain a result in analysis.

3.2.1.2 Three papers on abstract set theory

The other three papers are of a different nature, dealing with abstract set theory. The first

and third of these three remaining papers are related so I will discuss them as a pair after

first discussing the 1904 paper, published in the Messenger of Mathematics and titled The

Cardinal Number of a Closed Set of Points.

In this paper, Hardy noted that Cantor had proved that “the cardinal number of a closed

set of points contained in the linear continuum (0,1) is α0
26 or 2α0” [Har04c, p. 67], a result

for which Hardy referenced Schönflies’ Bericht über die Mengenlehre. Hardy proved the same

result in a “simpler and more direct manner than Cantor” [38, p. 68].

Hardy’s proof rests on representing each number in (0,1) in its binary decimal representa-

tion. Since the whole interval is non-enumerable, Hardy argues, at some point in the binary

decimal expansion of a number, you can divide all of the decimal expansions into two sets

25Note: class, not set or aggregate. I suspect that this terminology is a result of the influence of Bertrand
Russell.

26Hardy used α where ℵ is now used
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where the nth number in one set is 1 and in the other set it is 0, such that both of these new

sets are non-enumerable. Similarly at some point further along in the expansion in either of

these two new sets, there can be a further division into two sets based on the same argument.

This process can be repeated indefinitely resulting in 2n “classes of sets”27 constructed from

the original interval after n steps. Now, since each one of the decimal expansions describes a

different limit point, the original set has 2α0 limit points and if it is closed, its own cardinal

is 2α0 .

The remaining two set theory papers were published in 1904 and 1907. The first of these

two papers, titled A Theorem Concerning the Infinite Cardinal Numbers, was published in

the Quarterly Journal of Mathematics, and the second titled, The Continuum and the Second

Number Class, was published in the Proceedings of the London Mathematical Society. The

second paper is a response to criticisms of the first paper published by Hobson in 1905 in a

paper titled On the General Theory of Transfinite Numbers and Order Types.

The purpose of A Theorem Concerning the Infinite Cardinal Numbers is to state and

prove a theorem concerning the infinite cardinal numbers - i.e.:

to prove rigorously that the cardinal number of the continuum is greater than or

equal to the cardinal numbers of Cantor’s second number class; in symbols, that

2α0 ≥ α1, and more generally, that 2αβ ≥ αβ+1 [40, p. 78].

Hardy showed that this follows from Cantor’s theorem that 2α0 > α1 but noted that he

has not seen it explicitly stated, and in fact, Russell in his 1903 publication Principles of

Mathematics stated that it is unknown whether or not

that of any two different cardinal numbers one must be the greater, and it may

be that 2α0 is neither greater nor less than α1 and α2 and their successors [87,

p. 323].

Hardy argued that his theorem concerning the infinite cardinal numbers is true based on an

extension of Cantor’s argument that every aleph is greater than or equal to aleph-zero. Care

is taken to make the justification independent of whether or not the cardinal numbers can

be well-ordered. Following this, Hardy constructed a set of points of α1, a construction that

he hoped would throw

27Now we would use ‘set of sets’. Here it appears that a set contains numbers where a class can contain
sets.
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some light (though of course a very partial one) on one of the most fundamen-

tally important and apparently hopeless questions in the whole range of pure

mathematics [40, p. 87].

The construction proceeded as follows. An infinite number of integer sequences are

formed, each consisting of consecutive integers where the first sequence starts with 1, the

second with 2, the third with 3, etc. Then, a new sequence is formed, consisting of diagonal

terms from each of above sequences; this sequence is {1, 3, 5, 7, 9, . . . } and it is sequence ω

since it follows the infinite number of sequences listed above. Then the process starts again

and an infinite number of sequences are formed from sequence ω by starting with the second,

third, fourth, etc. number. From this second set of infinite sequences, another sequence is

formed by again taking diagonals. This sequence is ω · 2. This process continues indefinitely
such that an infinite number of sequences of type ω · n are formed. When the diagonal

procedure is applied to these sequences, sequence number ωn is formed. This building

process continues indefinitely and Hardy then set about proving that all of the sequences

just constructed are distinct; the proof rests on the fact that each one of the sequences

constructed are ordered. Hardy pointed to the importance of the freedom of choice required

to make each sequence distinct. Once the distinctness of the sequences is proved, a collection

of size α1 has then been constructed.

3.2.1.3 Hobson’s criticisms

In 1905, Hobson published a fairly lengthy paper titled On the General Theory of Transfinite

Numbers and Order Types [60] which was an attempt to define a ‘norm’ that would force an

ordering onto an aggregate at the time of its formation so that the Burali-Forti paradox28

could be avoided. The paper also discussed Zermelo’s introduction of the Axiom of Choice29

It appears that Zermelo was unaware of the English debate about the Axiom of Choice by

Hardy, Hobson, Jourdain, and Russell. [72, p. 144]

Hobson wanted to

decide what limitations or qualifications must be imposed upon the nature of

an aggregate, so that in the development of the theory [Cantor’s general theory

28Since the set W of all ordinals is well-ordered, it has an order-type, say β, which must be the largest
ordinal; but then the set W ∪ {β} is well-ordered and has as its ordinal β + 1, a contradiction [72, p. 110]

29If a set S is partitioned into a disjoint family A of non-empty sets, then there exists at least one subset
T of S which has exactly one element in common with each member of A [72, p. 144].



CHAPTER 3. G.H. HARDY AND SET THEORY IN BRITAIN, 1900-1910 35

of ordinal and aleph-numbers], the possibility of being confronted by such a

contradiction as that which was pointed out by Burali Forti [sic] may be removed

at its source [60, p. 172].

The end of the paper contained a criticism of Hardy’s construction of a set of size ℵ1
outlined above. “This criticism is merely incidental to a much more comprehensive attack

on the whole theory of Cantor’s transfinite numbers” [42, p. 10]. It is however, the part of

the paper I will focus on since it is to this part of the Hobson paper that Hardy responded,

leaving the other criticisms to be rebutted by Russell and Jourdain.

Hobson first outlined the method Hardy used to construct the set of size ℵ1 and then

objected to Hardy’s use of the freedom of choice30 required to make each sequence in the

construction unique. Hobson wanted Hardy to define “a definite norm, or finite set of rules”

[60, p. 186] which would suffice to make each sequence unique. Hobson felt the definition

of such a norm would be difficult, if not impossible and since Hardy had not provided one,

each sequence that Hardy had constructed cannot be admitted as unique, and hence a set

of the required size had not been constructed as claimed.

Hobson took care at the end of the paper to praise the theories of Cantor which “have

rendered inestimable service in formulating the limitations to which many results in analysis,

formerly supposed to be universally valid, are subject” [60, p. 188]. He also allowed that

given the “great logical difficulties of the subject” [ibid] that his criticisms may not be fully

valid and hoped that they would at least contribute “towards the discussion of questions of

great interest which, at the present time, cannot be regarded as having been settled” [ibid].

3.2.1.4 Hardy, Russell and Jourdain Rebut Hobson

Hardy, Russell, and Jourdain all responded in print to the Hobson paper. Russell, at the

end of 1905, in a paper titled On Some Difficulties in the Theory of Transfinite Numbers

and Order Types [88] and Jourdain, early in 1906, with On the Question of the Existence of

Transfinite Numbers [62], both published in the Proceedings of the LMS. Grattan-Guinness

claims that it was this paper of Hobson’s that motivated Russell’s progress during this time:

30Jourdain describes this as “an infinite series of acts of arbitrary selection” [62, p. 266]
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Reformulating Hobson’s norm as a propositional function, Russell separated is-

sues surrounding the paradoxes from those related to Zermelo’s axiom. He com-

pared the latter with the multiplicative axiom (which he still thought less gen-

eral), and gave theorems from set theory when needed. He also published for the

first time his charming illustration about the need for infinite selections to show

that ℵ0 boots divide into pairs as any reasonable owner would desire [33, p. 357]

I focus on the response from Hardy who began his paper, The Continuum and the Second

Number Class [42], of 1905 (published in 1907), by noting his intention to only discuss the

mathematical disagreement between himself and Hobson and leave it to Russell to respond to

the rest of the criticism. Hardy then simplified his construction of the set of size ℵ1 without

affecting Hobson’s arguments and then proceeded to explain the validity of his construction

and why Hobson’s arguments did not invalidate it. In fact, Hardy simply denied Hobson’s

argument. “My answer to Dr. Hobson’s argument consists simply of a denial of his major

premiss” [42, p. 13].

A large part of Hobson’s criticisms came from his attempt to deny “the postulate of

the existence of the multiplicative class” [42, p. 14]. It is interesting that Russell was in

agreement with Hobson about this. He wrote a letter to Jourdain detailing the use of infinite

selections,

I think Hardy’s argument that an Nc is either equal to some Aleph or greater than

all of them fallacious. It would involve, if written out formally, the assumption

that, given a mutually exclusive class of classes, none of them null, it is possible

to find at least one class composed of one term out of each class of the class

of classes. A similar assumption is involved in Zermelo. I have worked long at

assumptions of this kind, without seeing any reason to think them true [29, p.

48]

While agreeing that the allowing of infinite selection is unproved, Hardy pointed to several

mathematical examples where it is tacitly assumed. In summary, Hardy was

therefore, in default of proof, prepared to accept the multiplicative axiom provi-

sionally on the grounds

(i.) that to deny it appears to be paradoxical;

(ii.) that no reason has been given for denying it;
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(iii.) that to deny it reduces to a state of chaos a great deal of very interesting

mathematics [42, p. 17]

Further, Hardy did not want “to imply that I accept Zermelo’s proof that every aggregate

is well-ordered. I agree with Dr. Hobson in thinking it open to objection on other grounds”

[ibid].

3.2.2 Interactions between Hardy, Russell and Jourdain

In the first decade of the 20th century, Hardy, Russell and Jourdain maintained a three way

correspondence. There are letters between Hardy and Jourdain, Hardy and Russell, and

Jourdain and Russell. Upon Jourdain’s death in 1919, Mittag-Leffler acquired two notebooks

of Jourdain’s containing letters from a number of mathematicians as well as drafts of his

replies. One can see Jourdain’s intense interest in set theory from whom he corresponded

with. The largest collection of letters in Jourdain’s papers is with Russell (about 115 letters)

and these letters form the basis of book called Dear Russell-Dear Jourdain by Ivor Grattan-

Guinness [29]. The other two substantial collections of letters are with Hardy (about sixty-

five letters)31 and Cantor (nearly 50 letters). Jourdain also corresponded with Frege, Peano,

and Zermelo. This collection of letters “form an outstandingly valuable collection for the

history of mathematics of the period” [34, p. 368].

I have not yet ascertained how many letters where exchanged between Hardy and Russell

in this period but the following quotes are used to establish that it was significant. For

example, in an article (see [30]) discussing how Bertrand Russell discovered his paradox of

the class of all classes which do not belong to themselves, Grattan-Guinness said:

The most detailed account of which I know is in an exchange of letters with G.H.

Hardy. It is largely forgotten now that Cantorian set theory was one of Hardy’s

early mathematical interests, but he and Russell discussed such questions in the

1900’s both in correspondence and in conversation together at Trinity College

where they were both fellows. Hardy kept no papers, but he would often send

letters back to their writers together with his own replies. Thus there are some

extensive letters to Hardy from Russell in Russell’s manuscripts [30, p. 130-131].

31Interestingly Rankin, in his introduction to Hardy’s set theory papers in Hardy’s collected works, points
specifically to just two letters between Hardy and Jourdain, one of 11 Dec 1903 and another of 04 Aug 1904
to “confirm Hardy’s considerable interest at this time in the foundations of set theory” [77, p. 417].
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Grattan-Guinness used the letters between Hardy and Russell to try and reconstruct

Russell’s line of thought that led to the discovery of Russell’s paradox.

In addition to corresponding, Hardy, Russell and Jourdain met for discussions. Hardy

and Russell were both fellows at Trinity College and members of the Apostles, a secret club

that met to discuss questions, primarily of a philosophical nature. A July 5th, 1905 letter

from Jourdain to Russell mentions a recent visit from Hardy at which they discussed the

difficulties of the multiplicative class [29, p. 54]. Russell visited Jourdain in July of 1907 at

Broadwindsor while on a bicycling trip [29, p. 108].

In the winter of 1901-1902 Jourdain attended the first course in mathematical logic given

in Britain. Russell’s audience for this course was small but included Whitehead as well as

Jourdain [33, p. 331].

The small amount of surviving material [from the lectures] suggests that in addi-

tion to the basic Peanist logic he seems to have covered quite a bit of set theory

and some aspects of geometry [33, p. 331].

Jourdain, Russell and Hardy read each other’s work and reviewed it. As seen above,

Jourdain reviewed Hardy’s A Course of Pure Mathematics.

In May of 1903, Russell’s Principles of Mathematics (PofM) was published. Russell

gave copies to Whitehead, Johnson, Moore, Bradley, Stout, Jourdain and probably Hardy.

Overseas, copies went to Couturat, Frege, Peano, Vailati and Pieri. By 1909, fifty of the

original print run of one thousand copies were left [33, p. 328]. Hardy reviewed PofM for

the Times Literary Supplement in September of 190332 where he gave it a mixed review

calling it “exceedingly difficult”, more so than necessary, and claimed it was too short – in

fact sometimes too short to be able to follow.

Hardy quoted Russell on the existence of number – “We no more create numbers than

Columbus created America” [37, p. 851] and pointed to Russell’s definition of pure mathe-

matics as all that can be deduced from twenty premisses33. This is the book that introduced

Hardy to Frege, “of whom we must confess that we had never heard until Mr. Russell

introduced him to our notice” [ibid, p.852].

The problem of Russell’s paradox was mentioned,

32see [37]
33“By the help of ten principles of deduction and ten other premisses of a general logical nature . . . , all

mathematics can be strictly and formally deduced; and all the entities that occur in mathematics can be
defined in terms of those that occur in the above twenty premisses” [87, p. 4]
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Part I raises many difficult questions, especially in the case of the notion of class

in which Mr. Russell has discovered a strange contradiction hitherto unresolved

[37, p. 852].

And, perhaps most interesting in this context, Hardy stated that most of the readers of

PofM will probably turn with interest to the fifth part of the book on infinity and continuity.

Here, Hardy claimed, if the reader was familiar with modern mathematics, he will not find

much that is new but

the truth is that the supposed contradictions of the infinite have been scattered

once and for all by the illustrious Cantor. All that has remained for Mr. Russell

is to restate Cantor’s doctrines with a philosophical clearness not always to be

found in the writings of their originator. [37, p. 853]

Finally, the last sentence of the review was a comment on mathematics at Cambridge

and Hardy’s own feelings about pure mathematics. This was just before the publication of

his first set theory paper.

Cambridge is generally supposed to care much for the physical and little for the

abstract side of mathematics; this book should do much to dispel so unfortunate

an impression [37, p. 854].

3.2.3 Hardy’s continued interest in set theory and the foundations of
mathematics following 1910

Hardy’s last paper on set theory was published in 1910 and Hardy’s collaboration with Lit-

tlewood started the following year – a remarkably productive collaboration which produced

a large volume of results, primarily in analysis. But, I will argue here, that while it was

undoubtedly a minor interest of Hardy’s, he did not lose interest in the development of set

theory or in the foundations of mathematics in the decades following 1910.

Hardy, Jourdain, and Hobson were given a copy of the first volume of Russell and White-

head’s Principia Mathematica (PM) at end of 1910.34 Jourdain did seven comprehensive

reviews. Hardy reviewed the work in September of 1911 for the Times Literary Supplement

in a piece titled The New Symbolic Logic.

34as were the Royal Society (who gave money to help cover the printing costs), Trinity College, Berry,
Couturat, Forsyth, Frege, Hawtry, Johnson (the Press’s reader), Peano and Royce. [33, p. 385]
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The review is generally positive but pragmatic stating that while “all professional math-

ematicians, for example, can and ought to read it” [47, p. 859], it can’t be expected that

more than “twenty or thirty people in England may be expected to” [ibid]. Further - “it

is a strange and disconcerting fact that mathematicians as a class are utterly impatient of

inquires into the foundations of their own subject” [ibid].

Hardy claimed the authors of PM were not widely respected:

In England we find the authors regarded by mathematicians as amusing cranks.

In France, we find the great Poincaré, who has a weakness for philosophy to which

we owe several most entertaining volumes, pouring contempt on la Logistique,

and preaching a form of pragmatism as hazy and elusive as any philosopher’s.

Even in Germany, the home of mathematical precision, we find the successors of

Cantor and Weierstrass protesting angrily that to ask really fundamental ques-

tions is an indecency and an insult to mathematics [47, p. 859].

Early in 1914, Hardy, having made the acquaintance of the American Norbert Wiener,

presented Wiener’s paper on A Simplification of the Logic of Relations to the Cambridge

Philosophical Society. Later in 1914 and then continuing for the next five years, Hardy

offered a free course in the Easter term on Elements of Mathematics (for non-mathematical

students). Lecture notes, written by influential philosopher G.E. Moore, show that Hardy

was teaching

a course of set theory influenced by PM, and including variables, finite and trans-

finite cardinal and ordinal arithmetic, mathematical induction, the multiplicative

class, continuity, and some elementary geometry [33, p. 421].

In 1927, Russell’s book The Analysis of Matter was published. In the prefatory material,

the publisher noted a forthcoming volume from Hardy on “mathematics for philosophers”

[33, p. 451]. The book never appeared and no trace of it has been found.

In 1928, Hardy gave the Rouse Ball lecture at Cambridge. The title of the lecture

was Mathematical Proof and its subject matter was “from the doubtful ground disputed by

mathematics, logic and philosophy” [52, p. 1]. Hardy claimed expertise in mathematics,

apologized for intruding as an amateur into mathematical logic and, regarding philosophy,

said, “philosophy proper is a subject, on the one hand so hopelessly obscure, and on the other

so astonishingly elementary, that there knowledge hardly counts” [52, p. 2]. Examples of
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mathematical, logical and philosophical questions were given and the continuum hypothesis35

was used as an illustration of a mathematical question which lies near the border with logic,

and “a mathematician interested in the problem is likely to hold logical and even philosophical

views of his own” [52, p. 3].

For a mathematician, Hardy said, an acceptable philosophy of mathematics must ra-

tionally account for both propositions (mathematical theorems) and proof (a collection of

propositions). The paper continued by outlining the objective reality and the validity of a

mathematical theorem and insisted on the admittance of the infinite into mathematics.

Hardy divided the existing schools of mathematical logic three: the logicists (Russell,

Whitehead, Wittgenstein, and Ramsey36), the finitists (Brouwer and Weyl) and the formal-

ists (Hilbert) and stated that there had not been enough attention paid to formalism in

England. A summary of the main points of each system followed, with particular reference

to the writings of Frank Ramsay (1903-1930), work that Hardy appears to have read with

approval – “I cannot hope to find popular language clearer than Ramsay’s, and I shall follow

him very closely” [52, p. 7].

The theory of aggregates of Cantor and Dedekind37, the paradoxes, Russell’s theory of

types, Dedekind’s theorem, Russell’s Axiom of Reducibility were covered in some detail,

the finitists were summarily dismissed and of Hilbert, Hardy separated the logic of Hilbert

from the philosophy of Hilbert, which he disliked. Hardy quoted Hilbert on formalism, “the

axioms and demonstrable theorems which arise in our formalistic game, are the images of

the ideas which form the subject-matter of the ordinary mathematics” [52, p. 11]. Hilbert’s

system was then described in some detail based on the work of Hilbert’s postdoctoral pupil

John von Neumann38, “whose statement I [Hardy] find sharper and more sympathetic than

Hilbert’s own” [52, p. 14]. Hilbert’s formalism was contrasted with Russell’s logicism.

Metamathematics was introduced and explained, “and of course it is the metamathe-

matics which is the exciting subject and affords the real justification for our interest in this

particular sort of mathematics” [52, p. 16]. This allowed Hardy to distinguish between

35stated in this context by Hardy as “Is the cardinal number of the continuum the same as that of Cantor’s
second number class?” [52, p. 2]

36Recall Jourdain died in 1919 or, presumably, he would be part of this list. Frank Ramsay (1903-1930),
fellow of Kings College, Cambridge, published The Foundations of Mathematics in 1925, and Mathematical
Logic in 1926.

37Note here that, like Ferreirós, Hardy credits both Cantor and Dedekind.
38John von Neumann (1903-1957), doctorate in mathematics (1926) with a thesis on set theory.
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proof “inside the system”, “formal, mathematical, official proof” [52, p. 16] and proof outside

the system, “informal, unofficial, significant proofs” [52, p. 17] whose object is to “produce

conviction, unofficial conviction of the absence of official contradiction – which is what we

want”. [52, p. 17]

Thus, given the above - Hardy’s book reviews, his Cambridge lecture series and his choice

of topic for the Rouse Ball lecture of 1928 - it is evident that Hardy followed developments

after 1910.

3.3 Other British Interactions with Set Theory

I have so far discussed primarily Hardy, Russell and Jourdain, who I believe were the main

English mathematicians interacting with the new disciple of set theory in the first decade of

the 20th century. Because of my interest in Hardy, I have taken particular care to emphasize

his role, possibly overemphasizing it. So far there has been one obvious omission – William

Henry Young and Grace Chisholm Young. First I intend to give reasons why, despite a large

volume of work, they do not appear to have had a commensurate impact and then I will

give a brief summary of their work.

William Henry Young (1863-1942), entered Cambridge in 1881, was 4th wrangler in the

mathematical tripos of 1884 and was a fellow of Peterhouse College from 1886-1892. Prior

to 1898, he did no research, preferring to work long hours as a mathematical coach and to

accumulate a large savings. In 1896, he married Grace Chisholm, who had done well in

the mathematical tripos exams, but was unranked because of her gender, and had a Ph.D.

from Göttingen under Felix Klein. They chose39 to leave England in 1897, for the continent,

settling first in Göttingen and then in Switzerland; a decision taken because Cambridge,

they felt, was mathematically dead. “There was no mathematician – or more properly no

mathematical thinker – in the place”40 [99, p.129].

This decision is perhaps one of the reasons for their lack of influence. “His continental

associations disenchanted the English, whereas his English background alienated continental

39Felix Klein received an honorary doctorate from Cambridge in 1897 and, while visiting, suggested the
move to the Youngs. [81, p. 92]. It was also Klein who suggested the new field of Mengenlehre (set theory)
to the Youngs, as presented by Schönflies [33, p. 132]

40This quote is from Grace’s autobiographical notes. Note that Sylvia Wiegand is the granddaughter of
Will and Grace, being the daughter of their son Laurence, so her analysis is not necessarily dispassionate.
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universities”41 [99, p. 131]. As well, neither William nor Grace held a traditional aca-

demic post; Grace not at all, and William several temporary positions at minor universities.

William’s lack of a position partially stemmed from his following an unconventional career

path. He did not earn a formal degree until 1903, he did not compete for a Smith’s prize,

and he did no major research until mid-life.

William also had an abrasive personal manner42, and was disliked by Grace’s family. He

was also disliked by Russell, who, in a letter to Jourdain, wrote, “I am amused at the thought

of your having the Youngs as neighbours. I should suppose that he might possibly become a

little trying in the long run” [29, p. 111]. “Will’s letters indicate that he was well-intentioned

but demanding, outspoken, and critical as well as overly sensitive and especially paranoid

about his difficulties in finding a good position” [99, p.131]. “More than once electors to a

chair passed him over in favor of men less powerful as mathematicians but less exacting as

colleagues” [11, p. 573]

The Youngs often collaborated but consciously chose to publish most of their work under

William’s name alone, in order to establish a career for him. In a letter from Will to Grace

in 1902, Will said

The fact is our papers ought to be published under our joint names, but if this

were done neither of us get the benefit of it. No. Mine the laurels now and the

knowledge. Yours the knowledge only [81, p. 94]

The Youngs published 214 papers between 1900 and 1924, and authored three books.

Their second book, The Theory of Sets of Points, was published in Cambridge in 1906.

The Youngs’ publications were not of uniformly high quality which likely restricted their

influence. Hardy, in his obituary of William in 1942, said, “His style is better in his books

than in his papers, which are sometimes rather rambling and diffuse” [55, p. 223]. The

Youngs appear to have made a conscious choice of quantity over quality. In the same 1902

letter quoted above, Will said,

But we must flood the societies with papers. They need not all be up to the

continental standard, but they must show knowledge that the others have not

got and they must be numerous [81, p. 95]

41There is also the possibility of a religious/class divide. Young was originally a Baptist who was baptized
into the Church of England while at Cambridge. [11]

42See for example [99, p. 131] and [99, p. 314] where family members characterize him this way.
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Despite the above, the Youngs were recognized for their work. William was “one of the

most profound and original of the English mathematicians of the last fifty years” [55, p. 218]

and

he was awarded the De Morgan medal of the London Mathematical Society in

1917 and was its President during 1922-24. In 1928 the Royal Society awarded

him the Sylvester medal in recognition of “a life of invincible mathematical ac-

tivity” [81, p. 97].

Dame Mary Cartwright (F.R.S. 1947) wrote that G.H. Hardy (F.R.S. 1910) con-

sidered that it was through contacts with the Youngs and their continental stan-

dards of rigour that E.W. Hobson (F.R.S. 1893) commenced his work on functions

of a real variable [81, p. 93].

Rothman (see [81]) claims that this is how Grace’s years at Göttingen greatly influenced

pure mathematics at Cambridge. But Hobson is generally not seen as a first rate player,

and even though he published in set theory, he was slower to grasp the new ideas and use

them creatively. Hardy reviewed the second edition of Hobson’s The Theory of Functions

of a Real Variable and the Theory of Fourier’s Series in 1922. Of the chapters on number,

transfinite numbers and order type, Hardy said:

Prof. Hobson often allows himself to use language which suggests the Oxford

philosopher rather than the Cambridge mathematician. . . . We have an uneasy

feeling that if one scratched the mathematician one might find the idealist, and

that all these discussions, and especially those which concern the ‘principle of

Zermelo’, ought to be stated in a sharper and clearer form [50, p. 436]

There is no doubt that the Youngs felt that set theory was a profoundly important area of

study, “we are entering in this subject with the holy of holies of mathematical thought” [103]

and that they were the first to publish a book length, systematic treatment of the “Georg

Cantor’s magnificent theory”43 [103, p. ix] in English. In fact after mentioning Schönflies

Bericht über die Mengenlehre, and Russells’s Principles of Mathematics, the Youngs felt

confident enough to claim that their work was “the first attempt at a systematic exposition

43Unlike Hardy, the Youngs focused solely on the work of Cantor and viewed set theory as his creation
alone.
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of the subject as a whole” [103, p. ix]. They sent Cantor a copy of their book, corresponded

with him about it, and he came to visit them. Cantor was warmly receptive of their work,

indeed of his reception in Britain in general, writing in 1908 that

My greatest wish is to be able to see that country [Britain], with whose high-

minded inhabitants I feel myself as one; quite otherwise is it with the Germans,

who do not know me, although I have lived among them fifty-two years [102, p.

423]

However their book was out of print by 1912. This may in part be because it was a

pioneering work and “the mathematical community was not yet receptive to this theory” [99,

p. 134]. As well, the set theory work was not considered Young’s best. Hardy felt Young’s

best work was the “on the theory of Fourier and other orthogonal series, the differential

calculus, and on certain parts of the theory of integration” [55, p. 224] and when summarizing

Young’s work in his obituary, concluded that it was possible that his work on integration,

impeded his recognition. The work was not popular in England or France and Young was

dismissed as “the man who was anticipated by Lebesgue” [55, p. 225]. Of the three books

the Youngs wrote, Hardy summarized them thus:

It is curious that Young should never have written a really successful book. He

wrote three, alone or in collaboration with his wife; the Sets of Points, this tract

[The fundamental theorems of the differential calculus] (both “classics” which

somehow hung fire) [55, p. 234]

The Young’s work has likewise attracted rather little attention from historians, perhaps

a reflection of its limited reception. For example, the index of Grattan-Guinness’s book,

The Search for Mathematical Roots 1870-1940, Logics, Set Theories, and the Foundations

of Mathematics from Cantor through Russell to Gödel, lists all of the pages on which Hardy,

Young, Jourdain, Hobson, and Russell’s names appear. See table 3.1 below.
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Table 3.1: Relative author mention in The Search for Mathematical Roots
Name Total Pages Mentioned Pages mentioning a relationship with Russell
Hardy 18 10
Hobson 4 0
Jourdain 51 34
Russell 307 NA
Young 5 0

My conclusion is that the Youngs, despite a lot of work, did not have as significant an

impact in the early transmission of set theory to Britain as did Hardy, Jourdain and Russell.



Chapter 4

A Course of Pure Mathematics

The purpose of this chapter is to examine the impact of Hardy and A Course of Pure

Mathematics on British mathematics by considering the following questions: why did Hardy

write A Course in Pure Mathematics, what did it replace, how is it different from what

it replaced, how is it different from textbooks of today, and from where did the “new”

mathematics come to Britain?

In considering these questions, I hope to establish that Hardy himself and this textbook

in particular exerted a large influence on British mathematics by bringing new standards of

rigour to Britain, rigour that was first established in the mathematical work of both French

and German mathematicians. Hardy was not the only one who did this - in the previous

chapter I discussed the more minor roles played by the Youngs and Hobson for example -

but he played an important part, perhaps the most important part.

The process of rigourisation of analysis during the 19th century was motivated by a variety

of factors. New technical developments, of which Fourier series is a particularly important

example, made it necessary to examine the concepts of limit, function, convergence, and

continuity more closely. The separation of mathematics from physics, and the separation of

analysis from geometry, removed two previous foundational justifications for analysis, which

then needed replacement.

Teaching also formed a main motivating factor for clarification of the foundations of

analysis; Cauchy (1789-1857), Weierstrass (1815-1897), and Dedekind (1831-1916) were all

motivated to examine foundational issues while preparing to lecture or while authoring text-

books. Hardy, in the preface to the first edition of his book, captured this motivation:

47
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It has been my good fortune during the last eight or nine years to have a share

in the teaching of a good many of the ablest candidates for the Mathematical

Tripos1; and it is very rarely indeed that I have encountered a pupil who could

face the simplest problem involving the ideas of infinity, limit, or continuity, with

a vestige of the confidence with which he would deal with questions of a different

character and of far greater intrinsic difficulty. . . . The fault is not that of the

subject or of the student, but of the text-book and the teacher. It is not enough

for the latter, if he wishes to drive sound ideas on these points well into the mind

of his pupils to be careful and exact himself. He must be prepared not merely to

tell the truth, but to tell it elaborately and ostentatiously. [44, p. vii]

The rigorous foundations of analysis recognized today developed primarily in two places

and its development was dominated by two people. Cauchy, in France, played the major

role in the first half of the 19th century and Weierstrass, in Germany, played the major role

in the second half of the 19th century resulting in a satisfactory foundation for analysis by

the beginnings of the 20th century. These developments in analysis are well explained in [70,

p.155-195] and [2, p.1-13].

By comparing the textbooks used at Cambridge from which Hardy himself was likely to

have been taught with A Course of Pure Mathematics, I will show what new ideas Hardy

felt important to introduce to “first year students at the Universities whose abilities reach

or approach something like what is usually described as ‘scholarship’ standard” [44, p. v].

In particular, the way in which Hardy treats the properties of the real number system

and the definition of a function, how he introduces and defines the notion of a limit, and how

logarithmic and exponential functions are introduced will be examined in detail. I will show

how, or if, these concepts are handled differently from what came before and will comment

briefly on how Hardy’s methods compare with a modern first year calculus textbook of today.

I will also provide some of the historical context in which the changes that occurred in British

analysis at the beginning of the 20th century happened.

1Mathematical examinations at Cambridge University explained below
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4.1 The Impact of A Course of Pure Mathematics

The importance of a book can be judged in a variety of ways. One simple measure is the

length of time a book remains in print and how many editions are printed. The year 2008

marked the publication of the 11th edition of A Course of Pure Mathematics and the 100th

anniversary of the book. The centenary edition of the book was published with a new forward

by T.W. Körner who stated:

One hundred years after it was first published, CUP (Cambridge University

Press) is issuing this 11th edition, not as act of piety, but because A Course

In [sic] Pure Mathematics remains an excellent seller bought and read by every

generation of mathematicians [66, p. 1].

By this measure, this book has influenced mathematics for 100 years.

Furthermore, the impact of this book has not been limited to Britain and other En-

glish speaking countries. A Course of Pure Mathematics has been translated into Spanish,

Chinese, Polish and Russian.

Another measure of a book’s importance is the frequency and way in which it is referred

to or referenced by mathematicians and others who have used it either for teaching purposes

or in their own training. The following quotations illustrate some specific examples of the

book’s impact in this regard.

Hardy’s student, E.C. Titchmarsh, wrote the obituary that was published in the Obituary

Notices of Fellows of the Royal Society in 1949. When speaking of the early part of Hardy’s

career, he said

To this period belongs his well-known book A Course of Pure Mathematics, first

published in 1908, which has since gone through several editions and been trans-

lated into several languages. The standard of mathematical rigour in England

at that time was not high, and Hardy set himself to give the ordinary student

a course in which elementary analysis was for the first time done properly. A

Course of Pure Mathematics is hardly a Cours d’analyse in the sense of the great

French treatises, but so far as it goes it serves a similar purpose. It is to Hardy

and his book that the outlook of present-day English analysts is very largely due.

[93, p. 3]
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Burkhill, who spent most of his career at Cambridge, wrote several textbooks, one of

which, The Lebesgue Integral, was published in 1951. In the introduction to this text – which

aims to give a straightforward introduction to the theory of integration due to Lebesgue –

the reader is told of the assumed background:

The groundwork in analysis and calculus with which the reader is assumed to be

acquainted is, roughly, what is in Hardy’s A course of pure mathematics (1908)

[9].

Similarly, E.H Neville2 in the Correspondence of The Mathematical Gazette wrote in 1941

that

it would be an impertinence to present a sentence from this source [A Course

of Pure Mathematics] as if it could be unfamiliar . . . the slovenly teaching

in elementary analysis was all but universal in England until Professor Hardy

directed his expository genius to its eradication [73, p. 217].

Clearly these quotations indicate widespread use and familiarity with Hardy’s book nearly

fifty years after its publication.

Finally, Ivor Grattan-Guinness wrote in his paper The Emergence of Mathematical Anal-

ysis and its Foundational Progress, 1780-1880 that

The Continental Analysis did not make much impact in Britain until the early

1840s, when William Thompson, later to become Lord Kelvin but then still a

teenager, began to study Fourier series and integrals. Even then British interest

lay chiefly in applications to mathematical physics, where the achievements were

very brilliant, rather than in foundations . . . Not until the work in the early

years of this century [the 20th] by G.H. Hardy and W.H. Young were foundational

studies brought fully into British education and research [31, p. 98].

2E.H. Neville, an English mathematician who played a large role in helping Hardy bring the Indian genius
Ramanujan to Cambridge in 1914.
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4.2 The Motivation for A Course of Pure Mathematics

4.2.1 Mathematics training at Cambridge prior to 1907

Mathematics training at Cambridge prior to 1907 was centered on preparing students to sit

examinations called the mathematical Tripos. These exams were divided into two parts, of

which some students wrote only the first part. Highly competitive, students were ranked by

their performance, and their future career prospects depended on their results. Top students

were called wranglers; the first wrangler was the top scoring student. Hardy was 4th Wrangler

in Part 1 of the mathematical Tripos in 1898 and was placed in the first division of the first

class in Part II in 1900. This led to a junior fellowship in 1900, which lasted until 1906 when

he obtained a lectureship. Dissatisfaction with this system – particularly with the order of

merit – led to a sweeping reform in 1910, a reform in which Hardy played a major role.

Cambridge students of the late 19th and very early 20th century did not attend lectures

in order to learn the material required to perform well on the critically important Tripos

examinations and so tended not to attend lectures at all.

It was impossible for undergraduates, whose future career depended on their

positions in the order of merit in a highly competitive examination, rigidly con-

fined to a stereotyped syllabus, to ‘waste their time’ with professors who were

eagerly extending the bounds of knowledge, and seeking after new truths gener-

ally too complicated to be dealt with in a three hours’ examination. Thus arose

the strange paradox that Cambridge possessed a number of eminent professors

whose lectures had little (if any) influence on even the best students, and with

whom most of the undergraduates were wholly unacquainted [76, p. 461].

Rather, students employed, at their own expense, a private coach who lectured, set, and

helped students solve typical Tripos questions with the explicit intent of training a student

to perform well on the examinations. Mathematical training to equip a student to become

a research mathematician was completely secondary to examination preparation.

One of the most famous and successful coaches was Edward John Routh (1831-1907)

who coached over 600 students [85, p. 320]. Late in Routh’s career he was the coach of

Andrew Russell Forsyth (1858-1942) and of Robert Rumsey Webb (1850-1936). Webb was

subsequently the coach of both Bertrand Russell and Hardy. Hardy did not approve of

Webb’s views of mathematics.
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Webb was not interested in the subject of mathematics, only in the tricks of

examinations. [74]

Hardy was later coached by A. E. Love. The negative commentary of Forsyth, Hardy and

Russell below clearly demonstrate their belief in the inadequacy of mathematical training

based on examination preparation.

This type of education impeded the production of textbooks in Britain since coaches had

a financial incentive to preserve their teaching methods and materials for the exclusive use of

their paying students. Forsyth commented that a coach “codified mathematical knowledge

into small tracts or pamphlets, kept in manuscript as his own private prescription for his own

set of students. Thus it came about that there were relatively few books” [23, p. 167]. And

when he commented on Routh’s teaching methods, he said “It was superbly direct for the

purpose in view: and it was strong in the measured completeness with which he covered the

whole ground for the Tripos. Independence on the part of the student was not encouraged;

for independence would rarely, if ever, be justified by the event. Foreign books were seldom

mentioned: Routh himself had summarized from them all that could be deemed useful for

the examination” [22, p. xvi]3 In these two comments, one can see the disincentive for British

textbook production as well as the disincentive to study texts from foreign countries if the

material contained in those books did not form part of the Tripos examination material.

Indeed the latter in a sense followed from the former as subjects from the Tripos exami-

nation were selected from textbooks that were available and suitable to Cambridge students.

Walter William Rouse Ball4 (1850-1925), best known as a historian of mathematics, explains:

The character of the instruction in mathematics at the university [Cambridge] has

at all times largely depended on the text-books then in use. The importance of

good books of this class has been emphasized by a traditional rule that questions

should not be set on a new subject in the Tripos unless it had been discussed in

3It should be noted that not all who studied under Routh had the same opinion as Forsyth about the
Tripos system. Karl Pearson (1857-1936), also a student of Routh’s, said

Every bit of mathematical research is really a ‘problem’, or can be thrown into the form of one,
and in post-Cambridge days in Heidelberg and Berlin I found this power of problem-solving
gave one advantages in research over German students, who had been taught mathematics in
theory, but not in ‘problems’. The problem-experience at Cambridge has been of the greatest
service to me in life, and I am grateful indeed for it [75, p. 27].

4see his book, The History of Mathematics at Cambridge
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some treatise suitable and available for Cambridge students [84, p. 128].

Russell’s poor opinion of his Cambridge mathematics training is seen in the following

quotes.

The mathematical teaching at Cambridge when I was an undergraduate was

definitely bad. Its badness was partly due to the order of merit of the Tripos . . .

The ‘proofs’ that were offered of mathematical theorems were an insult to the

logical intelligence. Indeed the whole subject of mathematics was presented as a

set of clever tricks by which to pile up marks for the Tripos. The effect of all this

upon me was to make me think mathematics disgusting. When I had finished

my Tripos, I sold all my mathematical books and made a vow that I would never

look at a mathematical book again [90, p. 37-38].

Or, when discussing the motivation for studying philosophy, Russell stated:

My teacher offered me proofs which I felt to be fallacious and which, as I learnt

later, had been recognized as fallacious. I did not know then, or for some time

after I left Cambridge, that better proofs had been found by German mathe-

maticians. . . . I was encouraged in my transition to philosophy by a certain

disgust with mathematics, resulting from too much concentration and too much

absorption in the sort of skill that is needed in examinations. [89, p. 15-6].

And of the instructors at Cambridge:

The men who taught me at Cambridge where almost wholly untouched by the

Continental mathematics of the previous twenty or thirty years; throughout my

undergraduate time, I never heard the name of Weierstrass. It was only by

subsequent travel that I came in contact with modern mathematics [91, p. 166].

Hardy was just 5 years younger than Russell and was trained in the same system.

In fact, it has been argued5 that the situation was worse than the above quotes imply. In

analyzing an 1896 unpublished article of Russell’s, Griffin and Lewis concluded that not only

was Russell ignorant of the concepts of Weierstrass but that he didn’t have “any appreciation

5see Nicholas Griffin and Albert C Lewis, Bertrand Russell’s Mathematical Education in the Notes and
Records of the Royal Society of London.
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of even early 19th century work on limits” [35, p. 64]. At the tail end of the 19th century,

Russell became aware of his lack of knowledge of mathematical foundations and rectified it.

In 1926, Hardy gave the Presidential Address to the Mathematical Association, titled

The Case Against the Mathematical Tripos. Keeping in mind that this was well after the

reforms of the Tripos system that occurred in the first decade of the 20th century, Hardy was

still a vehement opponent of the Tripos system claiming that historically it had impeded

mathematical progress in England and that, to a lesser extent, that it was still doing so in

1926. It is the historical effect of the Tripos, prior to 1907, that is of most interest here.

After justifying England’s and in particular, Cambridge’s stature as a place where first-rate

mathematics could be expected to develop, Hardy stated:

Since Newton, England has produced no mathematician of the very highest rank.

There have been English mathematicians, for example Cayley, who stood well

in the front rank of the mathematicians of their time, but their number has

been quite extraordinarily small; where France or Germany produces twenty or

thirty, England produces two or three. There has been no country, of first-rate

status and high intellectual tradition, whose standard has been so low; and no

first-rate subject, except music, in which England has occupied so consistently

humiliating a position. And what have been the peculiar characteristics of such

English mathematics as there has been? Occasional flashes of insight, isolated

achievements sufficient to show that the ability is really there, but, for the most

part, amateurism, ignorance, incompetence, and triviality [51, p. 63].

Hardy continued by noting that the quality of pure mathematics at Cambridge was

negatively correlated with the strength of the Tripos system,

When, in the years perhaps between 1880 and 1890, the Tripos stood, in difficulty,

complexity, and notoriety, at the zenith of its reputation, English mathematics

was somewhere near it lowest ebb [51, p. 63].

Hardy even questioned the quality of education of mathematical physicists in the 19th

century under the Tripos system which is widely thought to have been excellent, producing

such well known figures as James Clerk Maxwell, John William Strutt (Lord Rayleigh),

William Thomson (Lord Kelvin) and Peter Guthrie Tait. He said:

A mathematical physicist, I may be told, would on the contrary have received

an appropriate and an excellent education. It is possible; it would no doubt be
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very impertinent for me to deny it. Yet I do remember Mr. Bertrand Russell

telling me that he studied electricity at Trinity for three years, and that at the

end of them he had never heard of Maxwell’s equations; and I have been told by

friends whom I believe to be competent that Maxwell’s equations are really rather

important in physics. And when I think of this I begin to wonder whether the

teaching of applied mathematics was really quite so perfect as I have sometimes

been led to suppose [51, p. 65].

This rather stunning admission was corroborated by Littlewood who said, of the time

between 1903 and 1905 when he studied for part 1 of the Tripos examination, that,

Electricity was completely scrappy and I never saw Maxwell’s equations [68, p.

83].

It was not just the opinion of British mathematicians that their training and research

abilities were second rate. American mathematician G.D. Birkhoff opinion is evident here:

We6 talked in the Prologue7 about that “third place” which Italian mathematical

research was given in the international ranking at the beginning of the century.

Italy still appears in third place, at the beginning of the 1920’s, in the notes of a

US mathematician, G.D. Birkhoff, who was especially interested in the European

reality [36, p. 284].

4.2.2 Other cultural changes influencing British mathematical training
early in the 20th century

The Tripos training educational system at Cambridge is intimately tied to cultural and

educational philosophy issues at Cambridge and in England in general and has a long history;

the first ‘Mathematical Tripos List’ appeared in 1747. The Tripos examinations still take

place today; however they in no way dominate the mathematical landscape as they did

during the 19th century. The abolition of the order of merit in 1910, the production of a

series of rigorous, up to date English language textbooks in the late 19th and early 20th

6Guerraggio and Nastasi in their book Italian Mathematics Between the Two World Wars.
7“The virtues of the Risorgimento generation are to be seen, however, in terms of the creation of the

conditions which made possible the second generation to transform Italian mathematics into a great power,
second only to France and Germany.” [36, p. 10]
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century, the importation of latest continental mathematics, and the people at Cambridge

in the early 20th century all played a role in vastly improving the quality of mathematics

at Cambridge so that by the third decade of the 20th century, British analysis, centered at

Cambridge was world class. The question of how and why this happened when it did is

complicated and difficult to answer.

There are many issues that affected the rigourisation of British analysis, some of which

pertain to mathematics in general and some of which pertain in particular to British mathe-

matics. One of the general issues that affected the rigourisation of mathematics was technical;

Fourier series is a good example. It was already discovered by Abel that it was possible to

sum a convergent infinite Fourier series of continuous functions to a discontinuous function.

This also meant that term by term differentiation had to be more cautiously approached

and ideas of continuity and convergence had to be clarified. Other technical issues – where

it was possible to get wrong results because of unclear foundations – arose in differential

equations and elliptic functions.

Another issue affecting the rigourisation of analysis was pedagogical. Several instructors

of mathematics found that in order to clearly explain analysis, they themselves needed to

formulate the basic ideas and definitions clearly. This was the case for Cauchy, Weierstrass

and Dedekind.

The last two general points involve disciplinary separations. First, mathematics sepa-

rated from physics during the 19th century. Prior to this separation, physical results could

be used to corroborate mathematical results; in particular, the existence of a solution was

demonstrated by the physical situation.8 This meant that the correctness of a mathematical

result now needed to be provided by mathematics itself. Secondly, analysis separated from

geometry; this meant the correctness of analysis required demonstration by methods other

than geometric argument. In fact, with the construction of new geometries and the gaps

discovered in Euclid’s proofs, recourse to geometrical argument itself was not sufficient. So,

there were several reasons why the development of rigour was pursued in the 19th century

and it happened primarily in France and Germany9.

In Britain, in the period following Newton particularly after the Newton/Leibniz contro-

versy over precedent in the invention of calculus, English (which in effect was Cambridge)

mathematicians isolated themselves from others, feeling a strong sense of superiority [35, p.

8see [70]
9see [70] or [2]
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56]. Tripos examinations even expected students to know lemmas from Newton’s work by

number alone. The first attempt at reform happened early in the 19th century.

Robert Woodhouse10 (1773-1827) introduced analytic techniques to Cambridge when he

wrote Principles of Analytical Calculation in 1803. In this work, he “explained the differential

notation and strongly pressed the employment of it” [84] while at the same time “he exposed

the unsoundness of some of the usual methods of establishing it” [84]. Rouse Ball notes that

Woodhouse was critical of the foundations of this new analysis and that this is “not infre-

quently neglected in modern [Ball was writing in 1908] textbooks” [84]. The most important

effect of Woodhouse’s efforts was the formation of the short-lived Analytical Society formed

by three undergraduates: George Peacock (1791-1858), Charles Babbage (1792-1871) and

Sir John Frederick William Herschel (1792-1871).

In the context of reforming Cambridge mathematics, Peacock was the most important

of the founders. As a newly appointed lecturer, with the responsibility for setting Tripos

examination papers, he switched, without warning, to Continental notation.11 “Even then

we took examinations seriously; from that moment Peacock had won and Cambridge was

confirmed as the home of English mathematics” [100, p. 278]. These reforms influenced

several generations of undergraduates including Augustus De Morgan, William Whewell,

Arthur Cayley, J.J. Sylvester, William Thomson and George Gabriel Stokes. It was during

the 1830’s and 1840’s that analysis became a Tripos examination subject and the Tripos

examination became famous.12 Griffin argues that the result of this reform was that the

system

produced during those years some of Cambridge’s best pure mathematicians of

the 19th century: J.J. Sylvester and Arthur Cayley [35, p. 56].

This first reform came to an end, largely and ironically, given that he had benefited

from it, by the actions of Whewell. He decided that the role of mathematics education was

primarily as a foundation for a liberal education and as such emphasis was to be placed

on permanent (geometry) rather than progressive (contemporary developments in algebra)

ideas. The Tripos was reformed to reflect this in 1848; at which time Whewell also established

10A Cambridge trained fellow of Caius College who wrote several textbooks in the first two decades of the
19th century.

11Joseph Louis Lagrange’s algebraic notation
12see [35] and [20]
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a preference for “physical sciences with their practical utility to pure mathematics” [20, p.

156].

Isaac Todhunter (1820-1884) (a student of De Morgan who was a student of Peacock’s)

is best known for his textbooks and was a fellow and lecturer at Cambridge on geometrical

optics, an important Tripos topic. Given the emphasis on physical sciences instituted by

Whewell, here is another quote, again involving Maxwell, which indicates that the physical

science instruction was not excellent, as Hardy has suggested. Maxwell invited Todhunter

to observe his experiments on conical refraction at Cavendish laboratory; a invitation that

Todhunter refused

since he thought it might upset him. “Then”, Maxwell asked, “allow your students

to come.” “Sir” said Todhunter, “If a young man will not believe his Tutor, a

gentleman and often in Holy Orders, I fail to see what can be gained by practical

demonstration.” [100, p. 280]

This was approximately the system in place when Hardy arrived at Cambridge in 1896

with the exception that in the 1880’s, the Tripos exam was divided into two parts; elementary

and advanced. This division may have been a further detriment since only a small number

of students studied for part two of the mathematical Tripos.

The reform needed for Cambridge to become world class began late in the 19th century

with the 1893 publication of Forsyth’s text titled Theory of Functions. At least one person13

felt that this was a tremendously important publication and called it “one of the most

influential British mathematics books after the Principia” [100, p. 281]. Hardy joined

the reform movement in 1898, and his text, “another book designed to liberate Cambridge

mathematics” [100, p. 281], was published in 1908.

4.2.3 Hardy’s informal mathematical training

Given that the Tripos based system at Cambridge for undergraduate mathematical train-

ing was lacking, particularly in pure mathematics, how did Hardy educated himself in the

methods he was later to promote? Since Bertrand Russell also successfully undertook this

task, his method will also be discussed.

Hardy, in an often-quoted passage, has stated where his first real understanding of math-

ematics came from:

13H.H. Williams [100]
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My eyes were first opened by Professor Love, who first taught me a few terms and

gave me my first serious conception of analysis. But the great debt which I owe

to him was his advice to read Jordan’s Cours d’analyse; and I shall never forget

the astonishment with which I read that remarkable work, the first inspiration

for so many mathematicians of my generation, and learnt for the first time as I

read it what mathematics really meant [54, p. 147].

In 1922, Hardy wrote an obituary of Camille Jordan (1838-1922) in which he calls Jor-

dan’s Cours

the first systematic treatise on analysis in which the fundamental problems of

the theory of functions were envisaged from a really modern point of view, and

it has accordingly played a great part in the education of most of the leading

analysts of the day.14 [49, p. 721]

There are three editions of the three volume Cours d’analyse. The first edition appeared

between 1882 and 1887, the second between 1893 and 1896 and third between 1909 and 1915.

It is in the second edition that the point-set theory of Cantor is detailed in the opening pages

of the first volume. It is probable that Hardy is referring to the second edition in the above

quotations since he refers to the second edition of Jordan’s work in Jordan’s obituary15,

written in 1922. More compellingly, Hardy, in his first tract The Integration of Functions

of a Single Variable, written in 1905, used an example from Jordan that he credits as “Cf.

Jordan, Cours d’analyse, ed. 2, vol 2, p.21” [41, p. 26].

Hardy has also stated that he

was really quite ignorant, even when I took the Tripos, of the subjects on which

I have spent the rest of my life [54, p. 147]

and depending on which part of the Tripos he is referring to, it is possible to conclude then

that he read the second edition of Jordan’s Cours d’analyse between 1898 or 1900 and 1905.

14In a biography of Julian Schwinger (see [71]), there is a note on Freeman Dyson who attended Winchester
College before going to Cambridge, as did Hardy. While at Winchester, Dyson “worked through the three
volumes of Camille Jordan’s Cours d’analyse which they found on the upper shelves of the library. Jordan’s
Cours had probably been donated by the Cambridge mathematician G.H. Hardy.” [71, p. 238] This is
further evidence of how important this book was to Hardy as well as the strength of his convictions that this
material should be made available to future mathematicians.

15This is the conclusion drawn by Ivor Grattan-Guinness in his article Russell and G.H. Hardy: A Study
of their Relationship.
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Unlike A Course of Pure Mathematics, The Integration of Functions of a Single Variable

has a bibliography; works Hardy must have read prior to 1905. Of course these referenced

works are the ones that deal with integration of a function of a single variable and with

one exception, all twenty-five works are written in German or French, with the works of

Abel, Liouville and Chebyshev the most prominent. I conclude that Hardy had, by 1905

and probably quite a bit sooner, a full appreciation of the continental mathematics that he

was not aware of prior to 1898.

Bertrand Russell returned to mathematics in 189416 to write a fellowship dissertation on

the foundations of geometry. It is not known exactly when – although it would have been

after his unpublished 1896 article – or how he realized that his mathematical knowledge was

out of date. It is known however, that he first heard of Weierstrass when visiting the United

States in 1896 and that he read Introduction to the theory of analytic functions17 in 1899.

For Russell, mathematics was to be the foundation of a rational belief system, one secure

against skeptical attack and as such, the foundations of mathematics were extraordinarily

important to him. Mathematics had “to be placed on a rational foundation” because “only

when it were done would mathematics be fit to stand as the cornerstone for the whole edifice

of human knowledge” [35, p. 67].

4.3 The Mathematics in A Course of Pure Mathematics

4.3.1 Overview of the Text

A Course of Pure Mathematics, still in print, was written in 1908 and is currently in its 11th

edition. New editions appeared roughly every 5 years from 1908 to 1944 when the 9th edition

was printed and then reprinted in 1945. The 10th edition was published in 1963 and the 11th

edition in 2008. Major revisions occurred in the 2nd (1914) and the 7th (1938) edition. The

first edition has a comprehensive index whereas, inexplicably, there is no index by the 9th

edition.

The book has always consisted of ten chapters with the same or very similar chapter

titles. The first three chapters introduce real numbers, functions of integer and real variables

16See [35] for a detailed explanation on which this summary is based.
17A monograph authored by James Harkness, professor of mathematics at Bryn Mawr, and Frank Morley,

professor of mathematics at Haverford College in Pennsylvania. Both of these professors attended Russell’s
lectures at Bryn Mawr in 1896.
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and complex numbers. Chapters four and five define the limits of functions of a positive

integral variable and follow with the limits of functions of a continuous variable. Chapters

six and seven cover derivatives and integrals and chapter eight details convergence of infinite

series and infinite integrals. The last two chapters, nine and ten, define the logarithmic

and exponential functions, starting from the definition of the logarithm as an integral and

culminate in the general theory of the logarithmic, exponential and circular functions.

It is, in fact, the material in the last two chapters that provided the impetus for writing

the book and directed the material in the earlier chapters. According to Hardy:

It was the desire to write an elementary treatise of this theory that originally led

me to begin the book, and I have generally decided my choice of what was to be

included in the earlier chapters by a considerations of what theorems would be

wanted in the last two [44, p. vii].

I found this surprising and will comment on it below.

When Hardy revised the book in 1937 in preparation for the 7th edition, he reread the

book in detail for the first time in twenty years. In the preface of the 7th edition, his writing

gives a clue both to his original motivations when writing the text and to how much things

had changed at Cambridge in the preceding twenty years. He said

It (A Course of Pure Mathematics) was written when analysis was neglected at

Cambridge, and with an emphasis and enthusiasm which seem rather ridiculous

now. If I were to rewrite it now I should not write (to use Prof. Littlewood’s

simile) like “a missionary talking to cannibals”, but with decent terseness and

restraint and, writing more shortly, I should be able to include a great deal

more. . . . It is perhaps fortunate that I have no time for such an undertaking,

since I should probably end by writing a much better but much less individual

book, and one less useful as an introduction to the books on analysis of which,

even in England, there is now no lack [56, p. v].

4.3.2 The Real Number Line

Hardy’s book first introduces the properties of the various classes of numbers in the real

number system, which he calls the arithmetical continuum. This is handled very differently

in the first and second editions. In the first edition, Hardy does not:
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attempt to include any account of any purely arithmetical theory of irrational

number, since I believe all such theories to be entirely unsuitable for elementary

teaching [44, p. v].

The linear continuum (Cantor’s term) is taken for granted and it is assumed that there exists

“a definite number corresponding to each of its points” [44, p. v].

Chapter one, twenty-four pages in length in the first edition, consists of an introduction

to number via line length and ratios of line lengths, leading to a definition of a rational

number. There is a justification that there are infinitely many rational numbers in every

segment of the number line. Hardy then states

There is, however, good reason for supposing that there are on the line points

which are not rational points18 [44, p. 4].

This is justified by appealing to the length of the hypotenuse of a right-angled isosceles

triangle with equal sides of 1 and to Euclid’s construction for a mean proportional between

1 and 2. After proving that there is no rational number whose square is m/n, where m/n

is any positive fraction in its lowest terms, unless m and n are both perfect squares, Hardy

defines a number that is not rational to be irrational.

Next, quadratic surds (numbers of the form a +
√
b , where a and b are rational) are

introduced with the idea that the existence of quadratic surds was suggested by geometrical

considerations. But a more general form of an irrational number can be thought of, one

with no geometrical significance. It is shown that infinitely many irrational numbers can be

found by considering divisions of rational numbers into two classes, the lower class T and

the upper class U . This is proven and then

our common-sense notion of the attributes of a straight line demands the existence

of a number x and a corresponding point P such that P divides the class T from

the class U . [Har08, p.13]

and this number is not rational. The example of
√

2 is justified but there is no general proof.

So, despite Hardy’s quote in the preface of the first edition that he does not include any

account of any purely arithmetical theory of irrational number, he does go part way down

the path of defining an irrational number arithmetically.

18Emphasis is in the original.
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Finally, at the end of the first chapter, the linear continuum is defined as the “aggregate

of points contained in a straight line L” which includes the rational points, the irrational

points and “all other points of the line, if any such there may be” [44, p. 15]. Following

from this, real numbers are the signed measures of the lengths of finite portions of the linear

continuum, and the arithmetic continuum is the aggregate of all real numbers. Again Hardy

states that this is not a rigorous exposition and indeed provides examples using a quintic

equation and pi to show that all irrational numbers are not found using combinations of

surds. Interestingly, the terms algebraic and transcendental are not introduced in the main

text but are defined in the exercises at the end of the chapter.

In contrast, in later editions of the book, starting in 1914, Hardy defines a rational

number as a ratio of two integers and then follows with an explanation of the representation

of rational numbers by points on a line. He then takes care to mention that analysis in no

way depends on geometry and that geometry is “employed merely for the sake of clearness

of exposition” [56, p. 2]. The same two geometrical examples are used to motivate the

discussion of an irrational number but only to “suggest the desirability of enlarging our

conception of ‘number’ by the introduction of further numbers of a new kind” [56, p. 7].

Irrational numbers are then introduced as necessary for the solution of equations of the form

x2 = 2. The rational numbers are, as before, divided into two classes, which are now R and

L rather than T and U .

Now the reader is invited to accept the existence of these “irrational numbers” and skip

to the section on quadratic surds – if he wishes to avoid abstract discussion. This results in

the discussion flowing much as it did in the first edition. Otherwise, for someone interested

in a rigorous definition of an irrational number, there is a more extensive explanation of

irrational numbers. Irrational numbers are defined using sections such that an irrational

number is a real number that is not rational where a real number is “a section of the rational

numbers, in which both classes exist and the lower class has no greatest number” [56, p.14].

Then, rather than assuming the laws of arithmetic apply to these newly defined numbers,

Hardy expends considerable effort to show the validity of the relational operators between

real numbers and to show that all of the algebraic operations, such as addition, subtraction,

multiplication and division still hold. The discussion then continues with quadratic surds as

in the first edition.

Next, as in the first edition, this discussion culminates in a description of the continuum.

This section is greatly enlarged and the reader is not invited to skip any of this material;
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it is considered of utmost importance. First the arithmetical continuum is defined as the

aggregate of all real numbers, rational and irrational, and the linear continuum is only

mentioned to supply the reader with a convenient image of the arithmetic continuum. Surds,

a small subclass of irrational numbers are roots of algebraic equations, which are in turn a

small subclass of all of the irrational numbers.

Now, the idea of sections that was applied to the discussion of rational numbers in order

to define irrational number is applied to real numbers.

The idea of a ‘section’, first brought into prominence in Dedekind’s famous pam-

phlet Stetigkeit und irrationale Zahlen19 , is one which must be grasped by every

reader of this book, even if he be one of those who prefer to omit the discussion

of the notion of an irrational number [56, p. 28].

Sections are used to prove that, unlike the aggregate of rational numbers, the aggregate of

real numbers is complete20 – there is no necessity for a further generalization of number. As

such the continuum is closed. The results proved using sections of real numbers are stated

as Dedekind’s thereom. Next, an accumulation point is defined and finally Weierstrass’s

theorem that

If a set S contains infinitely many points, and is entirely situated in an interval

(α, β), then at least one point of the interval is a point of accumulation of S [56,

p. 32]

is stated.

This is the point where Hardy steps back from things he feels to be too difficult for an

elementary text.

19Continuity and Irrational Numbers by Richard Dedekind, 1872, translated into English in 1901.
20In [56, p. 29-30], completeness is introduced in making the point that, while sections of rational numbers

lead to a new, more general conception of number, sections of real numbers do not lead to a further gener-
alization of number such that “the aggregate of real numbers, or the continuum has a kind of completeness
which the aggregate of the rational numbers lacked, a completeness which is expressed in technical language
by saying that the continuum is closed”. The words complete or closed do not appear in Dedekind but the
same idea is expressed in two theorems. The first identifies that the domain < possesses continuity and states
that “if the system < of all real numbers breaks up into two classes, U1 and U2 such that every number α1

of the class U1 is less than every number α2 of the class U2 then there exists one and only one number α by
which this separation is produced” [19, p. 20]. The second theorem is “if a magnitude x grows continually
but not beyond all limits it approaches a limiting value” [19, p. 25]. Dedekind then states that this second
thereom is equivalent to the first and both lose their validity when a single real number is not contained in
the domain <.
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The general theory of sets of points is of the utmost interest and importance in

the higher branches of analysis; but it is for the most part too difficult to be

included in a book such as this [56, p. 31].

From a modern perspective, it is apparent that set theory is of the utmost importance:

set theory plays an organizing role in the polis of mainstream modern mathe-

matics and represents one of the highest achievements of mathematical wisdom

[21, p. xv].

Hardy used some set notation when dealing with real numbers but, as will be shown below,

used none when dealing with functions; something that is not seen today.

How is Hardy’s treatment of real numbers different from what we now expect to see

in an advanced first year introductory textbook? Hardy provides a more advanced and

rigorous introduction to the continuum than we would expect in a modern course that

“would either leave the construction to much later or omit it altogether” [66, p. 4]. For

example, in Adams21 , real numbers are introduced with a series of examples which include

integers, rational numbers, and irrational numbers, both algebraic and transcendental. The

real numbers are geometrically identified with the real number line and the algebraic, order

and completeness properties of the real number line are stated as axioms. Completeness is

identified as a subtle and difficult concept and is stated as:

If A is any set of real numbers having at least on number in it, and if there exists

a real number y with the property x ≤ y for every x in A, then there exists

a smallest number y with the same property. Roughly speaking, this says that

there can be no holes or gaps on the real line – every point corresponds to a real

number. [1, p. 3]

The interested reader is referred to an appendix that contains ε − δ proofs of some of the

fundamental theorems of calculus; however completeness of the real number line is stated as

an axiom; Dedekind cuts are not mentioned.

Similarly, Clark22 takes an axiomatic approach,

Only in the 19th century was a successful theory developed, in which the entire

real number system could be defined in terms of the system of positive integers.

21Single Variable Calculus by Robert A Adams, a standard first year university calculus textbook
22Elementary Mathematical Analysis by Colin Clark used in second year introductory analysis courses.
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Since this theory is quite complicated, it is not convenient to present it in an

elementary book. Instead, we will treat the properties of the real number system

as axioms. [15, p. 6]

It is not until an advanced text such as Rudin23 – “intended to serve as a text for the course in

analysis that is usually taken by advanced undergraduates or by first-year graduate students

who study mathematics” [86, p. v] – that the real numbers are constructed from the rationals,

Dedekind cuts are introduced and the completeness property is proved.

Rudin’s text in this section is astonishingly similar to Hardy’s. After stating Theorem

1.32 (Dedekind), Rudin states that because gaps were found in the rational number system

and filled and that

if we tried to repeat the process which lead us from the rationals to the reals, by

constructing cuts . . . whose members are real numbers, every cut would have a

smallest upper number, we could immediately identify every cut with its smallest

upper number, and nothing new would be obtained. For this reason, Theorem

1.32 is sometimes called the completeness theorem for the real numbers [86, p.

10].

Both Hardy and Rudin make the same argument that cuts of rational numbers identify

gaps and that cuts of real numbers do not, that this property of real numbers is called

completeness and that Dedekind’s theorem is a statement of this completeness. The only

real difference is that Hardy makes the completeness argument before stating Dedekind’s

theorem24 and Rudin does it after. Their statements of Dedekind’s theorem are different,

however, in that Rudin states Dedekind’s theorem using set notation and Hardy does not.

Of the sixteen books that Rudin lists in his bibliography, two are authored by Hardy.

The 9th edition of A Course of Pure Mathematics is one and Hardy’s book, coauthored with

Rogosinski, on Fourier series is the other. A third book in the bibliography, The Theory

23Principles of Mathematical Analysis by Walter Rudin
24Hardy’s statement of Dedekind theorem is “If the real numbers are divided into two classes L and R in

such a way that i) every number belongs to one or other of the two classes, ii) each class contains at least
one number, iii) any member of L is less than any member of R, then there is a number α, which has the
property that all the numbers less than it belong to L and all the numbers greater than it to R. The number
α itself may belong to either class” [56, p. 30]. Rudin’s statement of the thereom is “Let A and B be sets of
real numbers such that (a) every real number is either in A or in B; (b) no real number is in A and in B;
(c) neither A nor B is empty; (d) if α ∈ A, and β ∈ B, then α < β. Then there is one (and only one) real
number γ such that α ≤ γ for all α ∈ A, and γ ≤ β? for all β ∈ B” [86, p. 9].
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of Functions, was written by Hardy’s student Titchmarsh. Through Rudin’s work, Hardy’s

influence on the way to define real numbers continues to this day.

When we look at English textbooks that are contemporary to Hardy’s or that Hardy may

have studied himself, the picture is not so straightforward. For example, Edouard Goursat’s

A Course in Mathematical Analysis, written in 1902, was translated and published in English

in 1904 in order to “fill the need so generally felt throughout the American mathematical

world” because the “lack of standard texts on mathematical subjects in the English language

is too well known to require insistence” [28, p. v]. The English version was intended for use

as a text for a second course in calculus.

This book starts with functions of a single variable, without mention of real numbers.

Goursat states in his preface that

Since mathematical analysis is essentially the science of the continuum, it would

seem that every course in analysis should begin, logically, with the study of

irrational numbers. I have supposed, however, that the student is already familiar

with that subject. The theory of incommensurable numbers is treated in so many

excellent well-known works that I have thought it useless to enter upon such a

discussion [28, p. iii].

This remark forced the book’s translator, E.R. Hedrick, to comment in a footnote

such books are not common in English. The reader is referred to Pierpont,

Theory of Functions of Real Variables, 1905. . . Tannery, Lecons d’arithmetique,

1900 and other foreign works on arithmetic and on real functions [28, p. iii].

Chrystal’s25 Algebra, first published in 1889 and in its 5th edition by 1904, is another

example of an analysis book contemporary to Hardy’s. It was written for higher classes

of secondary schools and for colleges. The second volume of this book was identified by

Littlewood as one of the more advanced books he read while attending St. Paul’s School

prior to taking the Entrance Scholarship Examination for Cambridge. Littlewood felt his

education was good considering the system in which it occurred and that

25George Chrystal(1851-1911) was a graduate of Cambridge University (1877) who spent most of his career
as the chair of mathematics at the University of Edinburgh where he was known an an excellent teacher.
Algebra is his most famous publication. The first volume was published in 1886 and the second volume in
1889.
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Ideally I should have learnt analysis from a French Cours d’analyse instead of

from Chrystal and Hobson26, but this would have been utterly unconventional.

I did not see myself as a pure mathematician (still less as an analyst) until after

my Tripos Part I, but I had enough instinctive interest in rigour to make me

master the chapters of Chrystal on limits and convergence. The work is rigorous

(within reasonable limits), and I really did understand, for instance, uniform

convergence, but it is appallingly heavy going [68, p. 81-82].

This level of mathematics is so far beyond a high school student of today that it barely seems

possible.

It appears that Chrystal, like Hardy, believed that examination preparation was causing

the fundamental notions of limits and infinite series to be rushed so that the machinery of

calculus could be learned in order to solve problems.

Besides being to a large extent an educational sham, this course is a sin against

the spirit of mathematical progress [14, p. vi].

Therefore, in his chapters on inequalities, limits and convergence of series, Chrystal at-

tempted to

avoid trenching on the ground already occupied by standard treatises: the sub-

jects taken up, although they are all important, are either not treated at all or

else treated very perfunctorily in other English text-books [14, p. vii].

This motivated the discussion of the work of Weierstrass, Dedekind, and Cantor, all well

referenced to French or German works, and the decision to base the theory of irrationals on

a mixture of Dedekind and Cantor – a method “best suited to bring the issues clearly before

the mind of a beginner” [14, p. 98]. This is followed by the Dedekind’s theory of sections in

a presentation that is more difficult to follow than the one given by Hardy.

In summary, with regard to the continuum, Hardy’s book appears to be one of a very

few English books published before 1908 in which the real numbers are constructed and are

shown to be complete. Goursat’s book treats this as known to the reader but that is because

26Hobson published Treatise on Plane Trigonometry in 1891. Although the title would not suggest this
book’s subject to be analysis, “the later portions of this book were for many years the only place (with the
exception of Chrystal’s Algebra) where could be found an accurate account in English of complex numbers
and of infinite series. In 1907 the fame of his Trigonometry was eclipsed by that of his Treatise on the
Functions of a Real Variable and the Theory of Fourier’s Series” [76, p. 463]



CHAPTER 4. A COURSE OF PURE MATHEMATICS 69

Goursat wrote in French and assumed familiarity with other French work or perhaps he

thought this was not very important. And then, when compared with textbooks of today,

Hardy’s, and even Chrystal’s work, are more rigorous than most of the textbooks designed

for students of a similar age. Today, textbooks written for high school and first and second

year university mathematics favour the axiomatic approach over the constructivist approach

– a method which has “all of the advantages of theft over honest toil”27.

4.3.3 The Definition of a Function

Hardy motivates the concept of a function geometrically by considering two straight lines on

which two distances are measured, respectively x and y, which are continuous real variables.

Exactly what is meant by variable is not further analyzed and there is no attempt to link

a variable to a section or cut. If there is a relationship between x and y such that when x

is known, y is known then y is a function of x. The first examples of functions are explicit

formula and geometrical constructions. However, “all that is essential is that there should be

some relation between x and y such that to some values of x at any rate correspond values

of y” [44, p. 26].

Following this definition, the graphical representation of functions in Cartesian coordi-

nates is explained, with a definition of terms such as coordinates, abscissa, ordinate, graph,

and locus given in the context of graphing a straight line. The exposition in the 1st edition

on graphing in Cartesian coordinates is longer and more detailed and followed with more

examples than in subsequent editions. Polar coordinates are introduced as an alternate way

of specifying the location of a point but there is no explanation of why they may be useful

or needed.

The remainder of the chapter outlines various types of functions and their graphs in-

cluding, in this order, polynomials, rational functions, explicit algebraical functions, implicit

algebraical functions, and transcendental functions including the direct and indirect trigono-

metric functions or circular functions. The exponential and logarithmic functions are men-

tioned but are discussed separately in later chapters. As well, other transcendental functions

27Russell coined this phrase and used it to compare the axiomatic and the constructivist approach in
defining the real numbers. He also used it in the same sense in Introduction to Mathematical Philosophy
when he said “The method of ‘postulating’ what we want has many advantages; they are the same as the
advantages of theft over honest toil.”
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such as elliptic functions, Bessel’s and Legendre’s functions and gamma functions are men-

tioned but lie beyond the scope of the book. The final functions mentioned serve to illustrate

the possible variety of functional relationships and include step and sawtooth functions or

unusual functions such as “y is the largest prime factor of x” or “y is the denominator of x”

among others.

This function definition remained constant throughout all editions of the text and this is

interesting because there is no mention of sets. In modern textbooks, even elementary ones,

a function is typically defined as a mapping of one set onto another even when, like Hardy,

the concept is illustrated graphically. So, for example, in Adams

A function f is a rule that assigns to each real number x in some set D(f) (called

the domain of f) a unique real number f(x) called the value of f at x

and

The range of a function f is the set of all real numbers y that are obtained as

values of the function; that is, it is the set of all numbers y = f(x) corresponding

to all numbers x in the domain of f

and then for graphing purposes

the domain of the function f can be represented as the set of points on the x-axis;

the range is a set on the y-axis. [1, p. 14-15]

Similarly in Clark, the modern set-theoretic definition of function is given as

Let A and B be given (nonempty) sets. A set f of ordered pairs (a, b) with a ∈ A
and b ∈ B, is called a function from A to B, provided that for every a ∈ A there

exists a unique b ∈ B such that (a, b) ∈ f . In case (a, b) ∈ f , we write f(a) = b.

[15, p. 234]

However, Clark gives this full definition in an appendix. The word function is used freely in

the main body of the text, on limits, convergence, continuity etc., without prior definition.

No geometrical discussion is given.

In Rudin, set notation is used and more logically than in Clark, the definition of a

function is given following the chapter on real and complex number systems before the word

is used. The definition is:
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Consider two sets A and B, whose elements may be any objects whatsoever, and

suppose that with each element x of A there is associated, in some manner, an

element of B, which we denote by f(x). Then f is said to be a function from A

to B (or a mapping of A into B). The set A is called the domain of definition of

f (we also say f is defined on A), and the elements f(s) are called the values of

F . The set of all values of f is called the range of f . [86, p. 21]

This is the most abstract of the three definitions and it is very clear.

It is surprising that Hardy did not ever change his function definition; he also chose not

to introduce countable sets or any discussion of infinity as both Clark and Rudin do. In the

first edition of A Course of Pure Mathematics, Hardy does not introduce the Heine-Borel

theorem; by the 9th edition he does – in the context of oscillations of a function on an

interval. To do this, he introduces sets of intervals on a line. However, Hardy’s statement of

the Heine-Borel theorem28 is quite different from what is in Rudin29. Maybe the set theory

material is some of what Hardy alludes to in the quote above (section 4.1) when he says that

if he were to rewrite the book some twenty years later, he would be briefer and then able to

include a great deal more. “The book would then be much more like a Traite d’analyse of

the standard pattern” [56, p. v].

As with the real number definition, Hardy’s treatment of a function is similar to that of

Chrystal who defines a function using the word quantity, which given its usage, appears to

be interchangeable with variable. “There are an infinite number of ways in which we may

conceive one quantity y to depend upon, be calculable from, or, in technical mathematical

language, be a function of, another quantity x” [14, p. 273]. Following several simple

algebraic function examples of the type y = f(x), Chrystal continues with “For convenience

x is called the independent variable, and y the dependent variable; because we imagine

that any value we please is given to x, and the corresponding value of y derived from it by

means of the functional relation. All the other symbols of quantity that occur in the above

relations, such as 3, 17, a, b, c, 2, &c., are supposed to remain fixed, and are therefore called

28Suppose that we are given an interval (a, b), and a set of intervals I each of whose members is included
in (a, b). Suppose further that I possesses the following properties: (i) every point of (a, b), other than a or
b, lies inside at least one interval of I; (ii) a is the left-hand end point, and b the right-hand end point, of at
least one interval of I. Then it is possible to choose a finite number of intervals from the set I which form a
set of intervals possessing the properties (i) and (ii). [56, p. 197-198]

29If a set E in Rk has one of the following three properties, then it has the other two: (a) E is closed and
bounded. (b) E is compact. (c) Every infinite subset of E has a limit point in E. [86, p. 35]
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constants” [14, p. 273-274].

Again, in Goursat, a function definition based on relationship between variables is given.

“When two variable quantities are so related that the value of one of them depends upon the

value of the other, they are said to be functions of each other” and “In short, any absolutely

arbitrary law may be assumed for finding the value of y from that of x. The word function, in

its most general sense, means nothing more nor less than this: to every value of x corresponds

a value of y” [28, p. 2].

In summary, Hardy and the two books (Chrystal and Goursat) roughly contemporary

to his, all treat functions in approximately the same manner; as the relationship between

two variables such that when one variable is known, the other can then be determined.

This is different from all of the modern books examined (Adams, Clark and Rudin) that

treat functions as a mapping between one set and another. The set-theoretic definition of

a function is not something that was present in mathematical textbooks like A Course of

Pure Mathematics.

4.3.4 The Introduction and Definition of a Limit

Hardy, after the chapters on real numbers, functions, and complex variables,30 starts his dis-

cussion of limits with an entire chapter devoted to limits of functions of a positive integral31

variable. Right away this is different from a modern text – the word sequence is not used.

Functions of a positive integral variable can be functions of a continuous real variable taken

just at positive integral values n or they can be functions that are only defined for positive

integral values. Then, without motivation, a class is defined and it is “roughly speaking the

aggregate or collection of all the entities or objects which possess a certain property” [56, p.

112]. A finite class has a finite number of members that can be ascertained by counting; an

infinite class has not a finite number of members. Both types of integral functions above are

such that “the values of the variables for which they are defined form an infinite class” [56,

p. 113]. This definition is not used later in the book and it is not clear exactly why it was

introduced; perhaps just to establish that the integral functions on which limits are being

introduced are defined for an infinite number of points.

Next the phrase “tends to infinity” is carefully defined, with the idea of changing over

30the chapter on complex variables will not be discussed
31This is Hardy’s terminology. We would perhaps expect to see limits of a positive integer variable
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time being used in the same way that graphs were used when defining functions – as a matter

of convenience. The statement n tends to infinity means then that “n is supposed to assume

a series of values which increase beyond all limit” [56, p. 114]. After a discussion designed to

convince the reader that 1/n gets close to 0 as n gets large, the formal definition of a limit

of a function of an integer variable φ(n) is stated “The function φ(n) is said to tend to the

limit l as n tends to ∞, if, however small be the positive number δ, φ(n) differs from l by

less than δ for sufficiently large values of n; or if, however small be the positive number δ, we

can determine a value n0 corresponding to δ and such that φ(n) differs from l by less than

δ for all values of n greater than or equal to n0” [44, p. 118]. This discussion is leisurely,

taking 10 pages to arrive at this definition of the limit of a function defined on the positive

integers.

In the modern texts under consideration there are three approaches. First, Adams does

not bother with sequences right away and after defining a function, proceeds to give a

definition of a limit of a real valued function using standard εδ notation under the assumption

the function is defined on a given interval. Much later, in chapter 8, an infinite sequence

is taken as “a special case of the concept of function. The sequence {a1, a2, a3, a4, · · · } can
be regarded as a function a whose domain is the set of positive integers and that takes the

value a(n) = an at each integer in the domain” [1, p. 442]. The limit of the sequence is then

defined and it is very similar to Hardy’s. The difference here is the order of presentation.

Second, Clark takes an approach very similar to Hardy. He introduce limits of sequences

earlier, after the properties of real numbers, by giving an introduction to the idea, followed

by numerical examples which results in the definition “Let {xn} be a given sequence of real

numbers, and let a be a given real number. Then limn→∞ xn = a means that: for any given

ε > 0, there is a corresponding integer N (which may depend on ε) such that |xn − a| < ε

for every n >= N ” [15, p. 17]. This is virtually the same definition and presentation as in

Hardy except that sequences (using set notation) are used rather than functions of positive

integral values.

Finally, Rudin’s approach is to follow the real and complex number systems with a

chapter on set theory and then to state the definition of convergent sequence in a metric

space.32 “A sequence {pn} in a metric space X is said to converge if there is an integer N

such that n ≥ N implies that d(pn, p) < ε. (Here d denotes the distance in X). In this case

32A set possessing a distance function that satisfies 4 properties: d(x, y)+d(y, z) ≥ d(x, z)d(x, y) = d(y, x)
d(x, x) = 0d(x, y) = 0⇒ x = y
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we also say the {pn} converges to p, or that p is the limit of {pn}” [86, p. 41]. This is a

much terser and more comprehensive definition than in Hardy, as befits a text aimed at a

more advanced audience.

Chrystal introduces the idea of a sequence in the formation of the real numbers using

“Cantor’s theorem”. He defines a sequence of rational numbers, given an arbitrary a0, so that

an = a0+p1/10+. . .+pn/10n, bn = an+1/10n where the pns are chosen so that an and bn are

separated by a section (A,B). Depending on the pns, either a rational or irrational number

is determined by finding enough pns so that an is the greatest possible number in A. This

sequence of ans, satisfies the following property (Cantor’s theorem): “Given any positive

rational number ε, however small, we can always find an integer ν such that un − un+r < ε

when n ≥ ν , r being any positive integer whatsoever” [14, p. 102]. Such a sequence

is a convergent sequence. This notion is generalized several pages later by removing the

restriction that the numbers considered need to be rational and this results in the following

definition: “the limit of the infinite sequence of real quantities u1, u2, . . . , un, . . . (Σ), as a

quantity u such that, if ε be any real quantity however small, then there exists always a

positive integer ν such that un−u < ε when n ≥ ν ” [14, , p.108]. Chrystal ties together the

convergence of a sequence with the construction of the real numbers making it difficult to

understand what he means by a convergent sequence. Unlike Hardy, he provides no graphical

aid to visualize what is happening and he provides no examples before moving on to the

limit of a function of x where the definition of x is not specified.

Goursat reviews the definition of a convergent sequence in the chapter on infinite series:

“In order that a sequence should be convergent, it is necessary and sufficient that, corre-

sponding to any preassigned positive number ε, a positive integer n should exist such that

the difference sn+p − sn is less than ε in absolute value for any positive integer p” [28, p.

327]. He then provides the example of 1/n.

In summary, Hardy’s exposition is clearer than Chrystal’s, and quite similar to a modern

presentation with the exception that he presents the material more gradually and places more

emphasis on functions of positive integral variables rather than using the term sequence with

the {} notation.

4.3.5 The Introduction of the Logarithmic and Exponential Function

As previously mentioned, Hardy was motivated to write A Course of Pure Mathematics in

order to present an elementary account of the theory of the logarithm and exponential. So,
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how does Hardy introduce this theory? First, he draws an analogy between the necessity

of introducing new functions to provide solutions to problems which cannot be solved with

existing functions and the expansion of number from rational numbers to irrational and

complex numbers. Integration has provided this type of motivation in the discovery of new

functions since it was found that it was impossible to integrate some functions in terms

of already known functions. The new function, then, is defined by the property that its

derivative is given, such that the function itself is the integral of the given derivative.

After giving reasons why differentiating any rational, irrational, or trigonometric function

will fail to produce 1/x, Hardy refers the reader to his tract The Integration of Functions of

a Single Variable and, in the first edition but not the ninth, the French version of Goursat’s

Cours d’analyse for proof that the integral of 1/x is a new function. Then, the new function,

log x, the logarithm of x, is defined by the equation

log x =

∫ x

1

dt

t

After defining log x, the graph of log x is shown, it is shown that log x is the only non-trivial

solution of the functional equation f(xy) = f(x)+f(y), and the manner in which log x tends

to infinity is discussed.

Then e, a number of immense importance in analysis, is defined by the equation

1 =

∫ e

1

dt

t

This leads to the definition of the exponential function as the inverse of the logarithmic

function. Then this e, defined here, is identified with a previously discussed limit (from

chapter 4 on limits) that was provisionally denoted by e. The limit of

lim
n→∞

(1 +
1

n
)n

was shown to be greater than 2 and less than 3 and set equal to e such that

2 < e ≤ 3.

More generally,

lim
n→∞

(1 +
y

n
)n = lim

n→∞
(1− y

n
)−n = ey

That the function defined as the inverse of the logarithm is the same as the function resulting

from the above limit “is of very great importance” and is proved twice.
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The above is a summary of most of the content of the ninth chapter of A Course of Pure

Mathematics. Chapter ten generalizes logarithmic, exponential, and circular functions to

complex variables.

This is completely different from Chrystal who has, I feel, an incoherent description that

covers more material which is interspersed between two volumes. For example, Chrystal

introduces logarithms in chapter 21 of the first volume in a discussion of the exponential

function y = ax where a is real and greater than 1. In a very confusing demonstration,

Chrystal states that x, while not necessarily rational, can be considered rational of the

form m
n because “we can always find two commensurable values, m

n and m+1
n (where m

and n are positive integers), between which x lies, and which differ from one another as

little as we please” [14, p. 509]. This approximation allows him to claim that y = ax is

a “continuous function of x susceptible of all positive values between 0 and +∞” [ibid].

Under this assumption and motivated by the graph of the exponential function which “if we

look at the matter from a graphical point of view, we see that the continuity of the graph

means the continuity of y as a function of x, and also the continuity of x as a function of

y” [14, p. 511], Chrystal claims “when we determine x as a function of y by means of the

equation y = ax, we obviously introduce a new kind of transcendental function into algebra

. . . the two equations, y = ax, x = loga y are thus merely different ways of writing the same

functional relation” [14, p. 511]. This is followed by logarithm tables and instructions on

their use!

The waters are further muddied in volume 2 in the chapter on exponential and logarithmic

series where it is assumed that a convergent series expansion of ax in ascending powers of x

exists. The coefficients of these series are used to show that Ln=∞(1 + 1
n)n is Napier’s base

or e. In terms of this notation, Hardy takes pains to point out the one should not write

anything equal to infinity since that is meaningless and liable to confuse someone learning

about limits and convergence. The next mention of the logarithm is to expand log(1 + x) in

a series of ascending powers of x with the base understood to be e.

In Goursat, the situation is also very different from Hardy and is such that I presume

that Goursat assumes the reader to be already familiar with exponential and logarithmic

functions. The logarithm and its derivative are stated in a table on page 15 and at next

mention, a theorem using Jacobians is used to show that the logarithm satisfies the functional

equation f(x) + f(y) = f(xy) and that this definition “might have led to the discovery of

the fundamental properties of the logarithm had they not been known before the integral
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calculus” [28, p. 57]. Here, there is much more knowledge assumed (for example, partial

differentiation) than in Hardy.

Unlike the situation for real numbers and for functions, Hardy’s treatment of the loga-

rithmic and exponential functions are very different from both Chrystal and Goursat. Par-

ticularly the treatment by Goursat could be seen as a reason why Hardy felt that a text was

needed that would handle the theory of logarithms and exponential theory in an elementary

and rigorous way.

To compare with the modern textbooks, Adams introduces the natural logarithm exactly

as Hardy did, by giving examples to show that, so far, a function with derivative of 1
x has not

been encountered. The presentation and justification in Hardy is much more thorough but

the result is the same. The logarithmic function is introduced as a function whose derivative

is 1
x , its properties detailed and “since ln is increasing on its domain (0,∞), it is one-to-one

there and so has an inverse function. For the moment, let us call this inverse function exp”

[1, p.149] which gives

y = exp(x)⇔ x = ln(y).

The level of detail that Hardy uses is absent, as are the proofs, but the basic idea of how to

introduce the two functions is similar. In Clark, the number e is introduced as a limit and

the derivative of the exponential and the logarithmic function are stated in the chapter on

sequences, limits, and real numbers. Later, in chapter 5, Clark states that “a second method

of defining ex is to define log x first by means of an integral; then ex can be defined as the

inverse function of log x. This method is quite simple and elegant, and is used in many

modern calculus textbooks”. The reader is referred to Apostol33. Then, the method Clark

uses is to “due to Weierstrass, and is based on the elementary theory of power series. Thus

we will define

ex =

∞∑
n=0

xn

n!

Historically this is backward, but logically it is acceptable and logical” [15, p. 182]. Log(x)

is defined as the inverse of the exponential function. So, the method ultimately chosen is

different from that of Hardy but Hardy’s method is outlined and, Clark says, is the one used

33T.M Apostol , Calculus, Vol. I, Blaisdell Publishing Company (1967).
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in many modern texts. Rudin’s approach is to define

e =
∞∑
n=0

1

n!

and then state and prove as a theorem the limit definition of e. Then, the exponential

function is defined in the complex plane as

E(z) =

∞∑
n=0

zn

n!

and it is shown that for all real x,

E(x) = ex.

The function E is strictly increasing and differentiable, it has an inverse function, L, defined

by

E(L(y)) = y, (y > 0).

This implies

L(y) =

∫ y

1

dx

x
.

Rudin, like Clark, states that this last result is “quite frequently taken as the starting point

of the theory of the logarithm and exponential function” [86, p. 166].

In summary, with the caveat that not all of the English elementary analysis texts that

existed at Hardy’s time have been examined, it is apparent from reading Goursat and Chrys-

tal that either: 1) the theory of logarithms and exponentials were assumed to be already

understood at an elementary level and the discussion starts at a higher level or, 2) the

presentation is disjointed, not rigorous and difficult to understand. Hardy presents a very

rigorous picture of the theory built from first principles based on defining the logarithm as

the integral of 1
x . This is a presentation that can still be seen in textbooks today. It is

the method followed by Adams, with much less detail, and while not exactly what Clark

and Rudin do, both refer to Hardy’s method and state that it is a common starting point.

More so here than in the discussion of real numbers or functions or limits, we see Hardy

breaking with the past and setting the tone for the modern way of introducing the theory

of logarithms and exponentials.



Chapter 5

Conclusion

The first decade of the twentieth century saw rapid change in British mathematics. New

standards of rigour, new conceptions of the infinite and its place in mathematics, and a

changing educational climate all impacted the type of mathematics studied and researched

at Cambridge. G.H. Hardy, through his research, his writing and his activism, played a large

role in effecting this change.

Hardy was educated at Cambridge at the end of the 19th century in a system dominated

by the mathematical Tripos examinations. The impact of these examinations on textbooks,

lecture topics and attendance, and research are widely thought to have been the cause of

the poor performance of British mathematicians relative to their continental counterparts

at that time.

Hardy educated himself in the latest continental mathematics citing Jordan’s Cours

d’analyse as a particularly important influence. Hardy then actively sought to abolish the

Tripos examinations; he was unsuccessful but important reforms that severely restricted its

effect were implemented in 1910.

Hardy’s self-education using French and German textbooks and journal articles is seen

in the three books he wrote between 1905 and 1910. Two of these books, The Integration

of Functions of a Single Variable and A Course of Pure Mathematics, have been discussed

in considerable detail and the third, Orders of Infinity: The Infinitärcalcül of Paul du Bois-

Reymond, has been briefly mentioned. All of these books have the common feature that they

include mathematical content developed in France or Germany - content which was often

entirely new to Hardy’s English speaking audience.

Hardy, in his first monograph, The Integration of Functions of a Single Variable chose
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an interesting approach. First he chose not to present indefinite integration in the standard

way, which was and still is, as a collection of clever tricks. To do this, he relied on the earlier

work of Liouville, work that had largely been ignored for the 70 years prior to Hardy’s 1905

monograph. This brought the work of Liouville to the attention of others.

Hardy’s methodical approach to integration may have been motivated by a desire to

provide a complete theory, or at least as complete a theory as possible. It is clear that

he thought a complete solution to integration of elementary functions in finite terms was

unlikely to be found. Here he was wrong, as the subsequent work of Ritt, Trager, Rothstein,

and Risch have shown, but the method with which he approached the problem turned out to

be exactly what was required for the development of computer algebra systems in the second

half of the twentieth century. For a pamphlet, written early in a career, at the beginning of

a new series of tracts, Integration was a remarkable piece of work.

Hardy wrote A Course of Pure Mathematics in 1908; a textbook that has gone through

eleven editions and is still in print 100 years later, a textbook to which other authors referred

to during the fifty years following its publication with the assumption that others would

have read it or have been familiar with it, a textbook that defined a first analysis course in

Britain for seventy years following its publication [66], and a textbook that has influenced

the presentation of analysis in textbooks used today.

A detailed examination of Hardy’s presentation of real numbers, functions, limits of

sequences, logarithmic and exponential theory in A Course of Pure Mathematics, and a

comparison with contemporary and modern authors provides a more nuanced picture of what

Hardy did. He most definitely, as he set out to do, provided a clear, rigorous introduction

to the theory of logarithms and exponentials far superior to that of the contemporaneous

textbooks I compared his to and provided what is still a perfectly reasonable introduction

to the theory.

Hardy provided a rigorous, comprehensive, constructivist definition of the real numbers,

which was available in other books of his time but the clarity of his prose makes his pre-

sentation very accessible. This material is typically no longer presented to students of the

level Hardy was aiming at, but when it is included in an advanced analysis book, it is often

done in a manner similar to Hardy’s presentation. The main difference between Hardy and

a modern presentation is the modern incorporation of set theory.

In fact, it is the lack of set theory in the definitions in A Course of Pure Mathematics that

most sharply divides it from a more modern text. This is particularly evident in his definition
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of a function, which is a relationship between two continuous real variables rather than a

mapping from one set to another. A first year university student of today who mastered the

material in A Course of Pure Mathematics would, with small changes involving set theory,

be well prepared for further study in analysis.

However, despite the lack of set theory in A Course of Pure Mathematics relative to

textbooks of today, Hardy was one of a small group of British mathematicians researching

and writing about set theory between 1900 and 1910. Set theory was developed in Germany

in the second half of the 19th century primarily by Georg Cantor and Richard Dedekind with

Schönflies providing an early summary of Cantor’s work.

The first British mathematicians to engage with this material were the Youngs, Hardy,

Russell and Jourdain. The Youngs appear to have concentrated more on the point-set aspects

of Cantor’s theory and, for a variety of reason, failed to significantly impact developments

in Britain.

Hardy, Russell and Jourdain were, I feel, the major figures in British set theory between

1900 and 1910 and each one was affected by the work of the other two through meetings,

correspondence, and reading, reviewing and responding to one another’s work. Hobson pro-

vided critical commentary and stimulated discussion particularly surrounding the Zermelo’s

Axiom of Choice and Russell’s multiplicative axiom.

Hardy’s five set theory papers, all published in the first decade of the 20th century, have

been examined in detail. Two of the papers show Hardy linking set theory with his early

interest in the topics of analysis. Hardy used newly established results from set theory to

prove general results in analysis regarding series convergence. The three other papers, on

abstract set theory, demonstrate Hardy’s interest in this foundational topic as an independent

topic.

By 1910, there was not yet consensus on many aspects of set theory – for example,

the well-ordering principle or the continuum hypothesis. Also, set theory as a language

of mathematics was not yet present in mathematical textbooks. But this does not lessen

the magnitude of the shift that occurred to the foundations of the mathematics during the

previous ten years. In surprisingly warlike language (given that Hardy was a near-pacifist),

Hardy captured this sentiment in 1929.

The history of mathematics shows conclusively that mathematicians do not evac-

uate permanently ground which they have conquered once. There have been
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many temporary retirements and shortenings of the line, but never a general

retreat on a broad front. We may be confident that, whatever the precise issue

of current controversies, there will be no general surrender of the ground which

Weierstrass and his followers have won. ‘No one’, as Hilbert says himself, ‘shall

chase us from the paradise that Cantor has created’: the worst that can happen

to us is that we shall have to be a little more particular about our clothes. [52,

p. 5]

Hardy’s career spanned a period of great change in British mathematics, a period of time

during which British mathematics modernized. Hardy recognized this and, in 1934, wrote

The most commonplace Cambridge mathematician now has forgotten the super-

stition that it is impossible to be “rigorous” without being dull, and that there is

some mysterious terror in exact thought: now we go to the opposite extreme, and

say that rigour is of secondary importance in analysis because it can be supplied,

granted the right idea, by any competent professional. [53, p. 236]

This is a testament to the changes that Hardy wrought.
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