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Abstract

Before the French Revolution, access into the elite echelon of French society, including aca-

demic society, was almost entirely restricted to those of noble birth. Pierre Simon Laplace

(1749-1827) was one of the exceptions to this rule; he entered the French scientific commu-

nity based on his merit as a scientist and his ability to obtain powerful patrons. We will

discuss the influence of Laplace’s patrons on his personal, professional and scholarly life by

looking at primary documents from his early career, mostly on differential equations. While

Jean le Rond d’Alembert (1717-1783) was one of Laplace’s most influential patrons, he was

not the only. We will look at the impact of not only d’Alembert but also the other patrons

in Laplace’s early life.

Laplace’s career was equally shaped by the influence of scientific rivalry. Rivalry can be

seen as having positive or negative effects. Positive rivalry can lead an individual to produce

work of the highest calibre, in reaction to the work of a competitor. The friendships that

Laplace developed with contemporaries, such as Joseph-Louis Lagrange (1736-1813), can be

seen as containing rivalries leading to innovative work. As a negative influence, rivalry can

lead to priority disputes and result in rifts between those involved. Laplace’s early career

contained both positive and negative rivalries: both of which we will examine.
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Chapter 1

Introduction

Before the French Revolution, access into the elite echelon of French society, including aca-

demic society, was almost entirely restricted to those of noble birth. Pierre Simon Laplace

(1749-1827) was one of the exceptions to this rule; he entered the French scientific community

based on his merit as a scientist and his ability to obtain powerful patrons.

Laplace arrived in Paris in 1769 and quickly began to make a name for himself. Laplace

showed himself to be an adept mathematician, but this was not often enough to guarantee

the meteoric rise in position that Laplace experienced. Within five years of moving to Paris,

Laplace had obtained employment as professor of mathematics at the École Militaire, been

elected to the Académie des Sciences and made himself financially self-sufficient. Laplace

himself did not believe the rise was as quick as it should have been, as he perceived himself

to have been repeatedly snubbed by the Académie while people who Laplace believed to

be less talented and deserving were promoted before himself. With this in mind, when he

was elected, he was much younger than the average age of newly elected members. Laplace

did have a sudden rise to fame and this can be attributed to the networking that he did

just as much as his inherent talents as a mathematician. This thesis will look at the dual

influence that early patronage and rivalry played in Laplace’s career and how the results of

these influences can be seen in the early work that Laplace produced.

Patronage can take many forms and can describe many relationships. The Académie

des Sciences was founded by Louis XIV in 1666, and for this reason, early in the history

of the Académie, patronage was usually in the form of royal patronage, where the King

was the patron of the society and his ministers were in charge of funding, housing and

1



CHAPTER 1. INTRODUCTION 2

recruitment.1 This is not the form of patronage that we will be looking at in this paper.

The Académie des Sciences was a means for a scientist to show his merit, but to do this he

would first have to submit a paper through an academician, who would then present it to

the Académie. While the academician was not required to present the other scientist’s work

and presentation did not guarantee publication, this route was the one most likely to allow

a young scientist to have their work successfully published. Also, even if the report by a

committee of academicians recommended publication, this could take years. Overall, before

being able to submit a paper, a scientist would have to become acquainted with an member

of the Académie who deemed his work worthy of going forward to the Académie. The role

that a senior scientist would play in aiding and mentoring a novice scientist is the one that

will be looked at in this paper. We will also divide this role into professional patronage and

academic patronage. By professional patronage, we mean when a senior scientist assists the

junior scientist in finding employment. By academic patronage, we mean the effect that the

patron scientist has in guiding the younger academic to study certain areas.

Jean le Rond d’Alembert (1717-1783) was at this time one of the leading figures in the

Académie and someone in a position to help Laplace both professionally and academically.

As a young man who had been financially cut off by his family due to his sudden decision

to discard his path towards a career in the church, Laplace had to set his sights high. He

quickly made his introduction to d’Alembert when he first arrived in Paris with a letter from

Pierre Le Canu of the University of Caen. D’Alembert had been elected to the Académie in

1741 and had been sous-directeur and directeur respectively in 1768 and 1769.2 D’Alembert

corresponded with many of the great scientific names of the time such as Leonhard Eu-

ler (1707-1783), Gabriel Cramer (1704-1752) and Joseph-Louis Lagrange (1736-1813). This

made d’Alembert the perfect choice for both a professional and academic patron to Laplace.

He was someone who would be able to provide Laplace with employment and to help him in

his goal of becoming a member of the Académie.3 Laplace, though, was an unknown man

1For more information on the early Académie look at Alice Stroup, A Company of Scientists: Botany,
Patronage, and Community at the Seventeenth-Century Parisian Académie des Sciences, (Berkley: University
of California Press, 1990). http://ark.cdlib.org/ark:/13030/ft587006gh/

2Michelle Chapront-Touzé, ”D’Alembert (Dalembert), Jean le Rond”, in Dictionary of Scientific Biography
vol. 20, (Detroit: Charles Scribner’s Sons, 2009/02 2008), 229

3This is somewhat speculative. Hahn argues that Laplace wanted to leave a mark in the mathematical
sciences and that a major step was to have his work recognised by the Académie and to gain membership
into the group. Roger Hahn Pierre Simon Laplace, 1749-1827 : a determined scientist, (Cambridge, Mass.:
Harvard University Press, 2005), 37-40
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who showed up without invitation and asked d’Alembert for assistance. While Laplace had

every reason to seek help from d’Alembert, d’Alembert had absolutely no reason, initially,

to help the young man who was soliciting assistance. However, talent prevailed and Laplace

was able to prove his worth to the older academician. Professionally, d’Alembert was able to

obtain employment for Laplace, and thus allow the recent graduate to be financially able to

stay in Paris. D’Alembert also appears to have had an influence on Laplace’s area of study,

as the young scientist took up topics that had previously been investigated by d’Alembert,

such as physical astronomy. During the four year period between Laplace arriving in Paris

and becoming elected to the Académie des Sciences, he wrote thirteen papers that were

representative of his interests for the rest of his career; one of these interests was physi-

cal astronomy, to use d’Alembert’s term for what we would now call celestial mechanics.

Chapront-Touzé states that

d’Alembert... names the science which we call celestial mechanics physical as-

tronomy as opposed to astronomy, which does not seek to establish a link between

the observed phenomena and their physical causes.4

Laplace later coined the term celestial mechanics when he wrote the five volumes making

up the Mécanique céleste. During the period (1769-1783) when d’Alembert acted as mentor

to and protector of Laplace and his influence over the younger man is apparent in Laplace’s

work as we will see below; we will therefore retain the term physical astronomy in describing

his work in this time period.

We can see that the choice of studying physical astronomy may be linked to d’Alembert

for at least two reasons. In studying physical astronomy, Laplace would be able to learn

potentially from d’Alembert and for this reason d’Alembert may have suggested it. Also we

can see that if Laplace was working in a field in which d’Alembert had previously published

work, Laplace would be able to show his gratitude to d’Alembert by looking favourably on

his prior researches.

Besides d’Alembert, Laplace had other patrons in Antoine-Laurent Lavoisier (1743-1794)

and the people who helped Laplace succeed Étienne Bezout (1739-1783) as examiner of the

4“d’Alembert ... désigne la science que nous appelons mécanique céleste par l’expression astronomie
physique, en opposition à l’astro-nomie qui ne cherche à établir aucun lien entre les phénomènes observés et
leur cause physique.” Jean le Rond d’Alembert, Michelle Chapront-Touzé, editor Jean le Rond d’Alembert,
Oeuvres complètes: Premiers textes de méchanique celeste 1747-1749, vol 6 of Traités et mémoirs mathéma-
tique 1736-1756 (Paris: CNRS Editions, 2002) xiii.
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artillery. The influence of these people over Laplace’s academic and professional pursuits

respectively will also be briefly addressed.

The first part of this thesis will address the role of patronage in Laplace’s early career.

We will investigate this theme mainly by looking at Laplace’s early employment at the École

militaire and as the examiner of the artillery. The role of examiner involved testing students

at the artillery school.

Scientific rivalry can be a negative influence as well as a positive one. On the negative

side, we can see the rivalries that developed frequently between d’Alembert and his contem-

poraries, such as Clairaut, Daniel Bernoulli and even Euler. These rivalries often involved

priority and frequently resulted in rifts between those involved. The relationship between

these rivalries and Laplace’s duties to his patron will be discussed in Chapter 3. As a positive

influence, such rivalry can spur competitors on to produce better work, which can lead to

new developments. Also, when there is a friendly element to the rivalry, those involved can

provide insight into each other’s works. This is the case in the rivalry between Laplace and

Lagrange. Unlike in the other case, there were rarely public debates between them regarding

priority and each was willing to cite the other. Laplace, who rarely cited his predecessors,

can be seen as frequently referencing the work of Lagrange, even including parts of their

correspondence.

As we shall see in what follows, Lagrange did not have the direct influence on Laplace’s

early career that d’Alembert had, but due to his immense standing in the academic world

he appears to have been still able to shape Laplace’s scientific interests. Laplace, taking the

initiative as he had with d’Alembert, began and continued a correspondence with Lagrange

from 1773 until 1785,5 which was around the time that Lagrange moved to Paris (making

correspondence unnecessary).6 Although d’Alembert was the main person who was in a

position to bring the most immediate benefit to Laplace’s career, Laplace still recognised

the importance of cultivating a network of powerful friends. Lagrange’s first role was that

of a potential professional or academic patron for Laplace, but we can see through their

correspondence that this relationship soon developed into more of a friendly rivalry. This

rivalry can be seen in the published works of Laplace and Lagrange, which often investigated

5Roger Hahn, Calendar of the Correspondence of Pierre Simon Laplace, (Berkeley: Office for History of
Science and Technology, University of California, Berkeley, 1982), 1-8

6Lagrange arrived in Paris in 1786. Since the correspondence was about a letter or so a year at this point,
it seems reasonable that this was the reason for the end of their correspondence.
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similar subjects. We will investigate the relationship between Laplace and Lagrange by

looking at their correspondence and their published works in solving ordinary differential

equations, especially in relation to perturbation theory. Here we will look specifically at the

time period from 1772 until 1776.

While the rivalry between Laplace and Lagrange was a positive one, not all of Laplace’s

relations were as harmonious. Arguments similar to those between d’Alembert and his

rivals emerged between Laplace and both Condorcet and Legendre. These rivalries will be

investigated further in Chapter 8.

The second part of this thesis will discuss the specific influence of rivalry on Laplace’s

early scientific work. To this end, we will compare the published work of Laplace and

Lagrange in the areas of solutions to ordinary differential equations and potential theory as

well as looking at the negative rivalries with Condorcet and Legendre.

While Laplace is a well known scientist, there are not many biographies devoted to him.

Hahn has written an excellent book on Laplace’s life,7 but this book serves as a general guide

to Laplace. Here, we hope to address specifically the roles of patronage and rivalry when

looking at Laplace’s scientific output. Andoyer has also provided an account of Laplace’s

life and work in his L’oeuvre scientifique de Laplace.8 While Andoyer did provide a sketch

of Laplace’s life, his book concentrated more on the scientific output of Laplace. Andoyer

also dealt generally with all of Laplace’s work while we will concentrate on his early work

that relates to physical astronomy.

There is some doubt about many details of the early life of Laplace. Bigourdan has

investigated the discrepancies that exist in his article on Laplace’s early life.9 Here Bigourdan

looks specifically at Laplace’s life and does not include much information on Laplace as a

scientist.

The section of the Dictionary of Scientific Biography devoted to Laplace is the longest

article.10 In this section, Gillispie, Fox and Grattan-Guinness provide insight into Laplace’s

life, but concentrate on giving a thorough overview of his scientific work. Here, we will only

7Roger Hahn, Pierre Simon Laplace, 1749-1827 : a determined scientist, (Cambridge, Mass.: Harvard
University Press, 2005).

8H. Andoyer, L’oeuvre scientifique de Laplace, (Paris: Payot & Cié., 1922).
9G. Bigourdan, “La Jeunesse de P.S. Laplace,” in La Science Moderne, vol 8:1931.

10Charles Coulston Gillispie, Robert Fox, and Ivor Grattan-Guinness, “Laplace, Pierre-Simon, Marquis
De,” vol 15 of Complete Dictionary of Scientific Biography chapter 6, (Detroit: Charles Scribner’s Sons,
2008) 273-403.
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discuss Laplace’s early life and work and hopefully provide greater detail than was possible

in the DSB.

The chronology and content of the first thirteen papers that Laplace presented to the

Académie before he was elected have been investigated by Stigler.11 Not all of these memoirs

were published, though the unpublished works were often incorporated into later published

memoirs. One of these publications was the first memoir which we will investigate, Sur le

principe de la gravitation universelle et sur les inégalités séculaire des planètes qui en dépen-

dent12 cited in what follows as Sur le principe. Stigler contends that four of Laplace’s earlier

unpublished works were incorporated into this memoir, which may explain the complicated

structure of this paper and its breadth of topics. While physical astronomy was a frequent

subject for these first thirteen scientific efforts, they also dealt with other fields notably

probability and methods for solving particular problems in differential and integral calculus.

In Stigler’s investigation, he looks at who Laplace was citing and the frequency of citation.

We will concentrate more on the mathematical content of the papers we investigate than on

the issue of citations.

While we will only discuss d’Alembert’s work in passing, when it is cited by Laplace and

others, we note that at present the d’Alembert edition is underway. One volume of this,

edited by Chapront-Touzé, has already been mentioned.

While the role of patronage in shaping Laplace’s life has not been looked at in general,

Guerlac has written on the collaborative work of Lavoisier and Laplace.13 At present, we will

concentrate only on the role of patronage in their relationship and not discuss the chemistry,

which is Guerlac’s focus. Duveen and Hahn have written a case study on the succession of

Laplace to Bezout’s post as examiner of the artillery.14 While this paper investigated the

method that a person might use to obtain such a position, we will concentrate on the shift

in this situation from an applicant’s ability being the key element in obtaining employment

to powerful supporters becoming the sole means of securing a job. As well, the biographies

11Stephen M. Stigler, “Laplace’s Early Work: Chronology and Citations” published in Isis vol. 69, No 2
(Chicago: The University of Chicago Press, 1978) 249-254.

12Pierre Simon Laplace, ”Sur le principe de la gravitation universelle et sur les inégalités séculaire des
planètes qui en dépendent” in Ouevres de Laplace vol VIII (Paris: Gautier-Vallier, 1878-1912 [1773]).

13Henry Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier,” in Historical
studies in the physical sciences 7:193.

14Denis I. Duveen and Roger Hahn, “Laplace’s Succession to Bézout’s Post of Examinateur des Élèves de
l’Artillerie” in Isis 28(4):416-427, Dec. 1957.



CHAPTER 1. INTRODUCTION 7

of Laplace all touch on the subject of patronage, though we hope to confront this issue in

greater detail.

Besides the biographies that have already been mentioned, Sarton also briefly investigates

the relationship between Lagrange and Laplace.15 Here Sarton gives an interpretation of

Lagrange’s opinion of Laplace which appears to be somewhat short lived. We will discuss

both Sarton’s beliefs and how we have interpreted the documentation that exists regarding

their relationship in an attempt to determine its true nature.

While Laplace’s contribution to perturbation theory and differential equations has not

been well investigated, many articles address the field in general and Lagrange’s contribu-

tions in particular. Archibald has given a survey of differential equations in the eighteenth

century which addresses the role that Lagrange and others played in the development of the

field.16 Engelsman looks specifically at the contribution made by Lagrange to the theory of

differential equations, specifically first-order partial differential equations.17 Kline has pro-

vided a brief introduction to the development of variation of parameters upon which we will

expand upon.18 Wilson has given a description of the development of perturbation theory

looking at the contributions of both Laplace and Lagrange. For out analysis, we will look

at Laplace’s development of perturbation theory and the links between perturbation theory

and the development of the method of variation of parameters.19

Overall, we aim to provide a new interpretation of the role of patronage and rivalry in

Laplace’s early career. We also seek to provide an account of aspects of Laplace’s early

work in the fields of perturbation theory and differential equations that is more detailed

than those of earlier writers, in particular, concentrating on methods of solving ordinary

differential equations, notably variation of parameters.

15George Sarton, “Lagrange’s Personality (1736-1813),” Proceedings of the American Philosophical Society,
88(6):457-496, 1944. Copied from the Archive de l’Académie des Science, Paris.

16Tom Archibald, “Differential Equations: A Historical Overview to circa 1900,” in A History of Analysis:
editor Hans Jahnke, (Providence, RI: The American Mathematical Society, 2003) 325-353.

17S.B. Engelsman, “Lagrange’s Early Contribution to the Theory of First-Order Partial Differential Equa-
tions,” in Historia Mathematica, 7 (1980), 7-23.

18Morris Kline, Mathematical thought from Ancient to Modern Times, vol 2 (New York: Oxford University
Press, 1990) 494-499.

19Curtis A. Wilson, “Perturbations and Solar Tables from Lacaille to Delambre: the Rapprochement of
Observation and Theory, Part II,” in Archive for the History of Exact Sciences, vol 22 (Springer-Verlag,
1980) 189-304.
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Laplace’s Biography from 1749-1789

Pierre Simon de Laplace was born on 23 March, 1749, the son of Pierre de Laplace and

Marie-Anne Sochon.1 Pierre Laplace was a merchant but after his marriage took on the role

of tavern and inn owner, which was a respected role at the time. Marie-Anne was from a

family of landowners of moderate wealth. Pierre Simon was the fourth of five children born

to the couple in the town of Beaumont-au-Auge. He had an older sister who survived into

adulthood and older twin brother and sister who died shortly after their baptisms. This

left Pierre Simon as the eldest son and thus with the responsibility of being head of the

household after his father.

While the family was not wealthy they were fairly well off and had substantial standing

in the town where they lived. Pierre de Laplace was later mayor of the town and Marie-Anne

acted as godmother for many local children. Pierre Simon himself had as his godparents local

notables, showing that the family wanted and was able to guarantee that the boy would be

looked after in the event that he was orphaned. By the time of Laplace’s infancy, a notable

was no longer necessarily a member of the nobility. While Laplace’s father was not nobility,

his role as tavern owner placed him in the role as local notable, as the tavern was a place of

gathering for a community.

Pierre Simon’s uncle Louis de Laplace was a local notable and may have assisted the

young Laplace from an early age. His uncle was deacon of Beaumont and obtained a sinecure

as chaplain in nearby Criqueville in 1752. Since Uncle Louis’s position left him with ample

1For more biographical information on Laplace look in Hahn’s Pierre Simon Laplace, 1749-1827 : a
determined scientist. The majority of the biographical information here can be found in this work and the
Dictionary of Scientific Biography article on Laplace.

8
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free time, it can be assumed that he was placed in charge of the young Laplace’s early

education. While Pierre Simon was not born of the aristocracy, there was an avenue available

so that a young man such as Laplace would be able to raise his status in life. Being of relative

wealth and social standing, the best hope that Pierre Simon had was to obtain an education

and find a career in either law, the clergy or the military.

Pierre Simon’s formal education started at the Benedictine Collège de Beaumont where

he was a day student. The school was understaffed and his uncle Louis had been asked to

assist at the school even though he was not a Benedictine. The Duke of Orléans allowed for

six scholarships to needy noblemen and also allowed the sons of local inhabitants to attend

for free.2 Being a local resident, Pierre Simon was able to obtain a free early education. The

duke did require that, in exchange for his kindness, the students were to make a daily prayer

for him and on public occasions there was to be a formal address given to him.

After Laplace finished his early education at Beaumont, he continued at the University

of Caen. This would seem an obvious choice as being a nearby university, but had the young

Laplace shown his aptitude for science at this stage, it would seem more likely that he would

have moved to Paris for his education. Hahn points out that many of Laplace’s scientific

contemporaries did move to Paris at this stage in their development. This points to the fact

that Laplace was not recognized as the scientist that he was to become and that his destiny

at this point still seemed to lie with the church.

The records from the University of Caen show that Laplace paid his masters’ fees in mid

1768 and passed his examination in 1769.3 The examiners were Jean Adam, Pierre Le Canu,

Pierre Lelièvre, Louvel and Moysant. Laplace is listed as having studied with Jean Adam of

Collège du Bois, but it appears that Laplace was influenced more by Le Canu and Christophe

Gadbled. Contemporaries note that these men were “more than mentors, friends.”4 While

all three men are notable mainly for their influence on the man who was to outshine all of

them in importance, they did have some significance at the time and at the University of

Caen.

Adam was a figure of some importance in Caen during this period. He was an ordained

priest and canon of the church of Saint Sépulcre which was a religious institution unattached

to any religious order. He maintained a conservative view which served him badly during

2Hahn, Pierre Simon Laplace, 11
3Hahn, Pierre Simon Laplace, 18
4Hahn, Pierre Simon Laplace, 18
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the revolution. When he began his career as an educator at his alma mater of the University

of Caen, he was “an orthodox supporter of the Jesuit traditions in theology and metaphy-

ics,”5 despite being unattached to any specific order. When the Jesuits were disbanded in

1762 and thrown out of the universities, Adam took advantage of the situation and bought

demonstration apparatus at low cost from the Jesuits. This and his reputation as a teacher

in the Jesuit tradition ensured him large classes, since the Jesuits had a reputation as pro-

viding a solid scientific education. Adam’s lectures were full of demonstrations but lacked

scientific grounding. This made them nearly useless to the student who was interested in

learning such as the young Laplace. While the demonstrations made the lectures interesting

to watch, without the background information, the students were not really learning science,

they were more attending a show.

Gadbled stood as a rival academically to Adam and espoused values completely different

from him. While both were ordained priests and canons of the church of Saint Sépulcre,

Gadbled was a moderate. The Paris-educated Gadbled introduced higher mathematics at

Caen which appears to have appealed to Laplace more than the mathematics-free instruction

of Adam. Pierre Le Canu became assistant to Gadbled after having studied with him from

1760-1762. Gadbled later was accused, by none other than Adam, of spreading irreligion

among his students. Gadbled retorted that his teaching was in accordance with church

doctrine.6 Still, he and his circle taught students to question science. While Gadbled’s

sophisticated lectures may have appealed to the young Laplace, his decision to abandon

the easy route of a church career in favour of an uncertain future as a scientist could not

have been so simple a choice. Still Gadbled, and by extension Le Canu, could only have

assisted in this decision by opening the young Laplace’s eyes to the inherent mystery of

the universe. Gadbled’s attitude towards questioning science, also led students to challenge

the basic attitude regarding the ideals of religion. Laplace did abandon theology and he

was decidedly non-religious from this time onward. Even after the efforts of close friends,

including his wife, Laplace never returned to the Christian philosophy.

Gadbled may have initiated Laplace into the idea of abandoning the cloth but it was

with a letter from Le Canu that Laplace arrived at the door of d’Alembert in 1769. The

story of Laplace’s first meeting with d’Alembert has gained a level of notoriety and for this

reason the truth behind the story becomes more difficult to decipher. There are at least two

5Hahn, Pierre Simon Laplace, 20
6Hahn, Pierre Simon Laplace, 26
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versions of the story written by Laplace’s contemporaries. Neither author was acquainted

with Laplace at the time; one of the authors was still a very young man and the other not

yet born. We will discuss both versions of the story as well as other takes on the meeting in

Chapter 3. No matter what happened in this meeting, Laplace found a powerful patron in

d’Alembert and one who was able to propel the young scientist’s career.

D’Alembert was able to find Laplace a job almost immediately as professor at the rela-

tively newly formed École militaire; Laplace began to work for the École on 20 September

1769.7 The details of Laplace’s employment at the École Militaire will also be discussed in

Chapter 3. Laplace remained an instructor at the École Militaire until the curriculum was

changed in 1776 and he was pensioned off.8 Laplace became examiner at the artillery corp

in 1783 and later the naval engineering school, as we will discuss further in Chapter 3.9

While the École militaire provided Laplace with the ability to stay in Paris, he had a

much bigger goal in mind. Laplace wished to obtain recognition by and even membership in

the Academy of Science. For such a young man this was a somewhat lofty goal, but Laplace

believed it to be well within his grasp and there was some precedent for young members.

It took Laplace three years to obtain membership in the Academy which appears to be a

relatively quick progression from unknown scientist to member of prestigious organization.

For Laplace this rise was not quick enough as he felt that those who were elected were his

scientific inferior. Laplace’s election will be discussed in further detail in Chapter 3. The fact

remains that Laplace was elected, and his status and prospects as a scientist were greatly

improved.

In 1773, Laplace began his correspondence with Lagrange. While there is some debate

as to the relations between the two men. We will argue that their relationship can be best

described as a friendly rivalry, though there are some that believe that Lagrange found

Laplace vain and that this vanity tinged their relationship. We will address this issue by

looking directly at both Lagrange and Laplace’s written research and the letters that they

sent eachother. We can see from the letters that they sent each other their recent work and

commented on each other’s contributions. This debate will be discussed in Chapter 5. We

can also see that they often worked in similar areas of study. We will look further into one

of these areas in Chapters 6.

7Hahn, Pierre Simon Laplace, 35.
8Hahn, Pierre Simon Laplace, 85.
9Hahn, Pierre Simon Laplace, 98
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Overall, it was in this early period of Laplace’s career that he showed the ambition and

talent necessary for a man of non-aristicratic background to reach the pinnacle of French

scientific society.



Part I

The Impact of Patronage

13



Chapter 3

D’Alembert

By the time that Laplace arrived in Paris, Jean le Rond d’Alembert (1717-1783) was one

of the most powerful men in science, but he had a somewhat more humble beginning.

D’Alembert was the illegitimate son of Mme de Tencin, a salon hostess, and the Chevalier

Destouches-Canon, a cavalry officer. The baby was abandoned on the steps of Saint-Jean-

le-Rond church in Paris, which is the origin of d’Alembert’s given names. While his mother

never acknowledged d’Alembert, his father looked after the young boy financially and left

him in the care of a glazier named Rousseau. D’Alembert was given a prestigious educa-

tion, which, similar to Laplace, was initially intended to send him into theology; he instead

studied medicine and law. The young man began sending papers to the Académie des Sci-

ences in 1739 and by 1741, he was elected as an adjoint member. Within the Académie, the

professional members (as opposed to those who obtained their election due to their status

as nobility or clergy and those non-resident members) were divided, in descending order of

privilege, into the pensionnaires, associés and, until 1785, the élèves. After 1785, the section

called élèves was renamed adjoints. A member was elected to the lowest rung and then

slowly worked his way up to pensionnaire, if he was lucky. The roles of influence within

the Académie, such as secretary, were given to members from this branch. By 1769, when

Laplace arrived in Paris, Jean le Rond d’Alembert was one of the leading figures in the

Académie and someone in a position to help Laplace both professionally and academically.

As stated before, there is some discrepancy in accounts of the initial meeting between

Laplace and d’Alembert. One version is given by Joseph Fourier (1768-1830) in his eulogy

for Laplace. The only way that Fourier could have known the story is second hand, since

he was only a year old when Laplace made his way to Paris. In Fourier’s version of the

14
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story, Laplace arrived in Paris with numerous letters of introduction,1 but these proved to

be useless as the great d’Alembert refused to meet the young man. Fourier recounted that

Laplace decided to attempt a different tactic and instead wrote d’Alembert a letter, from

which, Fourier asserted, “M. Laplace, many times, had cited to me different passages.”2 This

letter caused d’Alembert to call upon the young Laplace the very day that he received it.

As Fourier explained, it was only a few days later that d’Alembert helped Laplace become

professor of mathematics at the École militaire de Paris. While we cannot be sure of the

validity of Fourier’s story, Hahn believes that the point that Fourier was trying to make

was that from around this time “In all walks of French life, merit was beginning to be a

factor, but only if recognized and reinforced by strong supporters.”3 Laplace would not have

been able to gain d’Alembert as a patron had he not shown talent, but he would have been

completely unable to make a success of his career as a scientist had he not had d’Alembert’s

backing.

A second account of the meeting was given by Dominique François Jean Arago (1786-

1853), who was not yet born when Laplace made his entrance into Parisian academic society.

Still, Arago might well have heard the story of Laplace’s first meeting with d’Alembert from

Laplace himself when Arago was a member of the informal Society of Arcueil. Arago’s

version of the story had a different tone then did Fourier’s but it also presented a somewhat

different scenario. Arago explained that d’Alembert had, earlier in his career, welcomed the

people who came to him for help, but he slowly had become disgusted by the visits from

these “thieves of his time.”4 In an attempt to dissuade people from staying too long in his

presence, Arago described, d’Alembert had started not allowing the majority of his visitors

to sit. When the young Laplace entered his study, d’Alembert stood up. Laplace handed

the senior scientist his recommendation letter and d’Alembert proceeded to attempt to deter

the nervous young man from pursuing science as a career by calling it very arduous and not

very lucrative. Before sending the young man on his way, Arago suggested that d’Alembert

gave the young Laplace a very difficult problem saying “Come back and see me... when you

have found the solution.”5 Arago explained that while d’Alembert expected never to see the

1Fourier did not provide the names of any individuals who may have written these letters.
2“M. Laplace m’a, plusieurs fois, cité divers fragments.” Archive de l’Académie de Sciences.
3Hahn, Pierre Simon Laplace, 32
4“voleurs du temps” Archives de l’Académie des Sciences.
5“Revenez me voir... quand vous en aurez trouvé la solution.” Archives de l’Académie des Sciences.
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young man again, Laplace returned just a few days later with his solution. After looking at

the solution, d’Alembert offered the man a seat. Arago ended the story dramatically with

“then, he took the hand of the young man and assured him of his protection and predicted

a great destiny for him.”6 This story was found at the Archives of the Paris Académie des

Sciences and unfortunately did not contain the date of writing. This means that, we cannot

be sure of the validity of Arago’s version. Arago’s romantic style of writing does lead the

reader to question the validity of Arago’s claims. It seems that details may have been added

for dramatic effect.

Looking at three different biographies of Laplace, we continue to see inconsistency in

the story. Hahn follows Fourier’s version of events adding more details of the treatise that

Laplace produced.7 This four page paper now rests in the Archives of the Académie des

Sciences and its existence is incontestable. In this paper, Laplace questioned d’Alembert’s

examination of the principle of inertia. This bold move could have backfired, but d’Alembert

instead saw this as a sign of the scientific worth of the young man.

In an article examining Laplace’s early life, Bigourdan tells the story that Laplace pre-

sented himself modestly to d’Alembert with a letter from le Canu and d’Alembert set him a

problem, telling him to return in eight days. Laplace returned the next day and d’Alembert

gave him a second, more difficult, problem. Laplace gave the solution to this problem that

very night. After this response, d’Alembert sent Laplace a letter stating

Monsieur, you see that I have little regard for recommendations; you have no

need of them. You have made yourself known, and this is sufficient for me. I will

support you.

D’Alembert8

This version appears to follow Fourier’s, except that Fourier had stated that Laplace had not

been able to meet d’Alembert until he had sent him a letter and Fourier does not mention a

second meeting. Also, this version agrees with Arago’s suggestion that d’Alembert himself

6“puis il tendit le main au jeune homme, l’assura de sa protection et lui prédit de hautes destinées.”
Archives de l’Académie de Sciences.

7Hahn, Pierre Simon Laplace, 33
8“Monsieur, Vous voyez que je fais assez peu de cas des recommendations; vous n’en aviez pas besoin.

Vous vous êtes fait mieux connaître et cela me suffit. Mon appui vous est du. D’Alembert.” As quoted in
G. Bigourdan, “La Jeunesse de P.S. Laplace,” in La Science Moderne, vol 8:1931, 381
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had set Laplace the problem. Gillispie appears to follow Bigourdan’s version entirely.9

We may never know exactly what happened in this first meeting. What we do know is

that Laplace impressed d’Alembert, and from this time the younger man had his situation

secured.

3.1 Professional Patronage

3.1.1 Employment at École Militaire

Laplace’s first hurdle, after finding a patron, was to find a livelihood. When Laplace had

turned away from a career with the church, he had effectly cut himself off from any mon-

etary support from his family. This meant that becoming self-sufficient was imperative.

D’Alembert was able to quickly secure Laplace a position at the École militaire. The École

Militaire was established in 1753 as an institute of secular learning for the sons of impov-

erished nobles seeking military careers. The military was a career sought by such nobles as

a means of maintaining status while obtaining financial stability. Here Laplace was able to

hone his own knowledge while educating the future generation of military officers. The École

had a substantial library, of which it is assumed that Laplace took full advantage. Laplace’s

salary allowed him financially to stay in Paris. Even though Laplace did not turn to a career

in the church, he did find some use for his early study in theology. When he began work

at the École militaire, d’Alembert suggested that he represent himself as a member of the

church. As such, d’Alembert referred to him as the abbé Laplace and told him to dress in

clerical garb. Hahn points out that since the professors were expected to be of high moral

standing, the guise of the clergy could only be beneficial. As well, there were many other

examples of ordained priests acting as scientists (such as Laplace’s teachers at the University

of Caen).

When Laplace was given this position, d’Alembert did not send a letter to Laplace himself

but rather to Le Canu. First, it should be noted that while this letter was addressed to Le

Canu, it was obviously meant for Laplace himself. The information given in this letter would

have been completely useless for Le Canu. Had d’Alembert wanted to simply alleviate any

fears that Le Canu may have had about the future of his student, d’Alembert would not

have included the details that he did.

9Gillispie, 276
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In order to discuss this letter fully, we will reproduce it here in its entirety

I write you to leave you the satisfaction of announcing to Mr. l’abbé de la

Place his good fortune; you may tell him that he is assured the placement of

professor of mathematics at the École militaire also you may repeat to him the

conditions: funished accommodations with 6 sets of wood, 1800 livres for the

appointment, therefore 1400 livres net because we retain 400 livres for food. If

these conditions are suitable to him, it is necessary 1˚ that he writes this to

me right away, because I am leaving September 7 for the country where I will

stay for 3 weeks. 2˚ that he writes also to M. Bizot, rue du Temple near rue

des Gravilliers in Paris. M. Bizot will be the director of studies from October 1.

He should therefore inform M. Bizot that he may count on him and add to that

expressions of honesty and of suitable gratitude. 3˚ It will be necessary that he

arrives in Paris on September 20 at the latest or, if he can, some days before. On

arriving he should seek M. Bizot, who can be found every morning from 10:00

until 2:00 and every evening from 5:00 until 8:00 at rue St. Louis at the marsh,

home of M. Paris du Verney. I hope that Mr. l’abbé de la Place, by his zeal, his

punctuality and his good behaviour will bring honour to my recommendation. I

forgot to tell you that he will only have to give three to 4 hours of class every

morning; the rest of the time will be his own. I have the honour of being, sir,

with my respectful attachment, your very humble and obedient servant

d’Alembert at Paris August 25, 1769.10

The first question that this letter raises is why d’Alembert is writing this to le Canu.

The answer appears to lie in the first sentence that d’Alembert writes. It seems that Laplace

was not in Paris but in Caen. The address on the letter is given as the university. If Laplace

was in Caen, the easiest way to find him would be through le Canu and the easiest way

to have a letter reach le Canu would be by sending it to the University. Therefore, this

letter may have been how Laplace first learned that he had employment in Paris. This

reasoning makes sense, but it seems odd that after Laplace had arrived in Paris and found

a supporter that he would return to Caen immediately. He might have returned to Caen for

work, since while he had found a champion, he had not yet found a job in Paris. He might

10The original French is quoted in appendix A, Archive de l’Académie des Sciences, dossier de Laplace.
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also have returned to visit family. Otherwise, Laplace may have been preceded by his letter

of recommendation and his subsequent paper on inertia while he himself was still in Caen;

this seems somewhat unlikely and against all the stories presented. Alternatively, this letter

could have been standard practice to let le Canu know that his student would be taken care

of in Paris, though the extent of the information in this letter makes this appear unlikely.

Whatever the reason behind this letter, it signifies Laplace’s entrance into Parisian sci-

entific society and the beginning of d’Alembert’s role as Laplace’s scientific patron. It also

appears to signify the end of le Canu’s role as patron to Laplace.

3.1.2 Membership in Paris Académie des Sciences

Since Laplace’s post at the École militaire included room and board, his salary seems gen-

erous.11 Laplace, though, appeared to want more than simply monetary gain; he wanted to

be acknowledged as a scientist. To do this, Laplace would need to gain membership into one

of the leading academies of science. Laplace first set his sights on the Paris Académie des

Sciences.

The Académie only appointed new members when an existing member died, retired or

was promoted. This made the opportunities for nomination irregular. The basic method of

obtaining nomination was to have a powerful benefactor - which Laplace had in d’Alembert

- and to write worthwhile papers that the Académie recognised as being significant. Starting

in 1770 Laplace began writing academic papers at a feverish rate, completing thirteen papers

in the three years prior to his election. Hahn points to six occasions when Laplace was in

the running for election and was overlooked. These included three separate occasions in

1771, possibly twice in 1772 and twice in 1773. On many occasions, Laplace believed that

the person who was elected before him was his inferior. While this may have been a usual

reaction, it does provide evidence of Laplace’s attitude at this age and perhaps in general.

Laplace may have been correct in his assessment that he was being neglected, as can

be seen by d’Alembert’s response. While Laplace may have suggested the idea, it was

d’Alembert who wrote on his behalf to Lagrange. In this letter, which will be discussed

further in Chapter 5, d’Alembert requested that Lagrange consider Laplace for admission

into the Berlin Academy.12 This letter argues that an election to the Paris Académie could

11Noting that 400 livres was enough for food, the remaining 1400 livres can be put into perspective.
12Hahn Pierre Simon Laplace 42-43
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take as long as twenty-five years. In this letter, d’Alembert contended that despite his

own vote, someone who was vastly inferior to Laplace was elected ahead of him.13 This

letter shows d’Alembert acting as Laplace’s champion. While his solicitation did not lead to

Laplace’s election in Berlin, the effort that d’Alembert put into attempting to find Laplace

a suitable placement shows the regard that he had for the younger man’s abilities.

Similar efforts were made at the St Petersburg academy. Here Laplace was able to induce

Lalande to write an introduction for him to Euler.14 Laplace, himself, also wrote to Euler

but there is no record of any response. While these requests did not materialize into offers,

thankfully, Laplace gained membership in the Académie in 1773. While Laplace may have

felt overlooked during this period, the fact remains that opportunities to join the Académie

were few. This meant that older, more established scientists had an advantage over younger

nominees in the argument that they would have fewer chances to gain membership. The

average age for a new academician in decade of the 1730’s was about 28, while in the 1780’s

this age had risen to just over 39.15 Laplace was granted membership at the age of twenty-

four, making him still very young to receive this honour.16

Overall, in both of these cases, we can see the role that patronage played in furthering

the career of the young scientist. While we can see that d’Alembert was able to create

opportunities for Laplace, we can wonder if Laplace really needed d’Alembert’s help. Below,

we will examine a case where patronage was not successful and the results, in the case of

the young Jean-Jacques Rousseau (1712-1778).

3.1.3 Comparison to Rousseau

In Rousseau’s Confessions, he discusses how he made his entrance into Parisian academic

society. Similar to Laplace, Rousseau procured a selection of letters of introduction to various

people in Paris who might have been able to help him. While it is only in Fourier’s account

that Laplace had more than one letter of introduction, it does seem possible. When Rousseau

arrived in Paris in Autumn of 1741, he had fifteen louis,17 a system of musical notation and

13In an editor’s note, it is suggested that d’Alembert is referring to Cousin’s election in March, 1772.
14Hahn, Pierre Simon Laplace, 42.
15Hahn, The Anatomy of a Scientific Institution: The Paris Scademy of Sciences, 1666- 1803, (Berkeley:

University of California Press, 1971), 97
16D’Alembert was also twenty-four when he gained membership to the Académie.
17A louis was worth about 24 livres, therefore he had about 360 livres.
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his letters of introduction. Rousseau comments that “A man who arrives in Paris with a

decent appearance and advertises himself by his talents is always sure of a welcome. My

good reception procured me some pleasures but did not lead to anything much.”18 While

Rousseau had obtained several introductions, he only found three useful. Through one

of these introductions, Rousseau met René-Antoine Ferchault de Réaumur (1683-1757), a

member of the Académie des Sciences. Rousseau discussed with de Réaumur his notation

scheme and his desire to present it for examination before the Académie. He luckily found a

supporter in de Réaumur, though it seems not a powerful supporter. After this introduction,

de Réamur undertook the negotiation and Rousseau was accepted to present his work. While

he had arrived almost a year before, it was not until August 22, 1742 that Rousseau was

able to present his work.19 He commented that “The paper was a success, and brought me

compliments that surprised me as much as they flattered me.”20 Rousseau’s optimism was

short lived. When the Académie set to examine the scheme, they found that there had

been a similar method developed before, thus making Rousseau’s not original. Rousseau

argued that his was both simpler and more convenient. When they investigated the system

itself they did not understand it well enough to find in it any virtues. Rousseau went so

far as to say “I was astonished by the ease with which they refuted my arguments with the

help of a few high-sounding phrases, without in the least understanding them.”21 In the

end, Rousseau was granted a certificate from the Académie with praises thinly masked by

criticisms.

The example of Rousseau shows several features of eighteenth century patronage. First,

the patron that was chosen did matter. Rousseau found a sponsor, but one without the

resources of d’Alembert. While it may have been ambitious for Laplace to seek out the most

powerful patron that he could, the fact remains that d’Alembert’s endorsement of Laplace’s

work was often enough, while de Réaumur did not appear to have this power. Second,

while powerful supporters can prove the difference between success and failure, powerful

detractors can make the same difference. The three individuals who were asked to examine

Rousseau’s work knew little about music, Jean-Philippe Rameau (1683-1764) was one of the

18Jean-Jacques Rousseau The Confessions: translated by J.M. Cohen, (Harmondsworth, England: Penguin
Press Ltd, 1971), 266.

19Laplace presented his first paper to the Académie about six months after his arrival in Paris.
20Rousseau, 267.
21Rousseau, 268.
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most important individuals in French music of all time. Rousseau was able to brush aside

the criticisms of the committee examining him, but he himself admitted that “The only

serious objection to be made against me system was made by Rameau.”22 The objection

that Rameau gave to Rousseau’s work may have had the opposite effect as the praise that

d’Alembert showed Laplace. Third, while a letter of introduction is necessary, it becomes

useless if a person can not show their own merit. Rousseau’s method of notation may have

been as important and useful as he felt it was, but he was not able to make this point.

Without having been able to show his merit, he was left with nothing. Last, it appears that

Rousseau relied entirely on his letters to open doors for him. If Fourier’s account is correct,

in Laplace’s case, the letters were less important than Laplace being able to prove to his

future patron that he had the skills to deserve d’Alembert’s support. Overall, while there

was some benefit to having letters of introduction, as the example of Rousseau shows, this

is not often enough.

3.2 Academic Patronage

So far, it seems as if the relationship between d’Alembert and Laplace was only beneficial to

Laplace. While d’Alembert may have had entirely altruistic intentions, this seems unlikely.

Laplace was given the opportunity to compensate d’Alembert through his scientific output.

The areas that Laplace studied may also have been a direct consequence of d’Alembert.

Stigler notes that Laplace’s first memoirs were purely mathematical, but in 1770 there was

an abrupt change to physical astronomy.23 While this switch may have been due to Laplace’s

ambition and therefore a desire to work in the field that occupied the great names of the

time including Euler, Lagrange and d’Alembert, Stigler also note that “The most direct

influence upon Laplace... may have been his patron, d’Alembert.”24 He continues that

d’Alembert was publishing related works exactly when Laplace started to show as interest in

the field. Laplace pursuing research in d’Alembert’s field is similar to the modern practice

of a graduate student assisting in the research of his or her supervisor. In Laplace’s case,

though, his own work often proved superior to his patron’s.

Besides simply working in the same areas, Laplace was able to show his appreciation

22Rousseau, 268.
23Stigler, 238.
24Stigler, 239.
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to d’Alembert by citing his patron and praising his research. While this may have been

forced on Laplace, he did frequently write highly of d’Alembert, especially in the papers

investigated here. The issue of Laplace’s choice in the matter can be seen in a letter that

Laplace wrote d’Alembert where he apologized for not citing d’Alembert thoroughly enough

and showed his patron the addition he is adding to a paper to correct the matter.

In the first memoir that we will investigate, Sur le principe, Laplace acknowledges the

work of the great scientists who had completed prior work in this subject matter. This mem-

oir itself will be discussed in further detail in Chapter 6. Even though Laplace acknowledges

other scientists’ work, he is not always complementary. Besides the obligatory reference to

the “illustre géomètre,” he has some harsh criticisms and even jabs at his contemporaries.

Laplace did look favourably on the work of d’Alembert and Lagrange; he regarded the work

of Euler somewhat ambiguously; and Laplace found fault with the work of Daniel Bernoulli.

The reasons for Laplace’s treatment of other scholarly research were not always about the

academic worth of the products. He seems to have either accepted or rejected other schol-

arly research for different reason, which will be discussed. Though Laplace mentioned many

great names, he also left out some figures whom he could have mentioned. This aspect of

Laplace’s memoir will also be discussed. While there may not have been a choice in citing

d’Alembert, he did have a choice in how he represented the work of his other contemporaries.

When Laplace found an opportunity, he often derided the work of d’Alembert’s rivals. The

way that Laplace showed his gratitude to d’Alembert by simultaneously praising his work

and slighting that of d’Alembert’s rivals will be discussed next.

3.2.1 Citing d’Alembert

Based on the relationship between Laplace and d’Alembert, it would seem like the most

obvious choice, if there was a choice in the matter, to repay d’Alembert by commenting

favourably on his work when Laplace was given the opportunity. Laplace starts the second

part Sur le principe by stating that

Mr d’Alembert has given the first general solution of this problems, the most direct

method to arrive at it and, at the same time, the most useful application that can be

made in his treatise On the precession of the equinoxes an original work which shines

throughout with the genius of invention and that we can see as containing the germ of
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all that has been done since in mechanics of solid bodies.25

This passage could not be more flattering to d’Alembert, but does it hold true? Wilson

addresses the issue of priority in “D’Alembert versus Euler on the Precession of the Equinoxes

and the Mechanics of Rigid Bodies.” He argues that, while d’Alembert may have developed

the ideas first on paper, “only through compensating errors of sign did he emerge with a

correct solution.”26 By contrast, according to Wilson, Euler made his arguments clearly

and correctly. Laplace referenced this work no less than three times but does not present

any direct examples from d’Alembert’s Recherches sur la Précession des Equinoxes. Here

Laplace might have felt obliged to praise the work of his mentor who was soon to assist in

Laplace’s successful election to the Académie, but did not wish to repeat any errors that

d’Alembert may have made in his presentation. In that view, because Laplace knew that he

could not use d’Alembert’s work verbatim, he instead referred to the conclusions but derived

his own equations of motion and calculated for himself where he could have used results from

d’Alembert. A full comparison with d’Alembert’s Recherches would be required to comment

further on this matter, which is beyond our present scope. Still, it can be noted that Laplace

did find cause to praise the work of d’Alembert and in this way showed his gratitude even if

he may have found fault with the actual work.

While Laplace did praise the work of d’Alembert, he may not have had a choice in the

matter. In a letter to d’Alembert, written November 15, 1777, Laplace explained the passage

that he was adding to one of his works to give greater credit to d’Alembert. After stating first

what he had originally included, which stated his indebtedness to d’Alembert and explained

the contents of d’Alembert’s paper, Laplace stated, in full, the material that he was adding,

which included more praises of d’Alembert. What Laplace said at the end of this letter

shows the reaction that d’Alembert must have had when Laplace did not properly cite his

mentor’s work. Laplace ended his letter as follows:

I have always cultivated Mathematics due to taste rather than a desire to obtain

a reputation, of which I have none. My greatest joy is in studying the work of

25“M. d’Alembert a donné, le premier, la solution générale de ce problème, le méthode la plus directe pour
y parvenir, et tout à la fois l’application la plus utile et la plus heureuse que l’on en puisse faire, dans son
excellent Traité Sur la précession des équinoxes, Ouvrage original, qui brille partout du génie de l’invention,
et qu’on peut regarder comme renfermant le germe de tout ce qu’on a fait depuis dan la Mécanique des corps
solides.” Laplace, “Sur le principe,” 201.

26Curtis Wilson, “d’Alembert versus Euler on the precession of the equinoxes and the mechanics of rigid
bodies,” in Archive for the Histroy of Exact Sciences, 37(3), 1987, 234.
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inventors, of seeing their genius gripping the obstacles in which they encounter

and of which they overcome; I put myself in their place and ask myself how I

would surmount these same obstacles and although this substitution has never

been anything except humiliating for myself, the pleasure of enjoying their success

amply compensates for my humiliation. If I am lucky enough to add something

to their work, I attribute it to their previous efforts, well persuaded that in my

position they would have gone further than myself. You see from this, my dear

colleague, that no one reads your works with greater attention, nor does anyone

find greater profit in them than myself; also, no one is greater disposed to render

to you a justice more entire, and I pray that you see me as one of those who loves

and admires you the most. It is with these sentiments that I have the honour of

being, Monsieur and illustrious Colleague,

Your very humble and very obedient servant,

Laplace.27

This letter shows Laplace apologizing for neglecting to cite d’Alembert. In the arti-

cle that Laplace mentioned, he had already written glowing praise for d’Alembert, but it

seems as though this was not sufficient. Here it seems that Laplace was not simply citing

d’Alembert because he felt that credit was due to d’Alembert, or even because of the con-

ventional courtesy due a patron by his protégé, but because if Laplace did not sufficiently

cite d’Alembert, he would be asked to rewrite his work and add a further reference. Overall,

Laplace was able to show his gratitude to d’Alembert by citing his mentor’s work; he did

not have a choice in the matter.

3.3 Praising d’Alembert by Deriding his Rivals

While Laplace praises the work of d’Alembert, every instance appears to present Laplace

with an opportunity to show how the work could be improved. When Laplace discusses the

work of d’Alembert’s rivals, any comment that he makes against their work can only bring

further credit to d’Alembert’s. The method that Laplace takes in addressing the work of

d’Alembert’s rivals will be addressed below.

27The original French is reproduced in Appendix A, “Lettres Inédites de Laplace” in Oeuvres de Laplace
vol 14 (Paris: Gautier-Vallier), 348.
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3.3.1 Daniel Bernoulli

Laplace picks at least two points in Sur le principe to take jabs at the work of Daniel

Bernoulli: first when discussing gravitation being a consequence of it working on all parts

of a body; second when discussing the instant propagation of gravity. In neither case does

Laplace go into detail about Bernoulli’s research but does question the validity of his work

with respect to these cases. In this first case, Laplace begins his discussion by saying that

“Quelques illustres géomètres, M. Daniel Bernoulli” believe that it is only a probability that

weight is the result of the attraction of all the parts of the body, but observation has led to

the truth that attraction works on the smallest parts of a body.28 Laplace did not need to

say any names but he took the effort to point out the errors that Bernoulli had made. Also

while Laplace states that this is a belief of some geometers he only names Daniel Bernoulli.

This could be taken as Laplace saying that even someone of the stature of Bernoulli could

make mistakes, but Laplace does not go into details about Bernoulli’s arguments and, after

mentioning that Bernoulli was erroneous in his belief, he goes on to discuss this assumption

without further reference to Bernoulli. Basically, Laplace has gone out of his way to point

out that Bernoulli had made a mistake and continues his analysis as a point of departure

from Bernoulli.

While Laplace calls Bernoulli an illustrious geometer and refers to his research on the

tides as excellent, he still takes the extra effort to show the shortcomings of Bernoulli. The

question is raised as to why Laplace would take the pains to antagonise a respected member of

the scientific community? The answer may lie in d’Alembert’s rivalry with Daniel Bernoulli.

Briggs points out that d’Alembert was a man who developed many scientific rivalries over

his career; one of them involving Daniel Bernoulli. D’Alembert and Bernoulli at least twice

had differing approaches which led to public debates; once with respect to the controversy

involving the vibrating string problem and another involving probability with respect to

inoculation. The vibrating string problem brought into question the nature of a function

and set d’Alembert, Euler and Daniel Bernoulli as mutual opponents.29 The debate about

inoculation involved calculating how long a person was expected to live, from any given age,

28Laplace, “Sur le principe,” 215
29Hans Niels Jahnke, “Limitations of the analytic function concept”, A History of Analysis, vol. 24, ch.

4.6, pp. 123-127, (Providence, RI; London: American Mathematical Society, London Mathematical Society,
2003) 123-127, for more information on the vibrating string controversy.
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with or without being inoculated against smallpox.30 D’Alembert and Bernoulli had what

Briggs calls “extensive arguments” in regard to this problem.

Given Bernoulli’s relationship to d’Alembert it would seem a wise move on Laplace’s

part to find fault with Bernoulli’s work in combination with praising d’Alembert’s. For

this reason, Laplace may have taken the extra effort to point out contentious aspects in

Bernoulli’s work. Whatever the reason, there is a notable dismissiveness in this memoir with

regard to the work of Daniel Bernoulli.

3.3.2 Clairaut

Clairaut represents another of d’Alembert’s academic rivals. Briggs discusses that d’Alembert’s

“rivalry with Clairaut... continued until Clairaut’s death.”31 Laplace had taken the oppor-

tunity to criticize the work of Daniel Bernoulli, who was also a rival of d’Alembert’s; it

seems odd that given the chance, he did not proceed in the same way with Clairaut who

was a more long term rival than Bernoulli.32 Laplace investigated the shape of the Earth

when discussing his second assumption of universal gravitation which was a topic of rivalry

between the two men. In the 1730’s, expeditions had been launched to measure the Earth to

determine whether Newton or Descartes had been correct about the shape of the Earth.33

Newton believed that the Earth was shaped like an onion while Descartes thought that the

Earth was shaped like a lemon. Clairaut accompanied the trip to the Arctic. Clairaut,

d’Alembert and Euler had all been involved in looking at the data and evaluating the va-

lidity of Newton universal law of gravitation. Surprisingly, using differing methods all three

men found that the data did not follow the theory. Clairaut later announced that Newton

was correct after all and a simplification that all three men had made was the reason for

the discrepancy. D’Alembert quickly agreed. The difference between this case and that of

Bernoulli was that Clairaut seems to have been correct rather than d’Alembert in this case

30At this time, inoculation involved a person being injected with a small amount of fluid from a person
infected with smallpox and the result would be either a mild case of the disease followed by immunity or a
more severe case often resulting in death. D’Alembert is noted as pointing out that the probability is little
comfort to a person who has just lost his or her child. J. Morton Briggs, Alembert, Jean le Rond d’, vol. 1,
(Detroit: Charles Scribner’s Sons, 2009/04 2008), 116

31Briggs, 111.
32Briggs discusses that d’Alembert and Clairaut’s rivalry began shortly after d’Alembert entered the

Académie and as has been noted extended until Clairaut died.
33This controversy is discussed in Thomas L. Hankins, Science and the enlightenment, (Cambridge, Mass.:

Cambridge University Press, 1985) 37-41.
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while with Bernoulli, d’Alembert had not written about the same topic and there was less

room for comparison. Since Bernoulli’s work was separate from d’Alembert’s in the case

that was mentioned, it made it easier to point out Bernoulli’s failings while not tempting

any backlash towards d’Alembert. Had Laplace placed a comment about Clairaut in this

memoir, there may have been an opportunity for Clairaut to turn the tables and attack

d’Alembert which was definitely not what Laplace wanted. A close reading of Clairaut’s

work could have found some error as Laplace had been able to find with Bernoulli, but

the result of any comment might not have been positive. Still, the fact remains that the

discussion of Clairaut and this controversy were left out of this paper entirely.

3.3.3 Euler

D’Alembert and Euler were often involved in scientific debates and a rift developed between

the two men which caused them to cease communication for over a decade.34 Still, Euler was

the most respected man of science in Europe then and some may argue of all time. For this

reason, criticizing Euler could be seen as tantamount to career suicide. In the part of the

memoir under discussion, Laplace only mentioned Euler once and does so in general terms.

When he had the option to mention Euler in regard to his work on the precession of the

equinoxes, he did not take this route, favouring d’Alembert’s work. Here Laplace appears to

be attempting to pay tribute to d’Alembert’s contribution by neglecting the superiority of

Euler’s. He later looked at Euler’s work more directly. This section of the memoir, involving

secular inequalities, did not factor into the current paper and looking more in depth into

Laplace’s treatment of Euler could be a subject of further research.

34Wilson, “D’Alembert vs Euler on the Precession of the Equinoxes and the Mechanics of Rigid Bodies,”
237



Chapter 4

Other Patrons

As we have seen, d’Alembert was a powerful patron for Laplace, but he was not Laplace’s

only supporter. We will look at two cases that illustrate Laplace’s other patrons. Like

d’Alembert, Lavoisier acted as patron for Laplace because of the latter’s scientific ability. In

fact, Lavoisier appears to have sought out Laplace because of his interest in having Laplace

help him in his work. Laplace in his turn was able to see the value in working with someone

as respected and distinguished as Lavoisier. The second situation that we will discuss is

completely different. In the case of Laplace’s appointment as examiner of the artillery,

references meant everything and the ability of the candidate was rarely discussed. The

influence of other patrons in Laplace’s early career will be discussed below.

4.1 Lavoisier

Antoine-Laurent Lavoisier initially followed the family tradition of studying law, but found

his interests lay more in science. Lavoisier presented research to the Académie des Sciences

on hydrometry, or the measuring of components of the water cycle, such as rainfall. After

presenting such a paper in 1768, Lavoisier was elected as a member of the Académie. It was

shortly after this election that he bought membership into the Ferme Générale. This private

consortium, which collected taxes for the king, would, in the end, lead to Lavoisier’s demise.

While Lavoisier was elected to the Académie in 1768, it was an experiment started in the

summer of 1768 and presented to the Académie in 1770 which gave him the reputation as a

first rate experimentalist and scientist. At the time, there was some debate as to the nature

of water; many scientists believed that water could transmute itself into earth. Lavoisier

29
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showed that the solid material that was found after distillation was not water turning into

earth, but rather was due to the distillation process and was associated with the glass used.1

This experiment brought Lavoisier public fame and recognition. By the time that Laplace

had arrived in Paris, Lavoisier was already a famous man.

Laplace began collaboration with Lavoisier in early 1777, on work related to vaporization

and evaporative cooling.2 As Gillispie points out, Laplace’s work with Lavoisier allowed

Laplace to advance as more than just a mathematician.

It associated him with the one person who was clearly emerging as the scientific leader

of the Academy in their generation, the newly appointed administrator of the Arsenal

and reformer of the munitions industry with influential connections in the worlds of

government and finance3

Guerlac states that ”[t]he partnership, as [Laplace] later acknowledged, was distinctly to

his professional advantage.”4 Here, Guerlac does not give any hints as to where Laplace

acknowledged this. Though it can be assumed that Laplace would have recognised the

professional advantages in working with a scientist as distinguished as Lavoisier was at the

time, it would be interesting to see this in Laplace’s own words.

Laplace’s interest in working with Lavoisier seems apparent, but Lavoisier must have had

a reason for wanting to collaborate with Laplace. Laplace had by this time shown himself

an adept scientist (not simply a mathematician) with a considerable breadth of interest.

His main work at the time was in the fields of probability and the gravitational physics

of the solar system.5 Laplace’s work on probability and its relation to the theory of error

is most likely what interested Lavoisier and it appears a likely reason why Laplace was a

good candidate for experimental collaboration with Lavoisier. Guerlac notes that Lavoisier

was interested in experimentation that would require considerable precision and therefore

“he could well have seen the advantage of working with a man like Laplace, sensitive to the

1Henry Guerlac, “Lavoisier, Antoine-Laurent,” in Complete Dictionary of Scientific Biography, vol 8,
(Detroit: Charles Scribner’s Sons, 2008), 71.

2Gillispie, et al., 312
3Gillispie, et al., 312
4Henry Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier” Histori-

cal Studies in the Physical Sciences 7th annual volume Edited by Russell McCormmach (Princeton, NJ:
Princeton University Press, 1976) 197

5Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier,” 197
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theoretical difficulties of accurate experimentation.”6

Laplace and Lavoisier worked together on a number of experiments, but it should be

noted that it was Laplace who first sought to end the collaboration. In 1782, Laplace sent a

letter to Lavoisier politely asking to end his experimental work, explaining that he wanted

more time to devote to mathematics.7 Lavoisier was able to convince Laplace to continue

with the experimental work. It may say something about Lavoisier’s power of persuasion

that he was able to change Laplace’s mind, but it may also have been that Lavoisier was in

a position, one in which Laplace was later to find himself, of being able to compel Laplace

into continuing research that he himself no longer wished to pursue. Whatever the case,

there is no evidence of further experimental collaboration after 1784.8

This example shows how Laplace was able to use his scientific ability to work with some-

one who could aid him in rising in position professionally. Neither Guerlac nor Gillispie pro-

vide specific examples of how Lavoisier helped Laplace professionally, but Gillispie does men-

tion that they served together on committees for the Academy. It may have been Lavoisier

who put forth Laplace’s name when positions were available though this can not be said for

sure. We do know that when Laplace was lobbying for the positions left vacant after the

death of Bézout, it was to Lavoisier that he turned. This will be discussed below. Lavoisier

had power and prestige, as a leading member of the Académie and a celebrated scientist, and

at the time of the beginning of their collaboration, Laplace had only recently been elected to

the Academy. Sadly, Lavoisier was executed during the Reign of Terror in 1794. Lagrange

is noted to have said the day after Lavoisier’s execution “It took them only an instant to cut

off his head, and a hundred years may not produce another like it.”9

4.2 Becoming Examiner of the Artillery

Étienne Bézout accelerated quickly in the Académie des Sciences. By 1758, he had already

been elected as adjoint. By 1763, Bézout was a father and in need of further financial

opportunities. This made his appointment as teacher and examiner for student naval officers

quite timely. In 1768, he was given a similar appointment at the artillery. Besides being

6Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier,” 205
7Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier,” 240
8Guerlac, “Chemistry as a Branch of Physics: Laplace’s Collaboration with Lavoisier,” 274
9Guerlac, “Lavoisier, Antoine-Laurent,” 85.
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teacher and examiner, Bézout also wrote the textbooks for his students. These textbooks

were used widely in France, and were later translated and used in American schools, including

Harvard.10 When Bézout died in 1783, his positions as examiner became prized commodities,

coveted by the new generation of scientists.

In 1776, the École militaire had been reorganized and Laplace was not longer required

to teach, but continued to receive a pension. His total income at the time of Bézout’s death

was most likely only 600 livres from his yearly pension and 500 livres from the Académie.

Laplace’s limited earnings probably made the positions vacated by Bézout more desirable

to him. Laplace acted quickly to gain the support of the necessary people; all within the

month between September 27, 1783, when Bézout died and October 23, 1783, when Laplace

was appointed examiner of the artillery.

In a letter written to Lavoisier, Laplace outlined the steps he had taken to obtain both

positions, as well as the potential ones of his opponents. Bézout died about a month before

d’Alembert and while d’Alembert had been the most influential person for Laplace to turn

to, it appears that by 1783, this person was now Lavoisier. While Lavoisier may not have

been directly linked to Laplace obtaining the position as examiner, we know at least that

he turned to Lavoisier during this time. While appointments of this kind were ultimately

made by the king, he would follow the advice of his minister on these matters.11 Laplace,

therefore, discusses with Lavoisier his tactics to be introduced to the Ministers of War and

of the Navy: Philippe Henri, Marquis de Ségur (1724-1801) and Eugène-Gabriel de la Croix,

Marquis de Castries (1727-1806) respectively. Laplace pointed out five people who he hoped

would either recommend him to one of the ministers or introduce him to one of the ministers.

Most likely the majority of these recommendations and introductions occurred in person,

which would account for there being no record left. At the military archives in Vincennes,

just outside of Paris, the remaining documentation is sparse. In the dossier for Laplace

there are: a letter from a mathematician Mauduit to “Monseigneur,” a letter from Vaudreuil

to “Monseigneur,” a letter sent from Jean-Baptiste Vacquette de Gribeauval to Ségur, a

letter from Castellane de Berghes to Ségur, the announcement of Laplace’s appointment as

examiner of the artillery and a one page mémoire from members of the academy supporting

10Judith V. Grabiner, “Bezout, Étienne,” in Dictionary of Scientific Biography vol 2 (Detroit: Charles
Scribner’s Sons, 2008), 112.

11Denis I. Duveen and Roger Hahn, “Laplace’s Succession to Bézout’s Post” Isis, 491.
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Laplace.12 Duveen and Hahn suggest that the letters to “Monseigneur” were all for Ségur.

The letter that may have been the most useful was likely the one from Gribeauval. Besides

the contents of this letter, which we will not discuss in detail, a letter from Gribeauval would

be helpful simply because it was from Gribeauval. He had experienced a rapid rise, which

Alder states he attributed to being one of the few French heroes of the Seven Years War,

and to his ability to acquire influential patrons.13 While Gribeauval signed his letter simply

as “gribeauval,” at the time of the writing he was first inspector of the artillery. Any positive

letter from such a man could only help Laplace’s chances.

The document that stands out among those in Laplace’s dossier is the letter fromMauduit

to Ségur. This letter is not discussed in detail by Duveen and Hahn and besides relating to

the post that Laplace eventually obtained, does not involve Laplace himself. In this letter,

Mauduit puts himself forward for the position. This is in stark contrast to Laplace’s tactics

which involved having others support him. As well, in the other letters the mathematical

abilities of Laplace are absent. In Mauduit’s letter, he outlined his own mathematical abilities

as well as his interest in artillery. Since Mauduit did not succeed Bézout, this tactic did not

work. The other noteworthy point in Mauduit’s letter is the date: September 26, 1783. This

was the day before Bézout’s death. While the date alone raises more questions than answers,

we can only hope that this was a misprint.

Duveen and Hahn conclude that the main points taken into consideration in the succes-

sion to Bézout’s post were: the desires of Bézout, any agreements between Bézout’s family

and Laplace and the concerns of the students.14 It appears though that these points were

just as important as those making them. Laplace had found strong champions and the peo-

ple themselves might have been as important as the points they made. This situation is

in stark contrast to Laplace’s previous encounters with patronage. Nowhere in the letters

that remain does it appear that Laplace’s mathematical or teaching abilities were impor-

tant. The point that Gribeauval made regarding the students was that a successor should

be appointed soon and one who would not change the requirements, not that Laplace would

make a good examiner for the students. Laplace’s abilities as a mathematician had allowed

him to find patrons, but it appears that once he had patrons, finding employment was more

about who supported him than about his own abilities. Mauduit, it seems, had only himself

12Archives Militaires Yh 165 Dossier Laplace
13Ken Alder, Engineering the Revolution: Arms and Enlightenment in France, 1763-1815, 36.
14Duveen and Hahn, 426.
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to recommend himself and only his abilities to help him obtain the position. Laplace had

patrons to speak up for him and the wishes of the deceased and his family to aid him. In

the end, Bézout’s posts were split and Laplace was appointed examiner of the artillery and

Gaspard Monge (1746-1818) was appointed examiner of the navy.



Part II

The Impact of Rivalry
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Chapter 5

Lagrange

Lagrange and Laplace had very different experiences growing up and entering the scientific

community. On January 30, 1736, Giuseppe Lodovico Lagrangia was baptized in the parish

church of Sant Eusebio in Turin, Piedmont. Lagrangia was an italianized version of the

French name Lagrange. While Lagrange’s family was relatively well-to-do, they lived mod-

estly. Lagrange is noted to have said that if he had had the finances, he, most likely, would

not have become a mathematician.1 Lagrange quickly showed his mathematical dexterity in

the Athenaeum of Turin, where he was educated. It was there that the young man set to

master the works of Newton, Leibniz, Euler, the Bernoullis and d’Alembert. It was at the

young age of eighteen that Lagrange began his correspondence with Euler and Fagnano. In

1755, Lagrange was appointed teacher at the Royal School of Mathematics and Artillery in

Turin and by 1757, he had helped to found the Academy of Turin. It was around this time

that Lagrange began his correspondence with d’Alembert. George Sarton argues that while

Lagrange’s first scientific correspondence was with Euler and Fagnano, his first friendship

was with d’Alembert.2

In 1763, Lagrange was invited to accompany the Marchese Domenico Caràccioli to Lon-

don where the latter had been appointed ambassador of the King of Naples.3 It was on this

trip that Lagrange first introduced himself to Parisian scientific society. On this trip he met

1Jean Itard,“Lagrange, Joseph Louis,” in The Dictionary of Scientific Biography vol 7, (Detroit: Charles
Scribner’s Sons, 2008) 560.

2George Sarton “Lagrange’s Personality (1736-1813)” in Proceedings of the American Philosophical Society,
88 (6) 1944, Copied from the Archive de l’Académie des Sciences, 476.

3Sarton, 458.
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d’Alembert, Fontaine, and Clairaut, to name a few. Sadly, Lagrange was struck by illness

and was unable to continue to London.

Lagrange returned to Turin where he found his financial and scientific situation some-

what poor. Before Lagrange left Paris, d’Alembert attempted to aid the young scientist by

writing to Madame Geoffrin, who was acquainted with the ambassador of Sardinia. While

d’Alembert’s intervention appeared to have a positive response from the king and minister,

by 1765 the promises had still not come to fruition.

In the autumn of 1765, d’Alembert solicited Frederick II of Prussia to offer Lagrange a

position in Berlin. Lagrange had previously declined posts in Prussia, apparently because

of shyness,4 and replied to d’Alembert’s efforts with “It seems to me that Berlin would not

be at all suitable for me while Mr Euler is there.”5 When d’Alembert informed Lagrange of

Euler accepting a position in St. Petersburg, Lagrange opened up to the idea and accepted

the proposal of the King of Prussia to be director of the mathematics section of the Berlin

Academy. Lagrange was to stay in Berlin until 1787, when he moved to Paris, where he

stayed for the rest of his life.

It was during Lagrange’s stay in Berlin that he first became acquainted with Laplace.

When Laplace arrived in Paris, he went in search of employment and scientific recognition.

As already seen, d’Alembert was quickly able to find Laplace employment at the École

militaire, but Laplace wanted, and maybe needed, more. On January 1, 1773, d’Alembert

sent Lagrange a letter asking four questions:

1˚ if there might now be a position open at the Academy of Berlin; 2˚ if he

[Laplace] would be able to enjoy, on his entrance, a sufficient salary, such as 3000

or 4000 livres, in French money; 3˚ if you [Lagrange] are in a position to interest

yourself in this matter without causing you worries; 4˚ if, in the case where you

do not want to become involved, I may write to the King and propose to him

M. de la Place as a subject who I know, who I esteem and of whom you may

yourself also testify.6

While Lagrange may have been indebted to d’Alembert for the role the older scientist played

in Lagrange’s early career, Lagrange’s response did not show this. Lagrange said that he

4Itard, 561.
5As quoted in Itard, 563.
6In original French is found in appendix A, Correspondance de Lagrange avec d’Alembert in Oeuvre de

Lagrange vol 13, 255
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was not in a position to make a request to the King. Rather, he argues that d’Alembert

should write the King himself, though not mention Lagrange at all. Lagrange did say that

he saw the merit in the young man and thought that the Academy would find an excellent

acquisition in him. Overall, this exchange came to little as Laplace was elected to the Paris

Académie des Science three months later.

In d’Alembert’s letter to Lagrange regarding Laplace, he stated that he was asking for

Lagrange’s recommendation for Laplace because “[Laplace] showed me a letter from you

in which it appears to me that you were pleased with something that he had sent you.”7

The letter from Laplace and Lagrange’s response have both been lost. The first remaining

letter from the correspondence between Laplace and Lagrange is a letter from Lagrange

dated March 15, 1773. It appears that when Lagrange wrote this letter Laplace was not

yet a member of the Académie des Sciences. In this letter, Lagrange attempted to persuade

Laplace to follow the advise he had given d’Alembert, for Laplace would surely soon be

elected to the Paris Académie des Sciences and he himself would not be able to procure a

position for Laplace at the Berlin Academy.

It is possible that this initial interaction with Laplace left Lagrange with mixed feelings

about the young man. Sarton argues that Laplace’s “vanity” annoyed Lagrange.8 Sarton’s

proof for this seems to rest exclusively in a letter from Lagrange to Condorcet in 1774, where

he said

I am a little surprised by what you say of M. de la Place; it is methinks the

weakness of young men to be puffed up with their first successes, but presumption

diminishes later in proportion as science increases.9

While this letter does not appear to put Laplace in an entirely positive light, it seems unlikely

that Lagrange continued in his original assessment of Laplace. Shortly after the series of

exchanges regarding Laplace finding employment, their relationship seemed to change into

one of mutual respect and admiration. This can be seen clearly in the correspondence

between the two men. On April 10, 1775 Lagrange responded to Laplace’s research on the

determination of the secular inequalities of the planets by writing Laplace a letter. Here,

7“[Laplace] m’a montré une Lettre de vous par laquelle il me paraît que vous êtes content de quelque
chose qu’il vous a envoyé.” Correspondence de Lagrange avec d’Alembert, 255

8Sarton, 478
9Sarton, 479



CHAPTER 5. LAGRANGE 39

Lagrange explains that he had planned to send further memoirs to the Académie which

would expand on his previous work on the theory of Jupiter and Saturn. After seeing the

work of Laplace, Lagrange continued that

As I see that you have embarked upon this research yourself, I abandon it happily

and I know that you, similarly, would dispense with this work persuaded that

science would only gain much from doing so.10

As we will see later in Chapter 7, Laplace may have been faced with this situation in the

context of singular solutions of differential equations. Andoyer contends that “the respect

of Lagrange for Laplace is... perfectly sincere.”11 Overall, while Lagrange might have been

initially unimpressed with the ambition of the young man, he grew to respect the scientific

ability that he showed.

There appears to be something of a dichotomy in the relationship between Laplace and

Lagrange. On the one hand, there was the respect that caused them to praise each other’s

work, though there are times when this respect could be simply out of protocol. On the

other hand, there was the comment that followed the majority of their compliments that no

matter how perfect the work that had just been completed, it could still be improved. Hahn

argues that “Each tried to upstage the other, such that their relationship was always tinged

with both mutual admiration and jealousy.”12

In the following chapters, we will investigate this relationship by looking at the memoirs

of the two men, as well as the letters that they sent each other. In these memoirs, we

can see the results of this friendly rivalry. The two scientists worked in similar areas and

sometimes one had greater success and sometimes the other. We will look at a time when

Lagrange had the greater success in the area of solving ordinary differential equations, in

which his methods are still used today. Also, while we will not investigate when Laplace’s

work is recognized as better and more influential, we can point out that this is the case

when looking at potential theory. Here, while Lagrange had laid the groundwork, the key

early result is attributed to Laplace and the equation, ∇2V = 0, still bears his name. In

their correspondence, we will see the opinions that they gave each other on the other’s work.

10“Comme je vois que vous avez entrepris vous-même cette recherche, j’y renonce volontiers, et je vous
sais même très bon gré de me dispenser de ce travail, persuadé que les sciences ne pourront qu’y gagner
beaucoup.” Correspondence de Lagrange avec Laplace, 60

11“L’estime de Lagrange pour Laplace est... partfaitement sincère.” Andoyer. 24
12Hahn, Pierre-Simon Laplace, 74
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These remarks are sometimes strong enough to even be included in the published versions.

Overall, we will investigate the role that this friendly rivalry played in the development of

Laplace as a scientist, concentrating on the period between 1772 and 1776, by looking at

both the correspondence between Laplace and Lagrange as well as the content of both of

their work.

We will start by looking at how Laplace went from using perturbation techniques, in Sur

le principe, to developing them into what he called a general method, in Recherches sur le

calcul intégral et sur le système du monde13 (cited as Sur le calcul intégral). We will look

at these two papers to discuss not only Laplace’s method but his presentation of the ideas.

We will discuss some of the drawbacks to Laplace’s presentation which will be highlighted

when we discuss Lagrange’s work.

The first two papers by Laplace that we will discuss appear very different in flavour: the

first appears more physical while the second can be seen as more mathematical. We mean

physical in the modern sense; the study of the physical world. In Laplace’s time, “physical”

meant the combination of computations with measurment. In the first memoir that we will

investigate, Laplace uses a method to aid him in his analysis of a specific example. Here, the

mathematics are secondary to the results that they produce. In the second paper, Laplace

is showing how to use the mathematics and then bringing these methods to the physical

setting, thus allowing the mathematics to appear as the main topic rather than the physics.

Some argue that Laplace’s style, in general, places physics as the primary concern while the

mathematics used to describe the physics is simply a means to an ends. This section will

concentrate on the mathematical methods that Laplace developed and employed in his early

work to solve problems in physical astronomy.

Laplace, instead, often omits the detailed procedures using words such as “clearly” or

“easily” rather than including his steps. Morris Kline briefly compares the attitudes of

Laplace to Lagrange with respect to their scientific endeavors.14 Kline describes Lagrange as

a mathematician and argues that “Laplace created a number of new mathematical methods

that were subsequently expanded into branches of mathematics, but he never cared for

mathematics except as it helped him to study nature.”15 Poisson went so far as to note,

13Pierre-Simon de Laplace, “Recherches sur le calcul intégral et sur le système du monde” in Oeuvres
complètes de Laplace vol viii (Paris: Gauthier-Villars, 1878-1912), 369-477.

14Morris Kline Mathematical Thought from Ancient to Modern Times, vol 2 (New York: Oxford University
Press, 1990) 495

15Kline, 495
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“In the issues he treated, Lagrange seemed more often to notice only the mathematics that

were involved so that he prized the elegance of formulae and the generality of his methods;

for Laplace, on the contrary, analysis was an instrument he wielded for the most varied of

applications, always subordinating the specific method to the goal he pursued.”16 The tone

that Poisson used is most likely more due to his relationship as protégé of Laplace than to

a superiority of Laplace’s methods. This view expressed by both Kline and Poisson appears

consistent with the content and approach in both of the memoirs that we investigate here

based on Laplace’s approach to the mathematics required: he still skips the majority of the

explanation that would make his method easy to follow; this is especially true in Sur le

principe.

Still, it is interesting to note that the examples that Laplace explains in Recherches do

not necessarily have a physical application: they are simply general equations that illustrate

his method. In this context, Laplace is acting as a “mathematician” in Kline’s sense and

we can see Laplace citing Lagrange’s work in both memoirs that we will discuss. Overall,

Laplace keeps the mathematical explanation to a minimum, giving preference to a physical

explanation. Laplace’s habit of failing to give detailed explanations is one of our criticisms

with his calling his method in Recherches general. We will address this further in Chapter

6.

This is in stark contrast to Joseph-Louis Lagrange. In looking at a small sampling of

Lagrange’s memoirs, it becomes apparent that he is trying to make the mathematics as

accessible as possible. He appears to help the reader to understand the sometimes compli-

cated procedures that he uses, especially when these procedures are not commonly used.

We will next turn to Lagrange who began by looking at variation of constants as a method

to find singular solutions, which he called particular solutions in his 1774 Sur les intégrales

particulières des équations différentielles17 or Sur les intégrales particulières. This paper con-

tinued work that Laplace had began with his 1772 Mémoire sur les solutions particulières

des équations différentielles et sur les inégalités seculaires des planètes18 or Sur les solutions

16Siméon Denis Poisson, Discours [prononcé aux funérailles de M. le Marquis de Laplace, le 7 mars 1827]
as quoted in Hahn, 256.

17Joseph-Louis Lagrange, “Sur les intégrales particulières des équations différentielles” in Oeuvres de La-
grange vol 4 (Paris: Gauthier-Villars, 1867-1892 [1774]) 5-108.

18Pierre-Simon de Laplace, “Mémoire sur les solutions particulières des équations différentielles et sur les
inégalités seculaires des planètes,” in Oeuvres complètes de Laplace, vol 8 (Paris: Gauthier-Villars, 1878-1912
[1772]) 352-367.
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particulières. By looking at these two papers, in particular, we can see the strong differences

in the styles of the two men. Lagrange then used variation of parameters to solve inho-

mogeneous ordinary differential equations in his 1775 Recherches sur les suites récurrentes

dont les terms varient de plusieurs manières différentes ou sur l’intégration des équations

linéaires aux différences finies et partielles; et sur l’usage de ces équations dans la théories

des hasards19 or Sur les suite. While this long paper dealt with other issues, we will focus on

his presentation of variation of parameters. Next, Lagrange used the method of variation of

parameters to solve problems relating to the mean movement of the planets in his 1776 Sur

l’altération des moyen mouvements des planètes,20 or Sur l’altération Lagrange continued

to use these methods in several other papers, which we will not discuss here. In looking at

these papers by Lagrange, we can see the evolution of the idea and the parallels between

Lagrange’s work and Laplace’s. This will be investigated fully in Chapter 7.

By comparing Laplace’s approach to asymptotics, and solving ODE’s in general, with

Lagrange’s not only in method but in presentation, we can gain a different perspective on

their relationship.

19Joseph-Louis Lagrange, “Recherches sur les suites récurrentes dont les terms varient de plusieurs manières
différentes ou sur l’intégration des équations linéaires aux différences finies et partielles; et sur l’usage de ces
équations dans la théories des hasards” in Oeuvres de Lagrange vol 4 (Paris: Gauthier-Villars, 1867-1892
[1775]) 151-251.

20Joseph-Louis Lagrange, “Sur l’altération des moyen mouvements des planètes,” in Oeuvres de Lagrange
vol 4 (Paris: Gauthier-Villars, 1867-1892 [1776]) 255-271.



Chapter 6

Laplace and Asymptotics

Overall, Sur le Principe de la gravitation universelle et sur les inégalités séculaires des

planètes qui en dépendent addresses, much as its title states, the principles of universal

gravitation and the secular inequalities of the planets which depend on it. Here, we will only

discuss the first half of the paper, which investigates universal gravitation. We are limiting

ourselves to this portion of the paper as it illustrates Laplace’s method of approaching a

problem and introduces Laplace’s use of asymptotics. He began his investigation by deriv-

ing equations for the force and for the moment of force of an attracting mass on a point,

then looking at four assumptions regarding universal gravitation:

1. Attraction is directly proportional to mass and inversely proportional to the square of

the distance,

2. The attractive force of a body is the result of the attraction of each part of which the

body is composed,

3. This force is instantaneously propagated from the body attracting to the one being

attracted,

4. This force behaves the same whether the body is at rest or in motion.

We will investigate his work investigating the assumption that gravitational force is propa-

gated instantaneously, or that gravity acts instantaneously at a distance. In questioning this

assumption, Laplace arrived at a differential equation that he did not have the methods to

solve. Laplace dealt with this problem by making a series of simplifications until he arrived

at an equation that he could unravel: a linear second order ordinary differential equation.

43
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The simplification that Laplace used is based on the idea that the orbit of each planet

is only slightly different from a circle. Therefore, the orbit can be modeled on an ellipse

produced by slightly perturbing a circle. Since this perturbation is small, Laplace was able

to neglect terms involving the square of this perturbation. This idea itself was not new, but

Laplace was able to use it to find new results based on the final equation that he found.

Wilson discusses those who had contributed to this nascent field of perturbation theory

before Laplace such as Euler, Clairaut and d’Alembert.1 In this paper Wilson does not

explicitly show how perturbation theory was used by Euler or Clairaut and therefore it is

difficult to compare the usage made by these men with that of Laplace without looking

directly at their work. Since our present topic is not a history of perturbation theory but

rather a look at Laplace’s methodology, we will not look deeply at these other works. How-

ever, we can note from Wilson that Laplace had used the same substitution to introduce his

perturbation as Lagrange had used in an earlier work. The way that Laplace then maneu-

vers his small values is different from Lagrange, and in fact Laplace presented his method

explicitly as a general method. Wilson also looks explicitly, though briefly, at Sur le principe

when discussing Laplace’s own contributions to the field.

Sur le principe represents Laplace’s first published work in physical astronomy and in

this memoir Laplace walks the reader through his analysis. While Laplace helps the reader

follow his progression, he leaves out many steps, in contrast to Lagrange’s more effective

expository style. In the sampling of Lagrange’s work that we will investigate, he showed the

reader exactly what he was thinking and rarely required the reader to interpolate steps. In

the present paper, we will show steps that can fill in those missing in Laplace’s simplification

and investigate the reasoning that Laplace may have used to make this progression. In

looking at this simplification, we will attempt to address why Laplace proceeded in the way

that he did and whether he believed himself to be justified in what he was doing; we will

see that Laplace’s apparent path to his simplified equation involves steps for which rigorous

justification would be difficult.

Shortly after this memoir was written, Laplace wrote a further memoir, Recherches sur

le calcul intégral et sur le système du monde. Stigler provides some clues about this memoir

by suggesting that the first portion of Sur le calcul intégral may have been presented to the

1Curtis A. Wilson “Perturbations and Solar Tables from Lacaille to Delambre: the Rapprochement of
Observation and Theory, Part II” published in Archive for the History of the Exact Sciences, vol 22 (Springer-
Verlag: 1980) 198-304
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Academy in 1774 under the name “Sur le calcul intégral.”2 In this paper, Laplace presents the

method he used in Sur le principe as a general method for simplifying differential equations.

Here Laplace again walks the reader through his steps but with specific examples to illustrate

his points. In what follows, we will look at how Laplace moved from merely using his method

in Sur le Principe to presenting this method as a general one for solving ordinary differential

equations. Again, we will discuss whether this claim of generality was justified, and identify

potential problems with regarding this as a general method.

6.1 Laplace’s Initial Use of Perturbation Theory

In the first example we examine, Laplace was trying to show that gravity need not be

propagated instantaneously as well as trying to determine the speed at which gravity is

propagated.3 Laplace began by assuming that gravity is produced by the impulse of a

corpuscle infinitely smaller than the body on which it is acting: this is depicted in Figure 6.1

based on the diagram that Laplace included when describing the system under discussion.

In this diagram, N is the corpuscle, p is the attracted body and S is the body causing the

attraction. This is a confusing model. Laplace did not explain the physical meaning behind

this model at all and therefore we are left only to guess at his possible assumptions. It

appears that Laplace was assuming that some corpuscle is sent from each body and pushes

these bodies together upon arrival at its “target.” This does not seem to make sense and

appears counter-intuitive because these corpuscles would be required to travel around the

bodies to push them together. In any case the appearance of this corpuscle would seem to

imply that Laplace is dealing with a three body problem since there is now the attracted

body, the attracting body and the corpuscle causing the attraction. Laplace did not set up

the problem in this way and neglects any gravitational influence produced by the mass of

the corpuscle. Laplace may have believed this to be reasonable because he had supposed the

corpuscle to be of a mass that would be inconsequential, or he may have considered it to be

free of mass. In a modern interpretation, we could think of this corpuscle as being massless

and only acting to communicate information, ie attract in this direction. Whatever the

reason, Laplace proceeded without altering his equations as would be necessary if he were

2Stigler, 253.
3All primary information presented in this section is found in Pierre Simon Laplace, Sur le principe de la

gravitation universelle et sur les inégalités séculaire des planètes qui en dépendent, 221-224
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including the gravitational impact of the corpuscle and we can only note that we cannot tell

how this corpuscle acts.

While Laplace did not reference George-Louis Lesage (1724-1803), the resemblance of

Laplace’s corpuscles to Lesage’s “otherworldly particles” (particules ultramondaines) war-

rants some comparison. Lesage is best known for his work explaining gravity mechanisti-

cally.4 This theory relies on particles that were extremely small and moved at very high

frequency and were called “otherworldly” because of their exemption from universal gravita-

tion. An isolated mass would not be affected by the particles, because this mass would be

hit by a balanced amount of particles from all directions. But, in the case of two masses,

each mass would create a shadow blocking the particles from reaching the other mass causing

an attraction. Lesage was easily able to argue that the relation would vary inversely with

respect to distance. But to show that the relation was directly with respect to the mass

instead of the surface area, he argued that this was due to the porosity of the body creating

the shadow. This appears to represent Laplace’s model. Laplace did not always reference his

sources and therefore it is not unusual here that he did not give credit to Lesage. Lesage’s

theory was not universally accepted, which makes Laplace’s rather offhanded mention of the

corpuscle seem reasonable. Still, Lesage was a member of the Académie which Laplace hoped

to gain membership to and therefore using the method of a more senior academician would

seem to make sense politically. It should also be noted that while Laplace did correspond

with Lesage, this began well after the writing of this memoir.

6.2 Brief Note on the Nature of a Function

There is some confusion when reading both Laplace and Lagrange about the nature of an

equation. We are often told, for example, that the equation F = 0 is to be considered a

function of certain variables. Today, this would normally be written as F (x, y) = 0, where

F is a function of x and y. Then if we were to take the derivative of F , we would need

to use partial derivatives. For Laplace and Lagrange, we are told often that dt is to be

kept constant. This means that t is to be taken as the independent variable, and if we take

derivatives, they would be total differentials with respect to t. This confusion is somewhat

clarified when we look at the definition of a function as given in the Encyclopédie. Here, we

4J.B. Gough, Lesage, George-Louis, in Complete Dictionary of Scientific Biography vol 8 (Detroit: Charles
Scribner’s Sons, 2008) 261.



CHAPTER 6. LAPLACE AND ASYMPTOTICS 47

are told

Today, we call a function of x, an algebraic quantity composed of a many terms

as we could want and of which x finds itself in any manner, mixed or not, with

constants. All the terms of a function of x are supposed to have the same

dimension.5

Therefore, we can see that when both Laplace and Lagrange are writing, they are using a

definition of function which was not so different from Euler.6 Since set theory did not exist

at this time, we can expect not to find any trace of it here. Still, the definition used brings

some level of understanding into the usage that we encounter. In general, we will follow the

original authors’ naming of functions and equations.

6.2.1 Remarks on Notation

Laplace began by introducing the notation Ψ, Ψ′, Ψ′′ as the components of the forces parallel

to the z, y and x directions respectively. He also named M the attracted body. He does

not call this the mass of the body but the body itself. At times, such as when Laplace

derived his equations of motion, M does appear to represent mass, but Laplace seems to use

M differently depending on the context. This can be seen later when he uses the notation
Ψ′′

M . While this appears to be the force divided by the body, it seems more likely that

this notation is similar to the modern subscript and instead represents the force on the

body M . We see this notation again in the section under investigation here. Here, we

have a body p and it appears that Ψ′′

p is used in the same manner. As well, there is some

confusion because Laplace uses p to represent the body itself as well as its position in space.

Again, Laplace appears to use p differently depending on the context making his notation

somewhat confusing. Throughout, we have remained loyal to Laplace’s notation but have

made comments when this notation is troublesome.

5“Aujourd’hui on appelle fonction de x, une quantité algébrique composée de tant de termes qu’on voudra
& dans lesquelles x se trouve d’une maniere quelconque, mêlée ou non, avec des constantes. Tous les
termes d’une fonction de x sont censés avoir la même dimension.” Editors M. Diderot and M d’Alembert,
Encyclopédie, “Table analytique,” (Paris: Panckoucke, 1780), 1177.

6Victor J. Katz A History of Mathematics: An Introduction, 3rd Edition (Boston: Addison-Wesley, 2009),
618.
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6.2.2 Setting up the Physical Model

Laplace began by setting up the situation as described in Figure 6.1, where there is an

infinitely small body p moving around S, which is considered as immobile, with an orbit on

the fixed plane pSM . He then labeled r and φ as in the diagram.7 Next, Laplace used the

notation Ψ′

p to denote the force perpendicular to Sp and acting in the same sense as the

movement of the planet. The planet is assumed to be the infinitely small body p though he

did not here or otherwise say that p refers to a planet. While this seems odd to call a planet

infinitely small, nevertheless, in comparison to a more massive body, such as the sun, this

may be assumed to be the case, which is the example that Laplace used later. He further

defined Ψ′′

p as the force acting along Sp directed from S to p. The notation is curious to

our eyes, but, as mentioned above, division does not appear to be implied. Based on how

Laplace has defined Ψ′′ and Ψ′ previously in this paper, the reader can assume that Laplace

wished to have NO be the x-axis and qO be the y-axis. Laplace later stated that these

two are perpendicular but does not here or anywhere define these as his axes. This could

represent a style of the time, but appears odd to the modern reader.

Figure 6.1: Reproduction of Laplace’s diagram to show his system involving a corpuscle
transmitting gravity

Also, based on Laplace’s previous definition of Ψ′′ and Ψ′ it becomes difficult to determine

what form he was giving to his variable p, which has been used to describe both the infinitely

7In Laplace’s version of this diagram neither these variables, the right angle, the point U nor the perpen-
dicular from p to U are included.
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small body and a point on his diagram. At the beginning of the paper, Laplace stated that

Ψ′′ is the sum of the forces perpendicular to the x′-axis, which in turn is perpendicular to the

x-axis and similarly for Ψ′. If this is still the case, then p must be a dimensionless quantity.

Laplace did not describe this and it is left to the reader to assume. Later, we can infer the

nature of these variables based on how Laplace replaced them in the equations that he had

previously derived.

6.2.3 Setting up the Equations

After Laplace had explained the configuration of his system, he moved on to look at the

equations of motions. This is the first place that we see him use his form of simplification to

arrive at a result that he could solve exactly. Previously in this paper, Laplace had derived a

system of equations to determine the force on a body caused by the gravitational attraction

of another body.

Laplace derived these equations by starting with the analytical version of Newton’s second

law

Ψ′′ −Md2x

dt2
= 0

Ψ′ −Md2y

dt2
= 0 and

Ψ−Md2z

dt2
= 0.

Laplace then substituted

x = r cosφ, y = r sinφ, and z = rs

thereby changing to cylindrical coordinates. Following through with this substitution Laplace

found

dφ

dt
=

1

r2

(
C +

∫
Ψ′rdt

M

)
0 =

d2r

dt2
− 1

r3

(
C +

∫
Ψ′rdt

M

)2

− Ψ′′

M

and

0 =
d2s

dt2
+

2dsdr

rdt2
+

s

r4

(
C +

∫
Ψ′rdt

M

)2

− SΨ′′ −Ψ

M
.
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For the physical system described in Figure (6.1), Laplace replaced the first two of these

equations with ones more specific to his current system:

dφ

dt
=

1

r2

(
c+

∫
Ψ′

p
rdt

)
(6.1)

and

0 =
d2r

dt2
− 1

r3

(
c+

∫
Ψ′

p
rdt

)2

− Ψ′′

p
.8 (6.2)

The appearance of c represents an integration constant. Laplace used the capital and lower

case c and C and we have simply followed his example.

Laplace wanted to be able to solve (6.1) and (6.2) for φ and r, but before he was able to

do this he must first determine Ψ′′ and Ψ′. At this point, he named N the corpuscle that

gravitates p towards S. We should note that both N and p are located at the same point.

This makes sense as N must be at the same place as p in order to communicate to it. He

then argued that if p is at rest, N will communicate to it towards S the force S
r2
. Here again,

it becomes difficult to determine what quantity the variable S is describing. For simplicity,

we will consider S to be a placeholder, which we can investigate further later. Next, Laplace

let pG be the distance that the corpuscle travels in the time that the body p travels pQ,

which is tangent to the orbit of the body. Laplace set pQ equal to pq. Here again, there

is some confusion with labeling, as p represents both the body and its position. As well,

Laplace called the quantities pG, pQ and pq both distances and speeds. For simplicity, we

will consider these to be distances. When Laplace talked of the speed pQ, for example, this

will be considered to be the speed of the body p moving from the point p to G. He next

argued that p is animated by a force S
r2

directed from p to S and a force S
r2
pQ
pG directed from

p to q. He now let θ
α be the distance that the corpuscle travels in the time T , where T and

α are constants, α being an extremely small numerical coefficient and θ being a variable

depending on any function of the distance from p to S. Laplace then was able to produce

the relation
pQ

pG
= αT

√
dr2 + r2dφ2

θdt
.

This equation itself seems to warrant some further explanation.

8We have retained Laplace’s notation here.



CHAPTER 6. LAPLACE AND ASYMPTOTICS 51

First this equation appears to make more sense when written as follows

pQ

pG
=

(∗)︷︸︸︷
α

θ
T

√
dr2 + r2dφ2

dt︸ ︷︷ ︸
(∗∗)

.

Based on Laplace’s definitions, we can see that (∗) and (∗∗) respectively represent the inverse

of the speed of a body moving the distance pG and the speed of a body moving the distance

pQ. Looking first at (∗), we can see this is simply the inverse of θ/α
T , which represents the

speed of the corpuscle from p to G based on Laplace’s previous explanation where θ
α is the

distance the corpuscle moves in time T . Moving on to (∗∗) is somewhat more complicated.

If the triangle NOq is similar to the triangle pUS, which has been added in the diagram, and

if, as it appears, Laplace was setting NO to be dr then using a small angle approximation,

Laplace would be able to determine the change in the length of pq to be
√
dr2 + r2dq2. The

term (∗∗) follows directly from this.

Laplace then noted that the force S
r2
pQ
pG is given by S

r2
αT

√
dr2+r2dφ2

θdt . He decomposed

this term into components, along what we have here called the x and y axes, which are

respectively

−αSTdr
θr2dt

and
S

r2

Tαrdφ

θdt
.

Laplace was now able to conclude “easily,” as he puts it, that
Ψ′′

p
= − S

r2
− αSTdr

θr2dt

and
Ψ′

p
= −αSTdφ

θrdt
.

This can be seen as simply summing up the components in the x-direction and y-direction

respectively, noting that Laplace had already stated that there was a force from p to S (the

x-direction) of S
r2
. Laplace has now reached his first goal of determining the values of Ψ′′

p

and Ψ′

p , therefore he substituted these values into (6.1) and (6.2) and found

dφ

dt
=

1

r2

(
c−

∫
αSTdφ

θ

)
(6.3)

and

0 =
d2r

dt2
− 1

r3

(
c−

∫
αSTdφ

θ

)2

+
S

r2
+
αSTdr

θr2dt
. (6.4)
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6.2.4 The Simplification

We will now concentrate on equation (6.4), and Laplace’s simplification of this equation.

Since this equation is still not solvable as is, Laplace now assumed that the orbit of the

planet is nearly circular and has nearly uniform angular velocity. This allowed him to define

r = a(1 + αy) and φ = nt+ αx. (6.5)

This represents a small perturbation from a circle which would have had radius, r = a and

polar angle, φ = nt. He defined α to be a small constant such that quantities of order α2

can be neglected. It should be noted that this is the same α that Laplace was using before.9

This turns out to be the key feature of Laplace’s simplification technique though, as we shall

see, his methodology is somewhat surprising.

Laplace began by looking at (6.1) and assumed θ to be constant. This allowed him to

conclude that ∫
αSTdφ

θ
=
αSTnt

θ
. (6.6)

If we break this step up we can easily see how Laplace arrived at this conclusion. First, after

substituting Laplace’s definition of φ, he found∫
αSTdφ

θ
=

∫
αSTd(nt+ αx)

θ
.

Since θ is assumed constant we can move most of the variables outside of the integral∫
αSTdφ

θ
=
αST

θ

∫
d(nt+ αx).

Therefore, we end up with ∫
αSTdφ

θ
=
αST

θ
(nt+ αx).

Since Laplace has told us that we can neglect terms of order α2, we can neglect the second

term here and we end up with (6.6).

This is the first example of Laplace neglecting terms involving α2, but he was, in general,

not consistent in this usage. As we shall see, it is impossible to determine his methods exactly

from the steps that he included, which makes checking the validity of his steps difficult.

9This is practically the same substitution that Lagrange made, though Lagrange used different notation as
seen in Wilson, “Perturbations and solar tables from Lacaille to Delambre: the rapprochement of observation
and theory,” 198.
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After substituting the expressions from (6.5) for r and φ and using (6.6), Laplace now

quickly arrived at the simplification that (6.4) is the same as

0 =
d2y

dt2
+

1

α

(
S

a3
− c2

a4

)
+

(
3c2

a4
− 2S

a3

)
y +

2S

a3

cT

aθ
nt (6.7)

which again appears to require more explanation than Laplace provides. This is very close

to the final differential equation that Laplace will solve. We will suggest intermediate steps

that Laplace did not include so as to decipher Laplace’s simplification strategy to arrive at

a solvable second order differential equation.

If we start from the initial substitutions of (6.6) and the expressions from (6.5) for r and

φ into (6.4), we have

0 =aα
d2y

dt2
− 1

a3(1 + αy)3

[
c2 − α2cSTnt

θ
+ α2

(
STnt

θ

)2
]

+
S

a2(1 + αy)2
+

αST

θa2(1 + αy)2
aα
dy

dt
.

The terms involving 1
1+αy are problematic. We will now examine two possible ways that

Laplace may have dealt with these terms, both of which have difficulties.

Method 1: Geometric series expansion

We can start by using a geometric series expansion for this contentious term:

1

1 + αy
= 1− αy + α2y2 − · · · .

This expansion is only true for −1 < αy < 1. Since y is derived from the orbit of the

planet, we can start by assuming that y is bounded and therefore, given α small enough, we

can use this approximation.

This means that we have(
1

1 + αy

)2

= 1− 2αy + 3α2y2 − · · · and(
1

1 + αy

)3

= 1− 3αy + 6α2y2 − · · · .
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Returning to our original DE, we have

0 =aα
d2y

dt2

− 1

a3

(
1− 3αy + 6α2y2 − · · ·

) [
c2 − α2cSTnt

θ
+ α2

(
STnt

θ

)2
]

+
S

a2

(
1− 2αy + 3α2y2 − · · ·

)
+ α2 ST

a2θ

(
1− 2αy + 3α2y2 − · · ·

) dy
dt
.

Laplace told us to remove all terms containing α2 or higher. Therefore, we are left with

0 =aα
d2y

dt2
− c2

a3
+ 3α

c2

a3
y + α

2cSTnt

a3θ
+
S

a2
− 2α

S

a2
y, (6.8)

which, after rearranging, can be written as equation (6.7).

But there are problems with this method. First, we made the geometric expansion based

on the assumption that y is bounded. This matter will be discussed when we look at the

general solution that Laplace obtains and compare the two methods.

Method 2: Partial fractions

To be able to use this method, we must start by rewriting the ODE as

0 =
d2y

dt2
− 1

a4

1

α(1 + αy)3

[
c2 − α2cSTnt

θ
+ α2

(
STnt

θ

)2
]

(6.9)

+
S

a3

1

α(1 + αy)2
+
α2ST

θa2

1

α(1 + αy)2

dy

dt
.

Let us first examine the term, 1
α(1+αy)3

. We can expand and write

1

α(1 + αy)3
=

1

α(1 + 3αy + 3α2y2 + α3α3y3)
.

Laplace told us to remove all terms containing α2 or higher powers. This means we have

1

α(1 + αy)3
≈ 1

α(1 + 3αy)
, (6.10)

or, using partial fractions
1

α(1 + αy)3
≈ 1

α
− 3y

1 + 3αy
.
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Similarly, we can say,
1

α(1 + αy)2
≈ 1

α
− 2y

1 + 2αy
.

This is still somewhat problematic because y in the denominator does not appear any-

where in equation (6.7). Therefore, if this method was used by Laplace, there must be some

way of dealing with these terms. Unfortunately, Laplace did not give any indication of what

to do in this case because there are no α2 terms. If, in modern terms, we could say that

1� αy, then we could write

1

α(1 + αy)3
≈ 1

α
− 3y and

1

α(1 + αy)2
≈ 1

α
− 2y,

but there is no indication that Laplace would have thought this way. What we might also

assume is that if Laplace had proceeded this way, he may have thought that since the y

term in equation (6.10) had an α2, we can remove this term after we no longer require it.

We could not have removed it earlier because we would not have been able to use partial

fractions without it.

Substituting into equation (6.9), we have

0 =
d2y

dt2
− 1

a4

(
1

α
− 3y

)[
c2 − α2cSTnt

θ
+ α2

(
STnt

θ

)2
]

+
S

a3

(
1

α
− 2y

)
+
α2ST

θa2

(
1

α
− 2y

)
dy

dt
.

Again, Laplace has told us to remove all terms involving α2. After doing this we find,

0 =
d2y

dt2
− 1

α

c2

a4
− 2cSTnt

a4θ
− α

(
STnt

θ

)2

+ 3y
c2

a4
+ 3αy

2cSTnt

a4θ
(6.11)

+
1

α

S

a3
− 2y

S

a3
+ α

aST

θa3

dy

dt
,

but this is not the same as equation (6.7).

We can find Laplace’s answer in two ways: either we can remove terms containing α2

before expanding or we can multiply through by α and then remove the terms that contain

α2.

Proceeding in the first way, we write our ODE as

0 =
d2y

dt2
− 1

a4

(
1

α
− 3y

)(
c2 − α2cSTnt

θ

)
+
S

a3

(
1

α
− 2y

)
,
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which after expanding and rearranging is the same as equation (6.7).

Otherwise, we can multiply equation (6.11) by α and proceed with the substitution and

we find

0 =α
d2y

dt2
− c2

a4
− α2cSTnt

a4θ
− α2

(
STnt

θ

)2

+ 3αy
c2

a4
+ 3α2y

2cSTnt

a4θ

+
S

a3
− 2αy

S

a3
+ α2aST

θa3

dy

dt
.

If we now removed all terms involving α2 and rearrange our terms, we find equation (6.7).

No matter which way Laplace may have proceeded, there remains that question of where

the expansion is valid. This question will be addressed below.

6.2.5 General Solution and Potential Problems

Beginning with the simplified ODE, equation (6.7)

0 =
d2y

dt2
− 1

α

(
S

a3
− c2

a4

)
+

(
3c2

a4
− 2S

a3

)
y +

2S

a3

cT

aθ
nt,

the easiest way to proceed, which is most likely different to how Laplace would have, is to

first multiply through by α and set α = 0. This gives

0 =
S

a3
− c2

a4
.

Laplace does not show any intermediate steps but rather states that “It is clear that S
a3
− c2

a4

must be of the order of α, and, since a is arbitrary, I will suppose S
a3

= c2

a4
.” 10 Since no

other terms contain α, this does seem clear and does not require extra explanation as long

as Laplace’s intended audience would have understood.

Laplace then arrived as the simple ODE

0 =
d2y

dt2
+
c2

a4
y +

2c3

a6

a

θ
Tnt, (6.12)

His next step was to integrate equation (6.12). Using methods available to Laplace, the

answer can be written as

y = c1 cos
c

a2
t+ c2 sin

c

a2
t− 2c

a2

a

θ
Tnt,

10“Il est clair que S
a3

− c2

a4
doit être de l’ordre de α, et, comme a est arbitraire, je supposerai S

a3
= c2

a4
,”

Laplace, 223.
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where c1 and c2 are constants which can be determined from the conditions of the problem.

Laplace instead writes

y = K cos (
c

a2
t+ ε)− 2c

a2

a

θ
Tnt

where K and ε are arbitrary constants. These two can be easily seen as equivalent by looking

at the trigonometric identity cosα cosβ − sinα sinβ = cos (α+ β). Therefore, c1 = K cos ε

and c2 = −K sin ε. This substitution could also be made using sine in place of cosine.

Laplace uses sine for the x-term which he solves next though, theoretically, either could be

used in each case.

Here is where we see the problem with both methods of reaching Laplace’s simplified

ODE: both relied on y being bounded. This means that Laplace is working with a non-

converging infinite series using either method. But, because Laplace has shown none of his

steps in reaching his simplified equation, equation (6.7), we do not know for sure if this is

the case. There may be another method which does not rely on a non-converging infinite

series, but based on the information that Laplace has given, it is only possible to guess at

his method. The use of a non-convergent series is not unlikely. Jahnke says that

Investigations of convergence did not play a systematic part in 18th-century

analysis. However, most mathematicians at that time were usually well aware

of for which values and how fast the series under consideration converged or

diverged.11

This may well have been true for Laplace, but the series that we think that Laplace has used

would only be useful for values of y < 1
α . This would imply that it would also only be useful

on small time scales, but Laplace’s main purpose, in the end, is to make a conclusion for

large time scales. Therefore, there can be some doubt as to whether he knew or cared that

he was using a series which was divergent over large time scales.

Returning to Laplace’s explanation, he now supposed that the line SM is where the

body p is placed at the first instant of movement which is also the place of the aphelion of

the orbit of p, if a
θ = 0. He then named αe the relation of the primitive eccentricity to the

mean radius of the orbit and concluded that K = e and ε = 0.

Laplace now investigated equation (6.3), which he simplified in a method similar to the

one he used to simplify (6.4). He set n = c
a2

and ended up finally with

11H.N. Jahnke, “Algebraic Analysis in the 18th Century” in A History of Analysis (Providence, RI: Amer-
ican Mathematical Society, 2003) 121.
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r = a(1 + αe cosnt− 2
aα

θ
Tn2t)

and

φ = nt− 2αe sinnt+
3

2

aα

θ
Tn3t2.

From the last term in the equation for φ, Laplace was able to conclude that the body

p is subjected to a secular equation proportional to the square of time. A secular equation

is simply one that varies with time. This is also how the term “secular inequality” can be

interpreted. He argued that in “ordinary” investigations aα
θ is considered to be infinitely

small and this last term disappears. Laplace stated that if this term cannot be neglected,

then it would cause a change in the mean movement of the planets. Laplace proceeded to use

this part of the equation to determine the speed of the propagation of gravity. In the end,

Laplace calculated the distance that the corpuscle travelled in one minute and compared this

distance to the speed of light. Laplace was then able to find that the speed of the corpuscle

was 7 680 000 times greater than the speed of light.

Overall, we see that Laplace has not provided enough information for the reader to

understand what he is doing. If Laplace used the expansions that we have here suggested,

there should be some limitation placed on their validity and this limitation would hinder

the physical interpretation that Laplace next made. Basically, here would be a place that

more explanation would not only be helpful; it would seem to be necessary. As we shall see,

even when Laplace was trying to explain this method, he still did not provide the necessary

explanation to make himself clear.

6.3 Generalization

In the second paper that we will investigate, Sur le calcul intégral, Laplace attempted to

generalize the simplification method that he used in Sur le principe. This long memoir -

over 130 pages in total - investigates specific differential equations, which Laplace solves

using his methods. These examples do not necessarily have an astronomical context and

for the most part simply represent different forms of D.E’s. After having explained his

method, Laplace turns to the theory of planets and attempts to show the applicability of

his investigation. In this paper, we will concentrate only on the first example that Laplace
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explained and examine what he is doing and why.12

Laplace began this example by simply stating, “Let it be proposed to integrate the

differential equation
d2y

dt2
+ y = αy cos 2t.”13 (6.13)

Laplace did not provide any motivation for looking at this specific equation, nor does this

equation appear to represent the perturbation situation that the above example does. There-

fore, the physical context that Laplace had before does not appear, but this example illus-

trates his method. It appears that this is the reason that it is used rather than any applica-

bility that it might have. While he was still not being as systematic as Lagrange was when

describing his method in Sur l’attraction, we can see this as resembling Lagrange’s approach

simply because Laplace has chosen an equation for its mathematical properties rather than

its physical applicability.

Returning to Laplace’s presentation of his method, he next stated that α is a very small

quantity and t will be the independent variable.14 Laplace then turned to integrating the

simple D.E.
d2y

dt2
+ y = 0.

This is the normal approach to this type of problem in the modern context: to first solve

the problem by setting α = 0. Laplace solved this easier equation, and found

y = p sin t+ q cos t

where p and q are found from the initial conditions.

Laplace now inserted what could easily be described as a perturbation. He set the

solution to (6.13) to be a perturbation of the simpler equation, or

y = p sin t+ q cos t+ αz. (6.14)

Laplace now substituted this into (6.13) and found a new differential equation with z as the

dependent variable
d2z

dt2
+ z =

p

2
sin 3t− p

2
sin t+

q

2
cos 3t+

q

2
cos t. (6.15)

12All primary information presented in this section is from Pierre Simon Laplace, “Recherches sur le calcul
intégral et sur le système du monde” vol 8 of Oeuvres de Laplace, 369-37

13“Soit proposé d’intégrer l’équation différentielle d2y
dt2

+ y = αy cos 2t.”
14Laplace makes this point by stating that dt is a constant. This seems an odd method of pointing to the

independent variable to the modern reader, but seems to represent a pattern in Laplace’s writing and was
quite normal in the eighteenth century. This method is also seen in the writings of Euler and the Bernoullis
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To obtain this result, Laplace neglected terms involving α2, even if this meant making terms

contain α2. Following through with this example, we can only find one slightly contentious

simplification. When we make the substitution into (6.13), we find

α
d2z

dt2
+ αz = αp sin t cos 2t+ αq cos t cos 2t+ α2z cos 2t.

We can see that using a trigonometric identity, this can be written as

α
d2z

dt2
+ αz = α

p

2
[sin 3t− sin t] + α

q

2
[cos 3t+ cos t] + α2z cos 2t.

At this stage, it would seem reasonable to divide through by α at which point there

would be no term involving α2. Laplace instead removed the last term which contains an α2

term and then divides through by α. In the modern context, this seems natural, but there is

today the terminology to describe what Laplace is doing.15 However, this terminology was

not contemporary and Laplace seemed to have needed some way to describe what he was

doing. His description could have been more transparent had he included a sentence along

the lines of “If there are no terms containing α2, multiply by α.” Here again, we see Laplace

as being less of a mathematician in the sense that Lagrange was. Even in a work where

he was attempting to produce a new method for solving equations, he did not include the

relevant steps to make his procedure easily followed. Nor did he make it clear when it would

work and when it would not.

Laplace immediately integrated (6.15) and, after substituting into (6.14) found

y =
(
p+

α

4
qt
)

sin t+
(
q +

α

4
pt
)

cos t− αp

16
sin 3t− αq

16
cos 3t. (6.16)

This result appears to warrant some further explanation.

When this type of expansion is done in the modern context, the most general solution

would be found by starting with the initial value problem
d2y
dt2

+ y = αy cos 2t

y(0) = y0, y
′(0) = y′0.

When we set α = 0, we have 
d2y
dt2

+ y = 0

y(0) = y0, y
′(0) = y′0.

15He is taking the order one (O(1)) solution and therefore removes all terms containing higher orders of α
(O(α)).
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Looking at the next order of α equation, we set
d2z
dt2

+ z = p
2 [sin 3t− sin t] + q

2 [cos 3t+ cos t]

z(0) = 0, z′(0) = 0.

From Laplace’s solution, this is not what he did. Instead when he was solving for z, he set the

homogeneous solution equal to zero. Normally, when solving an inhomogeneous equation,

the first step is to solve the homogeneous equation, here this would mean solving

d2zc
dt2

+ zc = 0,

where zc is the homogeneous solution or

zc = p̄ sin t+ q̄ cos t.

Using the initial condition on z, we can find p̄ and q̄ in terms of p and q. Based on equation

(6.16), this is not what Laplace did. Instead, it appears that Laplace set both p̄ and q̄ to be

identically zero. Proceeding in this way, Laplace was able to find a simpler equation for p

and q so as to solve for these values, as we will investigate next.

Laplace could have stopped at equation (6.16) but instead continued by attempting to

find a relationship between p and q. He did this using two methods. First, Laplace looked at

(6.13) with t = T + t1 and compared this result with (6.16). Later, Laplace used a method

based more on intuition. While Laplace argued that the first appears more direct, we will

look at both methods.

Looking at the first method, Laplace started by rewriting (6.13) as

d2y

dt2
+ y = αy cos (2T + 2t1).

Laplace can proceed in this way if he believed his solution was periodic, though Laplace did

not make this stipulation. As it turns out, the solution is not periodic, it is growing, but

the method does appear to work. In following through with this integration, Laplace found

that equation (6.16) is replaced by

y =
(
p′ +

α

4
q′t1

)
sin (T + t1) +

(
q′ +

α

4
p′t1

)
cos (T + t1) (6.17)

−αp
′

16
sin (3T + 3t1)− αq′

16
cos (3T + 3t1).16
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Laplace stated that by comparing equations (6.16) to (6.17), we can see that the difference

between p and p′ or q and q′ will be of order α, therefore he set

p′ =p+ δp

q′ =q + δq

where both δp and δq are considered to be single variables of order α.

Laplace was now able to find the equation

0 =
(
δp− α

4
Tq
)

sin t+
(
δq − α

4
Tq
)

cos t

by substituting p′, q′ and setting t1 = t− T . From this equation Laplace argued that since

t is a variable and T is a constant, we know

δp =
α

4
Tq (6.18)

δq =
α

4
Tp. (6.19)

He set x = α
4T and argued that

p′ =p+ δp = p+ x
dp

dx
+

x2

1 · 2
d2p

dx2
· · · (6.20)

q′ =q + δq = q + x
dq

dx
+

x2

1 · 2
d2q

dx2
· · · . (6.21)

This resembles a Taylor expansion around x = 0, but in that case Laplace would have been

required to use the values of the successive derivatives at x = 0. Jahnke discusses the use

of the Maclaurin series, or a Taylor series around x = 0, and states that in 1742, when

Maclaurin published his Treatise on Fluxions, he stated that the function which is being

expanded is evaluated at x = 0. Jahnke also points out that this form of expansion had

been used by Newton and Euler before being published by Taylor or Maclaurin, though he

does not state explicitly that Euler had stipulated that the function be evaluated at x = 0.17

By the way he proceeded, we can tell that Laplace did not set x = 0. The expansion itself

makes sense because α is a small constant, but there can be some question as to its validity

in the form that Laplace wrote it.

While the presentation seems flawed to the modern audience, it may have had a historical

precedent. Fraser points out that the symbol δ was given new meaning by Lagrange in a

17Jahnke, 113.
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work first published in 1762.18 With Lagrange’s definition of δ, it seems that

δ = x
d

dx
+

x2

1 · 2
d2

dx2
· · · .

While Laplace’s interpretation still seems erroneous, it would appear that this notation would

have been clear to contemporary readers.

By comparing equations (6.18) to (6.20), and equations (6.19) to (6.21) Laplace deter-

mined that p and q are related by

dp

dx
= q and

dq

dx
= p.

After solving and substituting back the value for x, Laplace found19

p = fe
α
4
T + f ′e−

α
4
T andp = fe

α
4
T − f ′e−

α
4
T .

Laplace was then able to reach the general solution

y =fe
α
4
T (sinT + cosT − α

16
sin 3t− α

16
cos 3T ) (6.22)

+ f ′e−
α
4
T (sinT − cosT − α

16
sin 3t+

α

16
cos 3T ),

where f and f ′ are constants. Laplace proceeded with his second method and reaches the

same result.

Laplace continued Sur le calcul intégral by explaining his method through a series of

other examples. We will not investigate these other examples in this paper.

The question now arises as to whether Laplace was justified in thinking he had found a

general way to find approximate solutions to certain O.D.E.’s and whether he himself thought

what he was doing constituted a general method. To look at whether Laplace was justified,

we need to consider first, whether the method itself was correct and second, whether it was

indeed a general method.

We can at least determine whether the method itself seems reasonable by looking at how

well the approximation fits an exact solution. In this case, we can solve this O.D.E. exactly

using a computer. After solving the differential equation and comparing it to Laplace’s

18Craig Fraser “The Calculus of Variations: A Historical Survey” in A History of Analysis, (Providence,
RI: American Mathematical Society, 2003), 361.

19Laplace again uses his odd notation. In his version the f ′ is replaced with 1f .
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approximation, we see that Laplace’s results show a strong relationship to the exact values.

This will be discussed in detail in the Appendix. Therefore, we can say that Laplace’s

method was justified (for this example at least) because he was able to obtain results that

would not have been possible using exact methods.

Still, was this a general method? As expressed before, a general method must be some-

thing that is repeatable. In this example, there are two steps which were somewhat con-

tentious: arriving at equation (6.15) and the expansion in equations (6.20) and (6.21). The

first was the only step that involved an α2 term. Here, this was not too difficult to follow, but

it could have been explained in a more transparent manner. In the second problematic step,

there is no explanation and it is to the modern reader, there seems little reason to proceed

in this manner. Overall this means that Laplace’s method is difficult to follow and again, it

appears as if the answer must be known before the approximation is started. As seen in the

previous section, Laplace removed some terms and left others in an apparent ad hoc fashion

that is only discernible when the end result is already known.20 A person attempting to

use the method without knowing the answer by simply following Laplace’s explanation of

neglecting terms containing α2, would only arrive at the same answer as Laplace if he had

the same intuition as Laplace or were working with the man himself. In this respect, this

method does not appear to represent a general method. Thus, we are left with a method

that produces wonderful results, but is not general.

Regardless of whether we can accept Laplace’s method as general, did he himself believe

what he had done was a general method? Also, what did it even mean to have a general

method at the time? By the way Laplace presented his method, he seemed to believe that

the steps that he took were perfectly consistent and therefore reproducible. The fact alone

that Laplace had written this memoir makes it apparent that he was sure that what he was

doing constituted a general method. Laplace could easily have thought because he himself

could follow the method and could easily maneuver the variation that it presented that this

would make it easy for others to follow. Whatever the reason, Laplace did appear to accept

his method as rigorous enough and general.

20The level of accuracy that is seen in Laplace’s approximation raises the question as to whether Laplace
already knew the answer before attempting to show his generalization.



Chapter 7

The Evolution of the Method of

Variation of Parameters

The method of variation of parameters is today a useful method for solving ordinary differen-

tial equations as well as problems in perturbation theory,1 but it was not a method that was

developed in only one paper. Lagrange first used a similar method, variation of constants,

in Sur les intégrales particulières published in 1774. Here the method was used to find what

are now called singular solutions. While the application is different, the method itself is very

similar to variation of parameters. This paper appears to have been inspired by Laplace’s

memoir published in 1772, Sur les solutions particulières. We will look at Laplace’s version

first and then compare this to Lagrange’s. Lagrange then used variation of parameters in

a more modern context in Sur les suites, published in 1775. Here, the method is used to

solve inhomogeneous ordinary differential equations, in a manner that is still used today.

Lastly, we will look at Lagrange’s 1776 paper, Sur l’altération, where Lagrange brings this

method back to the context of physical astronomy, where Laplace had introduced the need

of such a method. This method was used in many more of Lagrange’s papers on physical

astronomy, but these were the first cases and we will concentrate entirely on them. After

looking at the work of both authors, we will investigate the influence of friendship as well

as the role that rivalry played in the evolution of this useful method. While a rivalry may

have initiated Lagrange in the work that he is still remembered for today, the value he saw

1See William E. Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value
Problems, 9th Edition, (Hoboken, NJ: John Wiley & Sons, Inc., 2009) for more information on solving
ordinary differential equations.
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in his friendship with Laplace set the tone for much of their later interaction.

7.1 Laplace’s Method for Finding Singular Solutions: 1772

Laplace began Sur les solutions particulières by arguing that the general solution to a dif-

ferential equation contains an arbitrary constant, and we can give this constant any value.

Next, Laplace said that it would be natural to assume that any solution to the differential

equation could be found by changing the value of the constant; but this is not the case. He

then said that it was Euler in the first volume of his Calcul intégral who first determined

this, but Euler’s method made an assumption about the form of these “other” solutions

and therefore is “impractical.” To be practical, a method would not rely on assumptions

about the form of the solution. It should be noted that Euler’s work had been only recently

published in 1768. Laplace then argued that he had found a better method to find these

solutions.

Laplace next defined the terms that he would use. He said that a “solution” to a differ-

ential equation of any degree was the collection of all equations of a lower degree than the

differential equation which satisfy the differential equation. By how Laplace proceeded, we

can see that Laplace meant that a solution to a differential equations was all equations of

a lower order that satisfied the original equation. Therefore, the solution of a third order

differential equation, or one where the largest differential is of the form d3, would be a second

order differential or a lower-order differential. This is different to how the modern reader

would view a solution. Today, we consider a solution to no longer contain any differentials.

He called a “intégrale particulière” or “particular integral” all solutions which are contained in

the general integral and a “solution particulière” or “particular solution” all solutions which

are not contained in it. This naming appears to coincide with Euler’s.2 Euler named a par-

ticular integral one which does not contain a constant and is “an integral” of the differential

equation. Euler did not have a name for singular solutions themselves. Euler also called a

complete integral one where a constant not contained in the differential is involved. Laplace

has not defined what he means by “general integral,” but it seems to be what we would call

the general solution. While he did define these terms, Laplace later introduced other terms

which he did not here or later define. We will see an example of this immediately. In modern

2Euler, Institutiones Calculi Integralis vol 1 (1768), 341.
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terminology, the terms that Laplace defined would be one of the meanings of a particular

solution and a singular solution, respectively. In general, we will use the modern equivalents

to avoid confusion. We will use quotation marks to indicate when we are using the original

author’s terminology.

Laplace showed the existence of singular solutions by means of an example:

ydy + xdx = dy
√
x2 + y2 − a2. (7.1)

This has the singular solution

x2 + y2 − a2 = 0 (7.2)

and general solution

y + C =
√
x2 + y2 − a2.3 (7.3)

After this example, Laplace argued that there are really only two problems to be ad-

dressed in this sort of analysis. Given a differential equation of any order and of any number

of variables, where the “complete integral” is not known

1. Determine if an equation of a lower order which satisfies the differential equation is

contained in the general solution

2. Determine all the singular solutions of this differential equation.

Laplace had here added a new term which he has not defined: complete integral. Laplace

could mean the same as he meant by a general integral, but already Laplace’s naming has

become troublesome. When Euler had addressed this, he stated the problem simply as

seeking to determine if a solution were singular or not.4

Laplace spent the majority of the rest of the paper solving six problems: determine if a

solution of the differential equation dy = p dx is contained in its “general integral,” without

knowing the general integral; determine all the singular solutions of a given differential

equation dy = p dx; these same questions for a second order differential equation d2y = p dx2;

and these same questions for a three variable differential equation dz = p dx+ q dy. Since all

the other problems are variations on the first two and have similar solutions, which Laplace

acknowledges, we will only look at the first two problems. These problems follow a similar

3Laplace, Sur les solutions particulières, 327.
4Euler, Institutiones Calculi Integralis vol 1 (1768), 342.
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approach. Laplace worked through some theory, arrived at a solution and then wrote this

as a theorem. While Laplace was not always clear when he worked through the theory, we

will show that the theorems at the end concisely summarized his methodology.

The last section of Sur les solutions particulières deals with secular inequalities. This

section appears to have been added on to the rest at a later date and does not match the

rest of the paper. While this seems odd, it would seem to follow one of Laplace’s patterns.

As pointed out by Stigler, Laplace’s published papers were often combinations of previous

work.5 While Lagrange was able to find a link between these two topics in the method that

he developed, they are not presented in this way by Laplace. While the juxtaposition of two

unrelated topics seems odd to the reader, it does not appear so in light of Laplace’s other

works.

7.1.1 Problem 1: Determine if a given solution of a differential equation
is contained or not in the general integral without knowing this
integral

Laplace’s notation has certain peculiarities as well. He employed both d and δ to refer to

differentials, and used the different notation denote derivatives of different functions. He also

used the ∂ notation in the same way that it is used today. This is different from Lagrange,

who only used total differential notation. The use of notation will also be noted when it is

used.

Laplace used a graphical argument to describe how to determine if a solution to a given

differential equation is a singular solution. He did this by defining two solutions: µ = 0, the

given solution and φ = 0, the “complete integral.” It was common to describe functions of

one variables as level sets of a function of two variables. He then argued that these could be

used to define two curves: HCM and LCN, respectively. This is shown in figure 7.1.

We can determine the constant yielding φ by the condition that the curve LCN passes

through the point C on curve HCM. Now, Laplace said that µ will be a contained in φ if the

two curves coincide at all points. Using modern terminology, Laplace next sets C to be the

point (x, y), N to be (x + α, Y ′) and M to be (x + α, y′). Laplace then performed a series

5Stigler, 237.



CHAPTER 7. VARIATION OF PARAMETERS 69

Figure 7.1: Laplace’s diagram describing a singular solution

expansion and found

y′ = y +
αδy

δx
+

α2

1 · 2
δ2y

δx2
+

α3

1 · 2 · 3
δ3y

δx3
+ · · · (7.4)

Y ′ = y +
αdy

dx
+

α2

1 · 2
d2y

dx2
+

α3

1 · 2 · 3
d3y

dx3
+ · · · . (7.5)

Here we can see Laplace using the different differential notation to point out that these cor-

responded to different curves. We should also note that y here does not appear to correspond

to the function y, but to the coordinate y. Since this must be true at all points, Laplace

was left with the condition that for the solution to be contained in the general solution, the

following equations must be satisfied:

δy

δx
=
dy

dx
,
δ2y

δx2
=
d2y

dx2
,
δ3y

δx3
=
d3y

dx3
, · · · . (7.6)

Laplace next renamed his differentials, setting δy
δx ,

δ2y
δx2
, · · · to be ν, ν ′, · · · . Since µ = 0 is the

given solution, we can easily determine these differentials by simply taking the derivatives

of µ. He then noted that dy
dx = p, therefore he called p′

d2y

dx2
=
∂p

∂x
+
∂p

∂y

dy

dx
=
∂p

∂x
+ p

∂p

∂y
, (7.7)

and similarly for p′′ and so forth. Laplace used the partial notation in the original. He also

defined its usage using the modern interpretation. This is in contrast to Lagrange, who used

only total differential notation in Sur les intégrales particulières. Laplace was now able to

write the condition as

ν − p = 0, ν ′ − p′ = 0, ν ′′ − p′′ = 0, · · · . (7.8)
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Since µ = 0 is a solution of the differential equation, the first equation is necessarily true.

Therefore, all we must do to determine whether the given solution is or is not a singular

solution, is to determine if the other conditions hold.

Laplace began by looking for a necessary condition on a particular solution that would

mean that the solution was singular. First, he investigated the trivial solution, y = 0. In

this section, Laplace relied heavily on series expansion. He argued that since y = 0, ν = 0,

ν ′ = 0 and so forth, we need only concern ourselves with the values of p, p′ and so forth. If

these values do not disappear for y = 0 than the solution is singular. Laplace therefore set

p = fyn + f ′yn
′
+ f ′′yn

′′
+ · · · . (7.9)

Laplace stipulated that this series was written in ascending order (ie n′ > n, n′′ > n′ etc)

and that f , f ′, f ′′, · · · are functions of x. He argued that this means that p has the form

ynq, where q becomes neither zero nor infinite when y = 0. Laplace then found

dp

dx
=
d2y

dx2
=
dy

dx
(nfyn−1 + n′f ′yn

′−1 + · · · ) + yn
df

dx
+ yn

′ df ′

dx
+ · · · or,

d2y

dx2
= nf2y2n−1 + (n+ n′)ff ′yn+n′−1 + · · ·+ yn

df

dx
and

d2p

dx2
=
d3y

dx3
= n(2n− 1)f3y2n−2 + · · · .

Laplace contended that these would all disappear, given y = 0, only if n ≥ 1. Therefore, for

p in the form ynq, the solution is singular when n < 1.

Laplace ended this section by briefly looking at what it would mean if p were instead in

the form q
ln yr ,

6 or e−
1
y q.7 These examples are all similar to the one for ynq.

After Laplace investigated the trivial case, he generalized this to a particular solution of

the form µ = 0. Laplace set µ = 0 to be a solution to dy = p dx. As he had already argued,

this means that ν − p = 0. He therefore asserted that µ and ν − p must have a common

factor. Laplace then defined what he meant by a common factor: a factor of a quantity is a

function that when set to zero makes the quantity disappear.

Laplace next allowed that µ is in a form such that ∂µ
∂y and ∂µ

∂x are neither zero nor infinite

for µ = 0. This, he said, is the case when the factors of µ are never raised to a power other

6Laplace wrote ln y in the form (l.y). For simplicity, we will use the common notation.
7Here e is simply a number larger than unity and is not necessarily the inverse of the natural logarithm.

Also, the small section involving the exponential was added later as pointed out in an editor’s note.
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than unity. He, therefore, let y = M , y = M ′, y = M ′′, · · · be the factors of µ, where M,

M ′, M ′′, · · · are functions of x. Therefore, we have

µ = (y −M)(y −M ′)(y −M ′′) · · · , (7.10)

from which we can show

∂µ

∂y
= (y −M ′)(y −M ′′) · · ·+ (y −M)(y −M ′′) · · ·+ (y −M)(y −M ′) · · · and (7.11)

−∂µ
∂x

=
dM

dx
(y −M ′)(y −M ′′) · · ·+ dM ′

dx
(y −M)(y −M ′′) · · · . (7.12)

We can see that none of the factors of µ (ie. y−M = 0, y−M ′ = 0 etc) cause these partial

derivatives to be either zero or infinite.

Laplace next set

ν − p = µnq. (7.13)

This is similar to his argument in the trivial case and, again, q is such that it is neither zero

nor infinite when µ = 0 and n is positive. Laplace allowed from the definition that

ν = −
∂µ
∂x
∂µ
∂y

and
dy

dx
= p. (7.14)

This means that 7.13 can be written as

−µnq dx =
∂µ
∂x
∂µ
∂y

dx+ dy. (7.15)

Using total differentials, this is

dµ = −µnq∂µ
∂y
dx. (7.16)

This, Laplace asserted, is the same as dy = p dx. Laplace next set h = −q ∂µ∂y , where h is a

function of x and µ, which is always finite for µ = 0. Laplace now had the result

dµ = µnh dx. (7.17)

From the previous article, Laplace was now able to say that µ = 0 is a singular solution if

n < 1.

While what Laplace had done up to this point appears to have made his point, there

is still some doubt about his method. Does it work in all cases? Is the method still valid

when transcendental functions are involved? Would the practitioner need to perform a series
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expansion if transcendental functions were involved? If there are exceptions, what are they?

Laplace later noted that there would be difficulties if µ were not a function of both x and y,

but nothing about the form of the functions. By “a function of,” Laplace meant that the value

appeared explicitly in the the expression. Laplace did not answer any of these questions,

but he did provide an example here to show what he meant by his method. Returning to

his first example, Laplace used

dy

dx
=

−x
y −

√
x2 + y2 − a2

,

with the given solution

x2 + y2 − a2 = 0 = µ. (7.18)

Laplace showed that

µnq = −
∂µ
∂x
∂µ
∂y

− dy

dx

= −x
y

+
x

y −
√
x2 + y2 − a2

=
x
√
x2 + y2 − a2

y2 − y
√
x2 + y2 − a2

= µ1/2 x

y2 − y
√
x2 + y2 − a2

.8

Laplace then asserted that since n = 1/2, x2 + y2 − a2 = 0 must be a singular solution.

In this case, Laplace could easily split the function to find µn, but is this always the case?

Here, the reader might be more sure of Laplace’s method if he had provided more than

one example. As it stands, we can see that this method works in this situation, but there is

some question about generality, in spite of his claims concerning the impracticality of Euler’s

method.

Euler’s method is very similar to Laplace’s up until this point. This may have been

the reason that Laplace felt compelled to generalize his method into a theorem; this was

Laplace’s next step. Again, Laplace relied on series expansion. First he set

µnh = µnl + µn
′
l′ + · · · ,

8Laplace left out some of these steps and they were only added for clarity
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where l, l′, · · · are functions of x. Laplace next differentiated this with respect to x and

found
d

dx
µnh = nµn−1l

∂µ

∂x
+ µn

∂l

dx
+ · · · . (7.19)

When Laplace performed this step he stated that he was dividing by dx and did not write

this as a function. This, Laplace claimed becomes infinite when µ = 0 for n < 1. Here, the

modern author would use limits. By Laplace’s definition

µnh =
dµ

dx
=
∂µ

∂x
+
∂µ

∂y

dy

dx
=
∂µ

∂x
+
∂µ

∂y
p.

Here, Laplace argued that µ = 0 would be a singular solution if the derivative of ∂µ
∂x + ∂µ

∂y p

with respect to x is infinite. Laplace then generalized his method into a theorem.

Theorem 1 If the equation µ = 0 is a solution to the differential equation dy = p dx, it will

be a singular solution whenever it renders zero the quantity

1
∂2µ
∂x2

+ 2p ∂2µ
∂x∂y + ∂p

∂x
∂µ
∂y

, (7.20)

otherwise, it will be a particular solution.9

In modern terminology, we would again use limits to explain Laplace’s theorem.

After giving his theorem, Laplace did not show how to use the general method with an

example. It seems that an example would be better placed here, with the theorem, than

where it is, the step before the conclusion of Laplace’s method.

7.1.2 Problem 2: Determine all singular solutions when the differential
dy = p dx is given

While Euler had already looked at how to determine if a given solution was in fact a singular

solution, he did not look into how to find a singular solution itself. While Laplace’s expla-

nation of the solution to this problem is difficult to follow and involves several variables that

Laplace did not define, it was something new. We will attempt to explain Laplace’s work

and show the points of confusion.

Laplace began by assuming that the complete integral was known. He defined β to be

the factor by which dy − p dx must be multiplied in order to make it an exact difference, or

βdy − βpdx = dφ(x, y).

9Laplace, “Sur les solutions particulières,” 334. The original French is given in Appendix A
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Here, we find the first point of confusion. Initially Laplace used the symbol β in his definition,

but when he inserted this into the equation, he changed it to the symbol 6, as well as

all subsequent times. This may have had nothing to do with Laplace and be due to the

typesetter, but it remains a point of confusion. To avoid such confusion, we will only use β.

Also, the variable φ has been introduced with no explanation.

Laplace next pointed out that since µ was a function of both x and y, we can write y as

a function of x and µ. Therefore, φ is also a function of x and µ. Laplace made an argument

at the end of this problem to address when µ is a function of only x or of only y. He next

set ψ + C = 0 to be the complete integral of the equation dy = p dx, C being an arbitrary

constant. Laplace next made his most contentious and confusing argument. He said that

since µ = 0 is not a particular solution - it is instead a singular solution - it will not make

ψ(x, µ) + C disappear, no matter what the value of C is. This means that it will also not

make the difference β(dy−p dx) disappear. But, by assumption that it renders dy−p dx zero,

we require that µ = 0 renders β infinite. Therefore, we find that µ is a factor of 1
β . While

this argument seems somewhat absurd to the modern reader, it was a common technique

in the eighteenth century. Laplace asserted that this result was found also by Condorcet,

but by a different method, which seems to be a confirmation of the validity of the approach.

Laplace states that this can be found in Condorcet’s Calcul intégral,10 though he did not

provide any information about Condorcet’s version, simply that Condorcet had found the

same result in an earlier work. This cursory mention of Condorcet will be investigated in

Chapter 8.

Now Laplace must find which of the factors of 1
β are singular solutions. If we differentiate

1
β , we have dy = γ dx which is satisfied by µ = 0. By assumption µ = 0 also satisfies

dy − p dx = 0, therefore µ = 0 also makes γ − p disappear. Therefore, µ must be a common

factor of both 1
β and γ − p. Now, Laplace noted that all common factors of these two are

solutions of dy−p dx = 0, therefore, we must distinguish which are singular solutions, which

we can “easily” do. This most likely refers to the solution to problem 1.

Laplace argued that it is not always possible to do this exactly and therefore, we may

have to resort to approximate methods. Here, we might see an indication of perturbation

theory, but Laplace did not proceed with this line of thought. Instead, Laplace said that he

10Pierre-Simon de Laplace, “Sur les solutions particulières des équations différentielles et sur les inégalités
séculaires des planètes,” in Oeuvres complètes de Laplace vol 8(Paris: Gauthier-Villars, 1878-1912), 336
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had a solution, which again relied on series expansion. From the last problem we know

dµ = µnhdx or
∂µ

∂y
dy = µnh dx− ∂µ

∂x
dx

Since, dy = p dx, we can write

p =
µnh
∂µ
∂y

−
∂µ
∂x
∂µ
∂y

. (7.21)

Laplace then set µ = y −X, which he asserted is always possible. We can believe this

because we can always put µ in this form through a series expansion. With this substitution,

we have
∂µ

∂y
= 1 and − ∂µ

∂x
=
dX

dx
.

Laplace next used an increasing series expansion to write

h = l + µn
′
l′ + · · ·

where l, l′, · · · are functions of x. Using 7.21, Laplace now stated that

p =
dX

dx
+ µnl + µn+n′ l′ + · · · ,

which means that
∂p

∂y
= nµn−1l + (n+ n′)µn+n′−1l′ + · · · . (7.22)

Laplace then explained that 7.22 became infinite by the assumption that µ = 0, since n < 1.

Therefore µ = 0 must render 1
∂p
∂y

zero. This means that µ must be a factor of 1
∂p
∂y

. Here

again, we see the same faulty logic that Laplace used before.

Laplace proceeded by differentiating 1
∂p
∂y

and supposing that this gave dy = β dx. He

argued that µ = 0 must satisfy this, without any reasoning. Since, we already know that

µ = 0 satisfies dy = p dx, it must also render p − β zero. Therefore, µ = 0 is a common

factor of both 1
∂p
∂y

and p− β. Moreover, all common factors of these two quantities must be

singular solutions. Laplace’s reasoning was that if µ is such a factor, it will make both the

quantities dy − βdx and p dx− β dx disappear. The first point is true because dy
dx = p. The

second point appears to also follow from µ = 0 making p − β disappear. Laplace ended by

noting that it is “easy” to see that

β = −
∂2p
∂x∂y

∂2p
∂y2

,
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which appears to follow from Laplace’s statement that by differentiating 1
∂p
∂y

we obtain dy =

β dx. Laplace was then able to generalize his work into the following theorem:

Theorem 2 If µ = 0 is a singular solution of the differential equations dy = p dx, µ is a

common factor of the two quantities

p+

∂2p
∂x∂y

∂2p
∂y2

and
1
∂p
∂y

; (7.23)

and reciprocally, all common factors of these two quantities, equalled to zero, are singular

solutions of the differential equation dy = p dx.11

Laplace next stated that he had previously given this theorem, though without proof.

Laplace then provided an example to explain his method. For his example, Laplace again

returned to equation 7.1,
dy

dx
=

−x
y −

√
x2 + y2 − a2

= p.

Therefore, we can see

1
∂p
∂y

= −
√
x2 + y2 − a2(y −

√
x2 + y2 − a2)

x
and

p+

∂2p
∂x∂y

∂2p
∂y2

=

√
x2 + y2 − a2(y2 − a2 − y

√
x2 + y2 − a2)

x(y −
√
x2 + y2 − a2)2

It is “easy to see” that the only common factor is
√
x2 + y2 − a2, therefore, this is the singular

solution and it is unique.

Overall, we have seen that Laplace’s method relies on series expansion and a faulty usage

of common factors. While the reader can believe that Laplace’s method works in certain

situations, because he has shown through an example that it at least sometimes works, there

is some doubt as to whether it is general. Besides the problems pointed out already, when

we get to the end, is this method really easy to use? If a person can convince themselves

that this method is general, which it is not, then will the person even be able to use the

method?

Laplace ended this problem by discussing what to do if µ does not contain both x and

y. We will not discuss this section. Overall, we can see that there are many deficiencies in

11Laplace, “Sur les solutions particulières,” 340. The original French is given in Appendix A.
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Laplace’s method such as claimed generality without theorems that support such generality,

proofs which are only true in special cases, the question of the usefulness of this method

and the seeming use of tricks to reach important results. These weaknesses together are

most likely why this paper by Laplace is not often quoted. What is frequently referred to is

Lagrange’s method, which does not have the glaring difficulties that Laplace’s does.

7.1.3 Discussion of secular inequalities

In this final section, Laplace discussed an extension to his previous investigation of secular

inequalities in Sur le principe. Laplace reminded the reader that in this memoir he had

determined that there were no secular inequalities in the mean movement or the mean

distance of the planets, by virtue of each planet’s mutual action towards each other. But

the formulas that he used were approximations and this conclusion only holds over a limited

time period. He believed that these equations were sufficient for all time, but it would be

interesting from the point of view of analysis to have exact equations. While he said that

he had wanted to solve these equations exactly, he has since given this up because of the

difficulty and the lack of utility. All is not lost because Lagrange had worked on this in Sur

les inégalités seculaires du mouvement des noeuds et de l’inclinaison des orbites des planètes.

Laplace then proceeded to show how this work of Lagrange could be extended to examine

the secular inequalities of the eccentricities and the movement of the aphelion of the planets.

At this point the reader may ask themselves “What does any of this have to do with

singular solutions of differential equations?” The answer is not much. Laplace developed

some differential equations, which he didn’t solve, but said they were the same as the ones

that Lagrange had found. Still there does not seem to be any degree of continuity with the

rest of this memoir. Overall, this section appears to be separate from the rest of the memoir

and almost appears to be just added on. We have added some discussion of it here because

Lagrange later extended his variation of parameters method to physical astronomy.

7.2 Comparison with Lagrange’s Method for Finding Singular

Solution: Variations of Constants: 1774

Lagrange began Sur les intégrales particulières similarly by discussing the problem: some

solutions to a given differential equation are not found by giving a certain value to the



CHAPTER 7. VARIATION OF PARAMETERS 78

constant in the general solution. After discussing the problem, Lagrange gives a history of

the problem, including the current literature. Besides Euler, who Laplace also mentioned,

Lagrange also gave credit to d’Alembert, Condorcet and Laplace himself. It seems odd, given

what we have already seen about Laplace citing d’Alembert, that Laplace did not mention

him in this context.

Lagrange defined his terms differently than Laplace. He called a “complete integral of a

first order differential equation” one that satisfies the differential equation and contains an

arbitrary constant. When a value is given to the constant, the integral becomes “incomplete.”

“Particular integrals,” which he will look at, are ones that do not have an arbitrary constant,

but there is no value that can be given to the constant in the “complete solution” which

will lead to this equation. In modern terminology these are general solutions, particular

solutions and singular solutions respectively. While there is nothing wrong with Laplace’s

naming scheme, it does seem more complicated than Lagrange’s. The designations particular

solution and particular integral appear to be easily confused, while Lagrange’s appear less

ambiguous. Since Laplace’s article did appear first, Lagrange might have realized this and

decided on the naming accordingly. Again, we will use the modern terminology to avoid

confusion.

Next, Lagrange set up the majority of Sur les intégrales particulières in an almost iden-

tical manner to Laplace’s Sur les solutions particulières. Lagrange divided this memoir into

five articles:

1. Of the singular solutions of two variable first order differential equations and of the

manner of deducing them from the general solution,

2. Of the extension of the singular solutions of first order differential equations and of the

manner of finding these solutions without knowing the general solutions,

3. In which we deduce the theory of the singular solutions from the consideration of the

curves,

4. Of the singular solutions of second and higher order differential equations,

5. Of the singular solutions of partial differential equations with some new remarks of the

nature and the integration of these sorts of equations.

The first three articles appear in scope strikingly similar to the first two problems that

Laplace proposed in Sur les solutions particulières, though they appear to be in a different
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order. Here we will examine only these first three articles. Laplace first gave a graphical

argument, then discussed how to determine if a given solution was singular without knowing

the general solution and then set out to find singular solutions from the differential equation

without knowing the general solution. The last two articles, which we will not discuss, also

have the same feel as Laplace’s other problems. When looking closely at these two memoirs,

we will continue to see strong similarities.

Before starting our discussion of Lagrange’s memoir, as we already noted, unlike Laplace,

Lagrange did not use partial differential notation. We will be loyal to Lagrange and therefore

only use total differential notation.

7.2.1 Article 1

After making his definitions, Lagrange’s next step was to show an example. This example

bears a very strong resemblance to the one used by Laplace. Lagrange said that the general

solution of

x dx+ y dy = dy
√
x2 + y2 − b2 (7.24)

is √
x2 + y2 − b2 = y + a or (7.25)

x2 − 2ay − a2 − b2 = 0.

These are exactly Laplace’s equations 7.1 and 7.3, except that the names for the constants

have been changed. This was also the example used by Euler and therefore it may have been

the general example that was used at the time for singular solutions. Lagrange next showed

that different values could be given to a to make the solution particular. Then, he showed

that this differential equation was also solved by

x2 + y2 − b2 = 0. (7.26)

This, he asserted, could not possibly be contained in equation 7.25 since equation 7.26

represents a circle of radius b and equation 7.25 represents a parabola with a parameter of

2a. While Laplace did show this example, his explanation of why one was not contained

in the other was that there is no constant that will allow equation 7.3 to equal equation

7.2. We can see already that Lagrange is clarifying Laplace’s work as well as making it
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more rigorous. It is also interesting, given Lagrange’s reputation, that he used a geometric

criterion. Lagrange continued by looking at a second example.

After showing the existence of singular solutions à posteriori, Lagrange set out to find

them à priori and using only the principles of integral calculus. This turns out to be the

introduction to variation of constants. Lagrange started this by showing how to begin with

the general solution and recover the differential equation. Lagrange called the differential

equation Z = 0 and the general solution V = 0. If we differentiate V = 0, we will have
dy
dx = p. Lagrange now contended that by using the two equations V = 0 and dy

dx = p, we

can solve for the arbitrary constant a and recover the differential equation. To show this

Lagrange turned to an example.

Starting with equation 7.25, Lagrange took the derivative and found

dy

dx
=
x

a
. (7.27)

Solving for a from equation 7.25 and substituting this into equation 7.27, we find equation

7.24. Now, Lagrange was able to do this based on the assumption that a was a constant.

What if he treated it as a variable? This would mean that when he took the derivative of

V = 0, he would now get,

dy = p dx+ q da. (7.28)

We still want this to reduce to dy
dx = p, therefore, we must require that q = 0. By varying

only y and a in equation 7.28, Lagrange found that q = dy
da . Therefore if we solve q = 0 or

dy
da = 0, we will find a value for a in terms of x and y. If we then substitute this value back

into V = 0, Lagrange argued we will have a singular solution. Already, this method seems

substantially easier than Laplace’s. While we can see definite similarities in the approaches

of the two men, in the end, the methods are completely different. Unlike Laplace, Lagrange

did not use any series expansion and did not rely on infinite values.

Lagrange next addressed two potential problems: that dy
da = 0 contains only constants

and neither x nor y or that dy
da = 0 contains only x and y and not a. In the first case, there

is no singular solution. In the second case, dyda = 0 will itself be a solution of the differential

equation and further analysis will be required to determine if it is a singular solution or not.

Lagrange’s next step was to clarify his method by means of an example. Again, he used

equation 7.24. Unlike Laplace who used one example and not at the end of his analysis,

with his complete method, but near the end with almost the finished method, Lagrange

showed examples along the way and at the end of his analysis provided four examples, each
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of varying difficulty and complexity. Reading this article is similar to reading a textbook

with worked examples; by the end the method is clear and easily replicated. When reading

Laplace, the theorem is clear, but the method itself is less grounded. While the reader

can understand the proof, there is a persistent question about the rigor of the proof. Even

though Lagrange has not given a rigorous proof, we can still understand his method and the

examples he showed allow for easy replication.

Before Lagrange moved on to the next article, he made the point that “we must regard

the theorem that we have just given, less as an exception than as a necessary supplement to

the general rules of integral calculus.”12

7.2.2 Article 2

Lagrange began addressing the issue of how to find a singular solution of a differential

equation without knowing the general solution by looking at what he called “differentio-

differential” equations. While Lagrange did not provide a definition of differentio-differential

equations, they appear to be the derivative of a differential equation. So that the first

solution of the differentio-differential equation is the differential equation. If the differential

equation is given by Z = 0, the differentio-differential equation is given by Z ′ = 0. While

the general solution of the differentio-differential equation might be difficult to find, he

argued that it may be easier to integrate to the differential equation. Then, we can find

the singular solutions of the differential equation. Under certain conditions, these are also

singular solutions of the differentio-differential equation. This introduction is followed by

two examples: one where the solution is not singular in the case of the differentio-differential

equation and one where it is.

Lagrange extended this method and said that since Z = 0 is independent of a, we have
dZ
da = 0. Since Z is a function of x, y and dy

dx , we have

dZ = Ad
dy

dx
+Bdy + Cdx or (7.29)

dZ

da
= A

d2y

dxda
+B

dy

da
= 0, (7.30)

where A, B and C are rational, entire functions, as polynomials were called at the time.

Since we are looking for singular solutions, we need, from before, dyda = 0. Therefore, we are

12“on doit regarder la théorie que nous venons de donner, moins comme une exception que comme un
supplément nécessaire à la règle générale du Calcul intégral.” Lagrange, “Sur les intégrales particulières,” 17.
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left with the condition

A
d2y

dxda
= 0.

Lagrange reasoned that A must be zero, which implies, from 7.29 that for Z = 0,

B
dy

dx
+ C = 0. (7.31)

Lagrange now asserted that from 7.29

d2y

dx2
= −

B dy
dx + C

A
. (7.32)

From the analysis that he just did, he knows that this must be indeterminate or in the form

“ 0
0 ” for a singular solution. Solving the equations 7.31 and A = 0, Lagrange will be able to

determine any singular solution. Before looking at some examples, Lagrange examined how

to find singular solutions when the differential equation is in a certain form: what is now

known as Clairaut’s equation. Lagrange investigated the procedure for solving this form of

differential equation and cited the work of Euler and Clairaut with respect to this solution.

The last part of this article contains the four examples that Lagrange investigated before

when he showed how to find singular solutions if the general solution is known. Overall,

Lagrange’s method is entirely self contained and not as complicated as Laplace’s. Also, as

Lagrange points out, while he first assumed that his differential equation did not contain

any transcendental functions, it would work equally well if there were. While this is not a

rigorous proof, Lagrange can satisfy the reader that his method works in all situations, while

this is not the case with Laplace’s explanation or his method.

7.2.3 Article 3

This section stands out by itself because Lagrange, in general, attempted to avoid graphical

interpretations. After a full discussion about the nature of a curve which touches all the

members of the “family” of curves formed from giving different values to the constant in the

general solution, Lagrange stated that

[F]rom what we have demonstrated above... we must conclude that the singular

solution of a first order differential equation is represented by the curve which

touches all the different curves represented by varying the arbitrary constant in
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general solution of this equation, that is to say all the different curves which may

be represented at the same time by the same differential equation.13

As Archibald points out, this is not entirely correct as a singular solution may contain

a branch which is a particular solution, but this was not found out for another hundred

years.14

Next, Lagrange described how to find these singular solution, which we will not discuss.

We can note that while both Laplace and Lagrange use graphical arguments, not only are the

arguments completely different and for different purposes but they are presented differently.

Laplace began his investigation with a graphical argument. He used a figure to give a

graphical definition of a singular solution but a negative one. He said that if we had the

general solution and another solution, we could determine whether the other solution was a

singular solution by comparing the two solutions. Following Laplace, we would need to solve

the general solution for the constant by setting the general solution to overlap the other

solution at a given point. If the solutions then overlapped at all points, the other solution

was not singular. Laplace then expanded this to set forth his method. Here, we can see that

Laplace’s purpose was to give a graphical basis for his analysis.

Lagrange, on the other hand, gave the graphical definition as something of an after

thought after he had given a complete method for finding singular solutions. Rather than

giving a negative definition, Lagrange asserted how a singular solution can be found from the

set of all particular solutions, rather than how can we see after graphing whether we have

a singular solution. While the definition that he provided is solid, it seems that the main

method is not the graphical one, but variation of constants. Lagrange described a graphical

argument, with examples, but without any actual graphs. This alone seems unusual, but

it is in line with Lagrange’s habits. Lagrange stated in the introduction to his Méchanique

Analitique “On ne trouvera point de Figures dans cet Ouvrage.”15 In reading Lagrange’s

work, there are rarely figures, so the lack of one here is not surprising. While Laplace does

have a figure, it is more of a general example: he does not use it to demonstrate a specific

example.

13The original French is given in appendix A. Lagrange, “Sur les intégrales particulières,” 38.
14Tom Archibald, “Differential Equations: A Historical Overview to circa 1900” in A History of Analysis,

335.
15“We will not find any figures in this work.” Lagrange, MA, vi
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Overall, while these two papers are glaringly similar in presentation, the actual content

is completely different. Laplace may have written his memoir first, but Lagrange had the

simpler method and in the end, one that is still valid, while Laplace’s has been left in

obscurity.

7.3 Lagrange’s Extension to the Theory of Chance: Variation

of Parameters: 1775

In Sur les suites, Lagrange stated that he wanted to push the theory of chance further than

he had before. We will discuss the comments that Lagrange made regarding Laplace’s prior

work below, when we investigate the role that rivalry played in this research.

We will only look at the first article of this memoir which Lagrange called “Of the simple

recursive series or of the integration of ordinary linear differential equations between two

variables.”16 Lagrange began with an equation of the form

Ayx +Byx+1 + Cyx+2 + · · ·+Nyx+n = 0,

where he let A, B, · · · , N be constants and he defined yx = aαx, a and α being unknown

constants. We will not look directly at Lagrange’s procedure for solving this.17 He next

examined how to solve recursive equations of the form

Axyx +Bxyx+1 + Cxyx+2 + · · ·+Nxyx+n = 0, (7.33)

where Ax, Bx, · · · are functions of x rather than being constants. The solution to this

equation would be of the form

yx = aαx + bβx + cγx + · · · . (7.34)

Now, if, instead of 7.33, we had

Ayx +Byx+1 + Cyx+2 + · · ·+Nyx+n = Xx,

the solution would be 7.34 only if Xx = 0. If Xx 6= 0, then the solution is given by

yx = axαx + bxβx + cxγx + · · · .

16“Des suites récurrentes simples, ou de l’intégration des équations linéaires aux différences finies entre
deux variables.” Lagrange, Sur les suites, 152.

17Lagrange, Sur les suites, 152-153
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This is solved by varying y with respect to x and setting the variations of the “constants”

equal to zero.

After discussing this method, Lagrange included a remark where he developed what we

now call variation of parameters. He began by stating that the methods that he had just

developed could be extended to the study in integral calculus.18 Lagrange started by looking

at the differential equation

Py +Q
dy

dx
+R

d2y

dx2
+ · · ·+ V

dny

dxn
= X,

where P , Q, · · · , V and X are functions of x. Also, Lagrange stipulated that the solution

for the differential equation be known if X = 0. For simplicity, we will follow the example

of Kline and only look at the second order case

Py +Q
dy

dx
+R

d2y

dx2
= X. (7.35)

In the case where X = 0, Lagrange knew the solution to be of the form

y = ap+ bq, (7.36)

where a and b are constants and p and q are functions of x which form the solution to the

homogeneous differential equation. If instead, X 6= 0, we can treat the constants in 7.36 as

undetermined variables and assume that the sum of the derivatives of these variables are

zero. Therefore, we find

dy = a dp+ b dq and (7.37)

0 = p da+ q db. (7.38)

We would generally write this today as

dy

dx
= a

dp

dx
+ b

dq

dx
and

0 = p
da

dx
+ q

db

dx
,

but we will use Lagrange’s original notation.

Taking the second derivative of 7.36 and taking differentials as Lagrange did, we find

d2y = a d2p+ b d2q + dp da+ dp db. (7.39)

18Lagrange, Sur les suites, 159.
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The first two terms of 7.39 combined with 7.37 satisfy 7.35 when X = 0, therefore if we

substitute 7.37 and 7.39 into 7.35, we find, after dividing by V

dp da+ dp db =
X

V
dx2, (7.40)

or as we would write it today,
dp

dx

da

dx
+
dp

dx

db

dx
=
X

V
,

By using 7.38 and 7.40, we can solve for a and b and therefore resolve 7.36.

Lagrange then argued that any time we know the general solution of

dny

dxn
+ P = 0, (7.41)

where P is a function of x, y, dydx , · · · , and
dn−1y
dxn−1 , we can solve equations of the form

dny

dxn
+ P = Π, (7.42)

where Π is a function of x, y, dy
dx , · · · , and

dn−1y
dxn−1 , using a similar method as that outlined

above. Unfortunately, this is often very difficult and we must resort to approximate meth-

ods. This is the first place where we can see the application of variation of parameters

to perturbation theory. Shortly after this comment, Lagrange was able to tie perturbation

theory, singular solution, physical astronomy to the method of variation of parameters.

If we were given an equation of the form of 7.42, where Π is very small compared to P ,

and we knew the general solution when Π = 0, we can find n equations

da = AΠ dx, db = BΠ dx, dc = C Π dx, · · · ,

where A, B, C, · · · are functions of x, a, b, c, · · · and Π is a very small function of these two

quantities. This means that da
dx ,

db
dx ,

dc
dx , · · · will also be very small. By first regarding a, b,

c, · · · as constants, we can find solutions that approach the true values of these quantities.

Lagrange did not here show an example or go into any great detail about how to do this,

but we can assume the method would be similar to the one above.

We are told not to fear if the functions A, B, C, · · · become infinite, because this is the

condition that the general solution of 7.41 is a singular solution. Lagrange here self-cites

Sur les intégrales particulières. While Lagrange did not provide an example, he here made

a claim about the power of his prior work.
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Lagrange’s last point was that this method will be particularly useful in calculating the

variation of the elements of the planets. This, he said, he has looked at before, but this

method is more direct and more general. He also stated that he will extend this work.

This memoir is the first time where all the elements have come together for our present

study. While we already had an idea that singular solutions were related to variation of

constants; we now have them related to variation of parameters. We have a method that

involves perturbation theory and most importantly we have an indication of how Laplace’s

earlier work in perturbation theory can be related to both singular solution and variation of

parameters. Lagrange has answered all the questions that have so far been raised.

7.4 Lagrange’s Extension to Perturbation Theory: Variation

of Parameters: 1776

While Lagrange had previously mentioned that the method of variation of parameters would

be useful for finding the variation in the elements of the planets, he did not provide any

details before about how to go about doing this. In Sur l’altération, we come full circle and

arrive back at perturbation theory with respect to astronomical physics.

Lagrange began by saying that for every planet in the solar system, there was a central

force resulting from the gravitation pull of the sun. In addition to this there was a perturbing

force. This force was much smaller than the central force which means that the perturbing

force does not have a large effect on the orbit of the planets. Instead, “we may suppose that

this orbit is a real ellipse, but of which the dimensions and the position vary from one instant

to the next.”19 Lagrange mentioned six elements of the elliptical orbit of the planets which

can be altered by perturbing forces: the semi-major axis, the eccentricity, the position of

the axis or the line of the apsis, the inclination of the plane of the ellipse with another given

plane, the position of the intersection of the two planes or the line of nodes, and the period of

the mean movement or the value of the mean longitude for a given time. Since these six are

considered independent, from them we can determine the evolution of the system. Lagrange

argued that all six variations can be found by looking at the variations in the semi-major

axis.

19“on peut supposer que cette orbite est une véritable ellipse, mais dont les dimensions et le position varient
d’un instant à l’autre.” Lagrange, Sur l’altération, 258.
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Lagrange defined the origin of his system as being the centre of the principal attracting

mass. He used the term principal force to distinguish the solar attraction from the perturbing

forces. He named F the value of the principle force at a distance of 1. He next called r the

distance from the body to the centre, which could be defined in rectangular coordinates as

r =
√
x2 + y2 + z2.

He next called the general expression of the force F
r2
. If the force is decomposed into its x,

y and z components respectively, we have

Fx

r3
,
Fy

r3
,
F z

r3
.

Now, Lagrange asserted that he could also decompose the perturbing force into X, Y

and Z. Therefore, he ended up with the general equations

d2x

dt2
+
Fx

r3
+X = 0

d2y

dt2
+
Fy

r3
+ Y = 0

d2z

dt2
+
Fz

r3
+ Z = 0.

Now, Lagrange moved on to his general variation of parameters method. He first assumed

thatX, Y and Z were zero. This means that the planet is only being acted on by the principle

force. Therefore, using known formulae, we may find the three coordinates x, y and z, with

respect to t. This allowed him to make three remarks:

1. These values must be the complete and finite integral of the three differentio-

differential equations

d2x

dt2
+
Fx

r3
= 0,

d2y

dt2
+
Fy

r3
= 0,

d2z

dt2
+
Fz

r3
= 0, (7.43)

and that they must consequently contain six arbitrary constants;

2. That these constants will be precisely the six elements of the elliptical orbit

that were spoken of before;

3. That if we differentiate these three integrals, we will have six equations

which will help us to determine the six arbitrary constants in terms of x,

y, z, dxdt ,
dy
dt and dz

dt . We will then have six first order differential equations,



CHAPTER 7. VARIATION OF PARAMETERS 89

of which each one contains an arbitrary constant and will be consequently

a first integral of the three proposed differentio-differential equations.20

Lagrange now looked at one of these first order equations

V = k (7.44)

where V is a function of x, y, z, dxdt ,
dy
dt and dz

dt and k is an arbitrary constant. This k will

be one of the elements of the elliptical orbit of the planet. When we take the derivative, we

find

dV = 0.

This equation will no longer contain an arbitrary constant and will itself be equal to the

differentio-differential equation that we started with.

If we now include the perturbing forces, we will still have equation 7.44, but we can now

think of k as a variable instead of a constant. This mean that

dV = dk.

Following through with the calculations, Lagrange found

dk = −

(
dV

ddxdt
X +

dV

ddydt
Y +

dV

ddzdt
Z

)
.

There would also be similar expression for the other elements.

Lagrange was now able to make a conclusion about the form of the six differential equa-

tions. He stated that whether or not there was a perturbing force, the equations, such as

V = k, would take the same form. The only difference would be that in one case k would be

a constant whereas in the other k would be a variable. This means that x, y, z, dxdt ,
dy
dt and

dz
dt will all also be expressed in the same manner with respect to t and the six elements of

the elliptical orbit regardless of whether or not there is a perturbing force. This means that

we can always regard these six elements as constant, if we are looking at very short periods

of time. Lagrange proceeded by showing how to calculate the variation in the semi-major

axis of the elliptical orbit of a body moved by a central force.

We have now moved full circle and returned to something similar to what Laplace was

investigating in Sur le principe. Now, we can ask ourself, what influence did the relationship

between Laplace and Lagrange have on the development of both of their work?

20The original French is given in appendix A. Lagrange, Sur l’altération, 260-261.
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7.5 The Role of Friendship and Rivalry

There appears little doubt that Laplace’s earlier memoir on singular solutions spurred La-

grange on to work on the same subject. When we look at the correspondence between the

two men as well as the papers themselves we can see both sides of friendship and rivalry in

the relationship.

Laplace appears to have started sending Lagrange his work in his first letters to the older

scientist, which date back as far at 1772. Lagrange commented on the work that Laplace

had undertaken in the study of singular solutions in a letter dated 10 April, 1775, saying

You have sorted the matter of the singular solutions; I have only had enough

time to skim through your beautiful memoir on this subject as well as the one

on the theory of chance; I propose to come back to it and to study it in detail.

They appear to me very appropriate to maintain the high opinion that your other

works have already given to your genius.21

This appears to refer to Sur les solutions particulières. It seems that Lagrange was true

to his word and not only did he read the work in detail, he wrote himself on the subject

and sent this memoir to Laplace. In a letter from Lagrange to Laplace dated 10 May, 1776,

Lagrange wrote

I ask you, as a mark of friendship, for which I will be infinitely appreciative, to

tell me your opinion of these memoirs [that I am sending you], and especially

on the first which concerns singular integrals. It appears to me that we may

still glean more from you and I will be very flattered to have been able to add

something to your work.22

An editor’s note indicates that Lagrange is referring to Sur les intégrales particulières. In

this paper, Lagrange credited Laplace by stating

21“Vous avez bien nettoyé la matière des intégrales particulières; je n’ai encore eu le temps que de parcourir
votre beau Mémoire sur ce sujet, ainsi que celui sur la théorie des hasards; je me propose d’y revenir et de
les étudier à fond. Ils me paraissent très propres à soutenir la haute opinion que vos autres Ouvrages ont
déjà donnée de votre génie.” “Correspondence de Lagrange avec Laplace,” 63.

22“je vous demande comme une marque d’amitié à laquelle je serai infiniment sensible de me dire votre
avis sur ces Mémoires, et surtout sur le premier qui concerne les intégrale particulière. Il m’a paru qu’on
pouvait encore glaner après vous, et je serai bien flatté d’avoir pu ajouter quelque chose à votre travail.”
“Correspondence de Lagrange avec Laplace,” 64.
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I just read a Mémoire sur les solutions particulières des équations différentielles,

that M. de Laplace has recently given at the Académie des Sciences and which

will appear in the 1772 volume; the author had kindly given me an advanced

copy of this work. In this memoir, M. de Laplace perfects and extends further

the known theory of singular solutions, but also did what no one had before, he

gives methods for finding directly all the singular solutions which may satisfy

a given differential equation and which are not at all contained in the general

solution of this equation. 23

Here we see Lagrange praising Laplace, but more than this, he has not pointed out any

fault in Laplace’s work. This seems odd and leaves the reader asking “If there is nothing

wrong with what Laplace did, then why is this paper necessary?” While, Lagrange never

admitted any defects in Laplace’s prior memoir, he did end his introduction by saying that

he is presenting a new and complete theory from the point of view of analysis. In this way,

Lagrange is able to present his paper without ever belittling Laplace. This act alone shows

the friendly aspect in the relationship of Laplace and Lagrange. We can see that Lagrange’s

method is superior to Laplace’s and is the one that is remembered today, but Lagrange

was willing, at the time, to shyly ask Laplace for his opinion and not directly point to the

problems with what Laplace had produced.

Later in the same letter from 10 May, 1776, Lagrange wrote of Sur les suites, as pointed

out again by an editor’s note, saying

I just read to the Academy two memoirs on the integration of linear partial

differential equations and on their usage in the theory of chance. You can see

that it is your beautiful work on this subject that has led me to also occupy myself

with it. I flatter myself to have also been fortunate enough to add something; to

the rest, my work on this subject differs from yours as much as the one on singular

solutions differs from yours on the same subject; the only thing in common is

23“je viens de lire un Mémoire sur les solutions particulières des équations différentielles, que M. de Laplace
a donné depuis peu à l’Académie des Sciences, et qui doit paraître dans le volume de 1772, mais dont l’Auteur
a bien voulu m’envoyer d’avance un exemplaire imprimé. Dans ce Mémoire, M. de Laplace perfectionne et
étend plus loin la théorie déjà connue des solutions particulières, et ce que personnes n’avait encore fait, il
donnes des méthodes pour trouver directement toutes les solutions particulières qui peuvent satisfaire à une
équation differentielle donné, et qui seraient point comprises dans la solution générale de cette équation.”
Lagrange, Sur les intégrales particulières, 6
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the subject.24

This letter shows Lagrange giving Laplace credit for initiating Lagrange in research, but

he made the point, clearly, that he was not impinging on Laplace priority and that he

was approaching the subject completely differently. There is a level of flattery in Lagrange

working on the same subject as Laplace, and working on it because of Laplace, but there

is also the ever present issue of priority. Lagrange emphasized that he was not taking away

from Laplace’s priority, he was just trying to add something new. As the case stands, while it

may not have been Lagrange’s intention, few people today look at the work that Laplace did

in the study of singular solution, mainly because of the superiority of Lagrange’s attempts.

In Sur les suites, Lagrange acknowledged that Laplace had made progress in this field

but he stated directly after noting two works by Laplace that

I believe however that we may still add something to the work of this illustrious

Geometer, and treat the same subject in a manner more direct, simpler and,

overall, more general.25

Here, we can see the competitive nature of the relationship between Lagrange and Laplace

in stark contrast to how Lagrange referred to Laplace’s work above. Overall, through this

series of memoirs, we can see how Lagrange used Laplace’s initial memoir as a springboard,

but was able to extend his own work far more than Laplace had been able to. We also see

that Laplace appears to have abandoned his research in singular solutions after Lagrange

produced his work. If we remember the letter (quoted in Chapter 5) that Lagrange wrote

Laplace saying that he was ceasing his work because he could see that Laplace was working

in this field and he knew that Laplace would do the same if he thought that science would

prosper. Here, we see that Laplace was put in this situation, and as it seems, he did give up

in favor of the friendship he had for Lagrange and the benefit science would see in Lagrange’s

work. Competition may have led Lagrange to work on this subject, but the friendship he

had for Laplace set the tone for how he would go about it. In the end, Laplace moved from

24Je viens de lire à l’Académie deux Mémoires sur l’intégration des équations linéaires à différences partielles
et sur leur usage dans la théorie des hasards; vous jugez bien que c’est votre beau travail sur cette matière
qui m’a engagé à m’en occuper; je me flatte d’avoir aussi été assez heureux pour y ajouter quelque chose; au
reste, mon Ouvrage sur cette matière diffère autant du vôtre que celui sur les intégrales particulières diffères
autant du vôtre sur le même sujet; il n’y a guère entre eux que le sujet de commun.” “Correspondence de
Lagrange avec Laplace,” 65.

25“Je crois cependant qu’on peut ajouter quelque chose au travail de cet illustre Géomètre, et traiter le
même sujet d’une manière plus directe, plus simple et surtout plus générale.” Lagrange “Sur les suites,” 152.
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the study of singular solutions to an application of similar methods in secular inequalities.

This may also explain the odd juxtaposition seen in the paper investigated here by Laplace.



Chapter 8

Other Rivals

8.1 Condorcet

Marie-Jean-Antoine-Nicolas Caritat Marquis de Condorcet (1743-1794) was born in the small

village of Ribemont where Antoine, his father was stationed as a cavalry captain; his father

died shortly after Condorcet’s birth.1 Condorcet obtained his degree in philosophy in Paris

at the Collège de Navarre. His thesis was examined by, among others, d’Alembert. While

his family would have seen him in a military career, Condorcet moved to Paris to follow a

career in mathematics. While Laplace had to show his worth to obtain acceptance by the

scientific elite, Condorcet had certain advantages. Since Condorcet was educated in Paris,

he was known by the scientific community before he had moved to Paris. Unlike Laplace

who had to quickly find a source of income when he moved to Paris, Condorcet was given

financial support by his mother, even though he was going against the wishes of his family.

Condorcet began publishing memoirs in integral calculus in 1765 with his Essai sur le

calcul intégral, which he submitted to the Académie des Sciences himself. This memoir

brought Condorcet to the attention of d’Alembert. While d’Alembert must have been aware

of Condorcet before, this paper showed the older scientist Condorcet’s talent as a mathe-

matician. As Goodell notes, it was from this time that d’Alembert acted as “mentor and

friend” to Condorcet.2 Herein lies one of the main differences between the relationships of

d’Alembert and Laplace and that of d’Alembert and Condorcet: friendship. D’Alembert

1Different sources have the Condorcet’s father’s death at between days and years after the child’s birth.
2Edward Goodell, The Noble Philosopher, (Prometheus Books: New York, 1994), 10.
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may appear to have done more as a mentor and patron for Laplace in the realm of science,

but their relationship is never described as one of friendship. While d’Alembert was able to

assist Condorcet’s career, especially when the younger man was attempting to and succeeded

in becoming permanent secretary of the Académie des Sciences or when he was elected to

the Académie Française, d’Alembert also introduced Condorcet into salon society and when

d’Alembert’s health became poor in 1770, he had Condorcet accompany him on a vacation

to recover.3 This is a relationship completely different from that of d’Alembert and Laplace.

Condorcet was elected to the Académie des Sciences in 1769, the same year that Laplace

moved to Paris. While Condorcet has the reputation of a mathematician, Granger notes

that “It must be acknowledged that reading Condorcet’s mathematical works is a thankless

task and often a disappointing one.”4 Gilain asserts in agreement “The imprecision of the

language, the instability of the terminology and the overlapping technical errors, on the

one hand, and the priority given to general methods as opposed to specific examples, on

the other hand, has made these [Condorcet’s] writings both obscure and non-rigorous as

well as difficult to read and understand.”5 Condorcet may not have been the clearest of

mathematical writers and Hahn argues that Laplace used this to his advantage, saying that

it was his strategy to “enlist himself in a productive enterprise that d’Alembert admired,

while also showing his technical superiority over figures like Condorcet.”6 Shortly after

being elected to the Académie des Sciences, Condorcet moved his concentration away from

mathematics and towards philosophy and politics. Hahn asserts that this was in response

to the superiority of Laplace’s abilities.

While there is little evidence of the exact relationship of Laplace and Condorcet, we do

know that, at least initially, the two were less than on the best of terms. From the response

that Lagrange gave to Condorcet’s letter mentioning Laplace,7 we can tell that Condorcet

3Goodell, 128-129.
4Gilles Gaston Granger, “Condorcet, Marie-Jean-Antoine-Nicolas Caritat Marquis de” in Complete Dic-

tionary of Scientific Biogaphy, vol 3 (Charles Scribner’s Sons: Detroit, 2009/02 2008), 384.
5“L’imprécision du langue, l’instabilité de la terminologie et la multiplication des erreurs techniques d’une

part, le privilège accordé aux méthodes générales et aux vues programmatiques, au détriment de l’étude
détaillée de cas précis, d’autre part, conduisent souvent, en effet, à des écrits obscurs et peu rigoureux,
difficiles à lire et à compredre.” Christian Gilain, “Condorcet et le calcul intégral,” in Sciences à l’époque de
la Révolution Française, (Lib. Sci. Tech. Albert Blanchand: Paris, 1988), 88.

6Hahn, Pierre-Simon Laplace, 45.
7While Condorcet’s letter is lost, we have quoted the pertinent section from Lagrange’s reply in Chapter

5.



CHAPTER 8. OTHER RIVALS 96

found Laplace vain. Any rivalry that existed between the two men would appear to be less

than friendly simply from this response. The rivalry that existed between the two men may

have been linked to their shared patron. D’Alembert assisted Laplace in his career as a

scientist and Condorcet as a person. Laplace did mention Condorcet in his written works,

but any mention is usually cursory, simply a note that Condorcet had written on the subject

before. From these notes, there is little we can say for sure about their relationship; Laplace

neither criticized nor praised Condorcet’s research. Overall, the evidence is scarce, and little

more can be said about the matter at this point. All that can be said is that when Laplace

entered the mathematical scene, Condorcet seems to have started to leave.

8.2 Legendre

Adrien-Marie Legendre (1752-1833) was born into an affluent family. Unlike the other scien-

tists that we have looked at, Legendre was given the opportunity to study science directly,

and appears to have been supported in this endeavor by his family. Legendre graduated

from the Collège Mazarim after defending his thesis in mathematics and physics in 1770.

His family provided him with a small fortune in which to live off, though he did supplement

his income with teaching responsibilities at the École Militaire. By 1782, Legendre had at-

tracted the attention of Lagrange by winning a Berlin Academy prize competition. Lagrange

wrote Laplace asking

Do you know M. Legendre? He just won our Prize concerning Ballistics. His

work appears to me as good can be done on this subject and it introduces its

author, if he is still young, as a man of talent and of knowledge which amy take

him far; I pray you to tell him the part that I take in his success.8

Laplace responded that he was acquainted with the young man who had made himself known

to the Académie through his merit as a mathematician.9 Itard notes that it was through

Laplace that Legendre submitted articles on various subject matter. When Laplace was

promoted to associé in the Académie, it was Legendre who took his place as adjoint. While

8“Connaissez-vous M. Legendre? Il vient de remporter notre Prix sur la Balistique. Sa pièce m’a paru
aussi bonne que le sujet peut le comporter, et elle annonce dans son auteur, s’il est jeune encore, des talents
et des connaissance qui pourront le mener loin; je vous prie de lui dire la part que je prends à son succès.”
Lagrange à Laplace 15 septembre 1782, “Correspondence de Lagrange avec Laplace,” 116.

9Laplace à Lagrange 10 février 1783, “Correspondence de Lagrange avec Laplace,” 121.
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the association of Laplace with Legendre appears to have been one that began early, it

may not have always been harmonious. It seems that Laplace believed that after a piece of

research had been presented to the Académie, it became public knowledge and therefore is

was unnecessary to cite the original author. This may have been common practice, but it was

a procedure which could cause insult. Since Legendre submitted articles through Laplace,

Laplace had the opportunity to investigate the younger man’s work even before it had been

submitted. Hahn remarks that “Legendre ... was bitter about the apparent usurpation of

his priority, pointedly remarking in his published paper that he had presented his ideas to

the Académie before Laplace had developed his.”10 Todhunter contends that “we shall find

indications that Legendre was not quite satisfied with Laplace’s silence as to the matter of

priority.”11

This issue of proper citing and priority between Laplace and Legendre can be seen in the

example of their respective work in the theory of the shape of the planets. After discussing

both a work by d’Alembert and a 1772 memoir by Laplace, Legendre began his Recherches

sur la Figure des Planètes, originally presented to the Académie in 1784, by noting that

while Laplace had presented his work published in 1784 in a “scholarly and general manner,”

Legendre had presented the same work prior to Laplace.12 While Legendre did not make any

criticisms of the quality of Laplace’s research, he did make the obvious point that Laplace had

failed to recognize Legendre’s priority and Legendre was rectifying the situation. Overall,

while Laplace may not have meant any disrespect, this does seem to have been the response.

We can compare the reaction of Legendre in this case with that of Lagrange in the case

of the secular inequalities of Jupiter and Saturn. When Lagrange thought that Laplace was

using his previous work, he first said that he would forego his own research so that Laplace

could continue his own. Lagrange also asked if Laplace had read Lagrange’s previous work

instead of insinuating that there was a priority issue. As well, Lagrange wrote this in a letter

instead of making the issue public by including such a comment in his published work. At

the stage that Lagrange was at in his career, he was already well established and this may

have made him feel less attached to each individual piece of work. Legendre, in contrast, was

a young scholar hoping to make a name for himself and therefore less willing to ignore what

10Hahn, Pierre-Simon Laplace, 75
11I. Todhunter, A History of the Mathematical Theories of Attraction and the Figure of the Earth, vol 2,

(Dover Publishing: New York, 1962), 19.
12Todhunter, 43.
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he felt was an insult to his priority. The reason may also have been in the personality of

the two men. In general, Lagrange tended to attack matters in a diplomatic manner. While

Legendre’s reaction may be understandable, it was not in Lagrange’s temperament to have

a public debate with a fellow scholar.

Again, the documentation regarding the relationship between Legendre and Laplace is

paltry. While we can see that there was some form of rivalry between the two men and this

rivalry does not appear to have been a friendly one, we can say little more at this point

without research that goes beyond the scope of the current work.



Chapter 9

Conclusion

Laplace was an ambitious man who arrived in Paris with the intention of making a name

for himself. He would have most likely had a better chance at a successful reception had he

made his introduction to a lesser known figure, but the rewards would also be less certain.

Laplace instead picked the man in France who he thought best able to advance his career:

d’Alembert. While d’Alembert was Laplace’s first powerful patron, he was not Laplace’s only

supporter; Laplace’s ability to network can be seen in multiple cases in his career and may

have contributed to his longevity. Overall, while Laplace’s ability to promote himself was

key, he would not have been to make any headway scientifically had he not had a genuine

talent. D’Alembert was able to open the doors for Laplace after he had proved himself

worthy, but Laplace also had to show his worth to the greater scientific community.

The papers by Laplace analyzed here show his attitude towards mathematics. Laplace

was more interested in developing physical theory than in developing mathematical theory.

For this reason, his mathematical work is somewhat difficult to follow, but as we have seen,

even the physical model is sometimes difficult to understand. In the section of Sur le Principe

that was investigated, a work from 1773, Laplace began by introducing a physical system

which he did not fully explain. After setting up a confusing model, Laplace continued by

using notation which is somewhat ambiguous. After Laplace had set up his physical model,

he continued by setting up his system of equations. Here again Laplace missed what appear

to be vital steps that would have made the memoir easier to follow. As it stands, the reader

is forced to make assumptions in order to be able to follow what Laplace has done. Whether

these assumptions are the same as Laplace’s is impossible to know, because he did not help

the reader along. Nonetheless, they seem plausible and illuminate the content.
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When we reach the simplification that Laplace had made, if the reader has followed this

far, Laplace skipped steps that are necessary to follow his simplification. This is fine if we

can trust that Laplace had not made any errors, but as it stands, we can not even check

the validity of his work because we can not be guaranteed that what we believe he did was

actually what he did. The question can even be asked if the secular equation that Laplace

found at the end of his calculations was simply the result of flawed methodology. Again, we

can not be sure because Laplace has not told the reader enough information.

While Laplace only mentioned d’Alembert’s contributions to the field and did not show

any specific examples, the way that Laplace presented his work provides some indication

of his relationship to d’Alembert. D’Alembert was constantly concerned about issues of

priority, which caused him to publish work that was incomplete or rushed. This made his

results, while often correct, difficult to follow and sometimes correct due to multiple errors.

With this example as a mentor, there is some precedent for the way that Laplace presents

his own work. While Laplace did not seem as concerned about issues of priority, he was

producing work at a phenomenal rate, which can lead a person to be sloppy.

When we arrive at Sur le calcul intégral, from 1772, we are faced with the same problem:

what exactly did Laplace do? Here though we can check his results. In this example, we can

show that his answer strongly resembles the correct result, but we cannot say with certainty

how he obtained it. There are enough questionable aspects in the method to cause alarm

and yet the method provides the right answer.

Laplace had a good mathematical intuition and was therefore able to obtain mathe-

matically sound results even though his steps along the way were confusing and difficult to

generalize. Overall, while Laplace did attempt to build general methods, his generalization

is often less than satisfactory. Here, we see Laplace claiming generality without actually

reaching a generalization.

This pattern appears again when Laplace looked at singular solutions of ordinary differ-

ential equations. We still see confusing notation and flawed methodology, but in this case,

we see that Laplace had a competitor whose work did not show these pitfalls. When we

turn to the work of Lagrange, we see a similar set-up, but the problems that we found with

Laplace have disappeared. Lagrange initially believed Laplace to be brash and self-serving,

but Laplace was still able to make his acquaintance and gain the respect of the more se-

nior academic. This respect is shown not only through the correspondence between the two

men, but also in the way they approached each other’s work in their published research.
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While Lagrange proved to be a long time friend and scientific ally, Laplace’s relations with

the scientific community were not always harmonious. Even though there is evidence for

negative rivalries between Laplace and some of his contemporaries, the information is scarce

compared with that showing the positive relationship between Laplace and Lagrange.

We can see that Laplace was able to work with the tool kit that d’Alembert had assem-

bled and build on his mentor’s work. While Laplace may be difficult to follow at times, his

writing is still less complicated than d’Alembert. We can see Laplace refining d’Alembert’s

work and always giving credit, whether he wanted to or not, to the mentor who had given

him his start in the Parisian scientific community. When we see the same mathematical

areas investigated by both Laplace and Lagrange, namely singular solutions, we can imme-

diately see the superiority of Lagrange’s presentation. Still, the two were able to maintain a

friendship and assist each other in their mathematical pursuits. Later, Laplace was able to

improve on Lagrange’s accomplishments in the field of potential theory.

While Laplace entered the scientific community because of the powerful patrons that he

found, his career was shaped as much, if not more, by the role that rivalry, both positive

and negative, played in his scientific endeavours.



Appendix A

Appendix: Original French of

Translated Material

A.1 Letter from d’Alembert to le Canu: August 25, 1769

Il est juste de vous laisser la satisfaction d’annoncer à Mr l’abbé de la Place la bonne fortune

vous pouver lui dire qu’il est sur d’une place de professeur de mathématique à l’école militaire,

et lui repeter les conditions; logé meublé 6 voies de bois, 1800# d’appointements, donc 1400#

de net parce qu’on retient 400# pour la nourriture si ces conditions lui conviennent, il faut

1◦ qu’il ma l’écrive sur le champ; car je pars le 7 septembre pour la campagne ou je resterai

3 semaines. 2◦ qu’il écrive aussi sur le champ à M Bizot, rue du Temple près la rue des

Gravilliers à Paris ce Mr Bizot doit etre le directeur des études au 1er octobre. Il mandera

donc à Mr Bizot qu’il peut compter sur lui, et il y ajoutera les expressions d’honnêteté et

de reconnaissance convenables. 3◦ Il faudra qu’il se rende à Paris le 20 septembre au plus

tard et meme s’il se peut quelque jours avant et qu’en arrivant il aille trouver Mr Bizot, qu’il

pourra voir tous les jour rue St. Louis au Marais chez Mr Paris du Verney, le matin depuis

10h jusqu’à 2 et le soir depuis 5 jusqu’à 8. j’espere que Mr l’abbé de la Place, par son zèle,

son assiduité, & la bonne conduite fera honneur à ma recommandation, j’oublie de vous dire

qu:il n’aura que trois à 4 heures a donner tous les matin à la classe, ce que le reste du temps

sera à lui j’ai l’honneur d’etre avec mes respectueux attachemens, Monsieur

Votre très humble et très obeissant serviteur

d’Alembert à Paris, le 25 aout 1769
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A.2 Letter from Laplace to d’Alembert: November 15, 1777

J’ai toujours cultivé les Mathématiques par goût plutôt que par le désir d’une vaine répu-

tation, dont je ne fait aucun cas. Mon plus grand amusement est d’étudier la marche des

inventeur, de voir leur génie aux prises avec les obstacles qu’ils ont rencontrés et qu’ils ont

su franchir; je me mets alors à leur place et je me demande comment je m’y serais pris pour

surmonter ces même obstacles, et quoique cette substitution n’ait, le plus souvent, rien que

d’humiliant pour mon amour-propre, cependant le plaisir de jouir de leur succès me dédom-

mage amplement de cette petite humiliation. Si je suis assez heureux pour ajouter quelque

chose à leur travaux, j’en attribue tout le mérite à leur premiers efforts, bien persuadé que

dans ma position ils auraient été beaucoup plus loin que moi. Vous voyez par là, mn cher

Confrère, que personne ne lit vos Ouvrages avec plus d’attention et ne cherche mieux à en

faire son profit que moi; aussi personne n’est plus disposé à vous rendre une justice plus en-

tière, et je vous prie de me regarder comme un de ceux qui vous aiment et qui vous admirent

le plus. C’est dans ces sentiments que j’ai l’honneur d’être, Monsieur et illustre Confrère,

Votre très humble et très obéissant serviteur,

Laplace.

A.3 Letter from d’Alembert to Lagrange: January 1, 1773

1˚ s’il peut actuellement être placé à l’Académie de Berlin; 2˚ s’il pourrait y jouir, dès son

entrée, d’un revenu suffisant pour vivre, comme 3000 ou 4000 livre, argent de France; 3˚ si

vous êtes dans une position à vous intéresser pour lui sans vous faire de tracasseries; 4˚ si,

dans la supposition où vous ne voudriez pas vous en mêler, je pourrais écrire au Roi et lui

proposer M. de la Place comme un sujet que je connais, que j’estime, et dont vous pourrez

vous-même lui rendre témoignage.

A.4 Laplace’s Theorem 1 from Sur les solutions particulières

Si l’équation µ = 0 est une solution de l’équation différentielle dy = p dx, elle sera une

solution particulière, toutes les fois qu’elle rendra nulle la quantité
1

∂2µ
∂x2

+ 2p ∂2µ
∂x∂y + ∂p

∂x
∂µ
∂y

, (A.1)

autrement, elle sera une intégrale particulière.
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A.5 Laplace’s Theorem 2 from Sur les solutions particulières

Si µ = 0 est une solution particulière de l’équation différentielle dy = p dx, µ est facteur

commun aux deux quantités

p+

∂2p
∂x∂y

∂2p
∂y2

et
1
∂p
∂y

; (A.2)

et, réciproquement, tout facteur commun à ces deux quantités, égalé à zéro, est une solution

particulière de l’èquation différentielle dy = p dx.

A.6 Lagrange’s graphical definition of singular solution

[d]e ce que nous avons démontré plus haut... on doit conclure que l’intégrale particulière

d’une équation différentielle du premier ordre est représentée par la courbe qui touche toutes

les différentes courbes représentées par l’intégrale complète de cette équation, en faisant

varier la constante arbitraire, c’est-à-dire toutes les différentes courbes qui peuvent être

représentées à la fois par la même équation différentielle.

A.7 Lagrange’s three remarks when the perturbing forces are

zero

Il nous suffit de remarquer:

1. Que ces valeurs doivent être des intégrales complètes et finies des trois équations

différentio-différentielles

d2x

dt2
+
Fx

r3
= 0,

d2y

dt2
+
Fy

r3
= 0,

d2z

dt2
+
Fz

r3
= 0,

et qu’elles doivent par conséquent renfermer six constantes arbitraires;

2. Que ces constantes seront précisément les six éléments de l’orbite elliptique dont nous

avons parlé plus haut;

3. Que, si l’on différentie les trois intégrales dont il s’agit, on aura six équations à l’aide

desquelles on pourra déterminer les six constantes arbitraire en x, y, z, dx
dt ,

dy
dt ,

dz
dt ;

de sorte qu’on aura ainsi six équation différentielles du premier ordre, dont chacune
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renfermera une constante arbitraire, et sera par conséquent une intégrale première des

trois équations différentio-différentielles proposées.



Appendix B

Appendix: Comparison of Laplace’s

Approximation

The example looked at from the second memoir investigated can be solved numerically. Here,

we would like to briefly discuss this solution and the comparison of results.

The solution was found using both Maple and Matlab. After finding the numerical

solution, an IVP was set up to compare Laplace’s solution to this numerical solution. The

values used were arbitrarily chosen. These values were used to solve for Laplace’s constants f

and f ′. It was noticed when this was first plotted, that there was a shift introduced in either

Laplace’s approximation or the exact solution. To compensate for this shift, the following

alteration on Laplace’s equation was used

y =fe
α
4

(−δ)
[
sin (t− δ) + cos (t− δ)− α

16
sin 3(t− δ)− α

16
cos 3(t− δ)

]
(B.1)

+ f ′e−
α
4

(t−δ)
[
sin (t− δ)− cos (t− δ)− α

16
sin 3(t− δ) +

α

16
cos 3(t− δ)

]
.

In this case, α = 0.01 and initial conditions y(0) = 1 and y′(0) = −2 were used. The

constants f , f ′ and δ were then found by minimizing the difference between Laplace’s ap-

proximation and the numerical result that Matlab found. These values are

f = 1.4824

f ′ = −.547 and

δ = 4.7139.

The plot showing the approximation and the numerical solution are given in Figure B.1.
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This plot shows that the results seem similar, but to see how good the approximation is,

Figure B.1: Comparison of Laplace’s Approximation to Numerical Solution

the error should also be investigated. The plot showing the absolute value of the difference

between the numerical solution and the approximation is shown in Figure B.2. The standard

deviation of the approximation for values of time less then t = 40π was found to be less than

5×10−4. Overall, this shows that Laplace’s approximation represents the exact value almost

as well as possible. It should be noted that when the shift was removed, the error increased

by orders of magnitude. This could be due to the flawed use of the Maclaurin expansion

which is discussed above.
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Figure B.2: Error between Laplace’s Approximation and Numerical Solution
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