Die Freude an der Gestalt: Methods, Figures, and Practices
in Early Nineteenth Century Geometry

by
Jemma Lorenat

M. A., City University of New York Graduate Center,

B. A., San Francisco State University

Dissertation Submitted in Partial Fulfillment
of the Requirements for the Joint Degree (cotutelle)

Doctor of Philosophy

in the
Department of Mathematics, Faculty of Science at Simon Fraser University (Canada);
Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), Institut de

mathématiques de Jussieu-Paris Rive Gauche (France)

(© Jemma Lorenat 2015
SIMON FRASER UNIVERSITY
Spring 2015

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



Name:
Degree:

Title of Thesis:

Examining Committee:

Date Defended:

APPROVAL

Jemma Lorenat
Doctor of Philosophy (Mathematics)

Die Freude an der Gestalt: Methods, Figures, and Practices in Early
Nineteenth Century Geometry

Brenda Davison
Chair

Department of Mathematics

Dr. Thomas Archibald
Senior Supervisor (co-tutelle)

Professor

Dr. Catherine Goldstein
Senior Supervisor (co-tutelle)
Directrice de recherche au CNRS, Institut de mathématiques de

Jussieu-Paris Rive gauche

Dr. Nilima Nigam
Supervisor

Professor

Dr. Christian Gilain
Internal Examiner (co-tutelle) by videoconference (Paris)

Professeur émérite & I’Université Pierre-et-Marie-Curie (Paris 6)

Dr. Dirk Schlimm
External Examiner

Associate Professor, Department of Philosophy, McGill University

10 April 2015

ii



Partial Copyright Licence S F U

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the non-exclusive, royalty-free right to include a digital copy of
this thesis, project or extended essay[s] and associated supplemental files (“Work”)
(title[s] below) in Summit, the Institutional Research Repository at SFU. SFU may also
make copies of the Work for purposes of a scholarly or research nature; for users of the
SFU Library; or in response to a request from another library, or educational institution,
on SFU’s own behalf or for one of its users. Distribution may be in any form.

The author has further agreed that SFU may keep more than one copy of the Work for
purposes of back-up and security; and that SFU may, without changing the content,
translate, if technically possible, the Work to any medium or format for the purpose of
preserving the Work and facilitating the exercise of SFU’s rights under this licence.

It is understood that copying, publication, or public performance of the Work for
commercial purposes shall not be allowed without the author’s written permission.

While granting the above uses to SFU, the author retains copyright ownership and moral
rights in the Work, and may deal with the copyright in the Work in any way consistent
with the terms of this licence, including the right to change the Work for subsequent
purposes, including editing and publishing the Work in whole or in part, and licensing the
content to other parties as the author may desire.

The author represents and warrants that he/she has the right to grant the rights
contained in this licence and that the Work does not, to the best of the author's
knowledge, infringe upon anyone's copyright. The author has obtained written copyright
permission, where required, for the use of any third-party copyrighted material contained
in the Work. The author represents and warrants that the Work is his/her own original
work and that he/she has not previously assigned or relinquished the rights conferred in
this licence.

Simon Fraser University Library
Burnaby, British Columbia, Canada

revised Fall 2013



ABSTRACT

As recounted by later historians, modern geometry began with Jean Victor Poncelet,
whose contributions then spread to Germany alongside an opposition between geometric
methods that came to be exemplified by the antagonism of Julius Pliicker, an analytic
geometer, and Jakob Steiner, a synthetic geometer. To determine the participants, argu-
ments, and qualities of this perceived divide, we drew upon historical accounts from the
late nineteenth and early twentieth centuries. Several themes emerged from the histori-
cal perspective, which we investigated within the original sources. Our questions centred
on how geometers distinguished methods, when opposition arose, in what ways geometry
disseminated from Poncelet to Pliicker and Steiner, and whether this geometry was “mod-
ern” as claimed. Our search for methodological debates led to Poncelet’s proposal that
within pure geometry the figure was never lost from view, while it could be obscured by
the calculations of algebra. We examined his argument through a case study that revealed
visual attention within constructive problem solving, regardless of method. Further, ge-
ometers manipulated and represented figures through textual descriptions and coordinate
equations. In these same texts, Poncelet and Joseph-Diez Gergonne instigated a debate on
the principle of duality. Rather than dismiss their priority dispute as external to mathe-
matics, we consider the texts involved as a medium for communicating geometry in which
Poncelet and Gergonne developed strategies for introducing new geometry to a conservative
audience. This conservative audience did not include Pliicker and Steiner, who adapted new
vocabulary, techniques and objects. Through comparing their common research, we found
they differentiated methods based on personal considerations. Pliicker practiced a “pure
analytic geometry” that avoided calculation. Steiner admired “synthetic geometry” because
of its organic unity. These qualities contradicted descriptions of analytic geometry as com-
putational or synthetic geometry as ad-hoc. Finally, we turned to claims for novelty in the
context of contemporary French books on geometry. Most of these books point to a peda-
gogical orientation, where the methodological divide was grounded in student prerequisites
and “modern” implied the use of algebra in geometry. By contrast, research publications

exhibited evolving forms of geometry that evaded dichotomous categorization.

Keywords: geometry, nineteenth century, analysis and synthesis, visualization, Jean Victor

Poncelet, Joseph-Diez Gergonne, Julius Pliicker, Jakob Steiner
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RESUME

Die Freude an der Gestalt: méthodes, figures et pratiques

dans la géométrie au début du dix-neuvieme siecle

L’histoire standard de la géométrie projective souligne une opposition entre les méthodes an-
alytiques et synthétiques. Selon les historiens de la fin du dix-neuvieme siecle, la géométrie
moderne a commencé avec le Traité des propriétés projectives de Jean Victor Poncelet en
1817, puis, pendant le premier tiers du siecle, les contributions de Poncelet se répandi-
rent en Allemagne, ainsi qu’une opposition entre différentes approches géométriques dont
I’'exemple toujours cité est ’antagonisme entre Julius Pliicker, un géométre analytique, et
Jakob Steiner, un géometre synthétique. Ce n’est qu’a partir des années 1870, selon ces
récits, que les géometres mirent fin a une distinction qui avait cessé d’étre pertinente.

Pour déterminer les participants, les arguments et les qualités de cette apparente division
méthodologique, nous avons puisé dans les récits historiques écrits a la fin du dix-neuviéeme
siecle et au début du vingtieme siecles. Méme s’ils insistent pour résumer la situation dans
lopposition globale et binaire que nous avons décrite, leurs écrits suggerent déja qu’il y
avait plutot une multitude d’oppositions a plus petite échelle, qui résultaient en particulier
de ce que des découvertes multiples, presque simultanées, étaient faites par un petit groupe
de géometres.

Plusieurs thémes principaux émergeaient de cette perspective historiographique, qui
forme le premier chapitre de cette these, et nous avons décidé de les approfondir en les
confrontant a une étude détaillée des textes originaux : des textes de Poncelet, Pliicker,
Steiner et Joseph-Diez Gergonne sur la géométrie et la méthodologie écrits pendant le pre-
miers tiers du dix-neuvieme siecle. Nos questions sont centrées sur la maniere dont ces
géometres ont distingué leurs propres méthodes géométriques de celles des autres mathé-
maticiens contemporains, quand une opposition surgissait en géométrie, sur la maniere dont
a la fois la géométrie et ces oppositions se sont transmises de Poncelet a Pliicker et Steiner,
et dans quelle mesure cette géométrie était “moderne” et nouvelle comme le clamaient ses
praticiens, et plus tard les historiens de la géométrie.

Dans le deuxieme chapitre, nous examinons donc en détail un probléme de mathéma-
tiques concernant 'inscription de figures dans des coniques, probléme qui a été discuté entre
plusieurs mathématiciens (Gergonne, Poncelet, Pliicker, etc.) et a déclenché des polémiques
sur les méthodes de solution. J’ai étudié en détail les arguments, les techniques, etc. et les
oppositions, j’ai aussi montré le role des nouveaux moyens de diffusion que sont les journaux
mathématiques.

Notre recherche sur ce débat méthodologique nous a conduit a un échange épisté-



mologique entre Poncelet et Gergonne sur I'utilisation de ’analyse algébrique en géométrie.
En distinguant ce qu’il appelle la pure géométrie de la géométrie analytique, Poncelet in-
sistait sur le role central de la figure. Il suggérait que tant dans l'ancienne géométrie
pure, celle héritée d’FEuclide et de I’Antiquité, que dans la géométrie pure moderne qu’il
incarnait, la figure n’était jamais perdue de vue, et qu’elle pourrait étre obscurcie par les
calculs de l'algebre appliquée a la géométrie. En géométrie synthétique, les objets de la
géométrie étaient representationnels et tangibles, ces qualités étant encore mises en avant
méme lorsque les géometres introduisirent des points imaginaires ou a 'infini.

Nous examinons ici 'argument de Poncelet en action a travers 1’étude de plusieurs
solutions a un méme probléme de construction géométrique qui a été discuté et résolu dans
un ensemble de publications étroitement connectées, mais écrites par plusieurs auteurs
différents. Il s’agit de construire une courbe du second ordre ayant un contact d’ordre
trois avec une courbe plane donnée, dont cing solutions paraissent entre 1817 et 1826. En
étudiant comment les auteurs invoquaient les figures et quelles formes alternatives leur
servaient & représenter les objets géométriques, nous avons trouvé que ’attention visuelle
est au coeur de la résolution de ces problémes de construction, indépendamment de la
méthode suivie, mais qu’elle n’est pas non plus réservée aux figures. Se fondant sur ce qu’il
décrit comme le manque d’élégance des calculs analytiques, Poncelet percoit cet exemple de
construction comme particulierement adapté a une approche de géométrie pure et développe
en particulier le concept de corde idéale pour généraliser les cas ou les points de tangence

sont imaginaires.

Figure 1: Tllustration selon Poncelet de la corde idéale commune a ’infini entre deux cercles
concentriques, Traité des propriétés projectives, 1822.

Mais Poncelet et Pliicker ont aussi développé des stratégies pour manipuler et visualiser
d’autres types de représentations du probleme. Pliicker par exemple a développé de nou-
velles formes d’équations permettant de révéler des éléments clés des objets géométriques

sans recourir a des calculs excessifs. Pour une courbe du deuxieme degré
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y? + 2azy + B + 202 =0

tangente a l'axe des y a l'origine, Pliicker utilise un systéeme de deux droites passant par
Porigine, y +max = 0, y+nz = 0 pour déterminer la corde commune entre la courbe donnée

et celle cherchée, représentée par

(2a — (m+n))y + (B —mn)x + 26 = 0.

Nous montrons donc comment la distinction fondée sur les modes de représentation vi-
suelle se matérialise effectivement dans les pratiques géométriques de I’époque et ce qui con-
stitue une évidence géométrique quand la figure ordinaire n’est plus le support de I'intuition.

Le méme ensemble de textes a attiré notre attention sur des discussions de méthodologie
pendant le premier tiers du dix-neuvieme siecle entre Gergonne et Poncelet, s’achevant sur
un accord entre les deux : le choix du probleme devrait déterminer le choix de la méthode.
Mais une décennie plus tard, Gergonne et Poncelet furent impliqués dans un débat bien
plus violent entre plusieurs auteurs publiant des résultats trés proches et témoignant d’un
manque de reconnaissance mutuelle supposé ou affiché sur le principe de dualité. Plutot que
d’ignorer cet épisode comme une simple dispute de prioritié externe aux mathématiques,
nous avons, dans le troisieme chapitre, étudié les textes en question comme un moyen
de communiquer de la géométrie en signalant a l'intention d’un public en formation de
nouvelles zones de recherche et en créant méme une audience intéressée par ces questions.
Malgré leurs désaccords sur 'orgine et ’étendue du principe de dualité, tant Poncelet que
Gergonne s’inquiétaient des difficultés a défendre la nouvelle géométrie face a un auditoire
plus conservateur. Cependant, en quelques années, la publicité engendrée par la controverses
avait réussi a engendrer de nouveaux travaux de recherche dans un groupe plus important
de mathématiciens.

Cet auditoire conservateur n’incluait évidemment pas Plicker et Steiner, dont les pre-
mieres publications témoignent de 'adoption et de ’adaptation du vocabulaire, des tech-
niques et des objets de Poncelet et de Gergonne. Ces deux mathématiciens, pourtant sou-
vent décrits comme “mathématiciens allemands” atteignaient souvent les mémes résultats,
et c’est en comparant en détail leurs recherches paralléles que nous avons trouvé comment
se distinguaient leur travail et leurs méthodes. Des comptes rendus de leurs travaux et des
correspondances nous ont permis aussi d’approfondir comment leur recherche était décrite
et comprise par leurs contemporains. Le troisiéme chapitre est une étude comparative de
deux mathématiciens Steiner et Pliicker, que je suis dans leurs travaux de recherche, leurs
cours, etc. L’'un décrivant la géométrie synthétique comme celle ot la figure n’est “jamais
perdue de vue”, nous avons examiné en particulier leurs usages des figures, et aussi au con-

traire comment les notations algébriques pouvaient apparaitre comme des représentations
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figurées, faisant appel a l'intuition. L’examen de leurs publications de recherche pendant
cette période nous a permis de montrer que leurs différentes approches particulieres a la
géométrie contredisaient les descriptions grossieres entre termes de méthodes analytiques
ou synthétiques. Pliicker voulait de fait pratiquer une “géométrie analytique pure” dans
laquelle les équations représentaient en un sens fort les objets géométriques, y compris sur
le plan de lintuition visuelle et contrairement aux caractérisations trop sommaires de la
géométrie analytique, il voulait au contraire éviter les calculs. Steiner justifiait son choix
d’une approche synthétique par un désir d’unité organique au sein des mathématiques.
Nous nous sommes enfin tournée vers les affirmations faites par les géometres sur la nou-
veauté et la modernité de leurs tentatives en examinant les livres frangais sur la géométrie
publiés pendant le premier tiers du dix-neuviéme siecle. La majorité de ces textes ont
une orientation pédagogique et la division de méthode se fonde sur les connaissances an-
térieures des étudiants, I'usage du mot “moderne” impliquant dans ces manuels 'utilisation
d’équations aux coordonnées en géométrie. Il ne s’agit donc pas de passer de l'ancienne
géométrie synthétique, euclidienne, a une nouvelle géométrie sysnthétique, incorporant pro-
jection et points imaginaires, mais bien de contrer I'apport présenté comme simplificateur
de l'analyse ; ceci explique aussi pourquoi les géometres novateurs ont fait tant d’efforts
pour présenter leurs recherches comme intuitives, accessibles visuellement et constructives.
Par contraste avec le contenu et les pratiques visibles dans les manuels contemporains, tant
Gergonne et Pliicker que Steiner ont continué a développer des formes de géométrie qui
ne se pliaient pas si facilement & une caractérisation dichotomique, mais répondaient de
maniére nuancée a 1’état des connaissances, mais aussi des pratiques mathématiques et des

modes d’interaction de leur temps.

Mots-Cléfs: géométrie, XIXe siecle, analyse et synthese, visualisation, Jean Victor Pon-

celet, Joseph-Diez Gergonne, Julius Pliicker, Jakob Steiner
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Introduction

The story goes that in the early nineteenth century, the animosity between synthetic and
analytic geometers had reached such an impasse that Jakob Steiner (a synthetic geometer)
informed the editor, August Leopold Crelle, that he would no longer submit articles to his
Journal fiir die reine und angewandte Mathematik, as long as Julius Pliicker (an analytic
geometer) continued to be published there.

This dramatic episode has resurfaced in the history of geometry since the 1870s and
is reproduced to this day (Greenberg (2008), Gray (2010b), Eccarius (1980), Kline (1972),
Boyer and Merzbach (1968), Boyer (1956)). One recent account can be found in Jeremy
Gray’s Worlds Out of Nothing.

But relations between Pliicker and Steiner were particularly bad, and Steiner
was in the growing University of Berlin with ready access to Leopold Crelle, the
successful editor of the first journal in Germany devoted exclusively to mathe-
matics. Steiner identified strongly with synthetic geometry, and let it be known
that he would not be willing to write for Crelle’s journal if it continued to carry
articles by Pliicker. Pliicker felt completely denigrated in Berlin, and switched
fields.(Gray (2010b), 167)

Where did this anecdote come from? When we explore backwards the references mentioned,
we find several other twentieth century historical sources. Morris Kline’s Mathematical
Thought from Ancient to Modern Times contained a version of this conflict, which placed
greater emphasis on the methodological disparity. Steiner’s actions only exemplified the

most bitter effect.

The upshot of the controversy is that the pure geometers reasserted their role
in mathematics. As if to revenge themselves on Descartes because his creation
of analytic geometry had caused the abandonment of pure geometry, the early
nineteenth-century geometers made it their objective to beat Descartes at the
game of geometry. The rivalry between analysts and geometers grew so bitter

that Steiner, who was a pure geometer, threatened to quit writing for Crelle’s



Journal fir Mathematik if Crelle continued to publish the analytical papers of
Pliicker. (Kline (1972), 836)

Kline’s account appeared in his chapter on “The Revival of Projective Geometry,” which
included a brief bibliography with two corroborating sources.

Among these sources, the more recent text is Carl Boyer’s History of Analytic Geometry
(1956). Boyer repeated the story of Steiner’s antagonism to “the analytic point of view”
and gave an exact citation to Florian Cajori’s A History of Mathematics (1931), while Kline
had cited the 1919 edition. Cajori’s version of the events originated with his first edition
from 1893.

But in Germany Pliicker’s researches met with no favour. His method was
declared to be unproductive as compared with the synthetic method of Steiner
and Poncelet! His relations with Jacobi were not altogether friendly. Steiner
once declared that he would stop writing for Crelle’s Journal if Pliicker continued
to contribute to it. [66] (Cajori (1893), 359)

Happily, here we find another precise bibliographic link back to Adolf Dronke’s 1871 biog-
raphy Julius Pliicker Professor der Mathematik und Physik an der Rhein.

Jacobi, dessen Grosse als Mathematiker zu schmélern wohl Niemand zu ver-
suchen sich erlauben wird, handelte gegeniiber Pliicker, gelinde gesagt, eigen-
timlich. In einem Aufsitze schliesst er sich zwar an die Arbeiten des Letztern
an, ignoriert aber deren Verfasser vollstindig. Steiner erklédrte, nicht mehr in
Crelle’s Journal schreiben zu wollen, falls noch Arbeiten Pliicker’s fernerhin Auf-
nahme finden. Dadurch war ihm Berlin vollstédndig verleidet und ist es wohl
begreiflich, wie er seine wissenschaftlichen Arbeiten meist in ausléndischen Jour-
nalen niederlegte, wo er wusste, dass seine Leistungen wenigstens nicht verachtet
wurden. (Dronke (1871), 11-12)!

In his foreword, Dronke advertised that he had been close to Pliicker as a student and a
friend, and with the permission of the family had consulted his teacher’s unpublished papers
in composing this account. Yet, another biography of Pliicker, by Alfred Clebsch, also from
1871, contained no mention of Steiner’s blackmail attempt, nor did Felix Klein’s historical
analyses, Vorlesungen tber die Entwicklung der Mathematik im 19. Jahrhundert (Clebsch
(1872), Klein (1926a)).

1«Jacobi, whose greatness as a mathematician probably no one would allow himself to attempt to be-
smirch, acted strangely against Pliicker, to say the least. In an article, in fact, he follows the works of the
latter, but ignores the author completely. Steiner declared that he would no longer write in Crelle’s Journal,
if Pliicker’s work still continued to appear there. Berlin was thereby ruined for him and it is easy to grasp
why he submitted his scientific works mostly to foreign journals, where he knew that his contributions were
at least not despised.”



Looking beyond this bibliographic chain, there is further evidence of Steiner’s personal
feelings towards Pliicker. In Die Mathematik und ihre Dozenten an der Berliner Universitdt
Kurt Biermann remarked that “Steiner hasste Pliicker griindlich,” citing the correspondence
between Siegfried Aronhold and Otto Hesse in 1849 (Biermann (1973), 47). This correspon-
dence was posthumously published in Crelle’s Journal in 1902. In a letter from December
18th, Aronhold reassured Hesse, who had apparently received harsh criticism from Steiner

regarding his analytic research.

Thren Gruss habe ich Steiner tiberbracht. Den kleinen Krieg mit ihm dirften
Sie weniger ernst nehmen. Er ist zu sehr Hypochonder, als dass er von dem
abgehen sollte, was er sich einmal in den Kopf gesetzt hat. Er scheint sich
schon durch Ihre fritheren Arbeiten verletzt zu fiihlen, wie iiberhaupt durch
die der Analytiker, und es ist besonders Pliicker, den er griindlich hasst, und
welcher wohl seine geringe Zartlichkeit fiir die Analysis hervorgerufen hat. Ue-
brigens diirfte Steiner seine wichtigsten Entdeckungen immer publicirt haben
und nur neue Methoden fiir die Behandlung bekannter Probleme in seinen
Manuskripten zuriickbehalten. Von dem Probleme der Wendepunkte fiir Cur-
ven vierten Grades hat er oft gesagt, dass er daraus “nichts Gescheites” machen
kann. Es scheint iiberhaupt die Synthesis der Gréanze nahe zu sein, wo sie ohne
die Hiilfe der Analysis nicht weiter kommen kann. Vielleicht irre ich mich, wenn
ich aus dem Umstande, dass Steiner recht gerne analytische Resultate benutzt,
einige Griinde fiir die Behauptung entnehmen kann. (Aronhold (1902), 64)2

While this exchange certainly corroborated Steiner’s hatred of Pliicker, the reason behind
Steiner’s hatred was left ambiguous.? Instead, Aronhold attributed Steiner’s alleged (and
perhaps even affected) distaste for analysis to his prior feelings against Pliicker. Conversely,
Steiner’s threat to Crelle regarding Pliicker has been explained as caused by Steiner’s ded-
ication to the purely geometric or synthetic method.

Dronke’s account of Steiner’s actions appears to be the first published source of this story.
The origins in a biography of Pliicker help to explain some of its literary tropes: the hostile

and powerful Steiner (sometimes accompanied by the even more powerful Carl Gustav Jacob

24Tve delivered your greeting to Steiner. You should take the little war with him less seriously. He is such

a hypochondriac, that he goes off on whatever once he has made up his mind. He seems to have felt injured
by your previous work, as by those of all the analysts, and particularly Pliicker whom he hates thoroughly,
and which has probably caused his limited sympathy for Analysis. Besides, Steiner should have published
all his most important discoveries and withheld only new methods for the treatment of known problems in
his manuscripts. From the problems of the turning points for fourth degree curves, he has often said that
he can make “nothing clever” of it. The limit of synthesis seems to be close where it can not get anywhere
without the aid of analysis. Maybe I'm wrong, though I can see some reasons for the claim, from the fact
that Steiner very gladly used analytical results.”

3Pliicker may have been difficult to get along with in general, as is suggested by Hermann von Helmholtz
in a letter to Rudolf Lipschitz from 1856 (Lipschitz (1986), 113-116).



Jacobi), Pliicker’s subsequent exile from German mathematics to experimental physics at
the University of Bonn, followed by his eventual international recognition, notably only
returning to mathematics after Steiner’s death.* The dramatic arc overshadows the lack of
concrete details. To take the most striking anomaly, it is completely unclear when Steiner
may have issued his ultimatum and whether it was indeed effective. Pliicker continued
publishing alongside Steiner in Crelle’s Journal for twenty years, from 1827 until 1847.°
After this date, Pliicker stopped publishing on mathematics in any journals, in Germany
or abroad, until 1865 when he finished his career in experimental physics and returned to
geometry. However, by 1847 Steiner and Jacobi were no longer on cordial terms, so would
not have been acting against Pliicker collectively. The animosity between these former
friends has been documented within letters between Jacobi and his brother in 1846, and
was well known enough among contemporary geometers that Poncelet commented on the
circumstances (Ahrens (1907), 132-148; Poncelet (1866), 411). Jacobi did remark on the
advantages of geometry over analytic geometry in a paper given to the French Académie
des sciences in 1844, but his description only referred to geometry without calculation
or figures—a description that could apply to Steiner or Pliicker, as we will see. Further,
published letters of recommendation from Crelle regarding Pliicker’s advances in analytic
geometry, general merits, and positive comparison to Steiner dating from the early 1830s
and through mid 1840s, raise doubt that Crelle would have rejected Pliicker’s work (Ernst
(1933)). Finally, if Dronke learned of Steiner’s actions through Pliicker’s papers, one must

suppose that Pliicker knew. Did Crelle inform him? These speculations convolute the

4Pliicker’s contributions to physics were briefly documented in a note by Johann Wilhelm Hittorf following
Alfred Clebsch’s mathematical biography (Hittorf (1872)). More recently, Roland Jackson’s study of the
early history of diamagnetism detailed Pliicker’s experimental contributions to that field (Jackson (2014)).

5Citing Dronke, Wolfgang Eccarius argued that Steiner’s actions were motivated by limited professional
opportunities, rather than methodological differences. In particular, Eccarius showed through letters between
Crelle and the ministry that Steiner and Pliicker were both being considered for the same available teaching
positions at a proposed polytechnic institute in Berlin. This cause would then suppose that the episode
occurred in the early 1830s when both geometers lived in that city and neither held a permanent post. By
the mid-1830’s the plans for the polytechnic institute were abandoned (Eccarius (1980)).

5This paper was published in the Comptes rendus, t. XIX, 1844, 1239-1261 and quoted in (Chasles
(1870), 119).

Si 'on considére que tant de résultats, dont chacun exigerait en Géométrie analytique une
démonstration différente et peut-étre parfois difficile, dérivent aisément ici d’un seul théoréme
primitif, dont ils ne sont, en quelque sorte, que des transformations qui se font par le seul
raisonnement, sans exiger ni calcul ni figures, on verra, je crois, dans cette fécondité et cette
facilité de démonstration, un nouvel exemple des ressources que pourraient offrir les méthodes
géométriques, si cette partie si importante des Mathématiques était plus cultivée.

“If we consider that so many results, of which each requires a different and perhaps some-
times difficult proof in analytic Geometry,here derive easily from a single primitive theorem,
of which they are only, in some way, transformations made by reasoning alone, without requir-
ing calculation or figures, we will see, I believe, in this fruitfulness and in this ease of proof,
a new example of resources that geometric methods could provide, if this important part of
Mathematics was cultivated more.”

Michel Chasles remarked that this extract related to the “culture of methods of synthetic Geometry.”



catchy narrative, and call into question the story’s frequent repetition as historical fact.
Certainly, Pliicker’s abrupt transition from analytic geometry to experimental physics

demands an explanation. However, as Boyer suggested, following his account of the role of

Steiner, Pliicker may have stopped publishing on geometry for an altogether less exciting

reason.

There is, however, another explanation available which would appear more plau-
sible. From 1825 until 1846 Pliicker had taught mathematics—first at Bonn, then
at Berlin, and finally at Halle. In 1847 he became professor of physics at Bonn;
and it is said that there was some criticism of the fact that a chair in physics
should be held by a pure mathematician. (Boyer (1956), 255)

While this explanation may be more plausible, it is apparently less popular. Despite its
vagaries, the story of Steiner thwarting Pliicker has endured as emblematic of early nine-
teenth century geometry and corroborate a larger narrative: the methodological opposition
between synthetic and analytic geometry. As we will see, this narrative of two competing
methods has dominated histories of early nineteenth century geometries from biographies of
individual geometers, such as the case of Pliicker above, to general contemporary histories
of mathematics.

Yet, when we examine the texts of the alleged analytic and synthetic geometers we will
find remarkable fluidity between content, objects, and techniques. Regardless of purported
method, geometric practices remained visually informed and dedicated toward reaching ever
better solutions inspired by classic planar geometry problems. While these theorems, tools
and principles also found generalizations and applications in increasingly complicated geo-
metric domains and problem sets, the subject matter remained focused on conic sections and
their three-dimensional analogues. We will see that this was a repetitive, competitive, and
pedagogically oriented atmosphere, where authors distinguished their work by emphasizing
the novelty of their methods. With innovative processes but familiar results, geometers
directly contrasted the simplicity, elegance and clarity of their approaches against those of
specific colleagues who had solved identical problems. The subtlety of these distinctions
often led to public and private suspicions of plagiarism, which in turn fuelled sharper di-
visions. In efforts to recognize and communicate new areas of geometric understanding,
geometers continually redefined the limits of methodological boundaries.

Hidden by apparently stagnant visual planar figures, invisible, infinite, imaginary, ideal,
and generally inaccessible geometric objects were developed, investigated, and proliferated
among researchers. Rather than a dichotomy between analytic and synthetic, we will find
a continuum of geometries proliferating and evolving new proofs, objects, operations, and
modes of representation. One distinction we will explore concerns how early nineteenth

century geometers presented their methods as “modern” in contrast to the figure bound



particularity characteristic of so-called “ancient geometry.” While developing and adapting
modern geometric objects and principles that promoted generality over individual cases for
each possible configuration, the overarching connection to the figure ultimately demanded a
commitment to visual representation. Even a general theorem was intended to be applicable
within specific constructive problems. With this evolution of the domain of geometry,
early nineteenth century researchers moved away from contemporary textbook and teaching
practices.

Before approaching the complex relationship between analytic and synthetic geometries,
we must first clarify what we intend by the two contrasting descriptions. The connotations
of analytic and synthetic in mathematics have encompassed a wide range of conflicting
meanings, and we are confronted with diverse usages among individuals in the early nine-
teenth century as well as later historical evaluations. In our case, some of the many uses
of analysis and synthesis in mathematics have been approached and dissected in Michael
Otte and Marco Panza’s collection Analysis and Synthesis in Mathematics: history and
philosophy. Among the numerous possible interpretations, analytic and synthetic geometry

most resemble the ‘historico-theoretical’ interpretation,

A mathematical theory is synthetic, if it refers to the classical geometrical objects
or arguments or even to the classical theories of proportion, or numbers or
magnitudes. It is analytic if it considers its objects as arguments of certain
equations (rather than proportions) or operations, or even as functions. (Otte
and Panza (2005), xi)

However, this neat either/or leaves ambiguous geometric practices adopted in the early
nineteenth century, such as incorporating imaginary points of intersection and projecting
lines to infinity.

Even within early nineteenth century geometry, the possible connotations of analytic
and synthetic have been shown to be complicated. Massimo Mazzotti’s study of analytic
and synthetic geometry in early nineteenth century Italy focuses on an identically named
and roughly contemporary opposition with vastly different motivations and outcomes than
the one we just described (Mazzotti (1998)).” His contextualized reading of geometric texts
in the Kingdom of Naples, reveals underlying political and religious divisions that we found
had almost no correspondence in French and German publications. Analysis and synthesis
have too many meanings unless we specify particular places and people shaping the terms
of their debate, and we cannot simply transpose conclusions between disparate contexts.

As Giorgio Israel has shown in “The Analytical Method in Descartes’ Géométrie”

the term “analytic geometry” was first defined by Sylvestre Frangois Lacroix in 1797, as

"The divide between Italian geometers was striking enough that Jacobi wrote to his brother, Moritz, of
it after visiting Naples in 1844. “Die Mathematiker, die hier etwas zuriick sind, theilen sich hier in zwei
feindliche Parteien und Schulen [...]” (Ahrens (1907), 113)



“I’application de I’Algebre a la Géométrie” (Lacroix (1797), xxvi quoted in Israel (2005), 9).
Lacroix professed to be following Gaspard Monge in this description, and particularly his
Application de I’Analyse a la Géométrie first published in 1795. As we will further show in
Chapter V, nineteenth century geometers appear to have interpreted “analytic methods” as
more or less corresponding to geometry utilizing coordinate equations, and interchangeably
used the terms “the application of algebra to geometry” and “analytic geometry,” while “the
application of analysis to geometry” often implied a use of differential or integral calculus.
Synthetic geometry had no such simple corresponding translation, and was not a widespread
term in the early nineteenth century. For example, the Annales des mathématiques pures
et appliquées contained one subject heading or more for each article, and among these we
find elementary geometry, geometry of position, pure geometry and geometry of the ruler,
but no synthetic geometry. Even when geometers divided the subject in two, the opposition
was not necessarily between synthesis and analysis. For instance, we will see how Jean
Victor Poncelet contrasted his modern pure geometry with modern analytic geometry. In
our account, we will be careful to maintain the authors’ original usages, which immedi-
ately suggest problems in the simple terms of the historical summary. Catherine Goldstein
has observed the power of following the use of often cited key words describing kinds of

mathematics. Although seemingly clichéd, terms such as “simplicité, clarté, fécondité”

[...] jouent, tout comme dans I'entourage de Felix Klein le mot Anschauung,
le réle d’'une banniére, ralliant des mathématiciens, des types d’explication,
des méthodes. Employés ensemble ou non, assez rarement en association avec
d’autres termes (“simple et général” , un peu plus souvent “précis”), ces mots
viennent s’opposer de maniére récurrente au couple “rigoureux” et “compliqué.”
(Goldstein (2011), 14)

Similarly, “analytic and synthetic” provide a means of association as well as disassociation
to existent results and techniques. Rather than precise adjectives, the terms analysis and
synthesis in geometry often acted as substitutes among historians for a perceived method-
ological bifurcation that might emerge under different names when applied by earlier ge-
ometers. Our thesis thus does not simply argue against a clear division between analytic
and synthetic geometry in early nineteenth century geometry, since this could be easily
shown by pointing to the absence of “synthetic geometry” as a common category among
the actors themselves. Rather we will show the absence of a uniform dichotomy under any
pair of contrasting adjectives.

In his comparison with early and late nineteenth century methodological claims in ge-
ometry, Moritz Epple presented the specific qualities of the “pre-modern” early nineteenth
century analysis and synthesis debate as between “not two different branches of mathemat-

ical knowledge but rather two different modes of presenting, acquiring and justifying this



knowledge” (Epple (2005), 179). Epple continued by pointing to the methodological purism
on both sides of the divide, and suggesting that this emphasis ultimately resulted in a “pet-
rification” that was only resolved through later methodological diversity, as exemplified,
for instance, in Felix Klein. One-hundred years earlier, Gino Fano similarly suggested that
the methodological difference between analytic and synthetic geometries was a matter of
“Sprache” (Fano (1907), 228). Yet, style cannot simply be divorced from substance, as has
been recently reiterated in the numerous papers from the Oberwolfach Report on “Disci-
plines and Styles in Pure Mathematics” (Rowe, Volkert, Vullermot and Remmert (2010)).
To take two succinct comments, Gray observed, “It is probably not possible to say the same
thing in different ways” (Gray (2010a), 586). With similar doubt, Norbert Schappacher
found “that different styles are rarely just varying ways to express an invariant content”
(Schappacher (2010), 657). Thus, our study of early nineteenth century geometries consid-
ers not only how the authors described their work, but also what changed when the same
“content” appeared in different styles. The early nineteenth century geometers themselves
did not use the term style, but instead often referred to the “form” in juxtaposition to the
“content” of an article or presented result. We will more closely examine the relationship
between form and content as they were used to describe mathematics.

The historiography of early nineteenth century geometry is primarily limited to de-
velopments in France and Germany, as will be shown in greater detail in Chapter 1. In
particular, we will see Jean Victor Poncelet (1788-1867) and Michel Chasles (1793-1880)
consistently cited as the major early nineteenth century French geometers, while August
Ferdinand Md&bius (1790-1868), Jakob Steiner (1793-1863) and Julius Pliicker (1801-1868)
represented the key figures of German geometry. In the historical literature, the latter
two mathematicians would come to symbolize the oppositional nature of the synthetic and
analytic method.

Reviewing the past 150 years of secondary literature we find varied perspectives on
the lives and mathematics of these two geometers. Both have been the subjects of several
biographical studies from their deaths up to the early 1930’s. Swiss mathematicians and
mathematical organizations have revisited Steiner’s legacy on several occasions, beginning
with Steiner’s first biography by his nephew Karl Friedrich Geiser in 1872 (Geiser (1874)),
which is still the most widely cited. At the turn of the century, Johann Heinrich Graf and
Julius Lange respectively provided further biographic details of Steiner’s life, emphasizing
his origins in Switzerland and his life in Berlin (Graf (1897), Lange (1899)). Lange sup-
ported his narrative with many letters to, from, and about Steiner, which supplemented
perspectives on his methodology drawn from published mathematics texts. Similarly, the
most recent biography of Pliicker was a thesis from Wilhelm Ernst, a student at Halle who
had access to enough of Pliicker’s correspondences to shed new light on the 1872 accounts
by Clebsch and Dronke (Ernst (1933), Clebsch (1872), Dronke (1871)). Pliicker’s contribu-



tions to analytic geometry were further explored in the mid-twentieth century, when Boyer
featured Pliicker as the protagonist of the “Golden Age of Analytic Geometry” (Boyer
(1956)).

Having worked at the University of Berlin, both Pliicker and Steiner appeared in Kurt
Biermann’s comprehensive history of the institution, although Steiner, as a former profes-
sor there, received more attention (Biermann (1973)). Both geometers published in the
same venues, and Wolfgang Eccarius has provided a direct comparison between their social
situations and search for employment in Berlin (Eccarius (1980)). Drawing on previously
unpublished letters from the editor of the Journal fiir die reine und angewandte Mathematik,
August Leopold Crelle, who also lobbied for salaried positions for several of his contributors,
Eccarius proposed that the methodological divide was greatly motivated by these economic
concerns. With respect to their mathematical legacies, Gray recently underscored Pliicker’s
substantial contributions to the theory of duality, where “Pliicker’s contribution has been
rather marginalised” (Gray (2010b), vi).

After the nineteenth century, Steiner too became a marginal character, falling under the
shadow of his so-called ”successor,” Christian von Staudt (Klein (1926a), Coolidge (1940)).
Consequently Steiner’s synthetic geometry often appears as transitional, making steps to-
wards, but never achieving, a completely non-metric geometry. For instance, David Rowe
has described how imaginary objects, a consequence of algebraic analysis applied to ge-
ometry, maintained an uncertain status in the work of Steiner and synthetic geometry in
general, until von Staudt’s successful interpretation in 1847 (Rowe (1997)). In Philippe
Nabonnand’s history of points and lines at infinity, he examined Steiner’s specific contri-
butions in the development of geometry from Poncelet to von Staudt. For Steiner, “I’objet
central de la géométrie n’est plus la figure mais devient la notion de formes fondamentales”
(Nabonnand (2011a), 167). This then points to a very different concept of pure geome-
try than the figure centred geometry professed by Poncelet, and we will later investigate
this conclusion with respect to Steiner’s early publications. Yet as much as Steiner can be
interpreted as breaking away from Euclidean geometry, his work remained committed to
constructions and questions from ancient Greek geometry. Viktor Blasjo has attempted to
rescue Steiner’s Systematische Entwicklung from “a lasting and undeserved depreciation”
by interpreting it as “a monumental unification of classical geometry” (Blasjo (2009), 21).
From a more literary perspective, Anne Boyer has integrated Steiner within the Romantic
movement of his time, drawing particularly on his Socratic style of pedagogy (Boyer (1999)).

Although Pliicker and Steiner have often costarred in the drama of analysis versus
synthesis, their specific mathematical contributions have yet to be directly compared, except
in encyclopedic summaries (for example, Kotter (1901), Fano (1907), Schoenflies (1909)).
Through several focused case studies, we will find that the early geometry of Steiner and

Pliicker (from their first publications in 1826 to Steiner’s first monograph in 1832) explicitly



engaged with “modern” pure geometry as first proposed by Poncelet in 1817. The striking
similarity between Steiner and Pliicker’s research subjects, at least initially, was due more
to this common source than their mutual influence. Thus the history of both analytic and
synthetic geometry must include Poncelet’s contributions.

The historiography of Poncelet draws on his education at the Ecole polytechnique, the
development of projective geometry while a prisoner of war at Saratoff, the controver-
sial principle of continuity that sparked antagonism with Augustin-Louis Cauchy, and the
contested priority over the principle of duality with Joseph-Diez Gergonne. Poncelet’s con-
tributions to projective geometry constitute much of the impetus and subject matter of Elé-
ments d’une biographie de l’espace projectif in articles by Philippe Lombard, Jean-Pierre
Friedelmeyer, and Philippe Nabonnand (Bioesmat-Martagnon (2011b), Lombard (2011),
Friedelmeyer (2011), Nabonnand (2011a)). These detailed textual analyses of Poncelet’s
writings show his development of a dynamic figurative approach, invention of new geometric
objects, and complicated relationship to analytic geometry. Poncelet’s emphasized gener-
ality, manifested in not separating solutions and proofs into multiple or exceptional cases.
This generality underscored his specific form of pure geometry, in which the generality usu-
ally attributed to analytic geometry extended both to the figure and to the act of viewing.
In particular, Jean-Pierre Friedelmeyer has contributed to understanding Poncelet’s “pure
geometry” by detailing what exactly was original in his work, and how Poncelet’s attempt
to replace analytic calculation with geometric reasoning, while still avoiding particular case
studies, led to his invariant projective properties, points at infinity, ideal objects, and the
principle of continuity.

This latter geometric principle had been imported from analytic geometry and algebraic
analysis, as professed by Poncelet towards the end of his career and well documented by
later historical studies of published and unpublished manuscripts (Poncelet (1864), Belhoste
(1998), Gray (2005), Nabonnand (2011b), Lombard (2011), Friedelmeyer (2011)). As we
will see in Chapters II, III and IV, the principle of continuity established which properties
remained invariant as a primitive figure, such as a conic section, was deformed. Although
many of Poncelet’s contemporaries viewed this principle with skepticism, both Pliicker and
Steiner would find inspiration and further develop the results suggested by this form of
continuity (Chasles (1837), Sturm (1826a), Pliicker (1829b), Steiner (1828d)).

The rich available literature on Poncelet’s biography situates our study of his relationship
with the figure, which he believed was imperative to pure geometry. Considering Poncelet
from the perspective of his “mathematical philosophy” on pure and analytic geometry, we
will closely examine the ramifications in his problem solving and theorem proving practices
in Chapters II and III. Recent historiography has established that Poncelet’s form of gen-
erality revealed a tension between analytic and pure geometry. We intend to see how this

tension manifested with respect to visual representations and other modes of communicating
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geometry.

Poncelet’s original methodological statements, in which he put forward the distinction
between the particularity of ancient pure geometry and the generality of modern pure geom-
etry and analytic geometry, were directed toward Gergonne, the editor of the Annales des
mathématiques pures et appliquées, the first journal not affiliated with any school or institu-
tion and devoted solely to mathematics in France (Verdier (2009b)). The early research and
publications of Poncelet, Steiner and Pliicker are inextricably bound up with the medium
of the Annales and its editor, whose role in the development of projective geometry has
been recognized since the mid-twentieth century (Struik (1970)). Most of Gergonne’s own
research was dedicated to analytic geometry and showing that coordinate equations could
be used to arrive at solutions as elegant and simple as those from pure geometry. Later
in life he became increasingly interested in what he described as positional or non-metric
geometry, specifically through his principle of duality. As Karine Chemla has shown, Ger-
gonne developed his research on spherical geometry to extend to duality between geometric
figures in the plane and in space (Chemla (1989), Chemla and Pahaut (1988)). In later his-
torical comparisons of Gergonne and Poncelet’s respective principles of geometric duality,
Mario Otero and Christian Gérini have independently described Gergonne’s form of duality
as more general because it relied upon a linguistic or philosophical relationship rather than
mathematical techniques (Otero (1997), Gérini (2010a)). This generality translated into
Gergonne’s advocacy for analytic geometry, which avoided the particularity of the figure
(Otero (1997), Gérini (2010a), Gérini (2010b), and Dahan Dalmedico (1986)). We will con-
sider how Gergonne responded to contributors and contributions as a reflection of his own
geometric research. Recent statistical analyses of the contents of the Annales has shown
how the disproportionate emphasis on figure-based geometry in the Annales served as a
fruitful environment for synthetic and analytic geometers alike (Otero (1997)). In particu-
lar, we will focus on the implications of Gergonne’s editorial position on the research paths
of Poncelet, Steiner, and Pliicker and examine how he enabled new geometric practices to
flourish and proliferate.

Our case studies of the research and publications of Poncelet, Steiner, Pliicker and Ger-
gonne will demonstrate numerous complexities challenging the traditional interpretation
of two opposing methodologies that would later be unified as modern projective geometry
in the 1870’s. In focusing on the highly interconnected publications of the above four ge-
ometers, we leave aside the notable contributions of Michel Chasles and August Ferdinand
Mobius. The story of Chasles’ interpretation of Poncelet’s geometry, beginning also in the
late 1820’s, has been addressed by Nabonnand and Chemla in their respective investiga-
tions of generality in pure geometry (Nabonnand (2011b), Chemla (1998)). Chasles argued
against the use of coordinate equations in geometry, and his statements to this effect have

served as evidence of the desire for methodological purity in Kline (1972) and Epple (2005).
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Thus, Chasles’ mathematical writings would serve as an interesting parallel to our analy-
sis of Pliicker and Steiner, but we will only elaborate particular moments of intersection
between the German and French cases because Chasles’ work appears to have had little
influence on the early research of our primary actors. Chasles himself professed to not read
German, and thus erected a barrier between his own studies and that of many of his con-
temporaries. On the other hand, we will utilize his historical texts as a counterpoint to the
historical debate between analytic and synthetic (or pure) geometry.

Though classified as both an analytic and a synthetic geometer, Mobius’ work (perhaps
because written only in German) did not initially receive the publicity afforded to Poncelet,
Steiner, or Plicker in the early nineteenth century (Loria (1887), Klein (1926a)). As an
apparently methodologically neutral geometer, Mébius could also offer an interesting con-
trast, in particular because his lack of allegiance seemed to have no effect on the historical
characterization of opposition. He is often cited as an exception, yet without any impact on
modifying the general rule. We exclude him here because he was not widely read by French
or German geometers until the early 1830’s. At this time, M6bius began to gain recognition
in terms that emphasized his outsider status. Responding to Mobius’ professed independent
research, Poncelet expressed suspicion that Mébius truly had no knowledge of either Steiner
or Poncelet’s research in 1827, due to his use of techniques remarkably similar to Poncelet’s
“polar reciprocity” (Poncelet (1866), 407). Yet, Steiner credited Mobius with clarifying
the principle of duality in his Der barycentrische Calcul of 1827 (Steiner (1832), 5).8 Later
historians would take Mobius’ geometry research as evidence that multiple geometers might
independently arrive at the same discoveries at around the same time.

As our choice of primary actors suggests, our study geographically begins in France and
extends gradually to German speaking regions with the advent of Crelle’s Journal, although
even then the prevalence of German geometers writing in French demonstrates a continued
deference and desire to be read. Histories of early nineteenth century French mathematics
often centre on Parisian mathematics, as the seat of both the Ecole polytechnique and the
Académie des sciences (Grattan-Guinness (1990), Grabiner (1981), Langins (1987), Dhom-
bres and Dhombres (1989)). Certainly, both of these institutions inform our knowledge
not only of Poncelet, who had studied at the Ecole polytechnique, but also Gergonne and
Pliicker who considered their work as following in the Mongean analytic geometry tradition.

Looming over early nineteenth century geometries, Gaspard Monge was invoked as a teacher

8In his introduction, Steiner elaborated Mdbius’ contribution, which must be interpreted broadly, since
Mobius had apparently not known of the principle of duality until after publishing his monograph.

Ubrigens tritt die genannte Theorie durch die gegenwiirtige Entwicklung in vollstdndigerer und
allgemeinerer Gestalt hervor, als es in ihrer fritheren Darstellungsweise geschehen konnte, wobei
indessen nicht zu iibersehen ist, dass der scharfsinnige Moebius zuerst eine freiere Auffassung
dieser Theorie ans Licht geférdert hat (Barycentr. Calciil). (Steiner (1832), 5)
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among both synthetic and analytic practitioners (Pliicker (1828a), Dupin (1813), Steiner
and Gergonne (1827)). Even Steiner, though not a devoted follower, responded specifi-
cally to Monge’s results (Steiner (1826¢)). In general, early nineteenth century geometers
consistently attributed the reemergence of figurative geometry as a fruitful research area
to Monge and the pedagogical tradition epitomized by the Ecole polytechnique, and these
claims have been borne out in rich historical studies (Taton (1951), Shinn (1980), Laurentin
(2007), Sakarovitch (2005), Belhoste (2001)). Moreover, the archives of the Ecole polytech-
nique contain Poncelet’s archival documents, the contents of which more clearly illuminated
Poncelet’s use of the figure in research and publications. Drawing from these documents,
the Bulletin de la Sabixz devoted a special issue to Poncelet and his mathematical develop-
ments, which examined his particular relationship to the Ecole polytechnique, the history of
his experience as a prisoner of war, and his career as an engineer (Belhoste (1998), Billoux
and Devilliers (1998), Gouzévitch and Gouzévitch (1998)).

But although both Pliicker and Poncelet lived in Paris for intervals during the 1820’s, the
story of analytic and synthetic geometry is tangential to the Parisian social milieu during
the first third of the century, as documented by Caroline Ehrhardt (Ehrhardt (2010)). The
Annales appeared out of Montpellier, Poncelet primarily lived in Metz through the 1820’s,
and Pliicker and Steiner remained in and around Berlin. Certainly, approval from the French
Académie des sciences was deemed highly valuable to both French and German geometers,
as will be seen with respect to Poncelet’s publicity strategies and testy relationship to
Augustin Louis Cauchy. However, a more accurate institutional focus for our study would
be the provinces, and in this particular context one could even interpret geometry in Berlin
as provincial with respect to Paris, which we will further explore in Chapter IV.

We will focus on the first third of the nineteenth century, and in particular the period
between 1817 and 1832. The start date coincides with Poncelet’s earliest publication ad-
vertising his new method in Gergonne’s Annales, in which Poncelet introduced the concept
of modern pure geometry. This interval offers a rich confluence of new journals on mathe-
matics, including Crelle’s Journal, the Bulletin des sciences mathématiques, astronomiques,
physiques et chimiques of the Baron de Férussac, and the Belgian Correspondance mathé-
matique et physique edited by Adolphe Quetelet and Jean Guillaume Garnier, leading up to
the end of Gergonne’s Annales in 1832. In this timespan we also find Poncelet’s methodolog-
ically directed texts (Poncelet republished many of these works with further commentary in
the 1860’s) and Gergonne’s responses, as well as the first publications of Pliicker and Steiner,
both in their earliest articles and books. These texts capture evolving geometric practices
and methodological approaches. Our choice of dates also approximately follows the time-
line presented in several historical accounts of nineteenth century analytic and synthetic
geometry. In Ernst Kotter’s Die Entwickelung der synthetischen Geometrie von Monge bis

auf von Staudt, the beginning of projective geometry was traced back to Poncelet, and his
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second chronological section “Von Poncelet bis auf Steiner” begins in 1822 with Poncelet’s
Traité des propriétés projectives and ends in 1832 with Steiner’s Systematische Entwicklun-
gen. Historians have attributed events in this fifteen year period to the rise of projective
geometry and the transition of geometrical research from France to Germany alongside the
methodological opposition.

In 2010, Gray observed that

We lack a recent history of projective geometry and of many, if not all, of its
major protagonists. For too long now, readers have had to fall back on Coolidge’s
A history of geometrical methods, first published in 1940, supplemented by a very

small number of more specialised studies. (Gray (2010b), vi)

This dissertation aspires to the latter description, thus adding to the very small number.
Much like in the book edited by the collective author Lise Bioesmat, Eléments d’une bi-
ographie de l’espace projectif, we intend to show dimensions of the emerging practices that
a history of projective geometry might consider. Moreover, as projective geometry did not
yet exist as a well defined research area (Clebsch (1872)), we will demonstrate some of the
ways in which geometers understood their contributions. These early nineteenth century
comments and practices both confirm and contradict the simple dichotomies of analytic and
synthetic, figurative and computational, abstract and concrete, French and German, urban
and provincial, ancient and modern, or classic and romantic. Although evidence for each of
these divisions can be found in the texts analyzed below, we will find this is not the whole
story.

In Chapter I, we will begin by unravelling the narratives of synthetic versus analytic ge-
ometry as portrayed in historical accounts. Our historical survey covers the late nineteenth
and early twentieth century. We will methodically build a corpus of thirteen authors, all
of whom posed some distinction between synthetic (or pure) and analytic geometry and
geometers in their analyses of the early nineteenth century. Collectively, these accounts
emphasize a common set of features of geometry in this period, leading to an image that
will be confronted and revised in subsequent chapters.

Although our thirteen authors represent a range of French, German, American, and Ital-
ian nationalities, the prevalent chronological narrative traced the origins of the synthetic-
analytic debate to French mathematicians (usually Lazare Carnot or Poncelet), which trans-
ferred to Germany along with specific research in geometry. Following this geographic dis-
tribution, in Chapter II we will focus on methodological arguments in French publications,
specifically in the writings of Poncelet, while in Chapter IV we will trace how Pliicker and
Steiner directed their research presentations to a French audience, and how these choices
equally influenced the content of their German publications.

Synthetic geometry and geometers were portrayed as reactionary toward the use of coor-
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dinate equations in figure based geometry. This historical interpretation has been supported
by direct quotes for methodological purity that emerge one-sidedly against analytic geom-
etry from Carnot, Poncelet, Steiner, and Chasles. By examining some of these arguments
with respect to the surrounding mathematical setting, we will attempt to determine what
specific qualities within geometry were perceived as advantageous or undesirable. Particu-
larly in Chapter III and IV, we look to methodological arguments both for and against the
use of coordinate equations, thus bringing to light a more balanced picture of antagonism
and defence.

Despite the alleged methodological opposition, historical surveys revealed how past ge-
ometers confronted practically identical problems and theorems. This is particularly strik-
ing in texts such as Max Simon’s Uber die Entwicklung der Elementar-Geometrie im XIX.
Jahrhundert, where specific popular problems were documented in pages of citations span-
ning the whole nineteenth century. Juxtaposed to distinct and even antagonistic methods,
the choice of content persisted. In Klein’s Vorlesungen dber die Entwicklung der Mathe-
matik tm 19. Jahrhundert, this constant recycling was perceived as stagnation. We will
utilize this feature in our case studies in Chapters II through IV, examining instances where
a set of problems or theorems attracted diverse geometers, who often used their solutions or
proofs as evidence fro the necessity or superiority of their particular approach. In Chapter
V, we will investigate the prevalence and significance of these reoccurring problems and
theorems by considering the content of books on geometry, a medium largely neglected in
later histories.

Perhaps in consequence of this repetition, the history of early nineteenth century geome-
try has portrayed a competitive atmosphere to the point of excessive drama. In biographies
of Pliicker and Steiner, the opposition between synthetic and analytic methods was exac-
erbated by conflicting attributions of credit and limited professional opportunities. This
competition has been qualified as both productive and paralyzing, and we will examine
how the medium of controversies shaped the community of geometers in Chapter I11.

A final theme especially prominent in early twentieth century texts, is one of modern
geometry and progress toward unification. From Klein’s FErlangen Programme in 1872,
practicing geometers (including those who wrote the histories reviewed here) called for an
end to the no longer relevant methodological distinctions, instead considering the subject
of synthetic and analytic geometry more generally as projective geometry (Klein (1872)).
Thus a divided early nineteenth century served as a contrast and backdrop to contemporary
progress.

Yet, progress and modernity also implied a break or move away from older geometric
practices and their associated qualities. While recognizing the power and acclaim of the new
projective geometry, some lamented the disappearance of synthetic geometry as an active

research subject (Coolidge (1940), Darboux (1904)). The new projective geometry absorbed

15



and dismissed certain qualities formerly attributed to analytic or synthetic methods. In
Chapters IT and IV, we will observe how the ideas concerning progress and modernity took
shape in the synthetic and analytic geometries of Poncelet, Gergonne, Pliicker, and Steiner.
Then in Chapter V, we will observe how the concept of “modern” could describe very
different styles and qualities.

These themes of the chronological and geographical path of geometry, the purported
opposition of synthesis and analysis, the common geometric content, the competitive and
controversial atmosphere, and the concepts of mathematical modernity and progress will di-
rect the inquiries of our subsequent chapters, and provide points of comparison in examining
the mathematical publications of so-called analysts and synthesists.

In 1817 Poncelet proposed that unlike analytic geometry, in pure geometry the figure is
never lost from view.? Whether illustrated, described or constructed, Poncelet presented the
figure as the primary form of geometrical evidence, a means of justification based in sensory
perception. These qualities persisted as Poncelet extended results from particular figures to
any possible deformation. By contrast, though classified as analytic geometry, Pliicker’s con-
temporary research treated coordinate equations as visual geometric objects—evidence—by
focusing on their form and endeavouring to avoid calculations. Pliicker specifically formu-
lated his work to counter Poncelet’s claims for the advantages of pure geometry by providing
an alternative means of visualization. Moreover, the centrality of the figure was not always
manifest in illustrated figures, but sometimes only in written descriptions. Following Do-
minique Tournes’ concept of a “virtual diagram” as a diagram “that one must have in mind,

but that is no longer physically drawn on the paper, or at least which is left to the reader

) ¢

to draw,” we will employ the term “virtual figure” to stand for a description of a figure
that is not actually provided with the text (Tournes (2012), 272). Especially in journal
articles, we will find these virtual figures widely employed, and the fact that not every ge-
ometric object needed to be figured permitted including geometric objects that might not
be illustratable. Thus we will consider how the virtual figure was both more and less than
its actual counterpart.

Historically informed philosophical inquiries have recently focused on visualization in
mathematics through the use of diagrams, such as in Mancosu, Jgrgensen and Pedersen
(2005) and Giaquinto (1992). In historical summaries, early nineteenth century geometry
follows the decline of the figure in mathematics, often traced to the late eighteenth century
and Joseph-Louis Lagrange, who boasted of his mechanics that it rested entirely on algebraic
considerations. In the words of Jeanne Peiffer on “Roles des figures dans la production et

la transmission des mathématiques,”

Chez Lagrange, le banissement des figures traduit un nouvel équilibre entre deux

9Poncelet may have been paraphrasing Carnot, who wrote, that “la synthése [...] ne peut jamais perdre
de vue son objet” as compared to analysis, in his Géométrie de position (1803) Carnot (1803).
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branches des mathématiques, la prédominance de l'analyse algébrique sur la
géométrie. C’est dire que la question des figures se trouve au coeur de certaines
représentations que 'on s’est faites des mathématiques dans I’histoire. (Peiffer
(2006))

By the late nineteenth century, the figure no longer remained the focus of geometry, a
development often linked to non-Euclidean and axiomatic geometries, most famously David
Hilbert’s Grundlagen der Geometrie in 1899. Drawing from Reviel Netz” work on diagrams
and texts in ancient Greek mathematics as well as Michael Baxandall’s findings on the
textual explanation of pictures, we aim to elucidate the exchange of cognitive properties
when an illustrated figure is replaced by words or equations (Netz (1999), Netz (2005),
Baxandall (1985)). Our investigation nuances these broader themes of increased geometric
abstraction and extension beyond the capabilities of two or three dimensional visualizations,
by pointing to a persistent ebb and flow of the importance of the figure and its capabilities
in conveying geometric results.

Following Poncelet’s division between pure and analytic geometries, in Chapter II we
focus on five versions by three different geometers, of a single conic section construction
written between 1817 and 1826. Despite the similarity of their results, each geometer
addressed the problem from contrasting methodological perspectives. We examine how
the figure-based distinction materialized in contemporary geometric practices, and what
constituted geometric evidence when the figure was lost from view.

The limited domain of pedagogically oriented problems and applications bred contro-
versy alongside innovation. In Chapter III, we compare several interrelated controversies
in early nineteenth century geometry concerning methodology, the value of generality, ac-
cusations of plagiarism, and contested priority. In particular, we will focus on the rhetoric
surrounding the duality controversy and argue that this and other early nineteenth century
controversies in geometry functioned as successful mediums of publicizing new principles
and nuancing results. We will present mathematical duality insofar as it pertains to grasping
the stakes of the associated controversy, thus complementing the more technical expositions
of duality, which can found in a wide assortment of historical texts (Klein (1926a), Pedoe
(1975), Chemla and Pahaut (1988), Otero (1997), and Gray (2010b)).

The central investigation in Chapter III will return to many of the texts introduced in
Chapter II from a new perspective. Our initial analysis of the mathematical results will
be reexamined in light of the surrounding controversy. We will see that the expanding
polemic over the principle of duality shaped the choice and emphasis of geometrical content
produced during that time period. From this broader outlook, we will gain a vantage on
the wider textual exchange, which will provide additional contexts in which to understand

Poncelet’s, Gergonne’s and Pliicker’s interdependent approaches to methodology and open
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areas of research.

Since the 1980’s, historians and sociologists of science have increasingly advocated
studying controversies and outlined possible categories and approaches as tools of research.
Though controversies in mathematics have been studied by historians, they are generally
not viewed as indispensable to mathematical theory formulation nor even as necessarily
leading to epistemic gains. Further, the debate over what does and does not constitute
a scientific controversy remains open among many historians and sociologists of science.
We will adhere to H. Tristram Engelhardt Jr and Arthur L. Caplan’s definition of a sci-
entific controversy as “the existence of ‘a’ community of disputants who share common
rules of evidence and reasoning with evidence” (Engelhardt Jr. and Caplan (1987), 12).
Following this criterion, we will argue that the exchange concerning duality initiated by
Poncelet and Gergonne constituted a true scientific controversy, in which mathematical
practices (including deriving general principles, applying methods of proof, and composing
original material) were questioned and supported through evidenced based reasoning (in the
form of generating new mathematical problems, demonstrating scientific applications, and
tracing historical chronologies). As a controversy, the textual exchange over duality was
public, and the necessary collective endeavour of beginning and ending this controversy will
serve to illustrate one venue in the circulation of geometry. In the midst of simultaneous
less dramatic controversies over the choice of method in geometry, Poncelet’s principle of
continuity, and the originality of Steiner and Pliicker, we display the relative normalcy of
controversies in this area of geometry that also will serve to establish collective boundaries
of the nebulous community of geometry researchers and an evolution of what was consid-
ered geometric practice. In turn, geometers demonstrated the strength and malleability
of their research subject during the early nineteenth century by accepting the publicity of
controversial exchanges.

In Chapter IV we we shift our attention to the early research of Steiner and Pliicker
to determine the ways in which their work and personalities became associated. As is well
documented in the historical literature, Steiner and Pliicker arrived at many of the same
results by independent research paths. Alongside a detailed portrait of their mathemat-
ical processes through comparative case studies, we document the development of their
personal methodologies and how they were received. Engaging with a primarily French
audience, both became associated as “German mathematicians” and “modern” geometers.
Drawing from reviews, private correspondence, and letters of recommendation, we witness
how Steiner and Pliicker were at once categorized into different methodological camps, but
also refashioned the boundaries, qualities, and perception of synthetic and analytic geome-
try. The frequent repetition that enables our direct comparison of Steiner and Pliicker also
shaped the practice and presentation of geometry. Those who reiterated an extant construc-

tion, thus emphasized instead their contributions to distinct, new, and superior methods.
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Both the methodological separatism, and the re-appropriated content caused competition
between these close contemporaries.

To complement our emphasis on research publications, most often in article form, we
conclude our study of early nineteenth century geometry by incorporating books and the
broader overlapping audience of teaching and learning geometry. As Jean Dhombres has
determined, most mathematics books published in France in the early nineteenth century
were intended primarily as textbooks (Dhombres (1985)). This conclusion is confirmed in
our survey of books on geometry published between 1800 and 1832. Using the Bibliotheque
nationale de France holdings catalog, we searched for books during this time period classified
or titled as geometry and intended to be read by students, teachers, and researchers in
mathematics. In total, we included fifty-two titles, many of which ran to multiple editions.
For each book we read the table of contents, introductions, available figures, and portions of
text that pertained to any of the case studies or geometric objects discussed in the above four
chapters. Almost all of these books were pedagogically oriented with introductions focused
on best teaching practices, curation of content to maximize student interest, justification for
omitting or maintaining high levels of rigour, and claims for the practical and even national
importance of learning geometry. Relatively few texts (including those by our principal
actors) included new research that did not fit neatly in these institutional boundaries. In
general, these books offer no concept of modern pure geometry, much less an overarching
projective geometry that would include both analytic and synthetic methods. Instead,
modern geometry in books often denoted coordinate based geometry. Perspective and
descriptive geometry books, though documenting a much newer discipline, were aimed at
engineering applications and almost never described as modern. We thus encounter a further
standard of division aligned between not only methods but also content and above all
prerequisites. For the most part, the difference between elementary and analytic geometry
was simply a matter of whether the student had successfully completed a course of study
in analytic algebra or not.

As our first chapter historicized the opposition between “modern” synthetic and ana-
lytic geometry, the final chapter will emphasize how these new kinds of geometries fit into a
broader group of contemporary practices. Our investigation of books in Chapter V will add
weight to Poncelet’s use of the term modern, to Gergonne’s claim of a mathematical revolu-
tion, and to Pliicker’s emphatically “new principles” and “new coordinate systems.” We will
find that the conservative nature of these books and their pedagogical market reinforced
repeating familiar problems and theorems, thus rationalizing why authors such as Poncelet,
Pliicker and Steiner went to such lengths to present new research and methods as intuitive,
visually accessible, constructively malleable, and often based in figures. The repetition
in teaching content will thus further illuminate potential motivation behind differentiating

geometrical methods.
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Our research into the features of a methodological division in early nineteenth century
geometry consisted in a systematic reading of all geometric publications by Gergonne, Pon-
celet, Pliicker and Steiner that appeared between 1817 and 1832. Within these texts we
searched for descriptions, arguments, examples, and commentaries with respect to geome-
tries and methods. We argue that these relatively rare instances are best understood in
light of the particular geometric research involved. Thus we will pursue a deep analysis of
specific practices and results that the actors and their contemporaries claimed as evidence
in support of reading and writing about their individual forms of geometry. With these
problems, theorems, and surrounding rhetoric we aim to present the methodology in ac-
tion. Through Chapters I, I1I, and IV we will show how the figure was used, new geometric
objects were introduced, and evolving geometries were communicated. These findings will
be framed by the broader investigations of Chapters I and V, which motivate, situate, and

add contrast to our specific case studies.
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Chapter 1

Unravelling the methodological

opposition: sources from histories
of geometry (1872—-1933)

1.1 Building a corpus

What are the origins of the perceived divide between analytic and synthetic methods in early
nineteenth century geometry? Several English language general histories of mathematics
reveal similar descriptions of a divided subject in the works of Dirk Struik, Carl Boyer, Uta
Merzbach, Morris Kline, and Ivor Grattan-Guinness (Struik (1948), Boyer (1956), Boyer
and Merzbach (1968), Kline (1972), Grattan-Guinness (1997)). Consulting bibliographies
from these texts, we found a common set of historical and primary sources for this time
period. The primary literature will be featured in subsequent chapters. Here we aim to
understand if and how histories of geometry and historical narratives on nineteenth century
geometry have contributed to a construction of the divide between synthetic and analytic
methods. In particular, we will investigate historical texts to determine which were the
components of the debate, where and how it emerged, and who were the main actors.

As illustrated in Appendix A, these initial bibliographic entries resulted in a finite list
of historical sources on early nineteenth century geometry. Working backward, when a
potential source contained a discussion of geometry in the early nineteenth century, we
included it in our corpus and then consulted its bibliography. We limited our search to
documents on the history of geometry or the history of particular methods or episodes
(excluding the parallel postulate and resultant non-Euclidean geometries) in the first third of
the nineteenth century geometry. Thus, we only consulted general histories of mathematics
when they were cited as specific references to this research area and time period. With

respect to publication dates, we restricted our corpus to texts published after the 1860’s in
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order to emphasize the historic dimension since most early nineteenth century geometers
were no longer publishing by this time. However, theories and results from early nineteenth
century geometers, in particular those categorized as the new projective geometry, directly
inspired new directions of research. As we will see, our corpus is situated in an interval
when early nineteenth century geometry was considered a valuable resource by the next
generation of working mathematicians who continued to publish until the early twentieth
century.

Our corpus contains books and articles by thirteen authors published between 1872 and
1933. Although we initiated our corpus construction from contemporary English language
histories, the bibliographies reflect a primary focus on Germany: eight of our authors are
German, three are French, two are Italian (one writing in German), and two are American.
These texts can be divided into three general sections, characterized by publication contexts:
biographies of early nineteenth century mathematicians usually composed shortly after their
deaths by their colleagues and successors; turn of the century texts on specific aspects of
the history of geometry mostly by German and Italian mathematicians centred around
the publication of Felix Klein’s Encyklopddie der mathematischen Wissenschaften mit Fin-
schluss ihrer Anwendungen; and general histories of mathematics relying more heavily on
secondary sources. In each section, we will proceed chronologically following the author’s
first publication in the event of multiple texts or different language editions.

We bookend our corpus by considering a pair of texts on the history of methods in
geometry, Michel Chasles’ Apercu historique sur l’origine et le développement des méthodes
en géométrie particuliérement de celles qui se rapportent a la géométrie moderne (1837)
and Julian Lowell Coolidge’s A History of Geometrical Methods (1940) (Chasles (1837),
Coolidge (1940)). The Aper¢u served as a common historical source for all subsequent
works in our corpus, although Chasles did not classify his contemporaries as analytic or
synthetic geometers, and reserved the terms solely for historical texts and mathematicians.
Likewise, Chasles did not consider his research as “projective geometry” although, as we
will see, it would be later classified as such. In 1940, Coolidge presented his text as a
contemporary equivalent to the Apercu. However, Coolidge looked back to early nineteenth
century projective geometry as an area of research that had already reached its full potential
and was no longer active. Coolidge claimed that the text, Projective Geometry, written by
Oswald Veblen and John Wesley Young in 1910, had been the “last great work dealing with
this field” (Coolidge (1934), 227).1

Within our corpus, we will examine how historians divided and compared methods in

geometry, most often as analytic and synthetic. In showing a division inside geometry,

! A much stronger assessment came from Bourbaki in 1960, who claimed that all of classical geometry—
excluding differential and algebraic geometry—had been dead as a research field to professional mathemati-
cians since the late nineteenth century (Bourbaki (1960), 140).
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historians comparatively described each method.? These descriptions included qualities of
both sides of the division, names of geometers who were identified as practicing or advocating
one or the other method, the content of the mathematics addressed by both methods, as
well as characteristics of the opposition itself. We will see how historians adopted and
adapted the model of analysis versus synthesis over time, and used these descriptions to
draw conclusions about how the geometry of the past related to the geometry of the present.
We note that descriptions of historical methodology were often very brief, and our treatment

of the following texts will reflect this brevity.

1.2 Michel Chasles (1837)

Chasles (1793-1880) wrote his Aper¢u Historique sur l'origine et le développement des méth-
odes en géométrie particulierement de celles qui se rapportent da la géométrie moderne as a
response to a question posed by the Académie des sciences of Brussels in 1829 on the differ-
ent methods of modern geometry. With the help of Adolphe Quetelet, Chasles expanded the
work and it was printed by the Académie of Brussels in 1837. The work was well-received,
Chasles became a professor at the Ecole polytechnique in 1841 and the faculty of science
at the University of Paris created a chair in “Géométrie supérieure” for him in 1846. By
the time he issued a second edition, with almost no changes, in 1875, Chasles’ name was
followed by a paragraph of international scientific academy affiliations. The third and fourht
editions, which appeared posthumously in 1889, were both published by Gauthier Villars.?

In his introduction, Chasles limited the scope of his historical research to “pure Ge-
ometry” and broadly referred to recent discoveries and doctrines by which geometry had
achieved a generality and scope, heretofore limited to Analysis. He divided the history of
geometry into five chronological époques of unequal length, beginning with Thales and end-
ing with his own recent contributions. The geometric advances over the last thirty years,
initiated by the descriptive geometry of Gaspard Monge, comprised Chasles’ fifth époque.
He claimed these new developments often equalled or rivalled those in analysis.

Chasles contrasted “two methods which divide the domain of mathematical sciences,”
analysis and geometry. Chasles assured the reader that he admired the analytic method
and was not arguing that the geometric method could extend as far in all aspects. However,

rather than apply the analytic method to geometry, Chasles described the advantages of

2We will refer to these authors as historians as their texts contain historical accounts. However, as we
will see, most of the authors were mathematicians by profession, some with no other historical output than
the texts considered here.

3When Chasles died in 1880 the New York Times reported he was “the most distinguished mathematician
in France probably” (Anonymous (1880)). Bertrand wrote a more extensive biographical eulogy in 1892 for
the Académie des Sciences (Bertrand (1892)). Recently, Nabonnand and Chemla have respectively analyzed
particular aspects of Chasles’ geometric contributions and interpretation of generality, (Chemla (1998),
Nabonnand (2011b)).
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pure Geometry.

Mais, convaincu qu’on ne saurait avoir trop de moyens d’investigation dans
la recherche des vérités mathématiques, qui toutes peuvent devenir également
faciles et intuitives quand on a trouvé et suivi la voie étroite qui leur est propre et
naturelle, nous avons pensé qu’il ne pouvait qu’étre utile de montrer, autant que
nos faibles moyens nous le permettaient, que les doctrines de la pure Géométrie
offrent souvent, et dans une foule de questions, cette voie simple et naturelle
qui pénétrant jusqu’a 'origine des vérités, met a nu la chaine mystérieuse qui
les unit entre elles, et les fait connaitre individuellement, de la maniere la plus

lumineuse et la plus compléte. (Chasles (1837), 2-3)*

Chasles then classified geometry into three parts: ancient pure geometry, analytic geometry,
and recent pure geometry. In general, he described pure geometry as more natural and sim-
ple precisely because it did not rely upon outside means of investigation. However, Chasles
admired the “abstraction and universality” of analytic geometry that distinguished the work
of Descartes from the so-called “Géométrie ancienne” (ibid, 94). While “la Géométrie des
Anciens” could be “particular, incomplete, and unconnected,” the third and newest kind of
geometry, Géométrie récente, matched analytic geometry in its generality and fruitfulness

but remained pure because independent of algebraic calculations.

La troisieme enfin est cette Géométrie pure, qui se distingue essentiellement
par son abstraction et sa généralité; dont Pascal et Desargues ont donné les
premiers exemples dans leurs traités des coniques, et dont nous verrons que
Monge et Carnot, au commencement de ce siecle, ont assis les fondements sur

des principes larges et féconds. (ibid, 117)°

By focusing on the differences between recent and ancient geometries, Chasles went beyond
the separation between analytic and pure geometry.® Moreover, in his description of recent
geometry, he listed four new “methods”: the theory of transversals, the doctrine of the

transformation of figures, the theory of polar reciprocity, and the doctrine of stereographic

4«“However, convinced that one cannot have too many means of investigation in the search for mathe-
matical truths, that all can be equally easy and intuitive when one has found and followed the narrow path
which is proper and natural to them, we thought that it could be useful to show, as far as our feeble means
permit us, that the doctrines of pure Geometry offer often, and in a great many questions, this simple and
natural path that, penetrating to the origin of truths, strips bare the mysterious chain which links them,
and makes them known individually, in the most luminous and complete manner.”

5“The third finally is this pure Geometry, which is essentially distinguished by its abstraction and its
generality; of which Pascal and Desargues have given the first examples in their treatises on conics, and of
which we see that Monge and Carnot, at the beginning of the century, have seated the foundations on broad
and fruitful principles.”

5In 1817, Poncelet had introduced a very similar differentiation between modern and ancient pure ge-
ometries, which we will investigate in Chapter II (Poncelet (1817c)).
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projections. He further listed nine “sub-methods,” which were even more specific techniques
such as the use of perspective and homological figures. In this level of analysis, the term
“method” did not divide into analysis and geometry, but rather a particular set of practices
and results that could be applied toward studying different aspects of geometry. In declaring
the theory of transversals and the theory of polar reciprocity to be different methods, Chasles
implied that a particular analytic or geometric method was a tool for addressing a specific
set of problems. Different methods had different applications, so for Chasles, two methods
were not just two ways of saying the same thing. Following his description of methods,
Chasles advocated for including more geometry in the French mathematics curriculum,
which he viewed as too heavily skewed toward analysis. In particular, he argued that pure
geometry would be useful for students interested in applications and who could thus avoid
unnecessary calculations. However, Chasles did not want geometry to replace analysis. To
the contrary, he concluded that since all of mathematics was interconnected, neglecting
geometry would impede scientific progress.

Chasles discussed “synthesis” by name only rarely and in historical contexts, not to
describe the work of his contemporaries. His first reference was to Frans van Schooten’s
Tractatus de concinnandis demonstrationibus geometricis ex calculo algebraico. In this work
from the mid-seventeenth century, Schooten showed that “the synthetic method can always
be deduced from the analytic method” (99). In this context, the synthetic method stood for
the methods of the “Ancients” and the analytic method was the use of coordinates applied
to curves in space, which Chasles also denoted as the Geometry of Descartes. In a later
footnote, Chasles classified Philippe de La Hire’s proofs from later in the seventeenth century
as purely synthetic and very simple, but capable of improvement through contemporary
nineteenth century notation. Both of these references seem to imply a synonymy between
synthetic methods and so-called ancient geometry. This interpretation is further confirmed
in Chasles’ quote from Joseph-Louis Lagrange, who had expressed similar sentiments on

the nature of synthesis.

“Quelques avantages que I’Analyse algébrique ait sur les méthodes géométriques
des Anciens, qu’on appelle vulgairement, quoique fort improprement, synthése,
il est néanmoins des problemes ou celle-ci parait préférable, tant par la clarté
lumineuse qui 'accompagne que par ’élégance et la facilité des solutions qu’elle
donne. Il en est méme pour lesquels I’Analyse algébrique parait en quelque
sorte insuffisante, et ou il semble que la méthode synthétique soit seule capable
d’atteindre.” (Sur lattraction des sphéroides elliptiques. Nouveaux Mémoires
de ’Académie de Berlin, année 1773.) (quoted in Chasles (1837), 252)7

T«““Whatever advantages algebraic Analysis has over the geometric methods of the Ancients, that one
commonly calls, although very improperly, synthesis, there are nevertheless problems where the latter ap-
pears preferable, either because of the luminous clarity which accompanies it or of the elegance and ease of
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By agreeing with this assessment, Chasles signalled that synthetic geometry possessed the
elegance and simplicity characteristic of the geometric methods of the ancients.Yet, La-
grange’s comment that the description “synthesis” was an improper name for ancient ge-
ometry reflected a common trope in the mathematical philosophy of Chasles’s contempo-
raries, including Joseph-Diez Gergonne and Emmanuel Develey (Gergonne (1817¢), Develey
(1831)).8 These geometers recognized that “synthetic” carried too many meanings to be
used clearly. Chasles himself rarely used the term and did not describe his own geometry as
synthetic, although other historians would. For Chasles, synthetic geometry contrasted both
with analytic geometry and with modern pure geometry, the latter of which incorporated
his own research.

Although Chasles did not present a bifurcation between analytic and synthetic methods
or geometries, nearly every subsequent history of synthetic and analytic geometries referred
back to the Apercu as a foundational text. By cataloging how Chasles framed methodolog-
ical differentiation, we provide a counterpoint to show how later historians drew from the

same historical events while presenting new and even contradicting conclusions.

1.3 Biographies

Chasles lived until 1880, but many of his contemporaries in France and Germany passed
away during the 1860s. The earliest references in our corpus relate to their subsequent
biographies.

Although biographies of early nineteenth century French geometers exist and served
as valuable resources in our broader research, the bibliographies consulted in our corpus
construction only included those of Pliicker and Steiner. The overwhelming emphasis on
Pliicker may be attributed to Boyer, Klein, and Pliicker’s first biographer, Alfred Clebsch
(1833-1872), whose biography of Pliicker was considered by the Italian geometer, Eugenio
Beltrami, to be equally a history of all early nineteenth century geometry (Loria (1887)).

1.3.1 Alfred Clebsch (1872)

Pliicker died in 1868, and his first biography was written and read by Clebsch before the
Koniglichen Gesellschaft der Wissenschaften in Géttingen in 1871. The text was published
the following year, when a French translation by Paul Mansion also appeared in the Ital-
ian journal Bollettino di bibliografia e storia delle scienze matematiche (Clebsch (1872)).

In Clebsch’s own geometrical research he had further developed many of the results first

the solutions that it gives. There are even those for which algebraic Analysis appears somewhat insufficient,
in which, it seems, only the synthetic method is capable of succeeding.”’

8Dahan Dalmedico has described key features of the original 1813 text, which Gergonne’s later publication
on geometrical methods was based on in Dahan Dalmedico (1986).
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attributed to Pliicker. Clebsch began his biography by discussing the year 1826, in which
Pliicker published his first articles and Crelle’s Journal was founded. In order to show how
Pliicker’s work related to that of his predecessors, contemporaries, and successors, Clebsch
proposed that his biography would at the same time be a history of the last 50 years of geom-
etry, beginning with Gaspard Monge who marked the separation between new and ancient
geometries. Thus, Clebsch summarized the personal events of Pliicker’s life in a paragraph,
and dedicated the remainder of the text toward examining his scientific contributions.
Clebsch used the term “projective geometry” to describe the collective work of Poncelet,
Gergonne, Mobius, Steiner and Pliicker among other early nineteenth century geometers.
He may have been the first to employ this designation, which he claimed better signified
that synthetic and analytic geometry referred only to the form of presentation, and not to
two disparate disciplines, as had once been thought.? He introduced the term in describing

the non-metric geometry of Carnot.

Bei ihm [Carnot] tritt das Bestreben, Lagenverhéltnisse allein zu betrachten und
alles Metrische auszuscheiden, noch nicht so rein hervor, wie spéter bei Poncelet
und Andern, ein Bestreben, welches endlich zur Auflésung des Metrischen in pro-
jectivische Begriffe fiihren sollte; doch erkennt man leicht den halb unbewussten
Zug, welcher demjenigen entgegentreibt, was wir heute unter projectivischer
Geometrie verstehen; ein Name, der besser als die nur auf die Form der Darstel-
lung beziiglichen Namen der synthetischen und der analytischen Geometrie das
Wesen der Sache und den Gesichtspunkt bezeichnet, unter welchem tatséch-
lich diese beiden frither gesonderten Disciplinen sich vereinigt haben. (Clebsch
(1872), 10)10

Continuing chronologically, Clebsch noted the profound impact of Monge on geometric
research, but claimed that Poncelet had created projective geometry, as it was understood
in its present form. From the work of Poncelet and Joseph-Diez Gergonne, Pliicker began
his own research in projective geometry.

During the first third of the nineteenth century, Clebsch included Carnot, Monge, Pon-
celet, Gergonne, Chasles, Gabriel Lamé, Etienne Bobillier, August Ferdinand Mébius, Lud-

wig Magnus, and Jakob Steiner as practicing projective geometry in connection to Pliicker.

9Jeremy Gray traced the first use of the expression “projective geometry” back to Klein’s Erlangen
speech “Vergleichende Betrachtungen tiber neuere geometrische Forschungen,” first published in 1873 (Klein
(1872)). Clebsch’s obituary marginally precedes this date (Gray (2010b)).

104«With him [Carnot] the effort to consider positional relationships alone and eliminate everything metric
occurs, not yet so purely as later with Poncelet and others, an effort which should ultimately lead to the
dissolution of the metric into projective concepts; indeed one easily recognizes the half-unconscious move,
driving against what we today understand as projective geometry; a name that better designates the essence
of things and point of view under which these two previously separate disciplines have effectively been
unified, than the names synthetic and analytic geometry which only refer to the form of representation.”
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Clebsch did not divide these geometers into synthesists and analysts, but nevertheless ob-
served particular tensions among geometers, often due to priority disputes or lack of proper
citation. From the outset, Pliicker had become involved in a dispute between Gergonne and
Poncelet stemming from his first publication in Gergonne’s Annales early in his career.!!
Then, on several occasions, both Steiner and Carl Gustav Jacob Jacobi had neglected to
cite Pliicker when employing his results. Both Pliicker and Steiner had also been involved
in separate discussions of priority with Magnus. Even Pliicker, Clebsch noted, on occasion
believed he had made discoveries, which in fact had been previously published by someone
else (ibid, 8). From Clebsch’s point of view, attention to priority was too prevalent among
early nineteenth century geometers and propagated by histories of science. Ultimately, he
concluded that these conflicts were “always sterile” since in natural scientific progress there
were often coincidental simultaneous discoveries.

So while Clebsch pointed out disputes among projective geometers, they were not
methodologically driven and after introducing the term “projective geometry” Clebsch did
not segregate geometers or their publications as analytic or synthetic. He acknowledged that
all of Pliicker’s geometrical research had been presented in an “analytic form,” but found
that Pliicker’s work in analytic geometry was neither abstract nor computational. Instead,
Clebsch described Pliicker’s “Art der Forschung” or “Forschungsmethode” or “Denkweise”
as drawn particularly from “die Freude an der Gestalt,” driven by an appreciation for the
aesthetic and intuition (ibid, 6). In their research and productivity, Clebsch compared

)

Pliicker to Steiner, describing the former as “richer.” He did not suggest that either ge-
ometer carried any personal or professional animosity toward the other. However, in his
conclusion Clebsch asserted that Pliicker had not received the acknowledgment he deserved
during his lifetime due to the partisanship [Parteinahme] of the epoch (ibid, 32).

Clebsch presented an informative image of a progressive early nineteenth century ge-
ometry including who practiced “projective geometry”, the subject’s chronological and ge-
ographical progression, and how numerous discoveries occurred among multiple geometers
at once, often prompting public disputes. He minimized any methodological division within
geometry, claiming that the names synthetic and analytic no longer designated separate
disciplines. On the one hand, Clebsch admitted that what he called “projective geometry”
was once divided in two. On the other hand, only in describing the “form” or “version”
of Pliicker’s geometry did he use the adjective “analytic.” Overall, Clebsch’s description of
Plicker’s work is highly individualistic, and not necessarily indicative of analytic geometry

in general.

"The events behind Pliicker’s charge of plagiarism and the surrounding controversy will be discussed in
Chapter III. We will find numerous mentions of this episode in the following historical texts.
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1.3.2 Adolf Dronke (1872)

The same year as Clebsch’s biography appeared in print, Adolf Dronke (1837-1898) pub-
lished his account of Pliicker’s life and work. Dronke had been an assistant to Pliicker in his
physical researches at the University of Bonn. In 1872, Dronke worked as the director of a
gymnasium in Koblenz. His text, Julius Pliicker Professor der Mathematik und Physik an
der Rhein, was a biographical narrative of Pliicker’s life, in which his scientific contributions
appeared chronologically (Dronke (1871)).

Unlike Clebsch, Dronke described Pliicker’s method as analytic geometry. Moreover,
Pliicker’s analytic geometry had consistently been opposed by Steiner, a synthetic geometer.
Dronke explained how Steiner had undertaken many of the same investigations through a
synthetic method, which overshadowed Pliicker’s originality during his early career. This op-
position continued, Dronke observed, as both Steiner and Jacobi later neglected to properly
acknowledge Pliicker’s prior contributions. On top of this, Dronke lamented how Pliicker’s
mathematical theories were attacked as infertile in Germany, and only received proper

recognition abroad.

Grossen Angriff erfuhren die Theorieen Pliicker’s in Deutschland und war der
Hauptvorwurf, den man ihnen machte, der, dass die Theorien unfruchtbar seien
namentlich gegeniiber der damals vorziiglich von Steiner und Poncelet vertrete-
nen synthetischen Methode. Ich glaube kaum, dass dieser Vorwurf einer Entgeg-
nung bedarf fiir den, der sehen will. Die grossen Resultate, die Pliicker selbst
und die von seinen Anschauungen ausgehenden englischen und franzosischen
Mathematiker erzielten, beweisen hinldnglich die Hinfélligkeit jener Behauptun-
gen. Leider aber brachte der Umstand, dass Pliicker und Steiner, wenn auch auf
verschiedene Methode gestiitzt, dasselbe wissenschaftliche Feld bebauten und
dieselben Probleme zu l16sen suchten, grosse Misshelligkeiten. (Dronke (1871),
10)'2

Dronke portrayed these disagreements as one sided: Pliicker was a victim of unjust German
criticisms and even attacks. This opposition was most strongly exemplified by Steiner’s
threat to Crelle regarding publishing Pliicker’s analytic work, a story that may have orig-
inated with Dronke, as we discussed in our Introduction. Jacobi also featured as an an-

tagonist, although Dronke acknowledged that “the great mathematician” had no need to

12«Pliicker’s theories encountered great opposition in Germany and the main criticism made against them
was that the theories were infertile, particularly at the time with respect to the superior synthetic method
represented by Steiner and Poncelet. I hardly think that this allegation requires a response for those who
accept to see for themselves. The major results achieved by Pliicker and derived from his intuition by
the English and French mathematicians, sufficiently prove the invalidity of those claims. Unfortunately,
however, the circumstances that brought Pliicker and Steiner to build the same scientific field and to search
for solutions to the same problems, albeit based on different methods, also brought great disagreements.”
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claim the results of others. The synthesis versus analysis rivalry echoed Dronke’s account of
Pliicker’s first publication, which had been rewritten by Gergonne and led to an accusation
of plagiarism from Poncelet. In Dronke’s account, early nineteenth century geometry was
rife with conflict that often negatively affected Pliicker.

Dronke tangentially mentioned the geometric contributions of Monge, Carnot, Bobil-
lier and Mobius as they intersected with Pliicker’s work. With respect to methodological
divisions he only designated Pliicker and Gergonne as analytic geometers and Steiner and
Poncelet as synthetic geometers. Dronke argued that this methodological division underlay
both the many disagreements that occurred within early nineteenth century geometry as
well as the general under appreciation of Pliicker in Germany. He defined analytic geom-
etry as tracing back to Descartes and involving the use of coordinate points, but gave no
definition for synthetic geometry. Dronke suggested that the two methods could be applied

to the same research field, and only differentiated them in terms of their practitioners.

1.3.3 Wilhelm Ernst (1933)

The most recent biography of Pliicker was written over sixty years later, in 1933, as an inau-
gural dissertation by Wilhelm Ernst (1889-77) for his post at the University of Bonn. The
subject of his paper, Julius Pliicker eine zusammenfassende Darstellung seines Lebens und
Wirkens als Mathematiker und Physiker auf Grund unverdéffentlichter Briefe und Urkunden,
had been suggested by Dr. Konen, a physicist at Bonn who worked in spectroscopy (Ernst
(1933)). Due to the relatively late date of this source, we begin to see new references and
narratives, which will reappear in our subsequent investigations of earlier histories. Thus,
in his bibliography, Ernst cited the biographies by Clebsch and Dronke and Felix Klein, but
also drew upon archival material as revealed by long excerpts from unpublished letters writ-
ten by Crelle, Pliicker, and various officials regarding Pliicker’s persistent search for stable
funding, mathematical posts and research travel. The text divided into four parts: youth
and studies, Pliicker’s work as a mathematician, Pliicker’s work as a physicist, and Pliicker’s
personality. In his discussion of Pliicker’s method, Ernst closely followed prior interpreta-
tions from secondary sources. He related how “Monge’s school” naturally united spatial
intuition with analytic operations, consequently the analytic formula was only a concise
expression of spatial relationships. A student of Monge’s school, Poncelet, had introduced
projective geometry, thus marking the transition from “&lteren zur neueren synthetischen
Geometrie.” Then the “sceptre” of geometry passed from France to Germany via Md&bius,
Steiner and Pliicker (Ernst (1933), 10). The former two German geometers were assigned
methodological categories—Md&bius was both a synthesist and an analyst, Steiner was only a
synthesist. Ernst succinctly summarized the opposition between synthesis and analysis in

his description of Steiner’s relationship with Pliicker.
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Steiner stand in einem personlichen und auch sachlichen Gegensatz zu Pliicker,
womit der alte bereits an der Ecole Polytechnique hervorgetretene Streit zwis-
chen synthetischer und analytischer Geometrie von neuem auflebte. (Ernst
(1933), 11)13

By the former “Streit,” Ernst appeared to be referring back to the work of Poncelet, who
was the only French geometer he described methodologically. As we will soon see, this
neatly echoed Klein’s earlier historical account. Ernst also may have been following Klein

or Dronke, in commenting on the opposition Pliicker faced from the Jacobi-Steiner circle.

Um so mehr ist es zu bedauern, dass ihm wéhrend seines Lebens nicht im-
mer, wenigstens nicht tiberall, die Anerkennung zuteil wurde, die seinen grossen
Leistungen gebiihrte. Gerade in Deutschland, wo der parteiliche Einfluss wider-
strebender Schulmeinungen, insbesondere des Jacobi-Steiner’schen Kreises, der
von ihm vertretenen Richtung entgegenwirkte, fand er nicht die verdiente An-
erkennung. (ibid, 85)4

We will find the Jacobi-Steiner circle invoked in several other texts, never with any mention
of other members nor with any details of its collective efforts.

While Ernst appears to have drawn the Jacobi-Steiner circle from secondary literature,
he provided direct evidence for a divide between analytic and synthetic geometers through
Crelle’s letters of recommendation for Pliicker. In 1835, Crelle wrote that while Pliicker’s
results had already been found in other analytic and especially synthetic ways, Pliicker’s
specific treatment was new and would be particularly appreciated by “friends of analytic
geometry” (Ernst (1933), 26). Crelle thus suggested that Pliicker’s audience might be based
on methodological lines. In 1846, Crelle again acknowledged that many of Pliicker’s results
had already been derived by the synthetic method that “Poncelet, Mobius, etc. and par-
ticularly Steiner” had undertaken. However, Crelle asserted that Pliicker’s methodological
improvements would eventually lead to further results and thus were more valuable than
specific new results. From Crelle’s letters, Ernst found further evidence of the simultaneous
derivation of the same results by multiple geometers. However, Crelle’s accounts also con-
trast with Ernst’s conclusions, as the former mentioned no opposition between Steiner and
Pliicker. Crelle instead deemphasized the methodological opposition, even correcting him-
self in clarifying the “analytischen gegeniiberstehende, oder vielmehr neben ihr bestehende
synthetische Methode” (Ernst (1933), 32).

13«Steiner stood in personal and professional opposition to Pliicker, which revived anew the old division
between synthetic and analytic geometry that had emerged at the Ecole Polytechnique.”

14« A1l the more to be regretted that during his life, the recognition due to his great achievements was not
always, at least not everywhere, given to him [Pliicker]. Especially in Germany, where the partisan influ-
ence of oppositional schools of thought, in particular from the Jacobi-Steiner circle, opposed the directions
represented by him, he did not find the recognition he deserved.”
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Ernst only briefly touched on potential differences between the two methods in describing
synthetic geometry as intuitive and analytic geometry as operational, but he then claimed
that Monge’s students had unified these qualities in their geometric research. These ad-
jectives also did not ally with Ernst’s description of Pliicker’s specific research as intuitive,
general, and elegant. So we find methodological differences were not defined by qualities,

but by specific analytic and synthetic geometers who often arrived at the same results.

1.3.4 Karl Friedrich Geiser (1874)

In contrast to Pliicker, who from his death onward had been consistently represented as
undervalued and deserving of greater recognition, Steiner primarily appeared as having been
once considered the greatest German geometer of the nineteenth century, but as no longer
occupying such a superlative post. His death in 1863 was followed by a brief note in Crelle’s
Journal fiir die reine und angewandte Mathematik by Otto Hesse a few weeks later, who
claimed that Steiner had been “the first geometer of his time” (Hesse (1863), 199).1° Eleven
years after this, and perhaps in response to Dronke’s recent book, Steiner’s nephew, Karl
Friedrich Geiser (1843-1934), wrote “Zur Erinnerung an Jakob Steiner” (Geiser (1874)).
A lecture on Steiner had also been read at the Swiss science society in Schaffhausen in
1873. Geiser had studied in Berlin with Leopold Kronecker and Karl Weierstrass, and by
this time worked as a professor of higher mathematics and synthetic geometry at the Swiss
Polytechnik. Geiser was also the editor of Steiner’s unpublished works, and had already
published Vorlesungen tiber Synthetische Geometrie in 1867. Other biographies of Steiner
followed, but Geiser’s text remained the exclusive resource for later detailed accounts of
Steiner’s personality and mathematics.'6

Following a summary of Steiner’s youth up to 1826, Geiser turned to his mathematical
contributions. Geiser introduced the synthetic method within the context of eighteenth

century mathematics, when, according to him, analytic methods had dominated.

Durch Euler, Lagrange und Laplace schien, wie diess [sic] auch Gauss an ver-

schiedenen Stellen sehr scharf ausspricht, die Superioritit der analytischen, rech-

5Hesse described Steiner’s deep attachment toward synthesis as resulting in occasional bad feelings to-
wards analysis.

Steiners Wirken steht mit der synthetischen Geometrie in unaufloslicher Verbindung. Mit
unermiidlicher und ausschliesslicher Thétigkeit widmete er sich ihr, bis zu dem Grade der
Schwérmerei, dass er es wie eine Schmach der Synthesis aufnahm, wenn bisweilen die Analysis,
deren Macht er nicht unterschétzte, gleiche oder gar weitergreifende Resultate brachte. (Hesse
(1863), 199)

Steiner’s work is inextricably bound to synthetic geometry. With tireless and unwavering
activity he devoted himself to it, with such a level of enthusiasm that he interpreted it as a
reproach to synthesis when sometimes analysis, whose power he did not underestimate, reached
the same or even more comprehensive results.

YFor other turn of the century biographies of Steiner see Graf (1897) and Lange (1899).
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nenden Methoden gegeniiber den synthetischen, anschauenden in einer Weise
festgestellt, dass wiahrend der gréssern Hélfte des achtzehnten Jahrhunderts die
Geometrie beinahe stille stand. (Geiser (1874), 16)'7

Geiser thus implied that the opposition initiated with the analysts who argued against
synthetic methods. In describing this time period, Geiser associated synthetic methods
with those of traditional geometry and analytic methods as those involving calculations.
According to Geiser, the work of Monge temporarily and happily revealed a unified account
of analysis and synthesis as collaborative and mutually beneficial methods in his application

of analysis to geometry.

Nicht minder bedeutsam wirkten die “Applications” [Applications d’Analyse a
la Géométrie (1795)], indem sie zeigten, dass Analysis und Synthesis nicht als
feindliche Méchte einander gegeniiber stehen miissen, sondern erst in ihrer Vere-
inigung die tiefen Geheimnisse der Mathematik einschliefen, zu denen sie vere-
inzelt nie gelangt wiren. Lésst das Buch, was die Anordnung des Stoffes anbe-
trifft, Manches zu wiinschen iibrig und moégen auch die Beweismethoden nicht
iiberall geniigen, so wird ihm, als einer gliicklichen Verbindung von analytis-
chem Scharfsinn und geometrischem Erfindergeist doch eine dauernde Stelle in
der Geschichte der Mathematik verbleiben. (ibid)'®

Geiser proceeded by describing the “great geometric principles” of Poncelet and then de-

tailed Steiner’s many contributions to geometry, none of which he described as synthetic.
In fact, Geiser only described Steiner as a synthesist in defending him against unjust

characterizations as being against analytic methods. Instead, Geiser pointed to specific

examples where Steiner had positively assessed analytic methods.

Steiner ist durchaus Synthetiker gewesen, so dass man ihn sehr oft, allerdings
mit Unrecht, als Gegner der analytischen Methoden bezeichnete, denen er doch,
freilich mit Vorbehalt, wie z. B. in der Vorrede zur “Systematischen Entwick-
lung” und in der Einleitung zu den “Maximum et Minimum” eine ehrenvolle
Rolle zuertheilte. (ibid, 28)°

17«Through Euler, Lagrange and Laplace, as Gauss also sharply expressed it at various places, the supe-
riority of the analytic, computational methods with respect to the synthetic, intuitive ones was established
in such a way that during the greater part of the eighteenth century geometry almost stood still.”

18«The “Applications” operated no less significantly by showing that Analysis and Synthesis did not have
to remain as hostile forces one against the other, but comprise in their union the deep secrets of mathematics,
which they would never reach in isolation from each other. If the book leaves something to be desired as
regards the arrangement of the material, and may not completely satisfy the methods of proof, it will retain
a permanent place in the history of mathematics as a fortunate combination of analytical acumen and
geometric ingenuity.”

19Steiner is thoroughly a synthesist, so that one very often describes him, although unjustly, as opposed to
analytic methods, to which he actually, to be sure with reservation, ascribed an honourable role, for example
in the preface to the “Systematischen Entwicklung” and in the introduction to the “Maximum et Minimum.”
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Geiser observed how Steiner had been attacked posthumously, both in Poncelet’s last writ-
ings (Poncelet (1865), Poncelet (1866)) and in Dronke’s recent publication. Geiser described
the latter work as a sort of conspiracy theory derived from Pliicker’s “spectral-analytisch-
geometrisch-entwickeltes Herz,” and wondered whether his memories of Steiner would also
be construed as engaging in this “zweite Auflage des Kampfes mit dem Drache.”?® Geiser
thus suggested that a previous conflict between Pliicker and Steiner had existed, not along
the lines described by Dronke, but conversely perhaps initiated by Pliicker. Pliicker did not
appear elsewhere in Steiner’s biography.

Geiser proved the definitive source for biographical details of Steiner’s life, but he sit-
uated the opposition between analytic and synthetic methods as preceding Monge and
resolving with Monge’s Applications d’Analyse da la Géométrie. He followed the geographic
and chronological progression of “new geometrical methods” from Poncelet to Germany, and
none of the geometers during this interval were described with methodological affiliation.
When Geiser presented Steiner as a synthesist, he showed that Steiner had acknowledged

the merits of analytic methods.

1.4 Turn of the century: Felix Klein and his circle

1.4.1 Felix Klein (1873, 1926)

Felix Klein (1849-1925) was Pliicker’s doctoral student at Bonn and consistently expressed
admiration for the results in geometry and physics of his Doktor-Vater. He had also studied
under Clebsch, and his inspiration from both teachers has been detailed in “Felix Klein and
His ‘Erlanger Programm”’ by Garrett Birkhoff and M. K. Bennett (Birkhoff and Bennett
(1988)). Klein first assessed developments in nineteenth century geometry as early as 1872
in a distributed paper to the faculty at the University of Erlangen, where he had just been
appointed full professor. Although not widely read at the time, the contents of “Vergle-
ichende Betrachtungen iiber neuere geometrische Forschungen” would become known as the
Erlanger Programm, and the paper was republished in German in the 1890’s along with
Italian, French, and English translations (Klein (1890), Klein (1891), Klein (1893b), Klein
(1893a)).2! Our quote pagination and translations will refer to “A comparative review of
recent researches in geometry” translated by M. W. Haskell in Klein (1893a), with com-
parative German from Klein (1872). Though professing to document the past fifty years

of geometry, the majority of Klein’s paper focused on research from the mid-century for-

20«1 ] spectral-analytic-geometric-developed heart [...] second stage of battle with the dragon.”

21The differences between and historical confusion over Klein’s speech and distributed paper at Erlangen
are documented by David Rowe in “A Forgotten Chapter in the History of Felix Klein’s Erlanger Programm”
(Rowe (1983)). The relative importance of Klein’s Programm itself has been contested by Thomas Hawkins
in “The Erlanger Programm of Felix Klein: Reflections on Its Place in the History of Mathematics” (Hawkins
(1984)).
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ward, as indicated by his many textual references to his contemporaries. His discussion
of methodology was restricted to his introduction and endnotes and appears as much an
assessment of his present view as his historical view.

Whereas Chasles had perceived progressive advantages in the many methods of geom-
etry, Klein regretted the fragmentary nature of geometry which “has been only too much
broken up in the course of its recent rapid development into a series of almost distinct theo-
ries, which are advancing in comparative independence of each other” (Klein (1893a), 216).
Klein negatively assessed the division of modern geometry into theories and consequently
described “the present state of mathematical knowledge as exceedingly incomplete and, it
is to be hoped, as transitory.” Instead, he argued for a more connected geometry, which he

called projective geometry and contained both synthetic and analytic geometry.

The distinction [Unterschied] between modern synthesis and modern analytic
geometry must no longer be regarded as essential, inasmuch as both subject-
matter and methods of reasoning have gradually taken a similar form [gestaltet]
in both. We choose therefore in the text as common designation of them both the
term projective geometry. Although the synthetic method has more to do with
space-perception [r@umlicher Anschauung] and thereby imparts a rare charm
to its first simple developments, the realm of space-perception is nevertheless
not closed to the analytic method, and the formulae of analytic geometry can be
looked upon as a precise and perspicuous statement of geometrical relations. On
the other hand, the advantage to original research of a well formulated analysis
should not be underestimated, — an advantage due to its moving, so to speak, in
advance of the thought. But it should always be insisted that a mathematical
subject is not to be considered exhausted until it has become intuitively evident
[begrifflich evident], and the progress made by the aid of analysis is only a first,

though a very important, step. (ibid, 243)%2

Despite this assessment of similarity, Klein drew attention to the differentiating features
between the two methods, belying a prescriptive rather than descriptive motivation in his
proposal for unification. While the current state of geometry might be moving away from
a division between synthetic and analytic geometries, Klein implied that this trend was
at best recent. Indeed, Klein titled this note “On the Antithesis between the Synthetic
and the Analytic Method in Modern Geometry,” where “antithesis” [Gegensatz] connoted
a much stronger opposition than “distinction” [Unterschied].?® Klein himself assigned com-

plementary properties to each method, suggesting the advantage of using both analysis to

22We include the original German for certain of Haskell’s translated terms, in particular because Anschau-
ung is usually translated as “intuition,” while begriffiich evident is “conceptually evident.”

23We follow Haskell’s translation, the original note was titled “Ueber den Gegensatz der synthetischen
und analytischen Richtung in der neueren Geometrie.”
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advance the thought and synthesis to make it evident when conducting projective geometric
research.

Klein reiterated a similar, though more critical, comparison between the two methods
in his Vorlesungen tber die Entwicklung der Mathematik im 19. Jahrhundert (1926). He

first described the qualities of analytic geometry,

Die analytische Geometrie hat den bequemen Algorithmus fiir sich, der die héch-
sten Verallgemeinerungen ermoglicht, der aber auch leicht dazu verfithrt, das
eigentliche Objekt der Geometrie : die Figur und die Konstruktion, aus dem
Auge zu verlieren. (Klein (1926a), 115)24

Klein pointed to figures, constructions, and physical viewing, all qualities that emphasized
the concrete and evident side of geometry. These contrasted with his characteristics of
analytic geometry as algorithmic and aimed at generality. In his definition of synthetic
geometry, the visual form and intuition played a more prominent role, but only at the

expense of ad hoc algorithms and a consequent greater difficulty.

Bei der synthetischen Geometrie wiederum droht die Gefahr, dass der Geist
am einzelnen angeschauten Fall oder doch nur einer beschriankten Zahl von
Moglichkeiten haften bleibt; die Lage wird wenig gebessert, wenn, um ihr zu
entgehen, ein neuer Algorithmus ad hoc erfunden wird, der schwerfillig bleibt,
solange er sich nicht in die einfachsten Ansétze der analytischen Geometrie ver-
wandelt. Zu begriufien ist bei der synthetischen Behandlung das deutliche Be-

wusstein der lebendigen Wurzel aller Geometrie, der Freude an der Gestalt.
(ibid)?®

In his section on French geometry and the Ecole polytechnique, Klein traced the origins
of the “modern” divide back to Carnot, who had opposed the “Hieroglyphenschrift der

Analysis” in favour of a purely synthetic form at the turn of the century.

Von geschichtlicher Bedeutung ist das Carnotsche Buch [Géométrie de posi-
tion] durch seine Ablehnung der Analysis. Hier ist die Quelle fiir den nun bald
hervortretenden Gegensatz zwischen analytischer und synthetischer neuerer Ge-

ometrie, der sich schliesslich zu einer Gegnerschaft von prinzipieller Bedeutung

24« Analytic geometry has the comfort of the algorithm going for it, which allows the highest generaliza-
tions, but which also easily misleads one into losing sight of the proper object of geometry: the figure and
the construction.”

25¢In turn, with synthetic geometry there is a danger that the mind remains bound to the single intuited
case or at least to a limited number of possibilities; the situation is little improved, when to avoid this a
new ad hoc algorithm is invented, which remains cumbersome as long as it does not reduce to the simplest
theorem of analytic geometry. The clear consciousness of the living root of all geometry, the joy of the figure
is to be welcomed in the synthetic treatment.”
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auswichst. (ibid, 80)26

By contrast, Klein explained how Monge had successfully combined analysis and geometry
in his analytic geometry. He viewed Poncelet as combining the ideas of both Carnot and
Monge, and described his particular theories as “projective”—not analytic or synthetic.

In his later section on early nineteenth century German geometry and Crelle’s Journal,
Klein claimed that the opposition between the two methods had spread from the Ecole
polytechnique to Germany along with new developments in French mathematics. Here,
Klein did not perceive the methodological divide as solely negative, but suggested that
it had been compounded in Germany by a second, more personal, and less “objective”
antagonism based in personal cliques or schools of thought. Klein attributed the dispute

between Jacobi and the synthesist Steiner against Pliicker to this “less factual” disaccord.

In unserem Falle handelt es sich um den Streit des von Jacobi und seinem An-
hang gestiitzten Synthetikers Steiner gegen Pliicker. Moebius steht in seiner
stillen Art mehr ausserhalb dieser Kampfe, die zudem auch durch den Gegen-
satz von Hauptstadt und Provinz verschirft werden. Noch heute sind ihre
Spuren nicht selten zu entdecken, so etwa, wenn noch bis vor kurzem in gewissen
Kreisen Steiner als der unvergleichliche, grosste Geometer der ersten Hélfte des
19. Jahrhunderts gefeiert wurde. (ibid, 116)%7

Klein’s assessment developed several features, independent of geometric methodology and
suggestive of Klein’s particular context. First, Klein considered Jacobi as an analyst, and
not a geometer, yet in this version of events, Jacobi appeared as supporting if not instigating
the feud between Steiner and Pliicker. Secondly, Klein emphasized the importance of Berlin

28 Finally, Klein challenged Steiner’s

and the urban setting in exacerbating the divide.
celebrated rank as the incomparable, greatest geometer of the first half of the nineteenth
century, apparently contradicting “certain circles.”

Rather than claiming one greatest geometer, Klein presented scientific biographies of the

“three great geometers” published in Crelle’s Journal: Mébius, Pliicker, and Steiner.?? In

26«Carnot’s book [Géométrie de position) is of historical significance through its rejection of analysis. Here
is the source for the coming prominent contrast between analytic and synthetic modern geometry, which
eventually grows into an opposition of fundamental importance.”

27«In our case, it concerns the conflict of the synthesist Steiner, supported by Jacobi and his followers,
against Pliicker. Moebius remains in his quiet way more outside of these struggles that are also exacerbated
by the opposition between the capital and the provinces. Even today, it is not uncommon to discover traces,
such as when until recently Steiner was celebrated in certain circles as the incomparable, greatest geometer
in the first half of the 19th century.”

28Klein would continue to describe Berlin mathematics as clique-ish when considering the history of later
nineteenth century mathematical developments (ibid, 281-285).

29Mébius’ work was presented independently of any methodological classifications, although Klein con-
cluded by declaring the geometer as a “typical representative” of a “classical” rather than “romantic” math-
ematician.
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his brief biography of Pliicker, Klein surmised that the conflict between the “Jacobi-Steiner
circle” and Pliicker dated back to Pliicker’s time in Berlin between 1832 and 1834, but
offered no details as to the substance of this conflict nor who else may have been involved.
Klein provided a nuanced overview of Pliicker’s geometric method, noting the tradition
of Monge’s method in combining constructions and analytic forms coupled with Pliicker’s
unique ability to “read equations.” In general, Plicker appeared as visually focused on the
“true geometric image of forms.”

While Klein’s biography of Pliicker emphasized his scientific career, he introduced Steiner
on more personal terms: underscoring his humble origins as a Swiss farmer who surprisingly
entered academia despite his “primitive rudeness” and argumentative character.>? Klein de-
rided Steiner’s early teacher, Pestalozzi, as advocating a completely unintuitive pedagogy,
and determined that Steiner’s intuitive strength did not come from this source. Klein also
noted Steiner’s systematic treatment of geometry and peculiar “art of instruction.” As an
example, Klein relayed how Steiner’s devotion to the Socratic method extended so far as to

not include figures in his geometry lessons. Instead,

[...] das lebendige Mitdenken des Hoérers sollte ein so deutliches Bild in seiner
Vorstellung erzeugen, dass er das sinnlich Angeschaute entbehren kénnte. (ibid,
128)3!

Thus, Steiner’s teaching style contradicted the connection between pure geometry and the
visual form or figure. These additional details illustrate how Klein’s account of Pliicker
and Steiner stood in opposition to his general descriptions of analytic and synthetic geom-
etry. Pliicker, the analytic geometer, emphasized the visual properties of geometry, while
Steiner, the synthetic geometer, excelled at systematizing but often avoided physical repre-
sentations. Even the most emblematic representatives of both methods created exceptions
to the classification of analytic as uniform but abstract and synthetic as evident but ad hoc.

Klein stated that methodological distinctions were no longer relevant in what should be
referred to as “projective geometry,” but his historical exposition revealed an underlying
propensity toward analytic practices. Klein pointed to the specific advances in geometry,
the relationship of algebraic curves to higher function theory or to set theory as well as
differential geometry, that could not have been addressed synthetically (ibid, 116). He then
praised Pliicker, and argued against Steiner’s acclaim as the greatest geometer of his time.
When explaining the technical work of both Poncelet and Steiner, Klein employed coordinate
representations. Finally, in Klein’s narrative all antagonism between methods resulted from

the personal, professional, and mathematical aggression of synthetic geometers. By claiming

39Klein cited Geiser for further documentation of Steiner’s personality and development.
31«[.] the active thinking of the listener should produce such a clear picture in his mind that he could
dispense with the sensory evidence.”
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that the methodological opposition was over, Klein implicitly sided with the apparently
neutral analytic geometers.

These two publications, Klein’s “Erlanger Programm” from the very beginning of his
career and his lectures on the history of nineteenth century mathematics published posthu-
mously, are representative of the historical content in Klein’s intermediary texts where he
maintained a consistent position toward unifying the diverse methodological approaches of
geometry to promote scientific progress (for example, in Vorlesungen tiber hohere Geometrie
(Klein (1926b)) ). Klein reiterated this call for unification perhaps most iconically in his
collaborative organization of the collective mathematical encyclopedia, Encyklopidie der
mathematischen Wissenschaften, which began publication in 1898 and ended in 1933.32 In
the next texts, we examine several articles associated with this collection. This includes
articles published directly as texts in the Encyklopddie, as well as those by other European
geometers in the late nineteenth century, who followed a similar investigative structure in
evaluating the recent past of specific branches of geometry. The German Encyklopidie and
its partial French adaptation, are the most extensive examples of this trend. In both col-
lections, the third volume was devoted to geometry and included articles originally written
by many prominent working mathematicians including Gino Loria, Gino Fano, and Arthur

Schoenflies.

1.4.2 Gino Loria (1887)

When Gino Loria (1862-1954) wrote his technical mathematical article “Spezielle ebene
algebraische Kurven von héhere als 4. Ordnung” for the Encyklopddie in 1914, he had al-
ready established a reputation as an algebraic geometer and an historian of mathematics.
While Loria’s Encyklopddie article did not concern the history of geometry, this had been
the subject of his first book: Il passato ed il presente delle principale teorie geometriche
(Loria (1887)). This work had originally been published serially, and Loria later wrote two
substantially revised editions in 1896 and 1907, as well as many other histories of geometry
through the 1940s.33 In each edition, he devoted the first forty pages to the history of
geometry before 1850 and the remaining hundreds of pages covered the next half-century
emphasizing Italian contributions. The majority of his text was organized with respect to
specific areas of geometric study, such as algebraic planar curves and surfaces, differential

geometry, or non-euclidean geometry. In these sections, traces of early nineteenth century

32The impetus, undertaking, and impact of Klein’s Encyklopidie project have been studied in depth by
both David Rowe and Renate Tobies (Rowe (1989), Tobies (1994)). Héléne Gispert has extended this
research into a comparison of the nationalist differences between the original German articles and those that
were subsequently adapted, with numerous differences, into French (Gispert (1999)). In particular we will
look at both the German and French versions of two articles on geometry.

33Excerpts from work were often translated into English, and the originals and translations served as a
frequent source for Boyer’s History of Analytic Geometry (Boyer (1956)). Loria’s Il passato ed il presente
delle principale teorie geometriche was also translated into German by R. Sturm.
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contributions would appear. By contrast, the first historical section progressed chronologi-
cally rather than thematically.3*

Loria’s history of geometry began in ancient Greece and proceeded rapidly to more
recent developments, encompassing both analytic geometry and pure geometry (which he
also called synthetic geometry or synthesis). In Loria’s presentation, pure geometry stood
opposed to algebraic analysis. Pure geometry had been revitalized in the early nineteenth
century first by Monge and Carnot, but most significantly by Poncelet, whose Traité des
propriétés projectives des figures heralded the “risorgimento della geometria pura” in 1822
(Loria (1887), 24). Loria enthusiastically digressed from his historical overview to detail
some of Poncelet’s achievements as they related to more contemporary researches. Con-
tinuing to document landmark years in French mathematics, Loria next focused on 1837,
and Chasles’ Apercu. Here he presented his first comparison between pure geometry and

analysis in describing Chasles’ Apercu as a fascinating work.

[...] opera affascinante in cui l'autore, dopo aver esposto con uno stile la cui
bellezza potra raggiungersi ma non superarsi tutto quanto costituiva ai suoi
tempi il patrimonio della geometria pura, gagliardamente sostenne i diritti che
questa aveva alla considerazione degli scienziati e che le venivano continuamente
contrastati dai ciechi adorati dell’analisi. Non bisogna perd credere che questa
sia un’opera di sola polemica, e che quindi abbia, oggi che la lotta e finita,

soltanto un valore storico. (ibid, 30-31)3°

Loria declared that the polemic between geometry and analysis had ended. However, with
his praise of pure geometers and their contributions, he seemed to appreciate the fruits of
the past struggle.

From France, Loria proceeded to developments in Germany, and here presented Steiner
and Moébius as two contrasting examples of German geometers. While M6bius engaged in
geometry, analysis, mechanics and astronomy, Steiner was exclusively dedicated to geome-

try.

[...] essi palesino una sostanziale differenze fra lui e 'altra delle stelle di prima
grandezza che illuminavano in quell’epoca il cielo della matematica tedesca,
cioe J. Steiner (1796-1863) (1), il quale fu cosi esclusivamente geometra, che

coll’analisi non volle mai scendere palesemente a patti (2). (ibid, 33)36

34This particular chapter was translated by George Bruce Halsted into a two-part article “Sketch of the
origin and development of geometry prior to 1850” published in The Monist in 1903.

35«¢[ .. a] fascinating work in which the author, after having described with a style, whose beauty could
be matched but not superseded, all that constituted the heritage of pure geometry in his time, vigorously
supported the rights that it [pure geometry] had to the considerations of scientists, [rights] that were con-
tinually thwarted by the blind worship of analysis. But we must not believe that this was only a work of
controversy, and is only of historical value, now that the fight is over.”

36[...] they [Mobius’ other research interests] revealed substantial differences between him and the other
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With only two great stars in the sky of German mathematics, Loria appeared to be neglect-
ing Pliicker, who by order of birth, appeared last in his list of German geometers: Mobius,
Steiner, Staudt, and Pliicker. However, both in the introduction and throughout the body
of the text, Loria declared that many of Pliicker’s achievements were decisive to the progress
of analytic geometry. In support of this, Loria cited Clebsch’s biography of Pliicker, which

(133

Beltrami had claimed was “‘il miglior elogio che si possa fare a Pliicker, considerato come
geometra, & questo, che Clebsch non ha potuto tessere il racconto dei suoi lavori, senza
rifare in gran parte la storia della moderna geometria analitica”’ (ibid, 35).3” In Loria’s
specific examples, not only modern analytic geometry, but also modern synthetic geometry
had benefitted from Pliicker’s research. In particular, Loria claimed that the principle of
duality had doubled the domain of both geometries, thanks “in large part to Pliicker” (ibid,
207).

Even though geometry was divided between methods, Loria contended that both meth-
ods could benefit from the same innovation. Conversely, Loria demonstrated that Poncelet,
Steiner and Pliicker working from different methods arrived at many of the same results. His
portrayal of synthetic and analytic geometry thus illustrated two complementary methods,

even if specific geometers practiced one method exclusively.

1.4.3 Ernst Kotter (1901)

Ernst Kotter (1859-1922) focused on documenting the history of synthetic geometry in
“Die Entwickelung der synthetischen Geometrie von Monge bis auf Staudt (1847)” (Kotter
(1901)). This 484-page report was published as part of the Jahresbericht der Deutschen
Mathematiker- Vereinigung, and thus was not part of the Encyklopddie although its structure
and content were similar. The text was organized in three time periods, designated by the
major publications of geometers: Monge to Poncelet (1822), Poncelet to Steiner (1822—
1832), and Steiner to Staudt (1832-1847). These sections were further divided by results
(Pascal’s theorem), techniques (stereographic projection), or problem sets (construction of
conic sections form five points and tangent lines). In his introduction, Kotter described the

premise of his work.

Der Bericht soll eine méglichst vollstéandige Darlegung aller derjenigen geometrischen

Entwickelungen bieten, die sich mit rein geometrischen Mitteln auf den Funda-

star of first magnitude, which in that epoch illuminated the sky of German mathematics, J. Steiner (1796—
1863) (1), who was so exclusively a geometer that he never deigned to come to terms openly with analysis.”
Intriguingly, the English translation of Loria’s introductory chapter offers a subtle modification: “that he
was never willing to come to terms openly with the analysts.” (231) The change from subject matter to
practitioners suggests a much more personal interpretation of Steiner’s proclivities.

37“‘[...] the best eulogy that could be made about Pliicker, considered as a geometer, is this, that Clebsch
could not succeed in recounting his works, without remaking in great part the history of modern analytic

geometry.”
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mentalsatz der Geometrie der Lage zuriickfiihren lassen. (Kotter (1901), iii)38

The effect is expectedly encyclopedic and genetic, succinct listings of specific theories, prob-
lems, and theorems often moving from the seventeenth century to current research with
limited narrative structure.

Like Steiner’s nephew Geiser, Kotter had studied under Weierstrass and Kronecker, and
lectured on synthetic geometry, at the University of Berlin and taught as a professor of
descriptive geometry at the technical Hochschule in Aachen. The Steiner prize had been
established by Steiner through the University of Berlin following his death to award 8000
Thaler once every two years for geometric research treated synthetically, and Kotter had
received this award for his synthetic geometry research in 1886.%° He was awarded the prize
for solving a problem posed by Weierstrass on higher curves and surfaces (Biermann (1973),
108). Thus, in his time, Kotter was considered a successful synthetic geometer.

In his history, Kotter clarified that synthetic geometry included practices from pure or
elementary geometry and geometry of position. Explaining the necessary length and detail
of his presentation, Kétter pointed to the arduous calculations of analytic geometry and
the particular cases necessary in the development of synthetic geometry. He described the
gradual development of a synthetic method that could address geometric problems, which

at first had been limited to analytic approaches.

Griff sie zunéchst nur gelegentlich und wenig methodisch ein, um Abkiirzungen
in der Herleitung von Resultaten zu erzielen, welche sich mit den noch wenig
ausgebildeten Methoden der analytischen Geometrie nur nach beschwerlichen
Rechnungen gewinnen liessen, so forderte sie schliesslich immer entschiedener
die vollige Aufdeckung eines rein geometrischen Weges, der von den ersten Vo-
raussetzungen zum Resultate fithrt. Vielfach wird dieses Ziel nur nach mehreren
Versuchen erreicht. So erweisen sich 6fters gerade solche Arbeiten fiir die En-
twickelung der synthetischen Geometrie als sehr bedeutungsvoll, die an sich neue

Resultate nur in geringem Masse bieten. (ibid)*°

38«The report aims to provide the most complete exposition of all those geometric developments, which
can be traced back to the fundamental theorem of geometry of position by purely geometric means.”

This fundamental theorem, also known as the fundamental theorem of projective geometry, traced back to
Von Staudt and states that a projective relationship is determined by three initial elements (often points or
lines) and their corresponding three elements under that projection. Jean-Daniel Voelke details the evolving
proof of the history of the fundamental theorem of projective geometry in Voelke (2008).

39In “A History of Prize Problems” Gray provides a partial list of recipients of the Steiner prize, the terms
of which were changed in 1888 to be awarded less frequently under the impetus of Kronecker (Gray (2006),
17).

404Tf it [synthetic geometry] stepped in at first only occasionally and not very methodically in order to
arrive at abbreviations in the derivation of results, which were obtained with still underdeveloped methods
of analytic geometry only after arduous calculations, then it more and more resolutely claimed the complete
exposure of a purely geometric path, which leads from the first hypotheses to the results. Frequently this
goal was achieved only after many attempts. Often exactly such works which provide new results only in
limited quantity prove to be very meaningful for the development of synthetic geometry.”
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Thus Kotter distinguished early nineteenth century synthetic geometry as more intuitive
than analytic geometry, but lacking innovation and uniformity, which only arrived later.
Even after the transition to modern geometry, the primary difficulty of synthetic geometry,

for Kotter, remained the particularity of the figure.

Die einzige Schwierigkeit besteht darin, genau zu entscheiden, ob der Zustand

einer Figur ein allgemeiner oder ein besonderer ist. (ibid, 121)*!

Kotter suggested that modern synthetic geometry was only achieved after Poncelet, who
still struggled to distinguish between general and particular figures. Consequently, Kotter
dated the beginning of “synthetic geometry as a science” back to 1822 and Poncelet’s Traité.
He then chronicled how the work of Poncelet, Steiner, Chasles and others gradually had
rendered the synthetic geometry increasingly general.

Kotter explained that analytic results had often preceded their later synthetic devel-
opment. To show this “natural” progression, he therefore included the original analytic
reference, which explained the preponderance of formulas in his text. Indeed, although
the title claimed to be a report on synthetic geometry, Pliicker appeared in the appendix
over thirty times and Kotter also thoroughly described results from analytic geometry in
the work of Md&bius, Magnus, Bobillier, and Gergonne. In part because of this choice be-
tween methods, Kotter cited numerous instances of Pliicker and Steiner arriving at the
same result or proving the same theorem. While on occasion Steiner had not properly
credited Pliicker’s prior publications, Kotter’s text indicated no overt hostility between the
two geometers (ibid, 272, 450).

This was not because Kotter avoided controversial subjects all together. Although he
focused on explaining the technical geometry and surrounding publications, this included
Poncelet’s “unjustified attacks” on Pliicker with respect to potential plagiarism in his debut

publications in “modern analytic geometry.”

An die dargelegten Entwickelungen kniipft sich noch ein nicht sehr angenehmes
Nachspiel; ich habe der in ihrer Masslosigkeit jedenfalls unberechtigten Angriffe
Poncelet’s auf zwei Arbeiten von Pliicker zu gedenken. Die eine ist lediglich
analytischer Natur und gehort zu Pliicker’s Erstlingsarbeiten auf dem Gebiete

der modernen analytischen Geometrie. (ibid, 137)%2

Despite the occasional misunderstandings and improper citations between analytic and
synthetic geometers, Kotter observed how early nineteenth century geometers mutually

developed results not limited by methodological boundaries. For Koétter, this resulted in a

41«The only difficulty remains to decide exactly whether the state of a figure is general or particular.”

42« A not very pleasant sequel joined in the known developments; I have to mention Poncelet’s attacks,
altogether unjustified in their intemperance, against two works of Pliicker. The one was exclusively analytic
in nature and belonged to Pliicker’s first works in the field of modern analytic geometry.”
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deepening of both proof methods. Specifically, synthetic geometry had progressed from the

studying particular figures toward studying geometric objects “in general.”

1.4.4 Gaston Darboux (1904)

In a similar vein to Klein’s Erlanger Programm, Gaston Darboux (1842-1917) gave an ad-
dress before the section on Geometry at the International Congress of Arts and Science
entitled “A Survey of the Development of Geometric Methods” in St. Louis in 1904. The
Congress was intended for scholars from the United States, Canada and Europe to share
talks on their research areas, and in order to encourage a larger audience there was no
attendance fee. Presumably, Darboux originally spoke in French, as the published version,
which appeared in the Bulletin of the American Mathematical Society had been trans-
lated by Henry Dallas Thompson. However, we were unable to locate an original French
manuscript. In this talk, Darboux traced the trajectory of geometry from the late eigh-
teenth century, and particularly the work of Monge, to the present. He classified this time
period as constituting “modern geometry.” Darboux hinted at a fissure between geometry

and analysis in characterizing the unifying nature of Monge’s contributions.

He, the regenerator of modern geometry, pointed out from the beginning-though
his successors may have forgotten it—that the alliance between geometry and
analysis is useful and productive; and that perhaps this alliance is a condition
for success to them both. (Darboux (1904), 519)

Darboux described Poncelet as one of these forgetful successors, who had neglected “every-
thing in Monge’s work that belongs to cartesian analysis or concerns infinitesimal geometry.”
Further, Darboux posited that Poncelet’s methods “in opposition to the analytic geometry”
met with no favour among French analysts, but were quickly adopted by geometers “stirring
up in many directions the most profound researches.” In particular, Darboux mentioned
the articles in Gergonne’s Annales as well as independent publications by Mdébius, Pliicker,
Steiner and Chasles. The latter two geometers practised pure geometry or synthesis and

defined their work in opposition to analysis or analytic geometry.

Those who, like Chasles and Steiner, devoted their whole lives to inquiries in pure
geometry, opposed to analysis that which they called synthesis; and adopting
in the main rather than in detail the tendencies of Poncelet, they proposed to

institute an independent theory, a rival to the cartesian analysis. (ibid, 522)

Darboux explained in broad detail how Poncelet, Chasles and Steiner had generalized and
extended synthetic geometry to match analytic geometry. On the other side, was the

perfection of analytic geometry at the hands of Gergonne, Bobillier, Sturm and Pliicker.
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While Chasles, Steiner, and later, as we shall see, von Staudt, applied them-
selves to the task of constructing a rival doctrine to analysis, thus in a way
setting up one altar against another, Gergonne, Bobillier, Sturm, and above
all Pliicker, were perfecting the cartesian geometry and developing an analytic

system somewhat adequate to the discoveries of the geometricians. (ibid, 524)

Here also, Darboux emphasized opposition. The analytic geometers measured their system
against geometry. In this rivalry, Darboux allotted greater success to analytic geometers
who could “bring out the full meaning of those conceptions which the so-called synthetic
geometry had not been able to master completely.” However, both methods benefitted from
the competitive atmosphere and Darboux celebrated a “brilliant period [...] for geometric
research of every kind,” with analysts stimulating geometricians and vice versa. Even
if analytic geometry appeared as ultimately more general and more complete, synthetic

geometry occupied an “honourable position.”

Such were the principal investigations which at that time reinstated synthetic
geometry in its honorable position, and assured to it during the last century the
place which belongs to it in mathematical research. Numerous and illustrious la-
borers took part in this great geometric movement, but it must be acknowledged
that it had Chasles and Steiner as its leaders. (ibid, 529)

In fact, Darboux suggested that the “brilliancy displayed by their marvellous discoveries”
threw the foundational work of von Staudt into the shade. Darboux summarized many more
areas of study than those practiced by the geometers that he called analysts or synthesists,
including infinitesimal geometry, intrinsic geometry, non-euclidean geometry, and analysis
situs. Despite the cross-over between certain geometers, these various other “methods” were
presented as independent of the ongoing rivalry.

In concluding, Darboux returned to analysis and pure geometry. He admired the fruit-
fulness and power of the former, but expressed concern about the limited number of pure

geometers at the beginning of the twentieth century.

Do not let us forget that while analysis has acquired means of investigation
which formerly it lacked, nevertheless it owes those means largely to the con-
cepts introduced by the geometricians. Geometry must not remain, as it were,
shrouded in its own triumph. It was in the school of geometry that we have
learned, and there our successors will have to learn it, never blindly to trust to
too general methods, but to consider each question on its own merits, to find in
the particular conditions of each problem either a direct way toward a simple
solution or the means to apply in an appropriate manner those general methods

which every science should collect. (ibid, 542)
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However, instead of attempting to match geometry against analysis, Darboux proposed
cultivating it for “its own advantages,” because of and not despite its individual and visual
nature. In this conclusion, Darboux used geometry and pure geometry interchangeably, and

anticipated that the subject would be “revived” through future applications of mathematics.

1.4.5 Max Simon (1906)

Several of the geometry articles originally intended for the Encyklopddie resulted in separate
monographs. Among these was a report on the development of elementary geometry by Max
Simon (1844-1918), who taught mathematics in Strassburg. In his introduction, Simon
described how Klein had first asked him to write Uber die Entwicklung der Elementar-
Geometrie im XIX. Jahrhundert, which was then instead published as a book within the
Jahresbericht der Deutschen Mathematiker- Vereinigung in 1906 (Simon (1906)).43

Simon referenced scores of histories, textbooks, and research publications in compiling
this volume, which is less a historical exposition of the development of elementary geometry
than a reference book. Following the table of contents or the name index, one could de-
termine who contributed to what elementary geometry developments, including geometers
preceding the nineteenth century (Archimedes, for example, had 31 entries).**

In his introduction, Simon explained the difficulty of delimiting elementary geometry,
especially in light of nineteenth century developments. In order to not include too much or
too little, Simon proposed to focus on problems determined “primarily by the needs of mid-
dle school teachers.” He continued by acknowledging, through the example of Gergonne’s
solution to the problem of Apollonius, that many theorems of elementary geometry could be
found analytically.*> Simon never explained what constituted analytic geometry, although
he used the term throughout the text to describe the contributions of Pliicker, Gergonne,
Carnot, Mobius, Karl Wilhelm Feuerbach, Francois-Joseph Servois, Charles Sturm, Chris-
tian Gudermann and numerous later geometers, including himself. On the other hand, he
only labeled a proof, solution, or text as “synthetic geometry” when directly comparing
it to an adjacent example of analytic geometry. Thus, the publications of Monge, Pon-
celet, Steiner, Charles Brianchon, and Michel Chasles were sometimes described as “syn-

thetic geometry” and sometimes just as “geometry.” His numerous bibliographies scattered

43 Accounting for the limited readership of Simon’s text, Jesper Liitzen explained that Klein decided to
omit Max Simon’s contribution due to imprecise reference citations (Liitzen (2009), 376).

44Coolidge conveyed the overwhelming breadth of Simon’s text in his general description. “In Simon we
have an attempt to make a catalogue of contributions in the nineteenth century alone. The writer covers
ten broad topics: 1) History and methods, 2) Parallels, 3) The circle, 4) Areas, 5) The triangle, 6) Polygons,
7) Plane configurations, 8) General space relations, 9) Special space relations, 10) Plane and spherical
trigonometry. He does not give titles; occasionally he gives a line or two of explanation, frequently merely
the author’s name and place of publication. But the book contains upwards of 250 pages, and the number
of references seems to be in the general vicinity of ten thousand.” (Coolidge (1940), 51)

#®We will examine several solutions to this problem in Chapter IV.
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throughout the text suggest that the term “synthetic geometry” became a more common
description in German texts during the second half of the nineteenth century.*6

As we have noted above, Steiner and Pliicker often contributed to the same areas of
research, and many of these were documented within dense chronological paragraphs of
textual references. Simon even designated a result on conic sections and polygons as the
Steiner-Pliickerschen Sitze (Simon (1906), 185).4” Overall, Simon’s work fully displayed
the consistent repetition of results among nineteenth century geometers that had only been

suggested by other authors.

1.4.6 Gino Fano (1907)

Gino Fano (1871-1952) had been a student of Klein, and in 1871 he translated Klein’s
“Erlanger Programm” into Italian. In 1907, as a professor at the University in Turin, he
wrote “Gegensatz von synthetischer und analytischer Geometrie in seiner historischen En-
twicklung im XIX Jahrhundert” for the volume on geometry in Klein’s Encyklopddie (Fano
(1907)). By its title alone, the text suggested the “historical” existence of a methodological
opposition, an opposition that Fano would present as no longer active. Fano explicitly de-
fined both methods, although rather circuitously. For him, analytic geometry was geometry

with the help of analysis.

Man unterscheidet allgemein zwei Arten von Geometrie: die synthetische Ge-
ometrie, welche die Figuren an sich betrachtet, und die analytische Geometrie,
welche mit Hilfe der Analysis ihr Lehrgebdude aufstellt. Es liegt in der Natur
der Sache, dass von diesen beiden Arten, geometrische Gebilde zu untersuchen,
ausschliefilich die erste in den &alteren Zeiten angewandt wurde, wahrend die
zweite erst im 17. Jahrhundert, nach Entstehung der Algebra, als Anwendung
der Algebra auf die Kurvenlehre zur Geltung kam. (Fano (1907), 223)48

46Simon cited three books with “synthetic” in their title, following his citation style: “T. Geiser, Einleitung
in die synthetische Geometrie 1869;” “Th. Reye, Die synthetische Geometrie im Altertum und in der Neuzeit.
Rektorrede, Strassburg, 1886, 2. Auth. 1899, auch im XI Band des Jahrbuchs des Deutsch. Math. Verein.
1901.;” “A. Milinowski, Elementar-synthetische Geometrie der Kegelschnitte. 1. Abschnitt Leipzig (1882).
(2. wohlfeile Ausgabe 1896.)”

47Simon referenced “Note sur le theoréme de Pascal” written by Pliicker for Crelle’s Journal in 1847. Here
Pliicker corrected a recent article by Cayley “Sur quelques théorémes de la géométrie de position,” in which
Cayley had referenced and critiqued Steiner’s research on the sixty hexagons formed by six points on a conic
(Cayley (1845)).

Je me propose de faire disparaitre de ce qui précéde tout ce qu’il renferme d’incorrect et
d’hypothétique. (Pliicker (1847), 337)

Pliicker noted that Steiner had first published an incorrect theorem in 1828, which Pliicker had corrected in
1829. Steiner accordingly modified his theorem in his 1832 book, and that book [Systematische Entwickelung
der Abhdngigkeit geometrischer Gestalten von Einander] had been cited by Cayley. Here Pliicker supplied
the analytic proof, missing in Cayley’s presentation, and referred to the theorem as belonging to both him
and Steiner.

48«One generally distinguishes two types of geometry: synthetic geometry, which examines the figures in
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Fano thus emphasized the figure as the central object of geometry, to which analysis could
be applied. Generally, the difference between analytic and synthetic geometry hinged on
the representation of geometric objects: by coordinates and equations or by points and
figures. Later in the text, Fano provided a more detailed description of the process of
analytic geometry, as the translation of geometric statements into equations, their solution

via analysis, and a translation back into geometry.

In der analytischen Behandlung lassen sich drei wesentliche Momente unter-
scheiden: 1) die analytische Ubersetzung des Problems, in welcher es sich darum
handelt, die vorliegenden Umsténde durch Gleichungen auszudriicken, d.h. “in
der Sprache der analytischen Geometrie zu schreiben”; 2) die Ableitung, von
diesem System von Gleichungen ausgehend, der weiteren Gleichungen oder der
Koordinatenwerte, welche die aufgesuchten Gebilde darstellen; eine rein ana-
lytische Aufgabe, in welcher die von der Analysis der Geometrie geleistete Hilfe
besteht; 3) die geometrische Deutung der analytisch gewonnenen Resultate. Der
in dem Einzelproblemen 1) und 3) verlangte Ubergang von einer geometrischen
Beziehung zu ihrem analytischen Bilde und umgekehrt ist oft ein unmittelbarer,
fast unbewusster. (ibid, 228)4

Such a description emphasized the application of analysis to geometry.?°
The nineteenth century participants in the development of both geometries remained

familiar. Monge served as a forerunner for both geometrical methods, followed by Poncelet,

themselves, and analytic geometry, which sets up its theories with the aid of analysis. It is in the nature of
things that among these two ways of investigating geometric structures, exclusively the former was applied
in ancient times, while the latter came into acceptance only in the 17th century, after the creation of algebra
as the application of algebra to the theory of curves.”

494Tn the analytic approach one can distinguish three essential moments: 1) the analytic translation of the
problem in which the question is to express the existing situation through equations, that is, “to write in the
language of analytic geometry”; 2) the derivation, starting from this system of equations, of further equations
or coordinate values, representing the desired structures; a purely analytic exercise in which consists the
assistance provided to geometry by analysis; 3) the geometric interpretation of the analytically obtained
results. The translation required in steps 1) and 3) from a geometric relationship to an analytic picture and
vice versa is often direct and almost unconscious.”

50Kline explored the question of whether analytic geometry was perceived as real geometry in the work of
Chasles.

The objections to analytic methods in geometry were based on more than a personal prefer-
ence or taste. There was, first of all, a genuine question of whether analytic geometry was
really geometry since algebra was the essence of the method and results, and the geometric
significance of both were hidden. Moreover, as Chasles pointed out, analysis through its formal
(836) processes neglects all the small steps which geometry continually marks. The quick and
perhaps penetrating steps of analysis do not reveal the sense of what is accomplished. The
connection between the starting point and the final result is not clear. Chasles asks, “Is it then
sufficient in a philosophic and basic study of a science to know that something is true if one
does not know why it is so and what place it should take in the series of truths to which it
belongs?” The geometric method, on the other hand, permits simple and intuitively evident
proofs and conclusions. (Kline (1972), 835)
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Mobius, Steiner and Chasles on the side of synthetic geometry opposite Mobius (again) and
Pliicker on the side of analytic geometry. Later geometers including von Staudt, Grassmann,
Cremona, Thieme, Kotter, De Paolis, and Clebsch were classified as neither synthetic nor
analytic. Fano concluded with a chapter on differential geometry and the work of Monge,
Dupin, Gauss, and Lie.

While appreciating the differences between both geometries, Fano concluded the syn-
thetic and analytic methods could address the same geometric questions. Fano modified
this statement with respect to specific areas of inquiry, such as general algebraic curves and
surfaces of any degree, which he assessed as solely within the purvey of analytic geometry.
With self-declared “historic hindsight” Fano thus assessed that the differences between the
methods were superficial. In particular, he classified the distinction as merely a matter of

expression or speech [Sprache].

Trotz des scheinbaren Gegensatzes ldsst sich in den Methoden der beiden Ge-
ometrieen [sic] vielfach derselbe Leitfaden erkennen. Wird eine Frage den beiden
Behandlungsweisen unterworfen, so ist oft der Gedankengang nur einer; geén-
dert ist bloss die Ausdrucksweise, die “Sprache”. (ibid, 228) °!

Nevertheless, he recognized the advantages accrued from the past divide, beginning with
Poncelet’s “neueren synthetischen Geometrie” and its progress through the nineteenth cen-
tury. The two methods were portrayed as driving each other and developing new and more

general areas and strategies of research.

Durch die synthetische Entwicklung der projektiven Geometrie erhielt die ana-
lytische Geometrie einen bedeutenden Anstoss; neue Probleme boten sich ihrer
Behandlung dar, und fiir diese Behandlung mussten auch neue Methoden geschaf-
fen werden. (ibid, 238)°2

Fano continued to describe some of these recent developments in more specific details, rely-
ing upon published texts. In the context of generating and propagating new mathematics,
the “Gegensatz” ultimately appeared as positive and productive.

In the French version of the FEncyklopddie, the Algerian mathematician Sauveur Carrus
adapted Fano’s article, which appeared in 1915 (Carrus and Fano (1915)).>3 Carrus added
citations to Darboux’s speech on geometrical methods (although with a French title) (Dar-

boux (1904)), and placed greater emphasis on the work of French geometers, in particular

51«Despite the apparent opposition, the same guidelines can often be seen in the methods of both geome-
tries. If a question is subject to the two modes of treatment, the course of thought is often unique; what is
changed is only the expression, the ‘language’”

52¢Through the development of synthetic projective geometry, analytic geometry received an important
impetus; new problems offered themselves to its treatment, and for this treatment new methods also had to
be created.”

53Héléne Gispert has compared and analyzed the differences between the French and German editions in

Gispert (1999).
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Chasles. The definitions of analysis and synthesis remained essentially the same. The three
most significant differences between the German and French version are (1) the change in
title to a much more neutral “Exposé parallele du développement de la géométrie synthé-
tique et de la géométrie analytique pendant le 19iéme siecle;” (2) crediting Chasles with a
successful synthetic treatment of imaginary points (Carrus and Fano (1915), 202); (3) the
emphasis on contributions of French geometers and editing out Fano’s suggestion that “the

centre of geometric activity” moved to Germany.

Mais il faut, des maintenant, noter une différence fondamentale entre les ten-
dances des grands géometres. Les uns, comme M. Chasles et J. Steiner, K.
G. Chr. von Staudt plus tard, se consacrérent uniquement aux recherches de
pure géométrie et se proposerent de constituer une doctrine autonome, rivale
de l'analyse cartésienne. Les autres, J. D. Gergonne, E. Bobillier, J. Ch. F.
Sturm, et en Allemagne A. F. Mo6bius et J. Pliicker surtout, perfectionnaient
I'instrument de R. Descartes et découvraient de nouvelles méthodes s’adaptant
en quelque sorte aux travaux de J. V. Poncelet. (Carrus and Fano (1915), 197
198)>4

By broadening the scope of early nineteenth century geometers, Carrus further moved
analysis and synthesis away from Pliicker and Steiner, and instead emphasized the parallel,
mutually influential, and widespread development of both pure and analytic geometry, only

subtly underscored by rivalry.

1.4.7 Arthur Schoenflies (1909)

Perhaps in accord with Klein’s call for unifying the methods of geometry, the Encyklopddie
article that followed Fano’s historical treatment of the opposition between synthetic and
analytic methods was on “Projektive Geometrie” written by Arthur Schoenflies (1853-1928)
in 1909 (Schoenflies (1909)). At the time, Schoenflies held the chair in applied mathemat-
ics at the University of Konigsberg. Schoenflies explained that he had first submitted the
text several years earlier, in 1901, but the publication had been postponed “for editorial
reasons.” He divided the text into six parts addressing different defining features of projec-
tive geometry: a historical introduction, general terms and methods, particular problems,
foundational questions, and projectivity as an operation. Schoenflies provided a list of text-

books on projective geometry, which included works by Carnot, Poncelet, and Steiner as

54But one must now note a fundamental difference between the tendencies of the great geometers. The
ones, like M. Chasles and J. Steiner, K. G. Chr. von Staudt later, devoted themselves uniquely to research in
pure geometry and proposed to constitute an autonomous doctrine, rival of Cartesian analysis. The others,
J. D. Gergonne, E. Bobillier, J. Ch. F. Sturm, and in Germany A. F. Md&bius and J. Pliicker above all,
perfected the instrument of R. Descartes and discovered new methods to adapt somewhat to the work of J.
V. Poncelet.
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representatives from the early nineteenth century. However, it was not until the mid-1870’s

that the term “projective geometry” began appearing in titles of books and articles.
Schoenflies cited Kotter’s report on synthetic geometry as his primary historical source,

and extended Kotter’s research up to the end of the nineteenth century. However, Schoen-

)

flies only used the term “synthetic geometry” once, in a footnote, in order to describe a
historical account written by Otto Ludwig in 1900. Thus he did not use synthetic to describe
nineteenth century developments.

Schoenflies described Poncelet’s work as the first exhibiting a “general projective way of
thinking,” by providing a geometric interpretation of infinite elements and imaginary quan-

9

tities. Schoenflies noted that “analysts,” including Gergonne and Pliicker, had developed
“analytische Darstellung” of these concepts. Similarly, the imaginary infinitely far tan-
gent points between two circles that Poncelet had introduced geometrically were only later
fully understood on the basis of their “analytic-metric nature” (Schoenflies (1909), 396).
Throughout his text, although usually in footnotes, Schoenflies cited other contributions
from “analysis” by contrast to those from geometry. For example, in describing Steiner’s
contributions to the development of quadratic relationships Schoenflies included a footnote

to the earlier analytic treatment by Pliicker and Magnus.

Analytisch tritt die By zuerst bei J. Pliicker auf, J.f. Math. 5 (1829), p. 28,
sowie bei A. J. Magnus, der sie freilich fiir die allgemeinste eineindeutige Punk-

tverwandtschaft hielt, da er die Eineindeutigkeit von vornherein als Bestehen
einer bilinearen Relation deutete, J. f. Math. 8 (1831), p. 51. (ibid, 477)%°

Schoenflies provided a few other instances of simultaneous results by Steiner and Pliicker,
labelling the former as geometric and the latter as analytic.

Schoenflies had served as an editor for Pliicker’s mathematical works and wrote with
great admiration for his contributions to geometry in his Finfiihrung in die analytische Ge-
ometrie der Ebene und des Raumes (Schoenflies (1931)). Yet Plicker’s work was largely
excluded from this historical treatment. As a case in point, Schoenflies described how Pon-
celet and Gergonne defined the principle of duality and their resulting polemical exchange
without mention of Pliicker’s involvement. When Schoenflies returned to the principle of
duality in his 1931 monograph Finfiihrung in die analytische Geometrie der Ebene und des

Raumes, both Pliicker and M&bius also received credit.

Ein letztes Streben wissenschaftlichen Erkennens ist auf das Einheitliche in der

Fiille der mannigfachen Gestalten gerichtet. In der Geometrie ist dies Streben

55«J. Pliicker first addressed the B analytically, J. F. Math. 5 (1829), p. 28, similarly A. J. Magnus,
who certainly maintained the most general individual change of coordinates, here he interpreted the unity
correspondence from the first as a bilinear relation, J. f. Math. 8 (1831), p. 51.7
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in den letzten hundert Jahren von grossem Erfolg gekront gewesen. Dual-
itit, projektive Denkweise und Ubertragungsprinzipien, Dualisierung und Ho-
mogenisierung des Koordinatenbegriffs sind seine Marksteine. In V. C. Poncelet
[sic], J. D. Gergonne, A. F. Mobius und J. Plicker haben wir die Lehrmeister
zu erblicken, die uns in erster Linie dahin fiihrten. (Schoenflies (1931), 193)5

Schoenflies did not use the expressions “synthetic” or “pure” to describe geometry, and
by differentiating the work of “analysts” he suggested that geometry itself was inherently not
analytic. The method and results called projective geometry by Schoenflies aligned with
those of the modern synthetic geometry described by Kotter. For Schoenflies, geometry

possessed certain well-defined positive qualities, exemplified in the work of Steiner.

Der méchtige Fortschritt, den das Studium der geometrischen Gebilde den Erzeu-
gungsmethoden von J. Steiner verdankt, beruht wesentlich auf zwei Umsténden.
Erstens besitzen die durch ihn geschaffenen Begriffe und Methoden unmittel-
bare konstruktive, der Anschauung zugéngliche und daher im besten Sinn ge-
ometrische Vorziige, zweitens aber erwiesen sie sich als der weitesten Verallge-

meinerung zuginglich. (ibid, 415-416)57

In particular, as exhibited by Steiner’s method, Schoenflies emphasized the constructive
nature of geometry, and thus, a non-constructive or indirectly constructive method was not
geometric.%8

Schoenflies did not describe the qualities or practices of analysis, although he observed
that it was better suited to particular problems concerning higher degree curves or surfaces
and imaginary points, lines, and planes. Yet even when geometry appeared more difficult
than analysis, Schoenflies emphasized how recent developments had resulted in greater
generalization and uniformity.

As both a sequel and counterpoint to Fano’s article, Schoenflies presented a history of
a single modern geometry with an autonomous set of geometric practices, problems, and
principles that defined projective geometry. By separating his subject from analysis or
analytic geometry, he offered an alternative and more limited interpretation of “projective

)

geometry” as compared to the methodologically unified version proposed by Clebsch and

Klein, which included analytic and geometric practices.

56 A last pursuit of scientific knowledge is directed toward unity in the mass of multiple forms. In geometry,
this quest has achieved great success in the last hundred years. Duality, projective ways of thinking and
transmission principles, dualization and homogenization of coordinates are its landmarks. In V.C. Poncelet
[sic], J.D. Gergonne, A.F. Mobius and J. Plicker we may see the teachers, who led us in the first place.

57«The mighty progress that the study of the geometric structure owes to the production methods of J.
Steiner is based mainly on two circumstances. First the concepts and methods created by him presented
the merits of being directly constructive, accessible to intuition, and therefore geometrical in the best sense,
secondly, they also proved open to the broadest generalization.”

58We will explore the constructive nature of geometry, with respect to figures, in Chapter II.
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The German article on projective geometry was also adapted into French. Like Carrus,
the French mathematician Arthur Tresse also emphasized the importance of Chasles in

)

the 1913 “Géométrie projective,” especially in footnotes (Tresse and Schoenflies (1913)).
Tresse also cited analytic developments in the text with greater prominence than Schoenflies
had. Writing on alternative versions of the principle of duality presented by Gergonne and
Poncelet, Tresse noted that the principle was established by the analytic methods of Mo6bius,

Pliicker, and Chasles.

Ce point devait d’ailleurs étre établi quelques années plus tard, par des méthodes
analytiques basées sur ’analogie des représentations analytiques du point et de
la droite, par A. F. Md&bius et par J. Pliicker en Allemagne, par M. Chasles en
France. (Tresse and Schoenflies (1913), 14-15)

This quote is somewhat surprising compared to our other sources, as Tresse seemed to
suggest that Chasles had also engaged in analytic geometry.
Tresse also emphasized Chasles contributions to the methods of projective geometry,

thus substantially modifying Schoenflies’ praise of Steiner.

La découverte par J. Steiner des méthodes projectives de génération des figures
géométriques marque une date capitale dans le développement de la géométrie
projective. Vulgarisées presque aussitot, grace aux travaux de M. Chasles, qui
ne connaissait qu’incomplétement ceux de J. Steiner, ces méthodes prirent im-
médiatement une place prépondérante dans les recherches géométriques. (ibid,
41)

Tresse interjected the contributions of Chasles throughout the history of projective geom-
etry, and so rendered the subject as an outgrowth of the single French geometer’s studies.
Thus Tresse’s interpretation appeared more homogeneous with respect to participants and

contributors than Schoenflies’s original text.

1.5 Histories of mathematics

1.5.1 Florian Cajori (1896)

Florian Cajori (1859-1930) was an American professor of applied mathematics and physics,
best know for his numerous texts on the history of mathematics. He wrote A History of
Mathematics for an audience of “teachers and students” (Cajori (1893)). Beginning with
Babylonian mathematics and extending up to the end of the nineteenth century and the

research of his contemporaries, Cajori organized his text under broad chronological headings.
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The final section, “Recent Times,” included seven subject-based chapters, the first two
of which were “Synthetic Geometry” and “Analytic Geometry.” Cajori opened his discussion

of synthetic geometry by declaring an end to the “conflict between geometry and analysis.”

The conflict between geometry and analysis which arose near the close of the
last century and the beginning of the present has now come to an end. Neither
side has come out victorious. The greatest strength is found to lie, not in the
suppression of either, but in the friendly rivalry between the two, and in the

stimulating influence of the one upon the other. (Cajori (1893), 341)

The rivalry Cajori described was not inside geometry, but within mathematics in general.
In Cajori’s assessment, the conflict was friendly and stimulating, and by the late nineteenth
century had ended in a draw. Cajori seemed to suggest that the divide between geometry
and analysis served as an impetus for the creation of “modern synthetic geometry” in this
same time period.

Cajori characterized modern synthetic geometry by its investigative goal, “a desire for
general methods which should serve as threads of Ariadne to guide the student throughout

" As developers and practi-

he labyrinth of theorems, corollaries, porisms, and problems.
tioners of synthetic geometry, he cited first Monge, Carnot, and Poncelet in France; then
Mobius and Steiner in Germany; and finally Chasles, von Staudt, and Luigi Cremona in
their respective countries. In a brief biography on Steiner, Cajori quoted his title as “‘the
greatest geometrician since the time of Euclid”’ (ibid, 343). His account of Steiner’s life
accorded with this positive assessment: “in his hands synthetic geometry made prodigious
progress.” Cajori also emphasized Steiner’s exclusivity: “Steiner’s researches are confined to
synthetic geometry. He hated analysis as thoroughly as Lagrange disliked geometry.” (ibid,
345). Although, Cajori provided careful references in his summary of Steiner’s mathemat-
ical contributions, this comment was left uncited. Cajori bestowed equal credit to Chasles
and Steiner for the elaboration of “modern synthetic or projective geometry.” Although
Chasles was not categorized as a participant in the “conflict,” Cajori continued to compare
his work in synthetic geometry with analysis. “The labours of Chasles and Steiner raised
synthetic geometry to an honoured and respected position by the side of analysis.” (ibid
347). Cajori’s description of synthetic geometry continued to the end of the nineteenth
century and encompassed non-Euclidean geometry. Steiner served as the lone example of
overtly expressing methodological preference.

Cajori directly spoke to the difference between modern synthetic and analytic geometry

in his introduction to the following chapter on “Analytic Geometry.”

Modern synthetic and modern analytical geometry have much in common, and
may be grouped together under the common name “projective geometry.” Each

has advantages over the other. The continual direct viewing of figures as existing

54



in space adds exceptional charm to the study of the former, but the latter has the
advantage in this, that a well-established routine in a certain degree may outrun
thought itself, and thereby aid original research. While in Germany Steiner and
von Staudt developed synthetic geometry, Pliicker laid the foundation of modern

analytic geometry. (ibid, 358)

Although Steiner and Pliicker were positioned on either side, the methods they practiced
were not presented as antagonistic. As noted in our introduction, Cajori, citing Dronke,
repeated the allegations against Steiner with respect to Pliicker and Crelle’s Journal. Cajori
situated this episode with respect to a general German preference for synthetic methods,
“in Germany Pliicker’s research met with no favour. His method was declared to be un-
productive as compared with the synthetic method of Steiner and Poncelet!” Cajori added
succinctly that Pliicker’s “relations with Jacobi were not altogether friendly” (ibid, 359).
Cajori thus exhibited changing interpretations of a methodological divide within or in-
volving geometry. Although he stated that both synthetic and analytic geometry could be
commonly considered “projective,” in describing the distinct advantages of each he empha-
sized their differences, which was reinforced by their separation into individual chapters.
Cajori did not describe a conflict or rivalry within geometry, but instead described a conflict
between geometry and analysis, citing the Mécanique Analytique of Lagrange, by way of
introducing the subject of synthetic geometry. The inclusion of Lagrange within a chapter
on early nineteenth century geometry is striking and perhaps points to a lack of consen-
sus regarding the boundaries of analysis and geometry, or analytic geometry and synthetic

geometry.

1.5.2 Johannes Tropfke (1903)

Johannes Tropfke (1866-1939), a gymnasium teacher in Berlin, began publishing his seven
volume Geschichte der Elementar-Mathematik in systematischer Darstellung in 1902, which
he continued to re-edit and republish until 1940 (Tropfke (1903)). Each volume was devoted
to a different set of subjects, with the second, containing geometry, appearing in 1903.
This volume included a wide range of chapters on geometry, logarithms, planar trigonom-
etry, spherical trigonometry, series, compound interest, combinatorics, calculating proba-
bility, continued fractions, stereotomy, analytic geometry, conic sections, and maximums
and minimums—in that order. His discussion of “newer synthetic geometry” was in the
first chapter on simply “Geometrie” in the section on teaching similarity. Parenthetically,
Tropfke associated new synthetic geometry with projective geometry and geometry of po-
sition. Here he summarized the progressive and collective contributions of Monge, Carnot,
Poncelet, Steiner, Pliicker, von Staudt, and Mobius. Without methodological distinctions,

both Steiner and Pliicker appeared on the same side of this new geometry. According to
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Tropfke, modern geometry began in France with the work of Monge, Carnot, and Poncelet.
Referring to the latter, he noted:

In eigenen Lande wenig anerkannt, waren seine Untersuchungen von grosstem
Einfluss auf eine deutsche Schule, zu deren Vorkdmpfter sich Jakob Steiner
(1796-1863, Berlin) aufschwang, jener hochbegabte Mathematiker, der sich aus
einfachsten Verhéltnissen [...] zu den hochsten Gipfeln der Mathematik hin-
durchgerungen hatte. Ihm zur Seite stehen Plicker (1801-1868, Bonn), v.
Staudt (1798-1867, Erlangen), Moebius (1790-1868, Leipzig) und viele andere.
(Tropfke (1903), 94)%°

Here, Tropfke draws a very harmonious image of geometric progress, without methodological
distinction between geometers nor the content of synthetic and projective geometry.

In his later chapter on analytic geometry, Tropfke attributed the first “elementary-
systematic treatment of analytic geometry” in modern textbooks to Meier Hirsch and
pointed to the further work of August Crelle in this area. No other works of nineteenth
century analytic geometry were mentioned in this chapter. As we can see from these cur-
sory treatments. The subject of early nineteenth century geometry did not occupy a large
portion of these two general histories of mathematics, which would perpetuate through later

examples of this genre.

1.6 Julian Lowell Coolidge (1940)

Julian Lowell Coolidge (1873-1954) had obtained his PhD on the subject of projective ge-
ometry at the University of Bonn under Eduard Study. Through the early twentieth century
he wrote several textbooks on geometry while teaching as a professor at Harvard Univer-
sity. Coolidge provided several interchangeable accounts of nineteenth century synthetic
and analytic geometry in his books and articles, which covered various aspects of the his-
tory of geometry. Coolidge divided his first historical monograph, A History of Geometrical
Methods into three “books”: Synthetic Geometry, Algebraic Geometry, and Differential Ge-
ometry (Coolidge (1940)). Coolidge included his discussion of “analytic geometry” within
the book on Algebraic Geometry and in general used the terms interchangeably, while
“Differential Geometry” focused on the application of calculus to geometry.

Coolidge began the first book with a discussion of geometry “in the Animal Kingdom,”
and the first three chapters progressed chronologically from there. The latter three chap-

59« jttle acknowledged in his own country, his [Poncelet’s] investigations were of the greatest influence on a
German school, of which Jakob Steiner (1796-1863, Berlin) rose to be the champion, a gifted mathematician
who from humble circumstances struggled through [...] to the highest peaks of mathematics. At his side
stood Pliicker (1801-1868, Bonn), v. Staudt (1798-1867, Erlangen), Moebius (17901868, Leipzig) and many
others.”
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ters were subject specific: non-euclidean geometries, projective geometry, and descriptive
geometry. Coolidge designated the nineteenth century as the “great period” of projective
geometry. In this section he praised the advances of Poncelet, Chasles, Steiner, and Von
Staudt in formulating general, ingenious, and deep principles. However, when explaining
the details of these geometers, he admittedly put “the thing analytically,” by setting up
coordinate axes and clarifying that “the geometric treatment is very different” (Coolidge
(1940), 93, 95). As a further authorial interjection, Coolidge was judgmental of many of
his historical subjects, denigrating Poncelet’s definition of imaginary points and failure to
find the invariant cross-ratio. Like Klein, Coolidge tempered his esteem for Steiner in light
of Von Staudt’s work.

The most characteristic feature of Steiner’s work is that given by the adjective
in its title ‘systematisch’ He has a consistent uniform method for treating a
variety of figures, and he handles it beautifully. He is usually considered as the
greatest of the German school of projective geometers, but this seems to me
entirely incorrect. In originality and depth he falls far below his great successor,
Johann Karl Christian Von Staudt. (ibid, 97)

Moreover, Coolidge concluded, even Von Staudt’s “revolutionary” and “remarkable” con-
tributions could not match the simplicity and adaptability of analytic geometry, and the
section on projective geometry ended on a fairly final note that the subject has been ex-
hausted.

Coolidge returned to these same developments in describing the “Extension of the system
of linear coordinates,” his second chapter on algebraic geometry. During the early nineteenth
century, the progress of Poncelet, Chasles and Steiner had inspired “algebraic geometers”
such as Lamé, Bobillier, Gergonne, and above all Pliicker. Coolidge described Pliicker’s

exclusive dedication to algebraic methods in geometry.

He had an unshakable belief that for most purposes, algebraic methods were
infinitely preferable to the purely geometric ones recently brought into fashion
by Poncelet and Steiner. He went a good way towards proving the correctness
of his belief. (ibid, 144)

Coolidge appeared to agree with Pliicker’s preference for “algebraic methods”. By the 1940s,
he saw little opportunity for new developments in the field of synthetic geometry, although

he professed to admire the subject greatly.

Until and unless, some totally new principle is discovered, the subject of syn-
thetic projective geometry is not to-day a fruitful field for original research.
(ibid, 105)
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Coolidge argued that synthetic geometry should still be taught, for its “beauty” and “invalu-

”

able insight into the inner significance of geometrical science.” Even this well-intentioned
advocacy suggested a lost cause, which was reinforced by Coolidge’s frequent use of coor-

dinate equations in representing historical “synthetic” geometry.5°

1.7 Conclusion

While each of the above texts inform a history of early nineteenth century geometry, they
do not coincide on a single image or set of characteristics. Instead we find many different
accounts of methodological opposition. Nineteenth century geometry has been classified as
uniformly projective, as divided between analytic or synthetic, as transitioning from ancient
to modern, and as an evolving subject seeking to rival analysis. The lines of conflict shift
between narratives, as do the participants and qualities.

Even when early nineteenth century geometry was portrayed as divided between an-
alytic and synthetic methods, historical accounts emphasized different attributes of each
method. Texts dedicated to particular aspects of geometry sometimes provided definitions
or descriptions of the actual difference between the two geometries. Klein, Kotter, Darboux,
Fano, and Schoenflies point to the particular, directly constructive, figure-based, intuitive,
or evident nature of synthetic geometry or projective geometry. Analytic geometry or anal-
ysis were described as the progressive, general, uniform, calculation-based, and fruitful.
Some of these descriptions contradicted the biographies of geometers that emphasized the
individual qualities of the mathematician, and not his method. For instance, the research
of both Pliicker and Steiner was seen as both intuitive and general, even though the former
practiced analytic and the latter synthetic geometry. These geometers were thus both em-
blematic and problematic in portraying two sides of a geometry. A deeper inquiry into their
mathematics and surrounding rhetoric would help explain why they became representative
of two methods in mathematics.

In attempting to answer who were the main actors in early nineteenth century geometry,
we discovered a varying list. Among numerous cited geometers, Poncelet, Pliicker and
Steiner were repeatedly listed as key figures in the development of geometry. Further, only
Pliicker and Steiner served as examples of explicit conflict between individuals, their alleged
personal dispute sometimes overshadowing any more general methodological issues. The
emphasis on Steiner and Pliicker may be in part due to a national bias in our corpus. With

the influence of Klein’s Encyklopddie project that is only slightly mitigated by examining the

50Contemporary articles in the American Mathematical Monthly, echoed Coolidge’s regret over the present
condition of synthetic geometry. These include titles such as “The Rise and Fall of Projective Geometry”
(Coolidge (1934)), “The Neglected Synthetic Approach” (Kelly (1948)), “A Note on Synthetic Projective
Geometry” (Simons (1914)), and “Synthetic Projective Geometry as an Undergraduate Study” (Bussey
(1913)).
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French versions and the independent text of Darboux, the common chronological narrative
generally related how modern geometry began in France and then migrated to Germany. We
find this same story in the accounts of Clebsch, Dronke, Ernst, Klein, Loria, Koétter, Fano,
Cajori, and Tropfke. The French version of the same events placed greater emphasis on
the simultaneous and independent research of Chasles, thus rejecting the suggestion that
geometry research had moved exclusively to Germany or that Chasles followed German
geometers. Klein and Fano both suggested that the dissemination of French geometry also
carried the methodological debate to Germany. However, none of these texts explained how
this transfer of methodological preferences might have been communicated and adopted.
The methods of Poncelet, Steiner, Pliicker and others were often described as modern,
thus emphasizing that they broke with an older geometric tradition and initiated a set of
practices that could be applied in contemporary research. Mitigating the innovations in
methods and theories documented in the historiography of early nineteenth century geom-
etry, we find geometers continually arrived at the same results. Each text in our corpus
exhibits how geometers repeatedly republished new solutions to solved problems or new
versions of theories that had already appeared elsewhere. This aspect of the historiography
is perhaps most apparent amidst the repetition of Simon’s text. In more narrative texts in
our corpus, the lack of new results appeared to lead to priority disputes and unequal distri-
bution of credit. This may be one possible source for the later reputation for methodological
hostilities. In order to better understand what differentiated two methods, this repetition
suggests that a direct comparison could be possible within the context of a single geometry

problem. We turn to such an investigation in the following chapter.
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Chapter 2

The role of the figure: a case study

in methodological differences

2.1 Introduction

In 1817, Jean Victor Poncelet wrote a letter to the editor of the Annales, Joseph-Diez
Gergonne, on the use of “algebraic analysis” in geometry (Poncelet (1817c)).! He reiterated
these remarks when introducing his Traité des propriétés projectives des figures in 1822 and

explaining the practice of ordinary geometry,

la figure est décrite, jamais on ne la perd de vue, toujours on raisonne sur des
grandeurs, des formes réelles et existantes, et jamais on ne tire de conséquences
qui ne puissent se peindre, a I'imagination ou a la vue, par des objets sensibles;
on s’arréte des que ces objets cessent d’avoir une existence positive et absolue,

une existence physique. (Poncelet (1822), xxi)?

In this geometry, the figure—a real and existent form composed by sensible objects with
positive and absolute physical existence—was central. Moreover, this geometry was a visual,
tangible practice in which the figure was never lost from view. Poncelet continued by
criticizing the severe rigour of such a “restrained” geometry where one must repeat a proof
based on whether a given point is to the right or left of a line, and proceeded to promote
a new, modern geometry. However, the focus of study in Poncelet’s geometry (as his title

indicated) continued to be the figure.

We simply quote Poncelet’s use of “algebraic analysis” here. On the changing meanings of algebraic
analysis from antiquity through the nineteenth century, see the articles in Jahnke (2003).

2« _the figure is described, one never loses it from view, one always reasons about magnitudes, real and
existent forms, and never reaches consequences that cannot be painted in the imagination or in sight, by
sensible objects; one stops when these objects no longer have a positive and absolute existence, a physical
existence.”
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In the preceding chapter, we have seen that although the opposition between analytic
and synthetic geometry was often emphasized by writers on the history of geometry, how to
characterize this difference was inconsistent, especially with respect to particular geometers
or general methods. Further, analytic and synthetic was not the only operational division
applied to historical geometry, which was also differentiated as pure, projective, ancient or
modern. One argument, put forward in the texts of Felix Klein, Ernst Kotter, and Gino
Fano, rested on the centrality of the figure in synthetic geometry as opposed to analytic ge-
ometry. As Poncelet demonstrated, the use of figures to draw boundaries between methods
was also used by early nineteenth century geometers.

The word figure itself, did not have a fixed meaning in Poncelet’s Traité. On the most
concrete level, the term figure signified the numbered and labelled two-dimensional illus-
trations often accompanying geometric constructions and definitions, but these particular
figures occupied only a fraction of Poncelet’s researches. Poncelet discussed “a certain
general arrangement of the objects of a figure” as well as figures composed of graphic mag-
nitudes [les grandeurs graphiques| (Poncelet (1822), xii)). The connection to objects and
magnitudes suggest that figures were positional and drawable. However, figures extended
well beyond the page. They could be three dimensional, could actively move or deform,
could be projected (even projected to infinity), and could contain imaginary points. Figures
could be indeterminate or of a particular type, could be primitive or correlative. Reasoning,
quantities, expressions, and notions could be figured, as we will see below. Fundamentally,
by characterizing ordinary or pure geometry as figure-based, Poncelet intended to contrast
it with the equations and calculations of analytic geometry where the figure disappeared.
This designation may have been drawn from Lazare Carnot (1753-1823), as Poncelet had

read his 1803 Géométrie de position, where Carnot claimed that synthesis

[...] est restreinte par la nature de ses procédés; elle ne peut jamais perdre de
vue son objet: il faut que cet objet s’offre toujours a ’esprit réel et net, ainsi
que tous les rapprochemens et combinaisons qu’on en fait. Elle ne peut donc
employer des formules implicites, raisonner sur des quantités absurdes, sur des
opérations non exécutables: elle peut bien faire usage des signes, pour aider
I'imagination et la mémoire; mais ces signes ne peuvent jamais étre pour elle

que de simples abréviations. (Carnot (1803), 9)3

3«]..] is restrained by the nature of its procedures; it can never lose sight of its object: it is necessary that

this object always presents itself truly and clearly to the mind, as well all the relationships and combinations
made from it. It cannot therefore use implicit formulas, nor reason about absurd quantities, about non-
executable operations: it may well make use of signs to aid imagination and memory, but these signs can
never be more than simple abbreviations.”
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Carnot drew a contrast between synthesis and analysis, which Poncelet applied particularly
to geometry. Thus the figure was the object of geometry.*

In all its guises, Poncelet presented the figure as the primary form of geometrical evi-
dence. Following his use of the word évidence and évident, most prominently in his Traité,
we take “evidence” as a means of justification based in sensory perception or as a descrip-
tion of clear mathematics. Poncelet used these terms complementarily, for instance the
coincidence of two points was a constructive procedure that could be clearly seen (Pon-
celet (1822), 31). Even when this evidence was not supplied by concrete illustrations of
figures, the objects of geometry were emphatically representational and tangible. Thus,
according to Poncelet, the convolutions of computations found in analytic geometry were
hardly bearers of evidence. Working from Poncelet’s division between pure and analytic
geometries, in this chapter we explore how the figure-based distinction between geomet-
ric methods materialized in contemporary geometric practices, enabling us to witness how
methodological decisions effected the mathematical content and conversely. Further, we will
observe other mediums through which geometers conveyed geometric evidence and under
what circumstances the figure was lost from view. Finally, by focusing on the figure we
obtain a perspective from which to examine a second division in geometry, between ancient
and modern methods. As Kotter suggested in his historical analysis, the particular nature
of traditional geometry proved a challenge to modern synthetic geometers who strove for
greater generality. This chapter will then also consider the compatibility between figures

and generality in geometry.

2.2 Five solutions to the problem of osculating curves: a case

study in geometric methods

Early nineteenth century geometers professed that the choice of geometric method (and
consequently the form of geometric evidence) should depend on the particular problem
at hand (Dupin (1813), Poncelet (1817c), Gergonne (1817e)). In contrast to the opinion
often expressed by historians in Chapter I, early nineteenth century French geometers often
claimed that multiple methods should be cultivated to best answer a variety of geometry
problems. We will spend more time on such “philosophical” arguments about geometric
methodology in Chapters III and IV. In Chapter I, we found that geometers using new
methods often revisited the same geometric problems. It is thus particularly interesting to
focus on such a case in order to ascertain what was involved in the different methodological
approaches, particularly with respect to a division of geometry. Here we will focus on a single

geometric problem—to construct a second order curve sharing a third order contact with a

4The common aspirations and similar methods of Carnot and Poncelet have been described by Karine
Chemla and Philippe Nabonnand respectively in Chemla (1998) and Nabonnand (2011b).
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given planar curve—whose multiple solutions included conic sections, tangents, secants, and
points of intersection constructed with the ruler alone. We were led to this choice of problem
by Poncelet himself. In a methodologically driven 1817 article published in the Annales des
mathématiques pures et appliquées, Poncelet included this problem and his solution without
proof as an example of the simplicity and elegance of pure geometry (Poncelet (1817c¢)). His
first proof appeared in his Traité five years later (Poncelet (1822)). Unaware of the contents
of the latter publication, Pliicker gave an analytic proof for the problem’s solution in an
article submitted to the Annales in 1826. The published version appeared in two articles
under the name “Pluker”, dramatically altered by the journal’s editor, Gergonne, with a
new non-analytic proof. The original remained unpublished until 1904 (Pliicker (1826b),
Pliicker (1826a), Pliicker and Schoenflies (1904)). These five texts intersected when Poncelet
charged Pliicker with plagiarism in 1827 (Poncelet (1827a), Poncelet (1827b), and Poncelet
(1828¢)). The resulting confusion and controversy over this editorial indiscretion will be
discussed at length in Chapter III.

In situating the mathematics, the significance of the fact that the same publishing
venue is shared by all but one of our texts can hardly be overestimated. As we indicated in
our introduction, Mario Otero’s recent biography of Gergonne provides an insightful view
of the development of Gergonne’s Annales, which has been further supplemented by the
dissertation and articles of Christian Gérini (Otero (1997), Gérini (2010a), Gérini (2010b)).
Not only did Gergonne enjoy broad editorial liberties as in the case of Pliicker’s article, he
also commented frequently on many publications through the copious use of footnotes and
subsequent critiques. His especial interference with the work of Pliicker and Steiner will
be further revealed in Chapter IV. Gergonne’s own research included conic sections and he
further promoted this area of study among contributors by the inclusion of posed problems.
Finally, Gergonne gave every article in his journal at least one subject heading categorized
by discipline, method, content, or all of the above. This subjective labelling could create
new liaisons than those suggested by the article’s particular results.

We will begin in Section 2.3 with Poncelet’s article, “Réflexions sur 1'usage de ’analise
algébrique dans la géométrie; suivies de la solution de quelques problémes dépendant de
la géométrie de la regle” (Poncelet (1817b)). Here Poncelet advocated the use of what he
called “modern pure geometry” as simpler and more elegant than “analytic geometry” and
more general than “ancient pure geometry” This claim to modernity in pure geometry
appears to have originated with Poncelet, and we will compare his connotation of modern
with that of his contemporaries in Chapter V. He supported this argument with several
unproved problem solutions and theorems, including the problem of third order contact. In
his article, we will focus on Poncelet’s designation of three geometries and use of the figure
as the key to categorization.

Poncelet’s proposed dichotomy between modern pure and analytic geometry motivated
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Julius Pliicker’s 1826 text.> In Section 2.4, we turn to Pliicker’s original manuscript.
Through examining Pliicker’s proofs and solutions we will argue that Pliicker used coordi-
nate equations as visual geometric objects—evidence—by focusing on their form and endeav-
ouring to avoid calculations. This was Pliicker’s first geometric manuscript, and foreshad-
owed Pliicker’s consistent focus on developing innovative “forms” of geometry, often at the
expense of generating new results. Though classified as analytic geometry, Pliicker’s work
maintained a visual attention to geometric evidence. We will consider how the relationship
between evidence and existence shifted between the contexts of proving theorems versus
solving problems. In the latter situation, finding geometric solutions implied constructing
geometric objects and the imaginary was dismissed out of hand. In the former, coordinate
equations could serve as representation.

Though chronologically prior, Poncelet’s Traité was unknown to Pliicker. The text rep-
resents a dramatic shift in pure geometry that would eventually inspire Pliicker to reshape
analytic geometry. Poncelet claimed his method never lost sight of the figure, but there
was no attempt to provide a literal representation of imaginary objects. Instead, we will
witness how one could “view” imaginary points through constructing the real lines that con-
tained them. Poncelet could then define and manipulate points and lines at infinity without
providing a pictorial correspondence. Sometimes Poncelet visually indicated the points at

infinity as the infinitely distant intersection points of parallel lines, shown in Figure 2.1.

Figure 2.1: Points at infinity indicated off the page (Poncelet (1865), Planche VI)

In Section 2.6 we will review the two articles ascribed to “Pluker,” which we consider as a
unilateral collaboration between Pliicker and Gergonne. In these texts, the results remained

the same, but Pliicker’s attention to analytic form was completely lost. We will demonstrate

°In its published version, Schoenflies titles Pliicker’s work as “Die an Gergonne gesandte Abhand-
lung” (Pliicker and Schoenflies (1904)). While the existence of this posthumously published text is well-
documented, its contents have been little studied and even misinterpreted. For instance, Carl Boyer suggested
that Pliicker originally pursued pure geometry, only turning to analytic geometry as a result of Poncelet’s
negative assessment (Boyer (1956)).
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how these changes had a profound effect on the mathematical content. Pliicker’s original
treatment, conceived as providing evidence in favour of analytic geometry, was rewritten in
a particular, figure-based style with the use of two parallel columns denoting corresponding
left and right content. This latter feature was Gergonne’s stylistic invention for portraying
duality (Klein (1926a), Chemla (1989), Otero (1997), Gray (2010b)). We will consider
the implications caused by Gergonne rewriting Pliicker in this new form for the published
versions of his articles.

While the form of evidence varied from text to text, we will see that Poncelet, Pliicker,
and Gergonne argued their results within a visually sensitive geometry. Poncelet’s insis-
tence on keeping the figure in view shows the significance of vision in geometry. However,
Poncelet’s 1817 text contained no illustrated figures. Nevertheless, in the geometric con-
structions of Poncelet, Pliicker, and Gergonne a figure would be described and manipulated
with enough unambiguous detail for the reader to construct their own illustration. As we
explained in our general Introduction, Dominique Tournés has described a “virtual dia-
gram” as a diagram “that one must have in mind, but that is no longer physically drawn on
the paper, or at least which is left to the reader to draw” (Tournes (2012), 272). Further,
Tournes has shown that the use of virtual diagrams “is frequent in the analytical period
after 1750: mathematicians commonly evoke geometrical diagrams with words rather than
drawing them.” Similarly, we will denote these described but absent figures as virtual fig-
ures. We will see that Poncelet, Pliicker, and Gergonne actively referred to virtual figures
as if they were available to the reader. The difference is subtle. In the written text the
use of actual versus virtual figures might only be distinguished by a parenthetical figure
enumeration, e.g. (fig 1), and the actual figure was never embedded in the body of the text.
In the case of Gergonne’s Annales any figures were presented at the end of the issue and
in Poncelet’s Traité the figures followed the entirety of the text. So the actual figure could
only be viewed by actively flipping back and forth between the content and the illustration.

That actual accompanying figures were desirable is attested to by their proliferation
in journals and monographs. For instance, Poncelet’s Traité contains 104 figures, and the
general prevalence of figures in books on geometry will be analyzed in Chapter V. Further,
the number of figures included in each text was advertised in their catalog listings put out
by publishers as well as subsequent text reviews (for example, in Férussac’s Bulletin). On
the other hand, as the articles considered here show, many mathematical texts contained
no figures. Even for authors, such as Poncelet, who argued on behalf of the figure, the
fact that not every geometric object needed to be figured permitted including geometric
objects that might not be figurable. We will see how Poncelet, Gergonne, and Pliicker used
this allowance to speak of infinite and imaginary points and lines as if they were on the

page. The virtual figure was both more and less than its actual counterpart.® Attention

50ur differentiation between virtual and actual figures, has occasionally been side-stepped in recent stud-
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to the figure (both illustrated and virtual) reinforced different forms of visualization as a
means towards securing evidence. These extended beyond geometric constructions to the
appearance of the text itself as a visual medium.

We will also attend to different forms of visualization as a means towards supplying
evidence. In particular, Poncelet described the use of a tableau artificiel in his 1817 article—
an illustratable device for counting ordered points.” Further, Gergonne presented articles
in dual columns to visually reinforce the correspondence between results on the left and
right sides.

In Poncelet’s Traité, he gave new meaning to common geometrical objects including
points of intersection and common chords. Poncelet also referred to a single object by mul-
tiple names, emphasizing at once its myriad properties (Poncelet (1822), 155). Though not
in the texts considered here, attention to proper vocabulary was important to Gergonne
and Pliicker when introducing new geometric methods (Gergonne (1826), Gergonne (1827f),
Pliicker (1828a)). Of course, a word is not a strictly visual object. Nevertheless, words com-
prising mathematical works were intended to be seen rather than heard, and word choice
carried visual impact. In particular, we will see how Poncelet’s use of synonyms reinforced
the relationships between his figures. Though neither Poncelet’s counting strategy and
attention to language nor Gergonne’s use of dual columns were strictly geometric, we con-
tend that each of these factors contributed to the visual atmosphere and the mathematics
conveyed.

Despite the time and geography separating the mathematical educations of Gergonne,
Poncelet, and Pliicker, they shared a background in constructive geometric practices. Be-
cause of their common research interests in geometry, they could be characterized as partici-
pants in what was known even at the time as “I’Ecole de Monge,” though not even Poncelet,

who was a student at the Ecole polytechnique, actually attended Monge’s lectures.® Though

ies by denoting depicted figures as “diagrams” (Tournés (2012), Netz (1999), Mancosu et al. (2005)). Since
this terminology is absent from early nineteenth century geometry texts, we will adhere to contemporary
usage of “figure,” following Chemla (2011), Peiffer (2006) and Decorps-Foulquier (1999). When necessary
to distinguish illustrated figures, we will attempt to be as clear as possible through the use of adjectives.
Finally, we will use the phrase “geometric object” to refer to the sorts of things that geometers studied,
which in some contexts may be figures.

"This strange phrase occurs uniquely to describe this very particular problem solution in the whole of
Poncelet’s published geometric research. Furthermore, he did not use tableau in any other (real?) sense
nor artificiel to describe any other objects. Contemporary uses of artificiel lead us to an 1810 article by
Brianchon in the Journal de I’Ecole polytechnique in which he considered calcul in geometry as la méthode
artificielle des coordonnées (p. 6). Otherwise, the descriptor can be found rather frequently in chemistry or
engineering articles within the same publication venues alluding to a crafted device.

8Karen Parshall provides a list of characteristics defining a mathematical research school in Parshall
(2004).

[...] Second, that leader advocates a fundamental idea or approach to some set of inherently
related research interests or research interests that become related by virtue of the idea or
approach. Third, the leader trains students and, in so doing, imbues them with a sense
not only of the validity and fruitfulness of the approach but also of the “right” way to go
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not even Poncelet, who was a student at the Ecole polytechnique, actually attended Monge’s
lectures, all geometers situated themselves with respect to this research and practical tra-
dition. To give one example, Pliicker described his Analytisch-geometrische Entwicklungen
(1828) as pure analytic geometry in the Mongean sense: “Die von mir aufgestellte und
durchgefiihrte Behandlungsweise ist eine rein analytische, in demjenigen Sinne des Wortes,
in welchem man dasselbe seit Monge nimmt” (Pliicker (1828a), iii).? In Poncelet’s associa-
tion of evidence with geometry, he also followed Monge, who had accordingly differentiated

the qualities of geometry and analysis in his Géométrie Descriptive (1798):

Il serait a désirer que ces deux sciences fussent cultivées ensemble: la Géométrie
descriptive porterait dans les opérations analytiques les plus compliquées I’évidence
qui est son caractere, et, & son tour, I’Analyse porterait dans la Géométrie la

généralité qui lui est propre. (Monge (1798), 18)10

As Monge had succeeded in descriptive geometry, so too Poncelet strived to incorporate
greater generality without compromising the evidence of geometry.

The appropriation of Monge’s geometrical teaching and reputation is well documented
in the historical literature, see for instance Taton (1951), Belhoste and Taton (1992),
Sakarovitch (2005), and Laurentin (2007). These studies show that Monge’s school was
both more and less than his actual former students. Above all the students of Monge
were practicing geometers. For example, Belhoste describes the principal role of geometric

intuition for Monge and his school.

Le premier est le réle primordial accordé a l'intuition géométrique. Monge dit-
on, faisait de la géométrie avec les mains. Au contraire de la géométrie synthé-
tique des Anciens, les démonstrations de “la géométrie générale et rationnelle”
que pratiquait 'Ecole de Monge s’appliquent en effet & des représentations sans
figures d’objets fictifs, généralement dans ’espace, comme des lignes, des plans

et des surfaces illimités, disposés de facon arbitraire. (Belhoste (1998), 6)*!

about asking and answering questions; explicit and tacit knowledge are conveyed through the
education process. [...] Fourth, the publication of the research not only represents recognition
of the research done but also comes to reflect the external validation of the approach. This
external validation may result in the extension of the ideas and approach by other researchers
nationally and internationally. (Parshall (2004), 274)

As the secondary literature indicates, the school of Monge fits these criteria (Taton (1951), Belhoste and
Taton (1992), Sakarovitch (2005), and Laurentin (2007)). The notion of a mathematical research school has
also been discussed by Parshall and David Rowe in Parshall and Rowe (1994).

9¢The method of treatment that I have established and carried out is a purely analytical one, in that
sense of the word that has been taken since Monge.”

1041t i desirable that these two sciences be cultivated together: descriptive geometry brings its charac-
teristic evidence to the most complicated analytic operations, and in turn, analysis brings to geometry the
generality that is proper to it.”

H«PRirst is the primordial role accorded to geometric intuition. Monge they say, did geometry with his
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We note in particular, that Gergonne, Poncelet, and Pliicker were well versed in creat-
ing and reading geometric figures. Even so, the épineuse or hérissée nature of geometric
problem solving was criticized by early nineteenth century geometers, including Poncelet, as
necessitating ingenious approaches to address all possible exceptional cases (Lacroix (1805),
Poncelet (1865), Otero (1997), Nabonnand (2011b)). In his widely disseminated textbook
on teaching mathematics, Lacroix advised perfecting geometric practices through habitua-

tion to the techniques, rather than rote memorization.

...je dis autant qu’il est possible, car il serait ridicule, et quelquefois méme dan-
gereux, de vouloir rendre raison de tous les artifices que les géometres ont em-
ployés dans leurs recherches. Des yeux dirigés par une longue habitude de ce
genre de spéculations, apercoivent dans une figure, dans un calcul, des circon-
stances, prévoient dans une opération a effectuer, des effets, qu’on ne peut jamais

rendre sensibles & un commencant. (Lacroix (1805), 200)!2

Later in the same text, Lacroix compared the mathematician’s habituation to a mechaniza-

tion of operations—for geometry, constructions.

Il y a dans chaque science des choses qui ne peuvent s’enseigner, et que 1’éleve
doit acquérir par lui-méme; c’est ’habitude des procédés de la science, ou
autrement le mécanisme des opérations qu’elle prescrit: en arithmétique et en
algebre ce sont des calculs, en géométrie, des constructions. (Lacroix (1805),
207)13

Habituation was obtained only through practice, which was further enforced in Lacroix’s
textbook on trigonometry and analytic geometry, where he recommended further literature
to students in need of additional practice problems. These, and other elementary geometry
texts, will form the subject of Chapter V.

Conic sections were defined by Poncelet in the sense of Apollonius as planar sections of
a three-dimensional cone with a circular base (Poncelet (1822), 4). These circles, ellipses,

parabolas and hyperbolas were also collectively referred to as conics, curves, and lines of

hands. Contrary to the synthetic geometry of the Ancients, the proofs of the “general and rational geometry”
that the school of Monge do indeed apply to representations without figures of general fictive objects,
generally in space, like unbounded lines, planes and surfaces positioned arbitrarily.”

12« T claim that though it is possible, it would be ridiculous, and sometimes even dangerous, to memorize
all the artifices that geometers have employed in their researches. Eyes directed by a long habituation to
this kind of speculation perceive in a figure, in a calculation, circumstances that foreshadow an operation to
perform, effects that one can never render sensible to a beginner.”

134Tn each science there are things which cannot be taught, and that the student must acquire by himself;
this is the habit of the procedures of science, or otherwise the mechanism of the operations it prescribes: in
arithmetic and in algebra these are calculations, in geometry, constructions.”
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second order or degree.'* We will employ the author’s original usage in each case, but
preference of term appears to have been independent of choice of method. Through proof
or definition, early nineteenth century geometers showed that two conic sections had at
most four points of intersection.

Two conics with a third order contact—sharing a common tangent at a real point with
no other points of intersection—were defined as osculating curves and the study of contact

points of higher order was thus called the theory of osculation (shown in Figure 2.2).

Figure 2.2: Two conics with a third order contact

From an analytic perspective, the order of contact between two second order curves
could be found through successive differentiation at their intersection points.'®

In this chapter, as well as our entire dissertation, we endeavour to clearly illustrate the
geometric processes imbedded in early nineteenth century French mathematics. The reader
is encouraged to practice this geometry through participation in constructions or sketches.
However, arguments described as simple, easy, elegant, or evident may no longer seem as
such from a contemporary perspective. We cannot fully bridge the distance separating our
experiences from those of the original mathematicians, and so we must rely upon their own
definitions, often implicit and varying from author to author.'® With this in mind, we
intend to consider ways of perceiving geometrical evidence and what kinds of geometrical

evidence that could be perceived.

14YWe will see the importance of order for the geometric classifications of Poncelet, Pliicker, and Gergonne.
Simultaneously, a quite different concept of order with respect to position was developed and discussed most
prominently by Louis Poinsot , see Jenny Boucard (Boucard (2011)).

15For details on the history of finding contacts between two oblique curves or two second order surfaces, J.
Delcourt (2011a) compares the use of a polygon derived geometric method to a differential geometry method
from the early eighteenth through early twentieth centuries.

16 As a brief example, drawing from Poncelet’s use of simple and simplicity in Poncelet (1817c), we begin
to understand the cognitive properties associated with this description. Poncelet considered simple proofs as
those with brief arguments with relatively few constructive steps or containing equations with relatively few
unknowns. He noted that purely geometric considerations could simplify a problem in analysis by suggesting
an appropriate choice of variables. With respect to geometric objects, Poncelet described straight lines as
simple, that is, simpler than curved ones. Though he often equated elegance with simplicity, he considered
generality as an independent quality. Turning by comparison to Pliicker and Schoenflies (1904), we find
that Pliicker aligned simplicity with symmetry, but more often described a proof or theorem as facile if it
contained few variables or followed immediately from an earlier result.
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2.3 Poncelet’s solutions without proofs, 1817

Poncelet framed his article, “Réflexions sur I'usage de ’analise algébrique dans la géométrie;
suivies de la solution de quelques problemes dépendant de la géométrie de la regle,” as a
letter to the editor of the Annales. Though clearly intended for publication, he directly ad-
dressed Gergonne and referred to the limited space available in his chosen medium. As the
lengthy title suggests, Poncelet’s article was two-fold consisting of a philosophical method-

ological argument followed by corroborating new results, his supporting evidence.

2.3.1 Poncelet’s philosophical argument

Poncelet began by critiquing Gergonne’s bipartite division of geometry into analytic and
pure. Instead, Poncelet differentiated three types of geometry: analytic geometry or the
method of coordinates, ancient pure geometry as represented by “Euclid, Apollonius, Viete,
Fermat, Viviani, Halley, etc.”, and modern pure geometry.!” Modern pure geometry re-
frained from using the coordinate equations or any type of calculation which permitted
losing view of the figure concerned. However, unlike ancient pure geometry, modern ge-
ometry included infinity and infinitesimals, invariable relations among variable figures, and

three dimensions applied to planar geometry.

...cette géométrie, cultivée par les modernes, dans laquelle, au moyen des notions
d’infiniment grands et d’infiniment petits, on parvient a découvrir les relations
qui existent entre les diverses parties d’une figure supposée variable; [...] cette
géométrie qui consiste a chercher, dans les propriétés de ’étendue a trois dimen-
sions, la solution des problemes de la géométrie plane [...] (Poncelet (1817c),
142-143)18

Following this distinction, Poncelet henceforth referred only to analytic geometry and pure
(or “rational” or “ordinary”) geometry—by which he presumably intended the modern vari-
ant. While depicting the latter geometry as the path of intuition (la voie d’intuition), he
conceded that the choice of method should depend on the problem being solved. Citing

"Poncelet’s admittedly partial list of ancient pure geometers does not give a very clear sense of what
ancient pure geometry comprised, but it is his only positive description. Otherwise, one must infer what
Poncelet thought constituted ancient pure geometry with respect to what it lacks. In the introduction to
his Traité, Poncelet gave a similar, but not identical list of practitioners of ancient geometry including here
Euclid, Archimedes, Apollonius, Viete, Fermat, Grégoire de St.-Vincent, Halley, Viviani, R. Simson, etc.
(Poncelet (1822), xxviii). Once again we find a striking similarity to Carnot, this time in the latter’s much
longer list of elementary geometers: Archimedes, Hipparchus, Apollonius, Napier, Viéte, Fermat, Descartes,
Galileo, Pascal, Huygens, Roberval, Newton, Halley, and Maclaurin (Carnot (1803), xxx).

18« this geometry, cultivated by the moderns, in which, by means of notions of infinitely great and
infinitely small, it is possible to discover relations that exist between the different parts of a figure supposed
variable; [...] this geometry which consists of finding, in the properties of the extension to three dimensions,
the solution to planar geometric problems,...”
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Charles Dupin’s Développemens de géométrie (1813), Poncelet advocated that one should
cultivate both sciences for their mutual advancement, since analysis provided generality to
geometry, and reciprocally the particularity of geometry facilitated simplifying the equations
of analysis by choosing convenient unknowns, interpreting and developing geometrical con-
sequences from results of calculation.!” However, since Gergonne had been advocating the
superiority of analytic geometry, Poncelet offered his results as evidence for the simplicity

and elegance of pure modern geometry, without the use of coordinates or calculation.?”

2.3.2 Poncelet’s evidence in favour of pure geometry

The first two problems were exactly those that Gergonne had proposed to prove by analytic
geometry at the end of his “Solution et construction, par la géométrie analitique, de deux
problémes dépendant de la géométrie de la regle” published just a few months earlier (Ger-
gonne (1817b)). These were: first, to inscribe with the ruler alone an m-sided polygon to a
conic with sides passing through m given points and, second, to circumscribe an m-vertexed
polygon to a conic with vertices lying on m given lines. Poncelet claimed that the solution
of the second problem, the circumscription, would follow analogously from that of the first,
the inscription.

The problem divided into two essentially distinct parts.?! The first part reduced to
determining how many different types of polygons could be formed with vertices on m given
points. Poncelet solved this problem through what he called géométrie de situation. He
proceeded by first considering three letters a, b, ¢ arranged on the circumference of a circle.
Since reading left to right or right to left on the circumference would be equivalent, there
was only one unique arrangement. With an additional letter d, there would be three possible
different arrangements by placing d between any two consecutive letters. To avoid confusion,
Poncelet suggested putting each of these arrangements on three new circumferences. Then
for each of these three, a fifth letter e could be placed in-between any two consecutive
letters, so there would be four different arrangements per circumference, and thus 3x4 = 12
in total. Again, these twelve different arrangements could be placed on twelve different
circumferences. After completing these first few cases, Poncelet indicated that by continuing

thus, one would arrive at 3«4 5% --- (m — 1) possible arrangements of m given points.

9Dupin had explicitly proposed that,

En considérant ainsi ’analyse et la géométrie dans leurs rapports, ces deux sciences s’éclaireront mutuelle-
ment, et chacune d’elles s’accroitra de tous les progres de 'autre. (Dupin (1813), 238)

[“In thus considering analysis and geometry in their relationships to each other, these two sciences mutually
clarify and enhance all their progress.”]

He followed by showing examples of analysis applied to geometry and geometry applied to analysis. We
further discuss aspects of Dupin’s book in Chapter V.

20We will delve further into Gergonne’s provocative arguments in favour of analytic geometry in Chapter
I11.

21 A more technically detailed exposition of the solutions to these problems can be found in Friedelmeyer
(2011), (130-138).
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Poncelet remarked that nothing would be easier than to imagine the use one could
make of this type of tableau artificiel. For example, an ordered arrangement abed. .. f on a
circumference would signify that the polygon’s first side passed through a, the second side
through b, the third through ¢, and so on with the last side through f.

Intriguingly, Poncelet’s first visualization in this article was thus not at all of the Eu-
clidean variety. With the ambiguous term tableau, Poncelet emphasized the ordered organi-
zational as well as pictorial aspect of these hypothetical circumferences. A nearly identical
treatment of the same problem was also published in Poncelet’s Traité five years later. In
his manuscript notes to this section currently located in the archives of the Ecole polytech-
nique, Poncelet included an illustration for the case of the twelve possible different polygons
determined by five given points (Figure 2.3). By describing this form as artificiel, Poncelet
seemed to emphasize that one need not truly construct any of these circumferences (which
quickly becomes tedious), and the visualization served a very different purpose than that
of ordinary geometrical figures.

The second part of the problem depended on géométrie ordinaire, to find an inscribed
polygon with sides passing through m ordered points in the plane. Poncelet presented
what he termed indirect and direct solutions to this more particular problem. The indirect
solution treated the cases of polygons with two, three, or four vertices individually, and then
showed a process toward reducing any polygon of more than four vertices to the two or three
vertex case using the constructive procedure described in the four vertex case. The much
briefer direct solution contained only one construction for any number of vertices, and relied
upon the collinearity of intersections of opposite sides of an inscribed hexagon.?? Poncelet
qualified these findings as remarkably general and simple. He noted that the direct solution
was superior with respect to generality and symmetry, though for a smaller number of given
points the indirect solution could be preferable. Poncelet added a very short treatment for
the case of the circumscribed polygon, “tout-a-fait remarquable par sa parfaite analogie”
to the direct construction of the inscribed polygon. Poncelet then continued from these
problems to two special cases and two fundamental theorems on inscribed and circumscribed
polygons.

For Poncelet’s final solved problem he switched emphasis from constructing polygons
given a conic to constructing a conic satisfying given parameters. This problem type was
also a popular theme for Annales contributors. One contributor, former Ecole polytech-
nique student, and later collaborator with Poncelet, Charles Brianchon (1783-1864), had
systematically solved the problem of finding a conic given any combination of five given
points or tangent lines in his Mémoire sur les lignes du second ordre (Brianchon (1817)).

Poncelet introduced his version of this problem as “l’autre exemple que j’ai promis, au

22This result is today known as Pascal’s theorem, and was often attributed to Pascal (without a specific
citation) in early nineteenth century geometry texts, though not in this one.
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Figure 2.3: Tableau artificiel from Poncelet’s “Notes de géométrie” in the Ecole polytech-
nique archives (5175)
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commencement de cette lettre, en faveur de la géométrie pure” (Poncelet (1817c), 153).
The problem concerned a given conic, a point on the conic, and another point in the plane,
and asked to find with the ruler alone arbitrarily many points of another conic with a third
order contact at the first given point and passing through the second.?

All of Poncelet’s constructions referenced but did not include any illustrated figures.
As discussed in our introduction, we will use wvirtual figure to denote the invocation of
geometric objects where points, lines, or faces are named with letters in order to direct the
reader toward their precise construction, and there is no printed or drawn figure. While
we have found the best way to understand this and other constructions (whether or not
accompanied by an actual figure) is through sketching them, to assist the reader here, we
provide a figure below illustrating the construction step-by-step in the case of a given circle.
The points and lines are taken from Poncelet’s description, and we also employ a variety of
solid, dashed, and dotted lines (as was customary within Poncelet and his contemporaries’
actual figures) to signify different phases in the construction process and aid in visibility.
The actual figure, whether present in the original text or created by the reader through
a described virtual figure, illustrated in Figure 2.4, could thus summarize the complete
construction at a glance.

Poncelet introduced an unnamed conic in the plane, which we represent in the following
figures with a circle, a point called P on its perimeter, and another planar point A. The
desired conic would have a third order contact with the given conic at P and pass through
A. Poncelet instructed the reader to draw an indefinite tangent line through P to the given
conic, and then draw the secant line PA, whose second intersection with the conic would
be the point @ (on the left).

Figure 2.4: Virtual figures illustrating Poncelet’s conic section construction

Then choosing any other point on the given curve, R, and drawing a secant QQR, this
new secant would meet the tangent line through P at S (centre figure). Finally, one should
draw lines PR and S A concurring at a point M, which belonged to the curve sought (right
figure). By varying the position of the point R one could obtain the locus of the points M.

23Poncelet did not directly define a third order contact in this text, though we shall see he went into ample
detail on this topic in his Traité.
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Poncelet next considered the case where the other given point A was infinitely distant
[infiniment éloigné]. In that case, the conic with third order contact (which Poncelet now
designated as the osculatrice) would be either a parabola or a hyperbola. He asserted that
the same construction as above would still apply, but could no longer be executed with
the ruler alone. Poncelet did not elaborate the procedure for the modified construction,
implying that it was practically identical. However, the process may have been like that
in the solution to a similar problem from Brianchon’s Mémoire: to describe a conic when
three or fewer of the five given points were inaccessible or situated at infinity [inaccessibles
ou situés a l'infini].?* In this case, one needed to know the direction of a line containing
one of the two or more given finite points and the inaccessible infinite point. The same
procedure could be applied to Poncelet’s construction. Then the secant PA as well as the
line SA would be parallel to the given direction, and hence intersecting it at a point at
infinity, A.

Poncelet extended this problem by proposing that if the point A was replaced by a given
tangent to the desired conic the construction would be little different in its first part and
lose none of its simplicity. Further, Poncelet claimed it would not be difficult to deduce
the entire theory of osculations among conic section from the above construction. However,
he continued, this was not the place. Such a sweeping generalization laid claim to deeper
researches for which this letter was only a small preview. Republishing this article in 1864,

Poncelet reconstructed his earlier motivations, both philosophical and personal.

Toutefois j’appréhende fort que le présent Article de Philosophie mathématique
et peut-étre quelques-uns des suivants, venus d’un jeune officier désireux de
se préparer a l'avance un nom pour la publication du Traité des Propriétés
projectives, n’aient indisposé, malgré ses formelles intentions, le savant rédacteur
des Annales de Montpellier contre leur auteur qui, probablement & ses yeux,
n’avait point encore acquis le droit de combattre, quoique avec circonspection et
courtoisie, les idées philosophiques d’un ancien professeur, déja justement estimé

pour ses services scientifiques. (Poncelet (1864), 466)2°

Thus, at least in retrospect, Poncelet viewed this article as a step toward securing his

scientific reputation and drumming up interest for the publication of his first monograph.

24Brianchon did not clarify what he intended by inaccessible points. Poncelet used this term often in
his Traité, even titling a chapter “Conséquences qui en résultent pour la détermination des droites, ou des
points qui appartiennent & un point, ou a une droite, supposés tous deux inaccessibles, invisibles ou placés
a linfini.” With respect to inaccessible objects, Poncelet referred both to Brianchon’s Mémoire as well as
problems treated by Frans van Schooten on this subject in 1656 (Poncelet (1822), 80).

25«“However I strongly fear that the present article of Mathematical Philosophy and perhaps some of the
following, from a young officer eager to advance a name for the publication of the Treatise of Projective
Properties, despite its formal intentions, indisposed the learned editor of the Annales of Montpellier to their
author who, probably in his eyes, had never acquired the right to combat, albeit with caution and courtesy,
the philosophical ideas of a former professor, already justly esteemed for his scientific services.”
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Poncelet concluded his paper with the statement of two additional problems also possible
to be treated by pure geometry, and doubted whether analytic geometry could reach such
general, symmetric, and simple constructions due to the large number of unknown variables.
However, he tactfully admitted that this could be the fault of his own analytic abilities,
rather than the method itself.

C’est la faute que j’avais moi-méme commise avant de connaitre vos solutions;
et cela prouve de nouveau qu’on ne doit jamais se hater d’'imputer a ’analise des
imperfections qui souvent sont uniquement le faut de ceux qui ne savent point

en faire un usage convenable. (Poncelet (1817c), 155)2¢

The choice of variables and translation of equations in analytic geometry required a well-
disciplined analytic practice, which Poncelet professed (perhaps with excessive modesty) to
lack.

2.3.3 Poncelet’s missing figures

Though Poncelet criticized analytic geometry for losing sight of the figure, there were no
figures to be actually seen in his purely geometric paper. It is possible that Poncelet had
originally included figures, which were not printed. Such a situation occurred within two
other articles from the same Annales volume when the figures provided by Poncelet were
not printed in their entirety (Poncelet (1817d), Poncelet (1817b)). In an earlier article, Pon-
celet’s final figure was incomplete (Poncelet (1817d)). Gergonne apologized for its absence

in a later footnote.

Nous saisissons cette occasion pour demander pardon au lecteur de ce que, dans
la figure 4 du mémoire cité, le tracé de la parabole a été oublié. L’erreur peut
heureusement se réparer a la main avec beaucoup de facilité. (Poncelet (1817b),
71)27

Gergonne initialed “J.D.G. fecit” wunder all the figures in the Annales, thus signifying
his role as the artist in the production process. In 1817, most French printmaking was
done through engraving, a lengthy and expensive process usually involving a draftsman
[fecit] and an engraver [sculpt]. With this in mind, it is possible that figure omissions
might save time or money. Supporting this hypothesis, we will see that the same problems
and constructions when self-published in Poncelet’s Traité were accompanied by numerous

illustrations. Further, when Poncelet reprinted this article in a supplement to a monograph

264This is a fault that I committed before knowing your solutions; and that proves anew that one must
never rush to impute to analysis the imperfections which often are uniquely the fault of those who do not
know how to use it well.”

2T«We take this opportunity to beg the reader’s pardon, for forgetting to trace the parabola in figure 4 of
the referenced memoir. The error can happily be repaired with great ease by hand.”
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in 1865 he referred the reader to either his Traité or to the first volume of his Applications

to find the figures discussed as well as the missing proofs.

Les personnes qui n’ont pas entre les mains le Traité des Propriétés projectives
pourront recourir au Ier Cahier de ce second volume des Applications, pour le

tracé des figures et les démonstrations géométriques, (Poncelet (1866), 471)28

When given complete editorial power, Poncelet chose to include actual figures to illustrate
his constructions.

However, without the presence of actual figures, Poncelet effectively created and actively
manipulated a well coordinated ensemble of virtual figures. Moreover, these figures were
constructible with a ruler alone for a given conic in the plane-barring noted exceptions
of the intersection points of parallel lines. Returning to the language of his first stated
theorem, we note the vivid description of the geometer animating the polygon, whose third
side turns “constantly” while remaining “perpetually” tangent to another conic section.
With his choice of vocabulary, Poncelet took advantage of the descriptive possibilities of
the medium of pure geometry. By following Poncelet’s written instructions, the well-versed
reader could easily create sketches or constructions to suggest the narrated procedures.
Even so, the description of an illustration, no matter how precise, was not the same as an
illustration itself.

The problematic relationship between a description and a picture has been addressed
within the field of art history in Baxandall (1985). Michael Baxandall cites a passage from
the fourth-century Greek Libanius that described an absent picture and then asks what the

description represents. He replies,

It would not enable us to reproduce the picture. In spite of the lucidity with
which Libanius progressively lays out its narrative elements, we could not re-
construct the picture from his description. [...] What happens as we read it is
surely that out of our memories, our past experience of nature and of pictures,
we construct something—it is hard to say what—in our minds, and this omitting
he stimulates us to produce feels a little like having seen a picture consistent
with his description.|...] In fact, language is not very well equipped to offer a

notation of a particular picture. It is a generalizing tool. (Baxandall (1985), 3)

The great difference here is that for visual art the description of the figure is dependent on
the existence of an illustrated figure, which is certainly not the case in geometry. More-
over, the language of geometry functions comparatively much better as pictorial notation.
However, in both descriptions of art and descriptions of geometrical figures, language gener-

alizes. For Poncelet’s geometry, the generalization was advantageous. A construction about

28Those who do not have the Treatise on Projective Properties in hand can have recourse to the first book
of the second volume of the Applications, in order to trace the figures and the geometric demonstrations.
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conic sections could be about all conic sections in a description, while a single figure would
show only one ellipse, hyperbola, or parabola. If his reader then constructed the figure,
that particularization would be independent of Poncelet’s original contribution and so had
no effect on the generality of his method.

Yet, while language enables a myriad of simultaneous equally valid visualizations, it also
imposes a linear temporal structure. We read mathematical writing from left to right, from
top to bottom. Not so for mathematical pictures, which can be viewed in much the same

way as any other picture.

Within the first second or so of looking we have a sort of impression of the
whole field of a picture. What follows is sharpening of detail, noting of relations,
perception of orders, and so on, the sequence of optical scanning being influenced
both by general scanning habits and by particular cues in the picture acting on
our attention. (Baxandall (1985), 4)

An illustrated figure could make a construction evident at a glance, whereas the evidence
supplied by only the description of a figure unfolded gradually and in a prescribed order.
With respect to ancient Greek geometrical figures, Reviel Netz found that the diagrams
were synoptic-summarizing the construction’s content (Netz (1999), 29). This summary
quality persisted into the early nineteenth century. In publications like the Annales and
Poncelet’s Traité actual figures accompanying geometrical texts most often illustrated the
completed construction—only the text conveyed the progressive constructive steps. Though
Poncelet seems to have preferred an illustrated figure when possible in his independent
publications, he did not explicitly emphasize this distinction. For Poncelet’s ideal objects,
such an emphasis might have been detrimental to their acceptance. To stress the difference
between figures illustrated and described would have also served to broaden the gulf between
geometric objects that could be illustrated and those that could not.

As we saw in our introduction, Poncelet would describe ordinary geometry in his Traité
by emphasizing the centrality of the figure. This figure could be made sensible, but did not
need to be presented in a strictly sensible form. For Poncelet the description or painting of
the figure through invoking imagined or visualized sensible objects, more so than any realized
illustration, was the characteristic feature of a purely geometric approach. Furthermore, as
we shall see in the Traité, imaginary, infinite, or ideal objects could become sensible through
projection or Poncelet’s principle of continuity.?? Despite the abridged nature of Poncelet’s

preliminary article in 1817, we can observe the importance of these qualities here.

29In Chapter IV, we will extend our study of Poncelet’s “modern geometry” by considering its adaptation
in the work of Pliicker and Steiner.
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2.3.4 Reception of Poncelet’s article

Poncelet’s paper was met with responses to both its methodological arguments and its
mathematical results. In the immediately following, “Réflexions sur l'article précédent” (a
frequent editorial feature in the Annales accompanying philosophical articles or innovative
mathematics) Gergonne seemed impressed by Poncelet’s ingenious and elegant solutions

but cautious about the lack of proof or underlying theory.

On ne peut donc que faire des voeux pour que 'auteur, apres avoir aussi vivement
piqué la curiosité des lecteurs, veuille bien enfin la satisfaire complétement, en
faisant connaitre les théories sur lesquelles reposent ses ingénieuses et élégantes
constructions. On doit désirer, en outre, que M. Poncelet ne borne point la ses
recherches; [...] (Gergonne (1817e), 162)3°

Gergonne would have to wait five years until the publication of Poncelet’s over 400 page
Traité des propriétés projectives unequivocally confirmed Poncelet’s attestation that his
theorems rested on “principes dont la développement excéderait nécessairement les bornes
d’une simple lettre.” (Poncelet (1817c), 144)3! Meanwhile, geometers could either take for
granted the veracity of Poncelet’s results,?? or work toward grounding these results in a new
or existing theory. Pliicker’s 1826 article for the Annales was in direct reaction to Poncelet’s
results, though first appearing nine years later.

By that time, Poncelet’s Traité was published, Pliicker had completed his studies in
Paris between 1822 and 1824.33 However, he later claimed he had been ignorant of this text

as well as all issues of the Annales published after 1817.

30«We can only wish that the author, after having so strongly piqued the readers’ curiosity, will be good
enough to satisfy it completely, in revealing the theories on which his ingenious and elegant constructions
rest. We desire, moreover, that M. Poncelet does not end his researches here; [...]”

3'Poncelet’s new principles were first introduced to Annales readers through a review by Cauchy (on
behalf of himself, Arago, and Poisson) of Poncelet’s submission of preliminary research to the Académie des
sciences in 1820, which we will review in more detail in Chapter III (Poncelet and Cauchy (1820)). Poncelet
funded the publication of 800 copies of his Traité in Metz two years later (Gray (2005), 367). The slow
reception of Poncelet’s text may be attributed to its unusual classification, since most geometry books of
this time period concerned either elementary, analytic or descriptive geometry, as we will show later.

32Most immediately displayed by Jean Baptiste Durrande in “Questions résolues. Solution des deux
problémes de géométrie proposés a la page 164 de ce volume” Durrande (1817), where he extended Poncelet’s
results to polyhedra in response to a problem posed by Gergonne on this theme.

33Pliicker’s biography by Wilhelm Ernst from 1933 is decidedly vague with respect to his professional
interactions with Parisian scientists.

Um seine Kenntnisse in der hoheren Mathematik und der theoretischen Physik zu erweitern
und zu vertiefen, reiste er daher Anfang Méarz 1823 nach Paris, wo er die bedeutendsten
Fachgelehrten, wie Biot, Cauchy, Lacroix, Poisson, Pouillet, Thenard sowie Clément, Dulong
und Binet in ihren 6ffentlichen Vorlesungen horte und auch zu einigen von ihnen in persénlichen
Verkehr trat. (Ernst (1933), 7)

“To expand and deepen his knowledge of higher mathematics and theoretical physics, he there-
fore went in early March 1823 to Paris, where he heard important scholars, such as Biot,
Cauchy, Lacroix, Poisson, Pouillet, Thenard as well as Clément, Dulong and Binet in their
public lectures and also personally met some of them.”
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Je n’avais pas alors la facilité de me procurer Traité des propriétés projectives,
que je connaissais seulement par le catalogue de M. Bachelier. (Pliicker (1828c¢),
331)34

We look first to Pliicker’s original submission to see how Poncelet’s results on osculating
curves could be proved and extended through analytic geometry. In light of Poncelet and
Pliicker’s later writings, we will note especially Pliicker’s differentiation between real and
imaginary points of intersection and the resulting exceptions to the validity of his construc-

tions.

2.4 Plicker’s analytic geometry without calculation, 1826

Plicker framed his early research on osculating curves in reaction to Poncelet’s 1817 arti-
cle, addressing both his broad methodological claim for the superiority of pure geometric

methods and his specific conic section examples.

En faveur de la géométrie pure M. Poncelet donne dans le huitieme volume de
ce méme recueil, de bien jolies constructions de problemes de géométrie. |...]
Voyons si ce probleme se préte si difficilement aux méthodes de la géométrie
analytique. (Pliicker and Schoenflies (1904), 392)3°

Thus Pliicker emphasized that, at least initially, he was not using analytic geometry to
find new solutions, but rather to prove the solutions Poncelet had already provided. That
said, Pliicker presented these researches within a new theory on osculating curves. Poncelet
had suggested in 1817 that one could deduce the entire theory of osculating conic sections
from his geometric construction of the third order contact. However, as we saw above, he
refrained from providing any of the theory’s details in his article. Moreover, Poncelet had
formulated the problem of third order contact as an isolated example, neither following
from his earlier results nor leading to new ones. By contrast, Pliicker situated the problem
firmly within the article’s content, and actually gave multiple proofs.

We will see that Pliicker’s overarching theory relied upon perceiving coordinate equations
as representing geometric objects. That is, Plicker intended for his equations to be read
as clear visual means towards justifying geometric arguments like the figures of Poncelet’s

geometry. The equations were being used as evidence. Plicker introduced this notion

Even if Pliicker did personally meet the mathematicians among this list, none of them were actively engaged
in the geometric research he pursued at this time.

3441 was not then able to obtain Treatise of Projective Properties, which I knew of only through the catalog
of M. Bachelier.”

354In favour of pure geometry, Poncelet gives in the eighth volume of this same issue, very pretty con-
structions of geometry problems. Let us see if this problem lends itself with such difficulty to methods of
analytic geometry.”
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gradually, beginning with the standard procedures of analytic geometry: choosing axes and

translating geometric objects into equations.

2.4.1 Pliicker’s theory of osculating curves

Pliicker opened his article by providing a coordinate representation of intersection points
between two conic sections in the plane. Assuming two curves intersect, Pliicker assigned one
of their points of intersection as the origin of the coordinate system. Then if this intersection
was of “first order (contact of two points),” by choosing the y-axis as the common tangent

to the origin, Pliicker was able to write the équations primitives of the curves as
y? + 2Azy + Ba® + 2Dz = 0, (2.1)

y? + 2axy + br? + 2dx = 0, (2.2)

two second degree equations of curves passing through the origin and tangent to the y-axis
there. Taking the difference of these equations resulted in what Pliicker described as a

“third geometric locus passing through their points of intersection.” That is,
2(A — a)zy + (B — b)a? +2(D — d)z = 0, (2.3)
which he resolved into the system of two straight lines,
xz =0, (2.4)

204A—a)y+ (B—=b)x+2(D—d)=0. (2.5)

Pliicker identified these lines as the y-axis and the common chord of the two conics, asserting
that

Dans la discussion de cette équation (3) est renfermé toute la théorie de 'osculation
dans les courbes du second degré et cette discussion s’offrira d’elle méme et sans
aucun calcul. (ibid, 387)3¢

This was Pliicker’s first subtle reference to Poncelet’s “Réflexions,” where Poncelet had
promised the entire theory of osculating conic sections could be deduced from a single given
construction. Further, by explicitly pointing to the absence of calculation in his analysis
Pliicker proposed a correction to Poncelet’s characterization of analytic geometry where any
type of calculation whatever could allow the figure to be momentarily lost from view. As

Poncelet had written in 1817, analytic geometry was

36«The entire theory of osculation of second degree curves is contained in the discussion of this equation
(3), and this discussion presents itself without any calculation.”
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[...] la méthode des coordonnées, ou méme de toute espece de calcul quelconque
qui permettrait de perdre momentanément de vue la figure dont s’occupe. (Pon-
celet (1817c), 143)37

Pliicker would return to the theory of osculations and the associated equations later in his
paper.

Pliicker systematically examined the coefficients of these equations with respect to the
order of contact between the two curves. He positively summarized these findings as elegant

and effortless.

Ces divers résultats me paraissent élégants en vertu de leur symétrie et de leur
extréme simplicité, et pour cette méme raison, il est évident que les propriétés
fondamentales de deux ou de plusieurs courbes, assujetties aux conditions que
nous discutons, se déduiront sans aucun effort de la combinaison de leurs équa-
tions, en y introduisant les diverses relations entre les constantes. (Pliicker and
Schoenflies (1904), 389)38

Pliicker was able to use coordinate equations as representational rather than computational,
whereby a reader could immediately discern properties of the geometric objects by looking
at the analytic form.

Like Poncelet, Pliicker asserted the proper definition of the order of a contact point was

fundamental to the theory of tangents and osculations.

Toute théorie du contact et de l'osculation des divers ordres est fondée sur
la supposition que deux ou plusieurs points d’intersection de deux courbes se
réunissent en un seul, supposition qu’on peut se conscrire de plusieurs manieres,
mais que, selon moi, 'on ne peut pas éluder, ni méme remplacer par d’autres

considérations, qui en donnent une idée plus nette. (ibid, 389)3°

From this notion of order, Pliicker created a basis for the theory, not just of conic sec-
tion osculations (as above), but osculations of curves of any order. He argued that the
conception of contact order as the result of coinciding points was “inescapable and irre-

placeable” in considering intersection and tangency between curves. In practice, Pliicker

37“[...] the method of coordinates, or even of any type of calculation that would momentarily allow the

figure concerned to be lost from view.”

38«These diverse results appear elegant to me by virtue of their symmetry and their extreme simplicity,
and for this reason it is evident that the fundamental properties of two or several curves, subject to the
conditions which we are discussing, are deduced without any effort from the combination of their equations,
by introducing there the diverse relations between the constants.”

3%«Every theory of contact and of osculation of different orders is based on the supposition that two or
several points of intersection of two curves meet in one, a supposition that one can write up in several ways,
but that, in my view, one cannot elude, nor even replace by other considerations, which give a clearer idea
of it.”
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textually emphasized the relationship between order and coincidence by writing “un contact

” or “un contact de troisiéme ordre, (un

de deuxiéme ordre, (un contact de trois points),
contact de quatre points).” Plicker could immediately apply his procedure of making the
points of intersection of the two curves (2.1) and (2.2) coincide to show that the common
chord (2.5) would contain a point of higher order. On a deeper level, Pliicker’s attention
to the meaning of order in geometry emphasized the relationship between algebraic notions
of lines and points of given order and geometric lines and points in the plane. Again this
relationship required no intermediary figure. Pliicker analytically expressed the coincidence
of two or several points of intersection by eliminating variables between the equations of
two curves.

Pliicker next found the difference of the equations of two conic sections (2.1) and (2.2).
The roots in x or y of this new equation would correspond to the common points of the two
curves. Pliicker noted that the computed number of real roots determined the number of

intersections between the two curves.

Statuer sur la réalité ou 'imaginarité, sur 1’égalité ou 'inégalité des ces racines,
c’est assujettir les intersections a certains conditions, indiquées par des équations

entre les constantes. (389)%

Plicker explained that the correspondence from roots of the equation to intersection points
of the two geometric curves included the possibility of imaginary roots found analytically,
which corresponded geometrically to a lack of intersection in the plane. Imaginary inter-
sections were geometrically invisible.*!

Pliicker drew attention to a flaw in the above form of solution in that two equal roots
in x could represent either one unique point or two distinct points lying on a parallel to the
y-axis. Thus there was a potential indeterminacy in this form of solution. Pliicker proposed
to show an alternative treatment, “plus particulierement encore par la géométrie analytique”
(emphasis in original) to reach the same results by a “faster” and “more precise” route. Just
as Poncelet had made a nuanced distinction between ancient and modern pure geometry,
Plicker compared the particular advantages of one analytic treatment over another. There
was more than one method of analytic geometry.

This new route still relied upon the equation of the common chord (2.5). Pliicker
remarked that for two conics with a common tangent at the origin and a chord through
two other common points, the angle formed between the common tangent and the common
chord would be independent of the values of the linear coefficients, D and d. In varying

D and d in the original curve equations (2.1) and (2.2) while keeping the other coefficients

49«76 rule on the real or imaginary character, on the equality or inequality of the roots, is to subject the
intersections to certain conditions, indicated by the equations between the constants.”

4Tn his later monograph, Pliicker would argue that the treatment of imaginary numbers in constructive
(as opposed to analytic) geometry was indirect [Umwegen] (Pliicker (1828a)).
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constant, all common chords between these two equations would be parallel to each other.

In particular, in the case where the second conic was a circle,
y? + 2% — 2dz = 0, (2.6)

varying d would only change the magnitude of the radius.

From these properties, Pliicker deduced a construction, which he admitted was already
known in “la synthese,” for an osculating circle at a given point of a conic section based on
the common chord between any tangent circle and the given conic. This is Pliicker’s only
use of “synthesis” in the paper, and we suggest that his peculiar language—rather than using
the French phrase la géométrie synthétique or la méthode synthétique— can be attributed to
a fault of translation. Nevertheless, the effect of contrasting to his “analytic” approach was
successfully conveyed as he would do two years later, in Pliicker’s Analytisch-geometrische
Entwicklungen, in describing a theorem of Poncelet as synthetisch (Pliicker (1828a), 216).
In this 1826 paper, though Pliicker was generally very careful with citations, he did not
provide a specific source. Thus it appears that Pliicker intended that this construction had
been deduced from non-analytic considerations, and was known well enough in the standard
literature to not require specific citation. Intriguingly, in the Gergonne-edited version the
reference would be changed to “une autre construction déja connue” (Pliicker (1826b), 72).

As noted above, Pliicker argued that two given conics might not share a real common
chord if they did not intersect in two distinct real points. In this case, he suggested that “on
pourra alors construire une ligne droite exprimée par I’équation (3) qui jouira de toutes ces
propriétés géométriques” (390).42 Pliicker cited the concept of radical axes as a precedent
with respect to constructible intersections which might not appear as intersections when
constructed. Thus Pliicker used the coordinate representation to extend the notion of a
chord beyond that of a real chord in the plane. Though the chord did not “exist as such,”
it was still “expressible” as an equation, which determined a straight line. Along with gen-
eralizing the concept of a chord as being contained within a conic section, Pliicker appears
to have ignored the issue of endpoints which are not at all indicated by the representation
in equation (2.5). This notion of geometric existence motivated by coordinate represen-
tation seems to imply a lack of exception in procedure despite a difference in ontological
status between different types of chords. There is also a distinction implied between the
existence of an object as opposed to the representation and determination of an object. A
non-existent object might still be representable or made evident, and conversely represen-
tation or evidence did not guarantee existence. Within this context of deducing properties

and theorems in common to osculating curves, Pliicker considered representability rather

42« one could thus construct a straight line expressed by equation (3) which enjoys all these geometric

properties.”
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than existence as a criterion for determining geometric objects.

2.4.2 Applications to geometric constructions

From observing the standard equation of a curve through the origin (2.1), Pliicker deter-
mined limitations on the types [espéce] of curves that would satisfy having a third or second
order contact with a given point on a given curve. For example, if and only if the coefficient
A = 0, could an osculating circle have a third order contact with a conic unless the point
of osculation was also a vertex of one of the conic’s principal diameters. To find equations
for the diameters Pliicker referenced “les méthodes connues de la géométrie analytique” or
successive differentiation with respect to 2 and y to obtain linear equations.*® Using those
methods, Pliicker studied the loci of centres of osculating conics.

In the second half of his article, Pliicker transitioned from finding necessary coordinate
and coefficient conditions for osculating conic sections, towards deriving constructions for
conic sections that met the desired criteria. He described this as a shift from theory to appli-
cation. While Pliicker had not referenced figures while introducing his theory of osculating
curves, he would apply this theory toward finding figure constructions. Specifically, as an
application of his osculation theory, Pliicker proposed to derive Poncelet’s construction of
a curve sharing a third order contact with a given curve. In the same coordinate system as

before, he designated the first curve as
y? + 2axy + Br? + 25z = 0, (2.7)

a curve tangent to the y-axis at the origin. Pliicker then considered the system of two

straight lines intersecting at the origin,
y+mx =0 (2.8)

y+ nx =0, (2.9)

which could be multiplied to form the single second order equation,
y? + (m 4 n)zy + mna® = 0, (2.10)

containing the origin. Pliicker proceeded by subtracting (2.10) from (2.7) and dividing by

43Pliicker did not provide details as to the procedure of the known analytic geometry methods, but
perhaps he was referring to Gergonne’s article from the ninth volume of the Annales Gergonne (1818), in
which Gergonne had proposed methods from analytic geometry to replace transcendental calculus in finding
derivatives.
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the common factor x,
(2a—(m+n))y+ (B —mn)r 420 =0, (2.11)

obtaining “the equation of the chord through the points where each of our two lines respec-
tively meet the curve for a second time.”

Pliicker focused on the relationship between the coefficients in this final equation. He
noted that if any two of «, 3,0 were held constant with the third coefficient remaining
arbitrary, then the equation (2.7) still represented an infinite number of curves, but one
could now deduce certain properties from (2.11). For the case of the third order contact, if
a, § remained constant, then (2.11) would meet the y-axis (that is, the shared tangent at

the point of osculation) at the fixed point,

26

T (2.12)

y =
Since both curves shared the same « and §, this y value determined the intersection of
the straight lines through the curves and the z-axis. Pliicker concluded: “[...] le premier
de ces trois cas conduit précisément a la construction de M. Poncelet du probleme cité.”4*
Plicker proved this result constructively, naming geometric objects without equations or
calculation, thus creating a virtual figure shown below. Given two conics tangent in exactly
one point, the point of osculation, O, draw two arbitrary lines OM R, OA@ meeting one
conic at M and A and the other at R and (). Then the straight lines M A and R(Q) were
both represented by (2.11) with fixed a, 0 and variable 5. So both these lines would meet
on the common tangent at O.

With this theorem Pliicker had verified Poncelet’s construction, shown with Pliicker’s
notations in Figure 2.5. Given a conic section, a point on its perimeter O and another point
on the plane A, one could find a new point M on a second conic section sharing a third
order contact at O and passing through A. Then Pliicker considered the special case where
the arbitrary lines OM R and OAQ coincided. In this case, the coefficients m,n would be
equal. Consequently, the chord represented by (2.11) would become tangent to the given
conic, and still meet the tangent at O to the desired conic at a fixed point. If the given
point A was replaced by a given tangent line, Pliicker explained how one could determine
the contact point on the given tangent.

Pliicker continued to the second order tangency case, holding 3,6 as invariable and
allowing « to have any value. Solving (2.11) for y, he determined that the z-axis would

be cut at the constant value — B—ng'

With this Pliicker could prove the construction of a

curve with a given second order contact at O, a given intersection point at P, and passing

44« ] the first of these three cases leads precisely to M. Poncelet’s construction of the cited problem.”
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Figure 2.5: An interpretation of Pliicker’s virtual figure

through a given third coplanar point A — a solution Pliicker described as “analogous” to
the one given by Poncelet above. Pliicker remarked that he had described the theorem and
construction of only two conic sections for ease of presentation, but the same properties
could be applied to several conics satisfying the coefficient constraints of fixed 5 and §. In
the case where the tangent point was replaced by a tangent line, “one could easily determine
the contact point of the given straight line and the curve to construct” (399).

By substituting the given second order line with a system of two straight lines, Pliicker
stated two of many possible theorems, “which at first do not appear related to the announced
theorem” (399). In this brief aside, Pliicker provided evidence for the potential generality
of analytic geometry in synonymously treating a conic section as a pair of straight lines.

As a final consequence of this theorem, Pliicker “observed in passing” that the third order
case could be derived “immediately” from the second order case if the point of intersection
P “concurred” with the second order contact O, thereby replacing the secant line OP with
a common tangent. Notably, though Pliicker emphasized the definition of contact order as
point coincidence in his theory of osculation, in this application he only referred to this
aspect of the definition in retrospect, since he moved from higher to lower order contact.

In the case of a simple contact, for given values of the coefficients «, 8 all chords repre-
sented by (2.11) with varying 6 would be parallel. Pliicker emphasized the analogy of this
result to the above and the potential application to any numbers of conic sections through

suggestive notation.

[...] sil’on méne par le point de contact O un couple quelconque de lignes droites
Oq et Or, qui rencontrent les différentes courbes 'une aux points Q,Q’, Q" ...

et Pautre aux points R, R, R”, ..., les cordes [sic] qui passent respectivement par
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Q et R, par Q' et R, par Q" et R”,..., seront toutes paralleles entre elles.*?

Pliicker’s derivation and resulting ruler construction for curves of simple contact only applied
to finding points on a conic similar to the given conic. Once more, Pliicker remarked that
the given points could be replaced by tangents and a valid theorem would result, but did not
elaborate the details of the procedure. The third order case again followed as a corollary,
when the two simple points of contact coincided.

Pliicker repeatedly described theorems, problems and corollaries as analogous, the use
of only virtual figures in this process encouraged seeing similarities rather than differences.
Another advantage to employing only virtual figures for Pliicker’s constructions was in the
possibility of suggesting a large number of possible objects. His use of “.” in theorem
statements had no figurative equivalent.

As in the case of the common chord to two non-intersecting curves, Pliicker again faced
existence considerations in examining conditions such that several second order lines shared
two distinct points of tangency. As in his introduction, the equations of the conics were
(1) and (2), tangent to the y-axis at the origin. Pliicker combined the two equations by
multiplying the first by d, the second by D and taking their difference. Pliicker explained

that the resulting equation,
(d — D)y? + 2(Ad — aD)zy + (Bd — bD)2” = 0. (2.13)

contained the points of intersection between the two curves. Pliicker noted, “at the same
time,” (2.13) was a system of two straight lines passing through the origin. Here, if the
roots of the equation, and consequently the corresponding lines, were not imaginary then
each line would intersect each curve at one other point besides the origin. In the case of
exception, when the lines were imaginary, then the second intersection points “would no
longer exist.” Pliicker provided no additional direction toward obtaining a construction in
this case, which contrasted sharply with Pliicker’s treatment of a common chord containing
imaginary points as expressible by an equation in his theory of osculating curves.

From Pliicker’s theory of osculation, the desired condition for the conics to share two
points of contact would be obtained if for each pair the two intersection points coincided.
That is, both straight lines passed through the real square root of (2.13), and the system of
lines decomposed into two identical equations. However, Pliicker recognized the potential
radical calculation required to find that root, and instead chose a coordinate system that
would modify (2.13) into a conveniently manipulable form. Within this context, Pliicker

designated the common chord between the two common tangent points as the z-axis. Then

45«[] if one draws through the point of contact O any pair of straight lines Ogq and Or that meet the

different curves respectively at the points Q,Q’,Q”,... and R, R',R", ..., the chords that pass respectively
through Q and R, through Q' and R’, by Q" and R”,..., will be mutually parallel.”
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(2.13) would be of the form y? = 0, and consequently the coefficients would be in the

following invariable ratios:
d Dd Db B
- _Z2Z_Z 14
a A'b B'a A (2.14)

In an accompanying footnote, Pliicker justified his choice of coordinates, suggesting an

alternative choice based on the conic section equations, but concluding that the calculation

free approach was superior.

Mais en partant de ces équations, la discussion du numéro suivant [section 10]
ne gagnerait rien en breveté [sic| et perdrait en symétrie. Et, étant permis sans
doute, de choisir les axes des coordonnées a volonté, il me semble cependant
qu’une démonstration gagne en élégance si le calcul méme nous détermine a ce
choix. (397)%6

Thus, for Pliicker, calculation should be minimized by the choice of coordinates, in order
to create more elegant and symmetrical proofs.

Within this new coordinate system, there would be an infinite number of conics of the
form (2.7) that would be tangent to each other at the origin O and at a second point P given
by = = —273. Pliicker found that any line through O could be represented as x +my = ¢ and
any line through P as Sz + fm'y + 20 = 0, where m, m’ were indeterminate and variable
quantities. By combining these three above equations, Pliicker eventually determined that
the straight line through the two points where the lines containing O and P respectively

meet the curve for a second time was given by
(mm'B — 1)y + ((m +m")B — 2a)z + 26m = 0. (2.15)

Then the intersection of this line with the z-axis would be at

2me

g Mo (2.16)
(m+m)= —2

Q@™

Because Pliicker had chosen his coordinate system so that g,g were in constant ratios,

this intersection would be constant for all curves satisfying (2.7). So, finally, given a conic
containing points O and P Pliicker could determine a conic of double contact at O and
P and passing through a third planar point ). As in all the prior cases, Pliicker noted
one could replace the given point ) with a given tangent line. One could also coincide
the tangent points O and P in order to deduce the construction of Poncelet’s problem as a

corollary.

46«But in starting from these equations, the discussion of the following section gains nothing in brevity
and loses symmetry. And, being undoubtedly permitted to choose the coordinate axes at will, it seems to
me however that a proof gains in elegance if the calculation itself determines this choice for us.”
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Thus, we can see that in Pliicker’s systematic treatment of different types of curve tan-
gency he presented four alternative variations on the derivation of Poncelet’s construction.
First, he directly determined a conic section of third order contact. Then, from the three
cases of lower order contact, Pliicker derived three additional constructions. He considered
these derivations as more general than Poncelet’s solution, which followed as a corollary to
each of them.

Pliicker concluded his paper by another application of this definition of order in which he
considered two conics with four distinct points of intersection, “pour faire voir I'uniformité
du mode de discussion” (400). Pliicker thus treated every case of intersection between two

conic sections.

2.4.3 The form of Pliicker’s geometry

The uniformity Pliicker described in his final application reflected the structural symmetry
between the successive problems related to conic section construction. Every tangent discus-
sion opened by considering the coefficients and properties of the coordinate representation
from which resulted a constructive geometric theorem. Every theorem led immediately to a
constructive solution followed by suggested variations for the number of possible curves and
replacing points with tangent lines. Finally, in all but the first problem, Pliicker would re-
turn to Poncelet’s construction, which could be derived as a corollary to each of the following
more general cases. Pliicker emphasized the generality of his results only with respect to a
lower order contact. However, one could also interpret Pliicker’s claim to uniformity as one
positive quality of a more general method. Gergonne had presented uniformity and gener-
ality as the twin benefits of analytic geometry in his “Réflexions” following Poncelet’s 1817
article, which Pliicker almost certainly would have read (Gergonne (1817e), 156). While
achieving uniformity, Pliicker was willing to sacrifice some initial simplicity or symmetry in
order to use coordinate equations with minimal calculation. Where he succeeded, Pliicker
described his results and methods as elegant, simple, and effortless. Applying Poncelet’s
criteria, these results were thus evident.

Pliicker’s approach to analytic geometry contrasted with that of his predecessors. Pliicker
himself would describe his contributions as “eine neue Behandlungsweise der analytischen
Geometrie” (Pliicker (1828a), iii). In a later review of his Analytisch-geometrische Entwick-
lungen by August Cournot appearing in the Bulletin des sciences, Pliicker’s geometry was
described as an analysis that “ressemble fort a la synthese” (Cournot (1828), 178). Sim-
ilarly, historian Philippe Lombard defined the synthetic approach, such as that practiced
by Poncelet, as that “ou elle s’efforgait d’éviter au maximum les calculs” (Lombard (2011),
33). Thus, by using fewer calculations, Pliicker’s analytic geometry appeared categorically

less analytic. Pliicker consistently identified his research as analytic geometry, or even pure
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analytic geometry, but his style could be perceived as a middle ground between the pure
and analytic methods.

While Pliicker countered Poncelet’s description of analytic geometry as geometry with
calculation, we should also consider Poncelet’s criticism that through calculation one lost
the figure from view. In Pliicker’s geometry, each geometric construction utilized only visu-
alizable geometric objects, non-figurable results like imaginary points were dismissed. The
separation into theory and application enabled Pliicker to develop two different standards
of geometrical existence. In Pliicker’s theory of osculating curves, the coordinate equation
guaranteed representability even when the geometrical object did not “exist as such”. In
the applications to geometric constructions, non-existence seemed to be a constructive dead
end. There was no place for imaginary points in deriving solutions and Pliicker was able to
ignore existence concerns in the statement of problems by assuming as given the number
of points and their order of intersection. Imaginary objects could thus be avoided a priori.
All of Pliicker’s constructions rested entirely on the use of virtual figures and followed from
theorems stated in terms of figures. However, these theorems were proved through consid-
eration of coefficients in coordinate equations designed in order to minimize calculation. In
Pliicker’s theory of osculation, the corresponding visualization of these systems was neither
obvious nor explained. The applications relied on figures and required visualizability to
secure evidence, the theory did not.

For Pliicker, figures did not play an intermediary role in theorems or proofs, they were
only present in constructions and these two types of geometric practice were structurally
segregated in the form of this article. Further, these constructions were not intended to be
original, but rather followed from the pure geometry of Poncelet. While Poncelet referred
to figures as ambiguously equivalent to geometric objects, in this paper Pliicker referred
specifically to geometric loci, curves, lines or points—never providing a general designator
for the group as a whole. Overall, Pliicker did not use the figure as a tool of proof in this
paper, except in his frequent mention of deriving higher order contact as a corollary. Yet
even in this case, the use of the figure was not the means of discovery, only an alternative
route via a corollary to a theorem that had already been given an analytic proof. It seems
inaccurate to say that the figure was “lost” from view, when Pliicker never described a
figure in the first place.*” For Pliicker the equation expressed, represented, indicated and
gave the geometric results. In particular, coordinate equation representation was enough
for Pliicker to legitimate the use of imaginary objects in his theory of osculating curves.
Consequently, Plicker’s analytic geometry was not analysis applied to geometry, but a tool

within geometry itself. In this role, the form of the equation—not the computations—was the

47 As we will witness in Chapter IV, within the pedagogical context of his Analytisch-geometrische Entwick-
lungen Pliicker relied heavily on illustrated figures as a means of explanation. Even so, his other research
articles from the 1820s and 1830s continued to focus on the form of equations.
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evidence in support of Pliicker’s geometric research.

2.5 Poncelet’s secants without intersection points, 1822

Poncelet first published his proof of the third order contact construction in Traité des
propriétés projectives, ouvrage utile a ceur qui s’occupent des applications de la géométrie
descriptive et d’opérations géométriques sur le terrain, which appeared four years before
Plicker’s article, in 1822. With this text, we will focus on Poncelet’s new definitions and

48 Poncelet’s seemingly simple con-

principles comprising his theory of osculating curves.
structions from 1817 relied on a deep theoretical background, above all his principle of
continuity.*® As Poncelet explained in his introduction, the principle of continuity estab-
lished the projectively invariant properties (which Poncelet would elaborate more precisely

throughout his text) as a primitive figure was deformed.

Considérons une figure quelconque, dans une position générale et en quelque
sorte indéterminée, parmi toutes celles qu’elle peut prendre sans violer les lois,
les conditions, la liaison qui subsistent entre les diverses parties du systeme; sup-
posons que, d’apres ces données, on ait trouvé une ou plusieurs relations ou pro-
priétés, soit métriques, soit descriptives, appartenant a la figure, en s’appuyant
sur le raisonnement explicite ordinaire, c’est-a-dire par cette marche que, dans
certains cas, on regarde comme seule rigoureuse. (Poncelet (1822), xiii)?"

The indeterminate figure was Poncelet’s purely geometric equivalent to indeterminate co-
efficients in a coordinate equation. He admired the powerful generality of the method of
coordinates and sought to establish that same generality in pure geometry directly through

the figure. The generality then became evident.5!

“For an in-depth historical analysis of Poncelet’s new definitions and principles, the reader is further
referred to Friedelmeyer (2011).

Poncelet’s controversial principle of continuity is well-known and studied, especially as it pertains to
generality. See Chasles (1837), Belhoste (1998), Gray (2010b), Nabonnand (2011b), and Friedelmeyer (2011).
In the context of the figure, we will suggest a supplementary interpretation of Poncelet’s principle as a means
for manipulating non-visualizable objects. In Chapter IIT we will describe how the principle became known
as “controversial,” and several attempts to remedy this.

50«T et us consider any figure in a general and in some sense indeterminate position, among all those that
it can hold without violating the laws, the conditions, the relationships that exist between the different
parts of the system; let us suppose that, according to these givens, we have found one or several relations or
properties, either metric or descriptive, belonging to the figure, and resting on ordinary explicit reasoning,
that is to say, by the path that, in certain cases, we regard as the only rigorous one.”

51Nabonnand describes how Poncelet assumed objects as inherently general, and consequently the choice
of method (analytic or pure) should not effect the particularity of the result.

L’objectif que se fixe Poncelet est en partie identique a celui de Carnot: “faire passer dans la
Géométrie ordinaire la généralité des conceptions de I’Analyse algébrique, généralité qui doit
nécessairement appartenu a l’essence méme de la grandeur figurée, indépendamment de toute
maniére de raisonner”. La généralité est inhérente & 'objet étudié ce qui justifie le projet de
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In his Traité Poncelet would explore how descriptive and metric properties changed or
remained invariable for all possible states of the corresponding indeterminate figure. One
result of this emphasis on invariance was an extension of geometric definitions to incorporate
and geometrically explain results derived from analysis. Poncelet justified this step as an
extension of the indeterminate generality already present in ordinary geometry. He pointed
to the Euclidean use of proportions in geometry, which left the position of points and
lines unspecified. Likewise, Poncelet proposed to prove geometric results that would apply

without exception to real and imaginary figures.

Or c’est précisément cette derniére dépendance, entre des figures qui paraissent,
au premier abord, n’avoir rien de commun, qui peut exiger qu’on introduise,
dans le langage et les conceptions de la Géométrie, les expressions et les notions
abstraites de I’Analyse; elles seules, en effet, peuvent permettre d’établir un
point de contact, sinon absolu, au moins fictif, entre certaines figures et certains

résultats géométriques. (Poncelet (1822), xxv)>?

2.5.1 Poncelet’s extended definitions

Among these abstract notions and expressions imported from analysis, was the concept
that any two conic sections shared a common secant, even when they did not intersect. The
common secant could always be determined analytically as a linear equation the combination
of two second order equations. Likewise, Poncelet asserted that any two coplanar conic
sections shared a common secant. He defined a common secant with respect to the figure
presented below through the use of harmonic proportions (Figure 6 in Poncelet’s original
text, as can be seen in the image; here it is Figure 2.6.)

From this definition, Poncelet introduced a second secant to C as the line parallel to
MN and containing O’, the line M’N’. The segment of the line parallel to M N with
midpoint O, was then a chord M'N’ to C—even though it did not appear to be one.?® In

chercher des méthodes générales en géométrie pure et donc de ne pas se contenter de ’approche
analytique. (Nabonnand (2011b), 29)

“The objective that Poncelet sets is in part identical to that of Carnot: “to transport into
ordinary Geometry the generality of the concepts of algebraic Analysis, generality which must
necessarily belong to the same essence of the figured quantity, independent of all manner of
reasoning.” Generality is inherent to the object studied which justifies the project to find
general methods in pure geometry and thus not be content with the analytic approach.”

52«Thus it is precisely this latter dependence, between figures which appear, at first, to have nothing in
common, which can exist when one introduces the expressions and abstract notions of Analysis into the
language and the conceptions of Geometry; they alone, in effect, can help establish a point of contact, if not
absolute, at least fictive, between certain geometric figures and results.”

53Poncelet recognized that the relationship between O’ and M N, or between O and M’'N’ was that of
pole and polar. However, he preferred to use the term secant in order to preserve the analogy between ideas
and language corresponding to real chords (Poncelet (1822), 27).
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Figure 2.6: Poncelet (1865), Planche I

Poncelet’s Figure 5, the chord M’N’ did not intersect the curve C at real points. Thus the
points M’ and N’ were imaginary points of intersection, but the chord M’N’, which was
also referred to as the secant M’'N’, was termed “ideal”. Poncelet explained the choice of the
adjective ideal in order to distinguish between constructible objects containing imaginary
points (the ideal chord and secant) and entirely non-constructible and impossible objects
(the imaginary points of intersection).

Thus, since any point in the plane had a corresponding conjugate harmonic point with
respect to a given curve, this harmonic relationship could be applied to find a common
secant (real or ideal) between any two curves in the plane. Applying this to determine
ideal common chords shared by two conic sections, one could find an infinite number of
chord pairs satisfying the conjugate harmonic relationship through tangent construction.
By choosing a pair where the chord of the first conic section was greater than the second
and another pair with the inverse relationship, the law of continuity would then serve to
prove the existence of a shared equal length chord common to both.

The generalized common secant was not necessarily evident as such in a two dimensional
representation, it might not recognizably share points with either conic. Poncelet enhanced
his proportion based definition with a simple planar visual interpretation of when the secant
did not intersect two conics at real points, that is, the conics shared two imaginary points of
intersection. By taking successive points along the diameter AB, one could derive a series
of parallel ideal chords whose endpoints would lie on a supplementary conic to the curve C.
Within this supplementary conic, the ideal chords of C' would be real chords, and vice versa.
In our Figure 2.6, the given ellipse C' is supplementary to the hyperbola containing points
A, B, M', and N’. The general common secant played an important role when applied to

osculating curves, as we will see.
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Poncelet rested his treatment of conic sections on a preliminary examination of circles.
He then extended results derived for circles to general conics via perspective or other appli-
cations of the law of continuity. This approach was not at all original with Poncelet. By the
early nineteenth century geometers commonly (and often without justification) extended
circle results to any conic section.’® By focusing on circles, Poncelet was able to exploit the
unique property that any two circles were similar and similarly placed (Poncelet adopted
the abbreviation s. and s.p., which we will also use here) in a plane.

Poncelet had first introduced the concept of s. and s.p. with respect to polygons. For
example, two s. and s.p. coplanar triangles would have corresponding homologous propor-
tional sides and be in the same orientation so that lines containing each pair of corresponding
“homologous” vertices would intersect at the same point. Following contemporary usage,
Poncelet called this point the “similitude centre.”®® Since any two circles are s. and s.p.
figures (and so each point of one circle was homologous with a corresponding point of the
other), Poncelet could determine their similitude centre. In general, a direct or opposed
similitude centre of two circles could be found by the respective intersection of their internal
or external common tangents.

Poncelet explained that when the common tangents were impossible or imaginary, such
as when one circle lay within the other, one could still find a graphic and intuitive mode
of representation by considering the “supplementary hyperbolas” of these circles. These
supplementary curves would have the same similitude centre as the circles and in the case
where the circles’ common tangents were imaginary, those of the hyperbolas would be
real. Since any circle or supplementary equilateral hyperbola has a centre of symmetry
(which is the origin of a circle or the centre of the equilateral hyperbola), any two circles or
equilateral hyperbolas would have two centres of similitude. Conversely, given a similitude
centre, Poncelet demonstrated how to find corresponding homologous points on two given
circles, and proposed that this argument was evident because clearly apparent in the figure.

Each pair of directly homologous lines would intersect in a point. In Figure 38 (our
Figure 2.7), the line AB is parallel to its directly homologous line A’B’ so their point of
intersection at infinity is not pictured. Directly homologous lines ED and E’D’ would also
intersect in a point, here also at infinity. Because of the proportional invariance, the line
containing these two intersection points would be a common secant to the two circles, here
a line at infinity. Likewise, the line determined by the intersection of AB with E’D’-the

51 Gergonne made frequent references to proofs or constructions for the circle being valid for any conic
section through perspective. For instance, in a footnote to a posed problem response he extended the
original solution, “La proposition étant ainsi démontrée pour le cercle , se trouve I’étre aussi pour toute
section conique, qui peut toujours étre considérée comme la perspective d’un certain cercle” (Gergonne
(1813a), 163). The prevalence of this practice among geometers in the early nineteenth century is noted in
Friedelmeyer (2011).

55We will return to the similitude centre construction as described by Steiner and Gergonne in Chapter
IV.
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Figure 2.7: Poncelet (1865), Planche V

point M—and the intersection of ED with A’ B’~the point N—as the intersections of inversely
homologous lines would be another common secant. Note that in his Figure 38 (our Figure
2.7), Poncelet employed his extended definition of common secants, that is, the secants
presented were not visually lines passing through either of the two circles. Moreover, as
the construction showed, the common secant determined by intersecting directly homolo-
gous lines was at infinity since the lines determining this secant were parallel. From this
construction, Poncelet observed that the finite common secant was also the radical axis
between two circles, and thus, tangents at homologous points of the two circles would meet
on this line.?® This enabled a construction of a common secant given only one transversal
through the similitude centre.

Poncelet offered two different three-dimensional interpretations of the above planar re-
lationship, which would lend evidence to the not-figured metric properties. First, Poncelet
noted that any two circles could be considered as the projection or perspective of one an-
other with the similitude centre taken as the centre of projection. Correspondingly, one
could manipulate the figures and examine their properties through changing the centre of
projection. For example, projecting the infinite secant to the finite secant would result in a
switch between inversely and directly homologous points and lines. In Poncelet’s alternative
visualization, the two circles could be pictured as planar sections of a conic surface with
its vertex at the similitude centre. This viewpoint had the advantage of providing an intu-
itive notion of common secants at infinity as represented by parallel planar sections. The
common finite secant of two circles was the line on which the two planar sections concurred.

Poncelet admitted that the construction of common secants would become impossible
and illusory when the given similitude centre was at infinity. Because each common secant

was also the polar to a similitude centre with respect to the given circles, if the similitude

56The concept of a radical axis was attributed to Louis Gaultier de Tours, whose definition is examined
in Appendix F.
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centre, say S was at infinity and the corresponding secant of contact M N would coincide
with the line containing the circles’ centres, C'C’. The same situation arose in the case where
the transversal through a similitude centre contained the circles’ centres. In these cases, the
corresponding tangents between the two circles (AB, ED, A’B’, E'D’) would all be parallel.
This interpretation, although imaginable, exceeded the bounds of the illustrated figure.

Poncelet summed up his findings: for two circles the similitude centre was also the
concurrent point of common tangents, the convergence point of homologous lines, and the
centre of projection between the two circles. Generalizing, Poncelet asserted that any conic
section could be considered as the projection of another with the centre of projection at an
intersection point between their common tangents. Further, he defined homologous points
between the two conic sections as those lying on lines through the centre of projection
and the homologous lines (straight or curved) containing these points would concur on the
common secants (or axes of projection). For any two curves, when their common secant
passed to infinity the centre of projection would become the similitude centre and the figures
would become s. and s.p..

In a visualizable three-dimensional explanation, Poncelet proposed considering any two
coplanar conic sections as the projection of two planar sections of a cone whose vertex
projected to the point of concurrence of the common tangents to the original coplanar conic
sections. To show the validity of this interpretation, he offered what he described as a simple,
direct proof. From an examination of Poncelet’s archival notes at the Ecole polytechnique,
we found that most of his working drawings were not formal constructions, but instead
approximative sketches through which one could gain the sense of the construction. We
present an illustrated sketch for the case of two ellipses based on the virtual figure in
Poncelet’s text (Figure 2.8).

Let C, C’ be two conics with point S as any point where their common tangents concur.
Consider the surface of a cone with C' as its base and its vertex at any point in space.
Project the cone such that its vertex goes to S. Then the cone’s two extreme edges would
project to the common tangents of C' and C’ passing through S. Next, take any point a on
C' and project this point onto the conic surface from S as the centre of projection. Project
the points of tangency of the common tangent on C’ to the cone as well. These three points
would define a plane cutting the cone in a conic section, whose projection onto the plane of
the base C would coincide with C’ because three points with a tangent at each of two points
determined a unique conic section. Since the projection of a corresponded to two points
on the conic surface, there are two such possible planes determined. Thus conic sections
could be considered in two different ways as planar sections of the same cone with S as the
vertex.

Following this proof, Poncelet pointed out an exception for when the point S did not

belong to two real common tangents. To cover this case, he referred to the principle of
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Figure 2.8: Sketch of projection to and from a cone

continuity which extended the result to the non-constructible case through deforming the
tangent lines by insensible degrees until they intersected at a real point. Poncelet argued
that common tangents of two curves uniquely determined two common conjugate secants
and reciprocally, in the imaginary tangent case one could use constructible real or ideal
common secants to obtain the necessary point of projection.

Having shown the intimate relationship between the particularity of two circles and the
generality of two conic sections, Poncelet explained his choice of language and extension of

definitions by projective invariance and analogy

...d’autant qu’il nous semble extrémement avantageux, pour la langue géométrique,
de pouvoir désigner un méme objet par plusieurs mots, quand ces mots corre-
spondent & des vues différentes de ’esprit, ou rappellent des propriétés distinctes
de cet objet. (Poncelet (1822), 155)57

Poncelet argued that multiple designations of a single specified geometric object could
emphasize the variety of properties inherent in that object. Further, his understanding
of the role of language reinforced his position on the importance of the visual nature of
geometry. Specifically, by labelling a point as a centre of projection, the name signified the
projective relationship between that point and the other figures. However, the name gave
no indication that the relationship of this point with respect to the projected conics was

analogous to the similitude centre with respect to two circles. So Poncelet recommended

57« _insofar as it seems extremely advantageous, for geometric language, to be able to designate the same

object by several words, when these words correspond to different mental views, or recall distinct properties
of the object.”
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that geometric language should employ the use of synonyms in order to signify different
properties and intentions inherent to the same object. In the situation of two conic sections
that were not similar, the term “similitude centre” could no longer be applied in reference to
the centre of projection without creating misunderstanding. Instead, Poncelet designated
this point as the “centre of homology.” Then the line on which homologous lines concurred
would be called the “axis of homology.” Finally, the lines converging toward the centre
of homology would be “rays of homology.” These new definitions indicated the “perfect
analogy” with s. and s.p. figures that Poncelet intended to utilize in this context. Like
figures, well chosen vocabulary provided immediate information. By changing the terms of

reference, Poncelet could use fewer words to convey new and familiar objects and relations.

2.5.2 Poncelet’s conic section constructions

Poncelet applied these definitions and properties to constructing conics of third order inter-
section. He introduced the chapter on “Applications & la théorie des contacts des sections
coniques” by explaining a physical derivation of points of higher order by the coincidence

of intersection points: a procedure he described as direct and simple.

[...] quand deux points communs au systéme de deux sections coniques viennent
par un mouvement continu, & se réunir en un seul, ces deux courbes se touchent
nécessairement en ce point; [...] ces mémes courbes deviennent osculatrice du
second ordre et du troisiéme ordre, lorsqu’un ou deux nouveaux points communs
a ces courbes viennent pareillement a se réunir en un seul avec les deux premiers.
(Poncelet (1822), 166)°®

Higher order contact points were essentially the unification of two or more intersection points
into one. Poncelet actively described the process of two points continuously moving together
and thus forming osculating curves from intersecting ones. Connecting this description with
his newly defined terms and beginning with the scenario of two conics intersecting in four
points, there would be in general six points of homology. As Poncelet had explained with
respect to circles, common tangents to two curves always concurred on the curves’ common
secants. Thus if a common secant reduced to a point, that point would be the intersection
of tangents and by definition a centre of homology for the two curves. Poncelet discussed
the higher order tangent points each with reference to the modified figure of two conic
sections with four points of intersection. This primitive configuration was the only figure
neither pictured nor described, but we give an unlabelled figure with an ellipse and a circle

for reference indicating where the points of homology would be (Figure 2.9).

58“[4..] when two common points in the system of two conic sections move continuously to coincide in one

point, these two curves must be tangent in this point; [...] these same curves become osculating curves of
second and third order, when one or two new common points of these curves similarly coincide in one of the
two first points.”

99



\

\

Figure 2.9: Six points of homology and four points of intersection between two conics

Poncelet began by describing how to construct a first order contact between two conics
from a pair of conics intersecting in four distinct points. By a continuous movement, one
common secant could reduce to a tangent point S along the common tangent line to both
curves at S (Fig 41, our Figure 2.10). This point S, having been derived from a common
secant, would be a centre of homology. The remaining three common tangents would
intersect at the three other centres of homology (5’, s, s’) belonging to the two conics. The
line M N containing the two intersection points of the conics would be a common secant
with respect to the two conics, so an axis of homology with respect to the centre of homology
S’. Any pair of homological lines a’b’ and ab would coincide on M N, as pictured in the
point [. The other two centres of homology s, s’ would lie on the common tangent line to
the conics at S. Recall, from Poncelet’s definition of common secants that he used the term
conjugate point and line to describe the relationship also denoted as pole and polar. Here
he used the terms interchangeably.

While Pliicker’s theorem concerning simple tangency applied only to similar conics,
Poncelet had already established a means to translate properties from similar to non-similar
figures through the use of projection to infinity. Thus we see that Poncelet’s approach
applied to any two conic sections.

To create a second order tangency, Poncelet continuously deformed Figure 41 (our Figure
2.10) until the point N coincided with the centre of homology S. In Figure 42 (our Figure
2.11) this point is represented by S. For this configuration, there would be two common
tangents, ST and S’S, and one common secant SM. This secant thus contained the

intersection of the homologous lines ab and a'b’.
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Figure 2.10: Poncelet’s Figure 41 (Poncelet (1865), Planche V)

Figure 2.11: Poncelet’s Figure 42 (Poncelet (1865), Planche V)
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From Figure 42, Poncelet continuously moved point M until it met with point S. Since
now all four former intersection points coincided at point S, this was a third order contact.
As shown in Figure 43 (our Figure 2.12), only one centre of homology remained at point
S. The former common secant SM was now the tangent line at point S. Thus this tangent

line would also contain the intersections of all pairs of homologous lines.

Figure 2.12: Poncelet’s Figure 43 (Poncelet (1865), Planche V)

Finally, to obtain a double contact, between two conics, i.e. two points of simple contact,
Poncelet returned to the configuration represented by Figure 41. If the two points of
intersection M and N coincided in a single point, labeled in Figure 44 (our Figure 2.13) as
S’, then this point would be a centre of homology for the two conics. The common tangents
to the curves at S and S, the lines SP and S’ P, would be axes of homology. Their point of
concurrence P would be the centre of homology, as well as the pole, conjugate to the finite

common secant SS’.

Figure 2.13: Poncelet’s Figure 44 (Poncelet (1865), Planche V)
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In passing, Poncelet noted that for the case where a centre of homology was at infinity,
the corresponding tangents would become parallel and the homologous lines would meet on
the axis of homology, the conjugate (or polar) of the point at infinity.

Poncelet asserted that the properties found in these four cases could be extended and
used to determine a conic of first, second, third order single tangency or double tangency.
In the case of a third order tangency—as presented in 1817—one would require only the third
order contact (here, equivalent to the centre of homology) and either a second point on the
other conic or a tangent to the other conic to derive a construction. Through his detailed

and figure driven exposition, the description of such a curve was now evident.

Il est évident que, dans ces diverses circonstances comme dans celles qui préce-
dent, I’on pourra toujours décrire I'une des deux courbes au moyen de 'autre et
de certaines données, par quelqu’un des procédés généraux qui font le sujet des
articles [...], le tout sans employer autre chose qu’une simple régle ou des jalons,

si lon opere sur le terrain. (174)5

Poncelet concluded by describing the necessary physical tools, ruler or ranging pole, and
surfaces, the earth, to effect the above constructions. More than a result, Poncelet wanted

to demonstrate an evident and thereby memorable procedure for practical derivation.

2.5.3 Generality and evidence

Poncelet strove to achieve geometric generality without losing the evidence of the figure,
which led to two types of generalizations: a generalization of specific objects through the
definition of ideal chords, secants, and tangents as well as a generalization of the process
of gathering evidence.®® Imaginary points were still not represented nor considered repre-
sentable, but they could be manipulated and they possessed well-known properties derived
from their real counterparts. Furthermore, ideal objects containing imaginary points only

needed to be made evident through representation of their real points in the figures.!

Pour concevoir 1'objet de ces définitions, il suffit de supposer que la section
conique que l'on considere ne soit pas décrite, mais seulement donnée par cer-

taines conditions, et qu’alors on se propose de rechercher, soit les points ou elle

5941t is evident that, in these different circumstances as in those which preceded, we could always describe
one of two curves by means of the other and certain data, through one of the general methods which are the
subject of these articles [...], all without using anything other than a simple ruler or ranging pole, if we use
it on the terrain.”

59Poncelet’s attention to generality serves as a dominant theme in his historiography, in particular recent
studies on how Poncelet’ interpreted and manifested generality Friedelmeyer (2011), Nabonnand (2011b),
Nabonnand (2011a), Gérini (2010b), Chemla (1998).

61 Almost simultaneously, in the Annales mathematicians, including Gergonne, were discussing the rep-
resentation of numbers as points in the complex plane. Although both called for greater generality in
mathematics, we have not observed any specific overlap in reference between these two discussions. For
more on the geometric representation of numbers in the complex plane see Liitzen (2001).
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est rencontrée par la droite réelle tracée sur son plan, soit tout autre objet qui
en dépende; car on ignore alors si les uns ou les autres sont ou non possibles, et
il est naturel de persister, dans tous les cas, a regarder cette ligne droite comme
une sécante véritable de la courbe, et par conséquent de la traiter comme telle
dans le raisonnement géométrique qui sert a faire découvrir les objets qu’on
cherche. (Poncelet (1822), 28)62

One consequence of Poncelet’s proposed generality was that formerly finite and real objects—
such as a pair of concentric circles in the plane—possessed infinite and imaginary points—two
imaginary points of double contact on their common chord at infinity. Poncelet’s new
definitions weakened the boundary between real and imaginary objects, and as justification
he pointed to the diverses modes of existence already present in geometry with respect to
infinity and infinitesimals. Poncelet was able to manipulate infinite and imaginary points
by a process of translation using perspective, cones in space, supplementary curves, and his
principle of continuity.

Poncelet provided liberal illustrations of his geometric practices with figures depicting
his numerous planar definitions, constructions, and proofs. However, Poncelet’s so-called
modern geometric techniques were not shown on paper. The effects appeared in figures, but
points at infinity, imaginary lines, central projection, and even three dimensional objects
were deliberately invisible. In this, Poncelet followed an established practice for three-
dimensional geometry. As Michel Chasles (1793-1880) later described, Monge’s lectures on
the application of space to the plane were presented without physical representations either,

simply through the evocative use of gestures and speech.

C’est une tradition, dans I'Ecole polytechnique, que Monge savait, & un de-
gré inoui, faire concevoir dans 'espace toutes les formes les plus compliquées
de I’étendue, et pénétrer dans leurs relations générales et leurs propriétés les
plus cachées, sans autre secours que celui de ses mains, dont les mouvements
secondaient admirablement sa parole, quelquefois difficile, mais toujours douée
de la véritable éloquence du sujet: la netteté et la précision, la richesse et la
profondeur d’idées. (Chasles quoted in Belhoste and Taton (1992), 290)%3

62«To conceive the object of these definitions, it suffices to suppose that the conic section that we consider
is not described, but only given by certain conditions, and that then we propose to find, either the points
where it meets the real line traced on its plane, or any other object on which it depends; for we don’t know
then if the one or the other are possible or not, and it is natural to continue, in all cases, to regard this
straight line as a true secant of the curve, and consequently to treat it as such in the geometric reasoning,
which serves to discover the desired objects.”

63«There is a tradition, in the Ecole polytechnique, that Monge knew to an unheard of degree, how
to render conceivable space forms of the most complicated extension, and how to penetrate their general
relations and their most hidden properties, without any other recourse except that of his hands, whose
movements admirably followed his words, sometimes difficult, but always endowed with true eloquence on
the subject: the clarity and the precision, the richness and the depth of ideas.”
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Thus in the academic setting it was not always expected to produce three-dimensional ren-
derings on paper in order to grasp enough evidence for geometric understanding. Similarly,
Gergonne spoke to the possible confusion in accompanying three-dimensional descriptions

with physical figures in a footnote to a construction on enveloping surfaces.

Je sous-entends la figure, qu’il est plus aisé de concevoir que de représenter, sans
confusion. (Gergonne (1813c), 365)%4

Gergonne later argued that figures in the geometry of space were far more useful when
conceived, or, if necessary, constructed by the reader. Including illustrations of such figures

to accompany the text was likely to be a hindrance, enforcing the particularity of geometry.

Nous croyons superflu d’accompagner ce mémoire de figures, souvent plus embar-
rassantes qu’utiles, dans la géométrie de ’espace; figures que nous ne pourrions
d’ailleurs offrir que sous un aspect unique et individuel au lecteur qui pourra,
au contraire, les construire et faconner a son gré, si toutefois il en juge le secours
nécessaire. Il ne s’agit ici, en effet, que de déductions logiques, toujours faciles a

suivre, lorsque les notations sont choisies d’'une maniére convenable. (Gergonne

(1826), 212)5°

Though one can find illustrations of three-dimensional objects in descriptive geometry texts,
the use of three-dimensional description by Poncelet, Gergonne, or even Monge appears
intended to create an impression rather than a technical construction.

Part of Poncelet’s innovation in this respect was the use of projections to bring non-
figured, and not obviously figurable, objects into the real plane where they could be manip-
ulated, illustrated, and then become imaginary or infinite while maintaining certain specific
properties. Poncelet provided criteria for these invisible objects to be made evident and
thereby count as evidence in further applications.

However, Poncelet’s constructions as they appeared in the eighth volume of the Annales
were merely applications of elementary geometry (secants, conics, tangents, intersecting
points) with no trace of the underlying theory, just as Pliicker’s constructions nine years later
revealed none of the coordinate manipulation in their analytic proofs. In the construction

the proof itself could be lost from view.%6

54«1 intend the figure, which is easier to imagine than represent, without confusion.”

65«We believe it superfluous to accompany this memoir with figures, often more overwhelming than useful,
in the geometry of space; figures that we could besides only present in a unique and individual aspect to
the reader, who could, instead, construct and fashion them to his taste, if he judges the assistance at all
necessary. We are concerned, indeed, only with logical deductions, always easy to follow when the notations
are chosen in a convenient manner.”

56Tn his study on geometry in ancient Greek mathematics, Netz classifies the construction as a description
and the proof as a narrative (Netz (2005), 262). In this sense these articles present different stories with
the same characters and in the same locations. However, as is so often true with stories, the characters and
locations are not so similar as they first appear.
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In their presentations, both Poncelet and Pliicker centred their results around the re-
lationship between coincidence of intersection points and order of tangent points. The
procedure of deriving new results from gradual deformation of a figure was not unique to
their writings, although their insistence on the importance of the procedure is marked. Fur-
ther, Pliicker’s coordinate equations and Poncelet’s ideal objects were both introduced as
new forms of geometric evidence. From this perspective, the rather redundant constructions

were merely a vehicle to show off their potential applications.

2.6 Gergonne’s “Pluker” without Pliicker, 1826

Poncelet never saw Pliicker’s original manuscript because the published version which ap-
peared in the Annales had been edited beyond its author’s recognition. As Pliicker asserted

four years later in the introduction to his Analytisch-geometrische Entwicklung,

Die Veranlassung dazu war, dass ein von mir eingesandter Aufsatz in den An-
nalen (1826 Aoit et Septembre) abgedruckt wurde, nachdem er zuvor getheilt
und in eine so ganz verschiedene Form gegossen worden war, dass ich den er-
sten Theil desselben spédter nur wiederkannte, weil mein Name an der Spitze
desselben stand. (Pliicker (1831), vi)%”

Plicker emphasized that the form of his published article was completely different from
his submission. As we shall see, this factor was decisive in shaping the article’s immediate
impact. To begin with, Gergonne divided the manuscript into two articles. The first was
listed under the subjects “Géométrie des Courbes et Surfaces” and “Géométrie de Situation”
entitled “Théorémes et problémes sur les contacts des sections coniques.” This article built
up lemmas and theorems based on Brianchon’s Mémoire sur les lignes du second ordre
(1817) to solve the problem of finding conics given points and tangents of first, second, or
third order. There were no coordinate equations and the text was presented in dual columns.
The second article was listed under the subjects “Géométrie analytique” and “Géométrie des
Courbes et Surfaces” entitled “Recherche d’une construction graphique de cercle osculateur,
pour les lignes du second ordre.” Though only running four pages, this second article was
more in tune with Pliicker’s manuscript as Gergonne included the coordinate expressions for
second order equations and combined these equations to find a locus of intersection points.

Since third order contacts between two conics were addressed in both articles, we will
consider the two quite different treatments. In referencing the author of these texts we
will refer to “the author” or “he” because of the melange of contributions of Pliicker and

Gergonne.

67«The occasion of this was the submission of an essay that I sent to the Annales (1826 August and
September), after which he [Gergonne| divided and moulded it into a so completely different form that I
only recognized the first part afterwards because my name was at the top of it.”
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2.6.1 Pluker’s first publication

The first article, “Théorémes et problémes,” had a striking architecture. Not only was it
written almost entirely in dual columns (barring a bibliographic introduction and a summary
conclusion), but the material progressed following the gradual deformation of a complete
quadrilateral into a triangle, then an angle, then a chord. Each deformation resulted in
one or more theorems, which were then used in a subsequent problem to determine a conic
with the ruler alone and a set of given conditions. The repetitive systematic style closely
resembled L. M. P. Coste’s recent contribution to the same subject, “Propriétés peu connues
de la parabole, et construction de cette courbe, au moyen de quatre conditions données”
written in 1817 and also inspired by Poncelet, in which Coste laboriously determined how to
construct a parabola given any combination of four points or tangent lines (Coste (1817)).
This required 18 different cases with 20 lemmas and 24 figures occupying an entire page

with every figure a slight deformation of the previous one, shown in Figure 2.14.
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Figure 2.14: Coste’s variations of parabolas (Coste (1817))

Though neither Pluker article contained any real figures, we will see that the invoked
virtual figures were of the same type as Coste’s parabolic variations.

The author (Gergonne’s version of Pliicker) opened the article by citing Brianchon’s
determination of any conic section given five conditions of passing through points or being
tangent to lines. The author observed that a simple tangent point was equivalent to two
given conditions, a second order tangent to three conditions, and a third order tangent to

four conditions. Thus with a smaller number of points of higher order tangency one could
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still completely determine a conic. He cited Poncelet as having considered the research
of this series of “curious” problems in his Traité. Without directly critiquing Poncelet’s
treatment, the author proposed to derive his results based on very simple considerations
and constructions, deduced from two fundamental lemmas. Thus the author subtly seemed
to imply that Poncelet’s procedure was unnecessarily complicated. Since the problems,
constructions, theorems and proofs corresponded in pairs, the author proposed employing
two columns. He referred to three articles from the two most recent volumes of the Annales
(the first two by Gergonne and the last by Vallés in response to a pair of problems posed
by Gergonne (Gergonne (1825), Gergonne (1826), Valles (1826)) as precedents in this for-
matting choice. The author did not use the term reciprocity or duality in this context, only
correspondence to denote the relationship between the columns’ contents.%®

The style of two columns was a recent Gergonne innovation, introduced in 1825 within
the context of corresponding polyhedral faces and vertices and soon to become a regular
feature in the Annales (Gergonne (1825)). Gergonne was very enthusiastic about this
particular style of presentation, and used it to rewrite his past results along with those
from other Annales contributors.

In the side-by-side lemmas, circumscribing was symmetric to inscribing, sides to vertices,
concurrence to collinearity, arbitrary secants through determined points and determined

tangents through arbitrary points. On the left hand side the lemma was,

Deux coniques étant circonscrites & un méme quadrilatere ; si, par les deux
extrémités d’'un méme co6té de ce quadrilatére on mene aux deux courbes des
sécantes arbitraires ; les cordes menées a ces courbes, par les points ou elles
seront respectivement coupées par ces sécantes, iront concourir toutes deux sur

la direction du c6té opposé du quadrilatere.5?

The corresponding right hand side lemma was,

Deux coniques étant inscrites a un méme quadrilatere; si, sur les deux cotés
d’un méme sommet de ce quadrilatere on prend arbitrairement deux points
par chacune desquels on méne des tangentes aux deux courbes; les points de
concours des tangentes respectives a ces deux courbes seront en ligne droite

avec le sommet opposé du quadrilatére. (Pliicker (1826b), 39)7

58Karine Chemla has shown how Gergonne developed duality from spherical geometry, and the references
he provided in this article reflect these origins, see Chemla and Pahaut (1988) and Chemla (1989).

59¢Two conics are circumscribed to the same quadrilateral; if, by two vertices of the same side of this
quadrilateral one draws arbitrary secants to two curves; then the chords drawn through the points where
these curves will be respectively cut by these secants, will all concur in pairs on the the extension of the
opposite side of the quadrilateral.”

"0“Two conics are inscribed to the same quadrilateral; if, on two sides of the same vertex of this quadri-
lateral one arbitrarily takes two points and draws tangents to the two curves through each of them; then
the points of concurrence of the respective tangents to these two curves will be in a straight line with the
opposite vertex of the quadrilateral.”
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The proofs of these lemmas preceded their statement and each side employed a carefully
described virtual figure. The proof took the form of a construction respectively using
Pascal’s theorem and Brianchon’s theorem on the left and right side for which we present

an illustrated figure based on his description, Figure 2.15.

Figure 2.15: Tlustrated figure for Pluker’s lemma

As reference to Pascal’s and Brianchon’s theorems, the author cited five articles from
the Annales, two by Gergonne, one by Jean Baptiste Durrande, and two by Germinal
Dandelin—extracted from the Mémoires de ['académie royale des sciences de Bruxelles by
Gergonne. While Pascal and Brianchon were cited by name, neither of their original works
were referenced here. The author added in a footnote that this property applied equally to
convex and concave quadrilaterals. From the lemmas, the author proceeded to ever fewer
points, and correspondingly ever fewer tangent lines, of higher order contact. There was
a large amount of repetition in the constructive steps and derived properties with twelve
pairs of theorems each corresponding to a different deformation of the original quadrilateral.
Every proof in this article similarly reduced the number of points in the prior polygon by
one, without affecting the veracity of the lemma. So we may skip forward to the treatment
of third order contact while still maintaining a sense of the style and content. We present
only the left hand side.

Lorsque deux coniques ont en un point commun un contact du troisiéme ordre,
elles ne sauraient avoir alors aucun autre point commun, ni conséquemment

aucune corde inscrite commune. On peut, dans ce cas, les considérer comme
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étant toutes deux circonscrites & un méme quadrilatere dont les cotés, d’une
longueur nulle, sont dirigés suivant la tangente commune, et dont les sommets
se confondent tous quatre avec le point de contact. Notre Lemme ne cesse pas

pour cela d’étre vrai. (56)7!

From this informal proof, the author concluded that for two conics with a third order
tangency and two arbitrary secants through that point, the chords drawn from the respective
intersections concurred on the common tangent. This theorem enabled the solution to
problem VII; with the ruler alone given a conic, a point on the conic, and a second point
in the plane, to find all the necessary points to determine another conic with a third order
contact at the first point and passing through the second. We present an illustration based
on the virtual figure in Figure 2.16 where A is the point on the given conic, P is the coplanar

point and @ is the new point on the desired conic section.

Figure 2.16: Third order tangency construction, 1826

The author continued by considering the case where the angle between two secants
diminished to zero (or correspondingly the distance between two points diminished to zero),
in order to derive a similar proof, then theorem, then problem and ultimately solution for
the case of a third order tangent point and a given planar tangent line.

This final case completed the two column format. The author concluded the article by
pointing to further generalizations by considering a system of two straight lines as a conic
(which Plicker had also done) or extending to figures on a spherical surface (for which the
author cited an article by L. Magnus, another Prussian mathematician, which had appeared

in the preceding volume of the Annales).

"14When two conics have a common point of third order contact, they cannot have any other common point,
nor consequently any common inscribed chord. We can, in this case, consider them as both circumscribed to
the same quadrilateral where the sides, of no length, are directed following the common tangent, and where
all four vertices coincide with the point of contact. Our Lemma does not stop being true.”
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Comparing the above construction and Figure 2.16 to Figure 2.4 (our illustration of
Poncelet’s original virtual figure) and Figure 43 (from Poncelet’s Traité), we observe that
except for a change in point names this 1826 solution is nearly identical to Poncelet’s
both in the 1817 article and in his 1822 Traité. Also, the emphasis on coinciding points
closely mirrors Poncelet’s in the Traité, here the process was explained in terms of the
polynomial. In Pluker’s “Théoréemes et problemes sur les contacts des sections coniques,”
figures were manipulated by diminishing distances to zero or diminishing angles to zero,
or considering figures with sides of no length or angles of no magnitude. In this way the
principle of continuity was implicitly invoked, since for each of these deformations, the
author insisted that “notre Lemme ne cesse pas pour cela d’étre vrai et applicable.” The
focus on the physically realizable construction process in this article is further emphasized
by the author’s frequent Remarks which (out of multiple possible solutions) suggested the
solution that did not require drawing a tangent line as the most advantageous.

Many of these features, from the introductory lemma to the concluding generalization
for a spherical surface, were entirely absent in Pliicker’s original article. Perhaps most
significantly, Pliicker’s evidence in support of analytic geometry had been reformulated as
evidence in support of simple considerations and constructions of elementary geometry.
Plicker’s theory of osculations was based upon the coordinate representation of a common
chord between two conic sections as well as a very explicit definition of tangency order with
respect to coinciding points. The relationship between coinciding points and tangency order
within the published article is employed repetitively, but never explained as a fundamental
procedure or principle. Even the common chord had vanished.

Likewise, despite their similar appearance the proofs and constructions in “Théorémes et
problemes sur les contacts des sections coniques” and Poncelet’s Traité are based upon very
different principles. In the former, the author used properties of the inscribed or circum-
scribed hexagon to derive each construction meticulously, while Poncelet’s constructions
rely on broader properties of similar figures, projection, and common secants or tangents.
In this article, the author’s particularity in examining each possible hypothesis contrasts
strongly with Poncelet’s much more general treatment in which replacing given points by
given tangent lines is seen as analogous or reciprocal and not worth entering into detail.”

The role of the virtual figure within “Théoréemes et problemes” was central to proving
results, but emerged as specifically limited to the context of reiterative polygon deformation
to fewer and fewer vertices. Special cases needed to be considered dependent on the number
of intersections or contacts between each side of the derived polygon and the given conics.

Thus this paper succumbed to Poncelet’s 1822 criticism of pure geometry;

"Because of the striking similarity in results and lack of originality in method, Poncelet would accuse
Pliicker of the twin offences of plagiarism and loss of generality in Poncelet (1827a). This controversy forms
the subject of our Chapter III.
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...sa marche dépend tout-a-fait de la sagacité de celui qui ’emploie, et ses ré-
sultats sont, presque toujours, bornés a 1’état particulier de la figure que 'on
considere. (Poncelet (1822), xix)™

Gergonne’s use of dual columns emphasized an algebra-like substitutability between
words that suggested an association between elements in the figure that could not be rep-
resented by a constructive procedure: there was no ruler and compass manipulation that
could translate a figure from the left hand to the right hand side. Historian Mario Otero
argues that the metamathematical principle of duality marked the move from physical to
abstract geometry (Otero (1997), 164). While we would counter that there were many
contributions toward abstraction at this time, duality represented by double columns em-
phasized another step away from the descriptive figure and a physically manipulable object
of geometry. But though the figure was obscured, dual columns enabled an immediate
visual transfer of information. That is, Gergonne’s dual columns, like Pliicker’s equations
and Poncelet’s ideal objects, were a form of new geometric evidence. Moreover, the use of
dual columns interrupted the traditional direction of textual reading. With dual columns
one could read one column and then the other, or switch continually between corresponding
features in both columns, or even simply read one side of the column and thereby gain a
sense of what the other column would say (admittedly, the latter option seems the most
appealing). In Chapter 111, we will witness Gergonne’s additional experiments in lay-out to
convey duality. Dual columns were not figures, but they were a striking visual vehicle for
transferring geometric information.

With the use of dual columns “Théoremes et problémes sur les contacts des sections
coniques” might be seen as innovative, but the painstaking process of determining individ-
ual particular cases was decidedly conservative. Despite the potential to include Poncelet’s
specific results, here the author assumed the desired number of intersections or contacts
between two curves within the construction’s hypothesis, and so issues of existence were
entirely outside the scope of the paper’s contents. Though Poncelet was cited in the in-
troduction, the rest of the text contained no further references to the Traité. Moreover,
by associating Poncelet’s Traité with a variety of well-documented elementary geometry
results (many by Gergonne), the author de-emphasized the originality of Poncelet’s contri-
butions. In “Théorémes et problemes”, ideal objects were not mentioned and all references
to chords, secants, and tangents were assumed real. However, Pluker would directly employ

these terms in the following article.

73« its progress depends completely on the wisdom of he who uses it, and its results are, almost always,

limited to the particular state of the figure that he considers.”
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2.6.2 Pluker’s second article

This second article opened with the author determining the coordinate plane: with the
origin as any point on a second order line, the y-axis as the tangent at that point, and the

z-axis as the normal. This led to two equations,
y? + 2axy + ba? + 2cx = 0, (2.17)

y* + 2Axy + Ba? 4+ 2Cx = 0, (2.18)

for two second order lines intersecting with common tangents at the origin.

The author declared that two second order lines could “in general” intersect in four
points. By giving equal status to real and imaginary intersections, the author’s use of “in
general” here seemed to signify a lack of exception. In the case of the two curves given by
(2.17), (2.18), since the origin of the plane was the coincidence of two of their four points
of intersection, there also existed two other real or imaginary intersection points between
the curves. The author proposed to find the line joining these two points.

With slightly different variables from Pliicker’s original manuscript, the equation for the
line joining the intersections of the two curves was found by subtracting (2.17) from (2.18).

This yielded a system of two lines: the y-axis and
20A—a)y+ (B—b)x+2(C —c)=0. (2.19)

As Pliicker himself had pointed out, here the author noted that the two points of intersection
between the common chord (2.19) and each of the curves could be imaginary. Pliicker had
relied upon the validity of the equation as securing a constructive representation for a
straight line possessing common chord properties. However, in the published article the
author stated that in the case of imaginary points the line (2.19) would “become what
Poncelet had called an “ideal chord, but we can still construct it” (Pliicker (1826a), 70).
The use of but in this context suggests a still uncertain status for ideal objects. Apparently,
the author chose to use ideal chords as evidence for a lack of exception to the construction,
but cautiously had to remind the reader that ideal chords were still constructible objects.™

Significantly, this was Gergonne’s (though under the guise of Pluker) first published use
of ideal chords, which he had criticized strongly in 1820 in a footnote to Cauchy’s report to

the Académie des sciences on Poncelet’s researches.

[...] or, s’il est une définition de ces droites qui convienne également & tous

les cas, ne faudrait il pas I’adopter de préférence a une autre définition sujette

" Pliicker himself would begin to use the designation “ideal chords” in analytic geometry, as we will see
in Chapter IV.

113



a des exceptions nombreuses, pour lesquelles il faut recourir a des conceptions
ingénieuses, si 'on veut, mais qui tendent a faire perdre a la géométrie une
partie des avantages et de la supériorité qu’on lui a toujours accordé sur toutes
les autres sciences? Dans le cas de deux cercles, par exemple, ne vaut-il pas
mieux définir I’axe radical, le lieu des points pour lesquels les tangentes aux
deux cercles sont de méme longueur, que de dire que c’est la corde commune a
ces deux cercles? (Poncelet and Cauchy (1820), 80)7

Gergonne had expressed concern that Poncelet’s alternative definitions would introduce
unexpected exceptions and require great ingenuity in geometry—two features that Poncelet
was directly attempting to avoid through generality and uniformity. By contrast, within
“Recherche d’une construction graphique de cercle osculateur, pour les lignes du second
ordre,” the author referenced Poncelet’s new definition of “ideal chords” casually as a means
towards avoiding exception.

The author continued to examine the consequences of (2.19) with respect to the co-
efficients. This procedure followed that of the first half of Pliicker’s original article, his
so-called theory of osculation, although in a more abbreviated format. If C' = ¢ the lines
(2.17, 2.18) would pass through the origin and the two curves would share a second order
contact. Further if A = a and C = ¢, the chord (2.19) would coincide with the y-axis and
the two curves would share a third order contact at the origin.

The article ended with “une construction facile” for the centre of an osculating circle at a
given point of a second order line. The derivation and exposition of this construction concur
with those of Pliicker’s original article. By varying the coefficient C in y? + 22 4+ 2C2 = 0
all osculating circles tangent at a given point to the curve would have parallel common
chords. It was within this context that Pliicker had suggested the extension of the notion of
chord to include lines satisfying the chord equation and the chord properties. The author
in “Recherche d’une construction graphique de cercle osculateur, pour les lignes du second
ordre” had already referenced ideal chords, and the possible constructive procedure was not
mentioned further.

This abrupt ending eliminated Pliicker’s study of diameters and his commentary on
coinciding points of intersection as the basis for the theory of osculation. Though Pliicker’s
specific proofs and solutions remained intact, the absence of theoretical and methodologi-
cal context made the published version appear limited and particular. As the title of this

published article suggested, the results were now framed as leading only to a graphic con-

thus, if there is a definition of the lines which is suitable for all cases, we should not adopt
a preference for another definition subject to numerous exceptions, for if we do then we must resort to
ingenious designs, which tend to lose a part of the advantages and superiority that geometry gives to all the
other sciences? In the case of two circles, for example, would it not be better to define the radical axis as
the locus of points for which the tangents to two circles are of the same length, than to say that this is the
common chord to two circles?”

]
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struction of an osculating circle. The abbreviated treatment of coefficients deemphasized
Pliicker’s attention to avoiding calculation and creating a direct correspondence between
representational equations and geometric objects. The first section of Pliicker’s original
text, though containing these same results as the second published article, were intended as
exposition of his theory of osculation and particular method of analytic geometry. Finally,
by placing these researches in a separate article following the work on tangent conics, the
relationship between theory and application that Pliicker strongly emphasized was almost
entirely severed. The potential reader would not be introduced to Pliicker’s true style of
analytic geometry until the following year, when it was met with general praise, as we shall

see.

2.7 Conclusion

We return to Poncelet’s 1817 article where he differentiated three methods in geometry: ana-
lytic geometry, pure modern geometry, and pure ancient geometry. The articles of Pliicker,
Poncelet, and Gergonne/Pliicker respectively fulfill some of the characteristic features of
Poncelet’s trichotomy. Pliicker used properties of coordinate representation, Poncelet es-
chewed calculation while developing general tools far beyond the scope of Gergonne’s more
elementary pure exposition. However, the three different presentations also illustrate the
limitations of such a clear cut classification, as well as any of the classifications described in
Chapter I. Pliicker chose his coordinate axes to avoid calculation and emphasized the role of
representation in analysis. Poncelet’s treatment of imaginary and infinite points admitted
objects into pure geometry that no longer had an immediate figurative correspondence, and
his definitions of the ideal challenged the intuitive nature of geometry. Gergonne’s simple
figure deformations at least implicitly required some form of continuity, did not include any
actual figures, and with the use of dual columns suggested a kind of symbolic substitution
between words signifying geometric objects. Conversely, though Gergonne as Pluker cited
Poncelet’s Traité, he did not attempt to import the new ¢deal objects except in an analytic
context. In Chapter IV, we will see how ideal objects spread through the pages of the
Annales in both figure based and coordinate based representations.

Looking beyond these methodological boundaries, the greatest commonality between
the five texts is apparent in the statement of the problems and constructive solutions.
For these problems of planar geometry, there was an imperative to translate back to the
vocabulary and situation of the problem’s statement regardless of the method used to solve
it."0  Actually viewing or drawing the constructed figure makes the comparison between

these different treatments even more striking. While the named points and constructive

"Friedelmeyer suggests that Gergonne’s ability to translate between analytic calculation and simple geo-
metric constructions was uncommon among his readers.
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steps might vary in order, the completed solutions were visually more or less identical. In
this respect, problems were conservative, while innovation lay in theorems and theory.”” On
the constructive level, the evidence for each author was the same.

In all the above presentations, the evidence provided by an actual or virtual figure
determined the object’s geometric existence. Though Pliicker proposed coordinate equations
as a representative geometric form, only geometric construction secured an object’s reality.
In particular, he noted that the common chord no longer existed as such when it was not
bound by two real intersecting points, though it was still representable both as an equation
and as a real line segment on the plane. Poncelet’s introduction of ideal objects extended the
concept of geometric existence, but not so much as to include the non-figurable imaginary
and infinite. Within the context of ideal objects, Poncelet also suggested multiple kinds of

existence.

Son admission ouverte en Géométrie ne saurait donner lieu a aucune difficulté
sérieuse; car, si la propriété qu’on examine et qui, par hypothese, a été établie
pour une situation non singuliére, mais indéterminée, des parties de la figure, ne
concerne que des objets actuellement réels et constructibles, elle aura lieu d’une
manieére entierement absolue et géométrique; dans la supposition contraire, elle
cessera d’étre applicable a ces objets d’'une maniere absolue, sans pour cela de-
venir ni fausse ni absurde a ’égard des objets demeurés réels; en sorte que, si
I’on conserve mentalement une existence de signe ou d’expression aux objets im-
possibles, la propriété devient purement idéale a I’égard de ces objets. (Poncelet
(1822), 66)™

Thus an object could be neither real nor constructible, but also neither false nor absurd.
This new kind of existence would seem to transcend figurative or coordinate forms of rep-

resentation, and permit less tangible types of evidence.

Ensuite, la solution analytique de Gergonne suppose de la part de son auteur une capacité peu
commune d’interpréter et d’orienter les calculs analytiques pour en déduire une construction
aussi simple. (Friedelmeyer (2011), 90)

“Following the analytic solution of Gergonne supposes an uncommon capacity on the part of
its author to interpret and orient analytic calculation in order to deduce a construction just as
simple.”

""We will further argue this claim in examining problem solving in Pliicker and Steiner in Chapter IV, as
well as the content of contemporary French geometry books in Chapter V.

T8uTts [ideal object’s] open admission in Geometry will not lead to any serious difficulty; because, while
the property that we examine and which, by hypothesis, has been established for a non-singular, but inde-
terminate, situation of the parts of the figure, only concerns now real and constructible objects, the property
will obtain in an entirely absolute and geometric manner; in the contrary supposition, the property will
stop being applicable to these objects in an absolute manner, without becoming either false or absurd with
respect to real objects; as a result, if we mentally conserve an existence of a sign or expression of impossible
objects, the property becomes purely ideal with respect to these objects.”
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Despite the plethora of virtual figures in the constructive solutions we saw very few ac-
tual figures. Of the five texts considered, only Poncelet’s lengthy monograph supplemented
descriptions with an illustrated appendix. This technical observation merits considera-
tion. With an imperative to accompany every proposition with a figure, as was common
in ancient geometry, comes a limitation on the kinds of figures propositions may include
(Decorps-Foulquier (1999), 64). On the contrary, when two dimensional representation is
no longer an expectation in geometry, the figures can go to infinity, have imaginary compo-
nents, be replaced by equations, substitute into other figures, or deform continuously. We
saw the advantages of virtual figures in references to infinitely distant points, deforming
planar objects, suggestions for application to any number of possible conic sections, and
substitutions of points for lines or vice versa.

The geometric practices advertised by Poncelet, Pliicker, and Gergonne not only ex-
tended the kinds of geometric figures, but also the ways of seeing them. In projective
geometry, Poncelet could manipulate imaginary objects through their invariant relation-
ships with real counterparts on the plane. Pliicker shifted coordinate geometry away from
computation and toward observation. Gergonne’s dual columns encouraged viewing two
figures in one. The figure could be kept in sight, if one was willing to broaden the scope of
the subject and the action.

Pliicker addressed this issue directly in the introduction to his Analytisch-geometrische
Entwicklungen, where, without explicitly mentioning Poncelet, he returned to the critiques
voiced in Poncelet’s 1817 philosophical article (Pliicker (1828a), Poncelet (1817c)).

Man braucht nur zu erwégen, dass wir die gegebenen Figuren, und zwar zunéchst
die, sie vertretenden, Symbole, nie aus dem Auge verlieren, und, bei der Einfach-
heit der Verbindung, in jener Gleichung bis zur Endgleichung hin, die Beziehung
zu den gegebenen Gleichungen wiedererkennen—wéhrend, von der einen Seite, in
der alten Geometrie, wie sie z.B. Apollonius handhabt, das Hauptthema in den
Schatten von Umschreibungen zuriicktritt, eben so wie die Hauptconstructionen
von Hilfslinien maskiert werden, und, von der andern Seite, die blosse Anwen-
dung der Algebra auf Geometrie in Elimination sich verliert. (Pliicker (1828a),
iv)79

In adopting Poncelet’s emphasis on keeping the figure in sight, Pliicker differentiated his

“pure analytic geometry” from both ancient geometry and the “mere” application of algebra

"4“One only needs to consider that we never lose sight of the given figures, indeed first of all those symbols
that represent them, and we recognize through the simplicity of combination, in each equation up to the final
equation, the relationship to the given equations—however, on the other hand, in ancient Geometry, such as
that which Apollonius employed, for example, the main theme recedes in the shadows of descriptions, just
as the main constructions will be masked by auxiliary lines, and, on the other hand, the mere application
of algebra to geometry loses itself in elimination.”
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to geometry. Pliicker thus proposed an alternative three-part division to geometry, again
mirroring Poncelet in 1817. However, Pliicker’s figures were now symbolic coordinate equa-
tions. For him, these new figures were more capable of conveying geometric relationships
than cluttered illustrations.

The graphic sense of geometry was manifested by actual or virtual figures, real or imag-
inary objects, coordinate equations, the relationship between coefficients, or even the use
of dual columns. Though stemming from visual considerations, not all of these geometric
forms (for example, the common secant of two concentric circles) could even be visualized as
geometric objects. By focusing on a constructive geometric problem, we can recognize the
centrality of the figure. Concurrently, however, Poncelet, Pliicker and Gergonne developed
new means to obtain and present geometric evidence: through rendering the imaginary tan-
gible, through transforming equations into representations, through effecting substitution
with alignment.

In Chapter I, we found that early nineteenth century geometry was characterized by
numerous disputes regarding method, proper allocation of credit, and even personality
clashes. Having examined ways of differentiating geometrical methods, here we will shift our
focus from methodology to opposition, considering how the early nineteenth century came to
be characterized as divisive or antagonistic. Continuing to centre on the main protagonists
of Chapter II, we will examine several interrelated controversies running parallel to the set
of texts analyzed above. In revisiting the textual exchange between Gergonne, Poncelet
and Pliicker, we ask how these controversies served geometers and shaped the diffusion of
mathematical content and the practicing community. In this pursuit, we will engage with
the recent historical and sociological literature on controversies in science, considering how

the study of controversies can be applied to the history of mathematics.
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Chapter 3

Polemics in public: controversies
around methods, priority, and

principles in geometry.

3.1 Introduction

Early nineteenth century geometry resembles early modern geometry in both its emphasis
on methods over results and the prevalence of controversies and priority disputes. From
the Marin Mersenne correspondence, to Isaac Newton and Gottfried Wilhelm Leibniz, to
Leonhard Euler and Jean d’Alembert, early modern mathematicians used results to fight
for the merits and priority of their methods (as seen, for instance, in Goldstein (2013),
Goldenbaum and Jesseph (2008), and Bradley and Sandifer (2010)). We will see similar
arguments arise in the Annales and contemporary publications. Indeed, Gergonne modelled
his journal off of early eighteenth century developments by including posed problems for his

readers to solve and theorems to prove that he hoped would bring about scientific progress.

Personne n’ignore d’ailleurs combien ces sortes de défis ont ajouté de perfec-
tionnement a l'analise, au commencement du dernier siécle ; et il n’est point
déraisonnable de penser qu’en les renouvelant, on peut, peut-étre, lui préparer

encore de nouveaux progres. (Gergonne (1810a), iii)*

Finding and publishing the best solutions or proofs was but one facet of a competitive and
driven atmosphere.
The best-documented controversy within early nineteenth century geometry, both with

respect to textual evidence and later historical analyses, concerned the origins and applica-

1“No one is ignorant of how these sorts of challenges have added to the perfection of analysis, at the
beginning of the last century; and it is not unreasonable to think that in renewing them, one can, perhaps,
prepare again for new progress.”
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tions of the principle of duality (for instance, the duality controversy can be found in Clebsch
(1872), Kotter (1901), Coolidge (1940), Boyer (1956), Otero (1997)). In this chapter, we
will unpack how the duality controversy contained sentiments, arguments, and actors from
earlier related controversies on the application of analysis and the use of the principle of
continuity in geometry. In examining these sources, we will determine whether we are con-
fronted with one general controversy or a series of them. The duality controversy revolved
around Poncelet and Gergonne, but because Pliicker’s article was rewritten by Gergonne,
the young German geometer became involved with his first publication. However, Pliicker’s
understanding of his own participation was delayed due to limited availability of French
journals outside of France.

In August of 1828, Pliicker’s received a letter in Bonn from Gergonne, responding to an
apparent inquiry by Pliicker on a matter of some gravity. Gergonne’s tone was formal, but
friendly as he told Pliicker that the rumours were very true, Poncelet had openly accused

Pliicker of plagiarism. Gergonne explained the circumstances,

Je n’avais pas voulu d’abord, dans son intérét, publier ce qu’il m’avait écrit
sur ce sujet; mais il m’a ensuite publiquement accusé d’une sorte de complicité
avec vous; j’ai alors tout publié avec des réflexions convenables. Il est encore
revenu dernierement a la charge ; mais je lui dirai encore quelques mots en
annoncant votre ouvrage. M Poncelet a beaucoup de talent ; mais il a mauvais
estomac ; et quand au digere mal on a quelque fois de 'humeur. Il ne souffre
qu’'impatiemment qu’on s’occupe des choses sur lesquelles il s’exerce et surtout

qu’on ne sache pas son livre par coeur. (Gergonne (1828a))?

With this brief reassurance, Gergonne changed the subject to geometry and Pliicker’s recent
remarkable researches. He closed in again praising Pliicker’s “innovative” [nouvelle] and
“fruitful” [fécond] use of analytic geometry.

Poncelet’s accusations first appeared within the pages of the Annales in 1827, shortly
before Gergonne’s response (Poncelet (1827a)). Gergonne’s promised defence of Pliicker had
little effect and Poncelet repeated his accusations twice more in the Bulletin universel des
sciences mathématiques, astronomiques, physiques et chimiques in 1827 and 1828 (Poncelet
(1827b), Poncelet (1828c)). Faced with these public statements, Pliicker composed his
own defence, which appeared in the Bulletin that year (Plicker (1828c¢)). His response was
succinct: the objectionable features of his text had been added by the editor of the Annales,

2« At first I had not wanted, in his [Poncelet’s] own interest, to publish what he had written to me on
this subject; but he has subsequently accused me publicly of a kind of complicity with you; so I published
everything with appropriate comments. He has once again returned to the charge; but I will again send him
a few words announcing your work. M. Poncelet has much talent; but he has a bad stomach, and when one
digests badly one is sometimes in a bad mood. He tolerates only with little patience that one looks at things
that have occupied him and above all if one does not know his book by heart.”
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Gergonne himself. Moreover, Pliicker declared the form of his work was so altered that he
would not have recognized it if his name was not at the top. The article, “Théoremes et
problémes sur les contacts des sections coniques,” by Dr. Pluker [sic] thus was not the work
of Pliicker alone.

Pliicker’s original manuscript, as we saw above, aimed to promote the method of analytic
geometry. However, we also demonstrated that the published version contained no coor-
dinate equations or algebraic symbols typical of this method. Moreover, it was strikingly
written in parallel columns of text, which had not been a feature of Pliicker’s original work.
Every theorem, proof, problem, and solution aligned opposite a corresponding dual, where
points became lines, inscription became circumscription, collinearity became concurrence
and so on. This use of dual columns was especially objectionable to Poncelet because of
an ongoing controversy between himself and Gergonne over the origins and scope of polar
reciprocity or duality.?

Poncelet had introduced his principle of polar reciprocity in 1822,

[...] en général, qu'il n’existe aucune relation descriptive d’une figure donnée
sur un plan, qui n’ait sa réciproque dans une autre figure; car tout consiste a
examiner ce qui se passe dans sa polaire réciproque par rapport a une section

conique quelconque prise pour directrice [...] (Poncelet (1822), 120)*

In Poncelet’s earliest published version, polar reciprocity concerned descriptive relations
between two-dimensional figures and a fixed conic section. Four years later, Gergonne

explained his own theory of duality in the plane,

[...] dans la géométrie plane, a chaque théoréme il en répond toujours néces-
sairement un autre qui s’en déduit en y échangeant simplement entre eux les
deux mots points et droites ; (Gergonne (1826), 210)°

We see that though Poncelet’s polar reciprocity chronologically preceded Gergonne’s du-
ality, the latter was considered by both geometers as more general, based on a linguistic
translation without reference to a conic section or indeed any then recognized mathematical
procedure.

At the time of Pluker’s publication, Poncelet and Gergonne agreed that Poncelet had
published first on what would soon be called duality, and that Gergonne’s duality was

3In this chapter, we will present mathematical duality insofar as it pertains to grasping the stakes of the
associated controversy. For a more technical exposition of the mathematics involved the reader is referred
to (Klein (1926a), Chemla (1989), Otero (1997), Gray (2010b))

4«]..] in general, there exists no descriptive relation of a planar figure which does not have a reciprocal
in another figure; which involves examining what happens in its polar reciprocal with respect to any conic
section [...]”

5¢[...] in planar geometry, to each theorem there always necessarily responds another which is deduced
from it by simply exchanging between them the two words points and lines;”
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more “philosophical.” However, they disagreed as to proper attribution of authorship, the
potential applications of the new principle(s), and the necessity of a fixed reference conic
(Poncelet (1822), Poncelet (1826), Gergonne (1826), Gergonne (1827f)). We will see that
relations between the two geometers remained professionally cordial, but the tension was
such that any publication on duality could be perceived as allying with one side or the
other. By presenting Pliicker’s content in double columns and his results without analytic

geometry, Gergonne transformed an innocent contribution into a charged declaration.®

5Beginning with Chasles’ Aper¢u, we have benefitted from a diverse secondary literature of mathematical,
historical and philosophical analyses on the duality controversy, see Chasles (1837), Clebsch (1872), Klein
(1926a), Kotter (1901), Coolidge (1940), and Boyer (1956). One of the most amusing early histories of the
duality controversy comes from Joseph Bertrand’s biography of Julius Pliicker, written for the Journal des
savants in May 1867 following the latter’s receipt of the Copley Medal. The piquant episode is worth quoting
at length.

Les premiers travaux de M. Pliicker relatifs a la géométrie analytique, envoyés aux annales de
mathématiques publiées par Gergonne, a Montpellier, donneérent lieu a une discussion tres-vive
dont les incidents singuliers sont restés dans la mémoire des géometres.

M. Gergonne, homme de mérite d’ailleurs, et fort zélé pour la science, avait en ses propres
lumiéres une confiance un peu exagérée; il annotait et transformait sans scrupule les articles
destinés a son journal et y introduisait les réflexions qui lui semblaient utiles, sans prévenir
l'auteur, auquel il croyait sincerement rendre service, en lui prétant son style et ses propres
idées.

Sa générosité envers M. Pliicker dépassa toutes les bornes; il doubla le nombre de ses théorémes
en les disposant sur deux colonnes paralléles auxquelles I’auteur n’avait pas songé, mais en
meélant, malheureusement, & des résultats irréprochables plusieurs assertions erronées. Le mé-
moire ainsi défiguré attira des critiques et des réclamations fondées, et M. Poncelet, dans le
bulletin de Ferussac, maltraita fort le jeune débutant, qui n’y comprenait rien, et n’avait pas
méme lu le traité des propriétés projectives, que M. Gergonne citait sous son nom. Tout
s’expliqua, un peu lentement il est vrai, car les communications n’étaient pas rapides, et M.
Gergonne, auquel les documents étaient naturellement adressés, ne se pressait pas de les pub-
lier. (Bertrand (1867), 269-270)

“The first works of M. Pliicker on analytic geometry, sent to the annales de mathématiques
published by Gergonne in Montpellier, gave place to a very lively discussion whose singular
incidents remain in the memory of geometers.

M. Gergonne, otherwise a man of merit and full of zeal for science, had a slightly exaggerated
confidence in his own enlightenment; he unscrupulously annotated and transformed the articles
destined for his journal and introduced in them reflections that appeared useful to him, without
warning the author, which he sincerely believed helpful, by giving the author his own style and
ideas.

His generosity towards M. Pliicker exceeded all bounds; he doubled the number of his theorems
and composed them in two parallel columns about which the author had never dreamed, but
unfortunately mixing irreproachable results in with several erroneous assertions. The thus
disfigured memoir attracted criticisms and justified complaints, and M. Poncelet, in the bulletin
of Ferussac, greatly mistreated the young beginner, who had understood nothing, and had not
even read the traité des propriétés projectives, that M. Gergonne had cited under his name.
Everything was explained, a little slowly it’s true, because the communications were not rapid,
and M. Gergonne, to whom the documents were naturally addressed, was in no hurry to publish
them.”

Contemporary historians have also conducted more specific studies of the events preceding the controversy.
In Belhoste (1998) and Friedelmeyer (2011), Bruno Belhoste and Jean-Pierre Friedelmeyer respectively offer
explanations of Poncelet’s theory of polar reciprocity in the context of his broader mathematical goals
and detail the development of his theory before his 1822 publication. Karine Chemla reveals a history of
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We intend to analyze the writings on duality of Poncelet and Gergonne (and related
work of Pliicker) specifically as texts in a scientific controversy. Since the 1980’s, histori-
ans and sociologists of science have increasingly advocated studying controversies as tools
of research. Perhaps most iconically exemplified in Steven Shapin and Simon Schaffer’s
Leviathan and the Air Pump and Martin Rudwick’s The Great Devonian Controversy, the
historical study of scientific controversies has been praised as a tool toward gaining deeper
understanding of “knowledge in the making” (Shapin and Schaffer (1985), Rudwick (1985)).
From a quite different point of view, it has also been suggested recently that controversies
are essential to the very process of science.” Though controversies in mathematics are
occasionally studied by historians, they are generally not viewed as indispensable to mathe-
matical theory formulation, nor always concluding with compromise, nor even as necessarily
leading to epistemic gains.®

Further, the debate over what does and does not constitute a scientific controversy re-
mains open among many historians and sociologists of science. We will follow H. Tristram
Engelhardt and Arthur Caplan’s definition of a scientific controversy as “the existence of ‘a’
community of disputants who share common rules of evidence and reasoning with evidence”
(Engelhardt Jr. and Caplan (1987), 12).9 Following this criterion, we will argue that the
exchange concerning duality initiated by Poncelet and Gergonne constituted a scientific con-
troversy, in which mathematical practices (including deriving general principles, applying
methods of proof, and composing original results) were questioned and supported through
evidential reasoning (in the form of generating new mathematical problems, demonstrating
scientific applications, and tracing historical chronologies).

While the historical literature offers valuable resources toward understanding the de-
velopment, content, and effects of Poncelet’s polar reciprocity and Gergonne’s duality, the

nature of the controversy itself seems to have deterred an in-depth textual study of the

duality from Euler to Gergonne via spherical trigonometry, indicating inspiration outside of Poncelet’s polar
reciprocity (Chemla (1989)). Christian Gérini and Mario Otero each focus on the development of increasingly
abstract geometry through Gergonne’s linguistic duality (Gérini (2010a) and Otero (1997)). Gérini has also
discussed other controversies within the Annales, including the 1817 debate between Poncelet and Gergonne
over choice of method in geometry.

"For instance, Gideon Freudenthal has argued that the resolution of scientific controversies results in an
“epistemic gain” for the scientific community (Freudenthal (1998), 158-159). Marcelo Dascal has asserted an
even stronger claim for the “indispensable” nature of controversies within science because controversies are
the means by which “theories are elaborated and their meaning progressively crystallizes” (Dascal (1998),
147-148). Other viewpoints have been expressed in recent controversy studies including Brante and Elzinga
(1990), Engelhardt Jr. and Caplan (1987), and Prochasson and Rasmussen (2007).

8Within the history of mathematics, recent studied mathematical controversies include Catherine Gold-
stein’s study of controversies as normal mathematics in the Mersenne correspondence (Goldstein (2013)),
the algebraic controversy between Kronecker and Jordan in Brechenmacher (2008), the priority controversy
between Liouville and Libri in Ehrhardt (2011), a controversy over impossible geometry problems between
John Wallis and Thomas Hobbes in Jesseph (1999), a methodological controversy among Italian geometers in
the early nineteenth century in Mazzotti (1998), the foundational controversy between Hilbert and Brouwer
in Posy (1998), and various controversies involving Leibniz (Dascal (2007), Goldenbaum and Jesseph (2008)).

9The scare quotes around “a” speak to the difficulty of segregating a single kind of community.
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explicitly polemical writings that we will consider here. Despite Poncelet’s and Gergonne’s
purported mathematical motivations, in the scope of the controversy their written rancour
strayed far from academic civility. The literature has described the events as an “unpleasant
controversy” (Coolidge (1940)), a “regrettable polemic” (Friedelmeyer (2011)), a “rather vi-
olent quarrel” (Otero (1997)), and (despite the addresses of the participants) a “typically
Parisian controversy” (Gray (2010b)). The historical consensus indicates that while Pon-
celet and Gergonne had different and valid viewpoints that ultimately required compromise
to achieve resolution, the controversy digressed from mathematics into unproductive per-
sonal squabbling.

Despite the individual antagonism, the controversy brought the principle of duality to a
widening community of geometers. As a public exchange the duality controversy extended
beyond the personal agendas of Gergonne and Poncelet to become a collective scientific
enterprise. By incorporating the “philosophical” exchanges between Gergonne and Poncelet
from 1817 onward, we will find that what was at stake went beyond assigning priority
to incorporate the status of generality and discovery, the proper form of presenting new
principles, and the scope of a changing geometry. Beginning with Pliicker’s re-appropriated
article, the publicity created by the dispute engaged and informed a participating public. In
turn, this public could address unanswered questions and direct research in unanticipated
directions, resulting in epistemic benefits to the mathematical community. In the texts of
the duality controversy we are thus able to analyze the circulation of new geometry.

By using the term “publicity” we identify the geometers’ rhetoric as a means of adver-
tisement and persuasion. In publicizing their research, geometers aimed, in part, to be read,
and accordingly adapted their presentations to suit a range of audiences through an assort-
ment of publications. The public nature of scientific controversy has been discussed in detail
for particular controversies. To take one well-known example, Martin Rudwick showed that,
among the gentlemen specialists of the Devonian controversy, the most vicious critiques were
communicated through private correspondence, while the geologists’ printed publications
remained cordial. The gain for preserving a unified scientific front was to show “natural
science as straightforward and objective knowledge” (Rudwick (1985), 25). Similarly, Caro-
line Ehrhardt portrayed how an acrimonious controversy among Parisian mathematicians in
the late 1830’s was edited into a disciplined interchange within publications by the Parisian
Académie des sciences (Ehrhardt (2011)). In both of the above instances, alternative me-
dia outlets popularized more sensational, argumentative versions of the events. Although
the duality controversy was roughly contemporary, it involved neither a formal academic
institution nor the popular press. We will see that the duality controversy was delocalized
from any particular institution or journal with an audience mostly confined to teachers and
researchers in mathematics. Perhaps as a result of this independence and more homoge-

neous public, eventually neither Gergonne nor Poncelet chose to restrain their insults and
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insinuations.

In fact, private correspondence between the mathematicians suggested a much more
polite communicative atmosphere. Public animosity coupled with private amicability has
been noted in Frédéric Brechenmacher’s study of a late nineteenth century mathematical

controversy between German and French mathematicians.

L’opposition public / privé est un des moteurs de la controverse et la corre-
spondance entre les deux savants se présente comme une tentative de ramener
le débat de la scéne publique (journaux et communications académiques) a une
relation privée. Dans la sphere privée, les témoignages de sympathie de Kro-
necker visent a apaiser le sentiment de Jordan d’avoir été agressé « devant tout
le monde » : il ne s’agit ni d’une attaque personnelle [...], ni d’une accusation
de plagiat [...]. (Brechenmacher (2008), 195)'°

Although Brechenmacher was discussing a later time period, we will similarly see that
cordiality between Poncelet and Pliicker was restored only in private. Moreover, when
Poncelet privately accused the French mathematician Michel Chasles in 1828 of improper
citation and credit, the same charges publicly levelled against Pliicker, Chasles’ response
suggested no more than a friendly misunderstanding. On the one hand, these contrasts allow
us to examine to what extent the public or private nature of the controversy determined
the choice of rhetoric. On the other hand, we will consider how the intended public message
decided the communicating medium. In particular, we will consider how Pliicker’s obscure
background, foreign nationality, and misspelled name (Pluker) constrained him to undertake
critiques in a very public arena.

We will see that Poncelet attempted to frame the duality controversy as a narrow polemic
over priority between two persons, but his decision to publish these grievances speaks to the
immediate importance of a reading public. The public of the duality controversy constituted
a broader audience including other geometers who chose to adopt duality, the general readers
of existent mathematical journals, and those who would later historicize the turn of events.
To Poncelet’s dismay, the polemical dialogue attracted new participants who instead focused
on the concept and practice of duality itself. The resulting public dramatically changed the
outcome and the nature of the controversy. Though Pliicker only joined midway, the math-
ematical community agreed on his geometric competency, which enabled his role in shaping

11

the controversy.”* We will see that his ultimate resolution was found acceptable by later

historical assessment and most of his contemporaries with noted exceptions—most relevantly,

10«The public/private opposition is one of the motors of the controversy and the correspondence between
the two scholars presents itself as an attempt to bring the debate away from the public arena (journals and
academic communications) toward a private relationship. In the private sphere, the testimony of sympathy
from Kronecker seemed to appease Jordan’s feeling of having been attacked “in front of everyone”: it concerns
neither a personal attack [...] nor an accusation of plagiarism [...].”

11n regard to the members of a controversy, Rudwick described a gradient of attributed competence,
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Poncelet and Gergonne. Their enduring obstinacy demonstrates how the controversy could
be resolved despite a lack of compromise among its original instigators.

The peculiar nature of the duality controversy was largely shaped by the mathematical
journals of the early nineteenth century, and in particular Gergonne’s Annales. To this end,
we will consider what was (and was not) published and the dissemination of the published
material. This line of inquiry will help to unravel some of the aspects of these publications,
including the importance of venues and accessibility in the origins and growth of the con-
troversy. The duality controversy was carried out employing a variety of publications, from
monographs to articles to public letters to reviews to catalogue summaries to footnotes
to footnotes of footnotes. We will observe how the medium of distribution informed the
intended message.

We will begin our study in Section 3.2 with the first set of exchanges between Gergonne
and Poncelet over the best choice of method in geometry. The initial debate between
our two protagonists will serve to establish their respective positions as well as expected
standards among Annales readers. In Section 3.3, we will follow the shifting dialogue
between Gergonne and Poncelet, through the publicity and reception of Poncelet’s Traité
des propriétés projectives and in particular his principle of continuity. We then introduce
Gergonne’s principle of duality, and review Pliicker’s publication as Pluker as it pertained
to this controversy in Section 3.4. These earlier publications will serve as preliminaries
to Section 3.5, which discusses the duality controversy proper as it unfolded in texts from
the Annales, the Bulletin, and existent archival letters between Poncelet, Gergonne, and
Pliicker between 1826 and 1829. Here we will examine the development of duality through
the competing publicities that the controversy engendered. In Section 3.6, we will consider
the end of the controversy and contrast its resolution with the final accounts of Gergonne

and Poncelet.

3.2 On the application of algebraic analysis to geometry (1817)

In a series of papers beginning in 1810, Gergonne claimed that analytic geometry was
superior in elegance and simplicity to pure geometry (Gergonne (1810b), Gergonne (1814a),
Gergonne (1817a), Gergonne (1817b)). His arguments took the form of solving “difficult”

geometric problems through the use of coordinate axes and equations, such as in a paper

Whatever the power—then or now—of an official myth of democratic equality with “the scientific
community,” practitioners knew then—as they know now-that some scientists are more equal
than others, and that the formal hierarchies of position and influence are by no means coincident
with what will be termed the informal and tacit gradient of attributed competence. (Rudwick
(1985), 419)

Rudwick found this hierarchy especially relevant in determining the close to the Devonian controversy, where
only those with attributed competence could determine when the controversy was settled.
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on the Apollonius problem.

[...] j'essayais de prouver que cette géométrie analitique, convenablement maniée,
offrait les solutions les plus directes, les plus élégantes et les plus simples de deux
problémes dés-long-temps célébres, et qui passent pour difficiles. (Gergonne
(1817a), 289)'2

Poncelet responded to these methodological claims in “Réflexions sur 'usage de ’analise
algébrique dans la géométrie; Suivies de la solution de quelques problemes dépendant de
la géométrie de la regle” published in the Annales under the subject heading Philosophie
mathématique (Poncelet (1817b)). Gergonne categorized each article in the Annales under
one or more such descriptors and mathematical philosophy was a small, but persistent
category through the journal’s existence.'3

We studied the mathematical contents of this article in Chapter 11, and here reiterate the
key structural features to focus on Poncelet’s broader arguments. “Réflexions” was a two-
part paper: a self-described philosophical commentary followed by mathematical evidence
in support of the arguments advanced. Poncelet formatted the first half as a letter to the
editor, addressed in first person to Gergonne but also designed for the journal-reading public.
This form of correspondence was fairly common in Annales publications, including two other
letters by Poncelet (Poncelet (1817a), Poncelet (1827a)). He prefaced his critique with a
compliment, praising the editorial open-mindedness of publishing divergent philosophical
viewpoints on science. As a researcher, Poncelet noted Gergonne’s advancement of the
analytic method in geometry, and admired his recent successes in deriving elegant solutions
to geometric problems. However, Poncelet contested Gergonne’s claims for the superiority
of analytic over pure methods in geometric problem solving.

Poncelet clarified what he intended by pure geometry. First, there was “ancient pure
geometry”, and Poncelet agreed with Gergonne that this kind of pure geometry lacked the
generality of analytic geometry. Conversely, “modern pure geometry” was just as simple and
elegant as any geometry using coordinates and “never lost view of the [geometric| figure,”
here referring to the illustrated or described labelled figures in geometric constructions.
Since these two modern methods were so evenly matched, Poncelet suggested that the
nature of the geometric problem should decide the choice of method. He continued even-

handedly, “on ne pourrait, sans un grand préjudice pour I’avancement de la science, cultiver

12«1 ] T will try to prove that this analytic geometry, appropriately handled, will offer the most direct, the

most elegant, and the most simple solutions of two long-famous problems, which are thought of as difficult.”

13In fact, Poncelet’s article was categorized under three different headings. In the journal’s table of
contents, the second half of the title was listed under Géométrie de la régle, the first half of the title was
listed under Philosophie mathématique and the same article with the title “Réflexions sur les méthodes de la
géométrie analitique” was listed under Géométrie analitique. In the text itself, the subject heading appeared
only as Philosophie mathématique. This kind of varied classification was not uncommon in Annales articles.
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I'une ou I'autre d’une maniére trop exclusive” (144).'* To prove the first half of this point
Poncelet presented new solutions to as yet unsolved problems. He omitted the proofs for
these solutions, explaining that their length exceeded the bounds of a letter, but asserted
that they had been derived through purely geometric means.

By no coincidence, the first of these problems had been advertised by Gergonne earlier
in 1817, purportedly to be solved by analytic geometry: to construct an m-sided polygon
circumscribed to a given conic section with vertices lying on m given lines or inscribed to
a given conic section with sides passing through m given points (Gergonne (1817b)). For
the general case, Poncelet contended that the large number of possible variables precluded
an elegant analytic approach. This indicated a whole class of general geometric problems,
which pure geometry was better equipped to solve. The other problems Poncelet addressed
all concerned relationships between polygons and conic sections in the plane, including the
problem later solved by Pliicker and discussed at length in Chapter II. As we have seen, the
solutions contained steps for constructing a labeled figure, although no illustrated figures
accompanied the article.

Poncelet ended, as he had begun, on a modest note praising Gergonne’s recent publi-
cations in showing the surprising capabilities of analytic geometry. He admitted that the
flaws he perceived in analytic geometry might be more a result of his own inexperience than

any inherent faults in the method.

[...] on ne doit jamais se hater d’imputer a I’analise des imperfections qui souvent
sont uniquement le fait de qui ne savent point en faire un usage convenable. (ibid,
155)1°

Though phrased as a confession of his own inexperience, Poncelet’s conclusion could also
be interpreted as a subtle challenge.

Gergonne responded in the article immediately following, “Réflexions sur I'article précé-
dent” (Gergonne (1817e)). While Poncelet had addressed Gergonne specifically, Gergonne
aimed his response at the general readership of the Annales, and so, indirectly, Poncelet. As
Gergonne’s intended audience, his readers were recast as direct participants in the public
exchange and Gergonne took advantage of this with an opening anecdote about a recent
discourse on exaggeration published by “a man of very distinguished merit.” Then, in the
most roundabout of concessions, Gergonne suggested that if Poncelet’s description of Ger-
gonne’s methodological claims had been correct, then Gergonne would have been guilty of
exaggeration. However, Gergonne claimed never to have intended to imply that analytic

geometry was superior to pure geometry. Rather, because of its generality and uniformity,

14“[4..] that we cannot, without a great prejudice against advancing science, cultivate one or the other

[geometry or analysis] too exclusively.”
15« ] one must never hasten to impute to analysis any imperfections which are often uniquely the act of
those who do not know how to use it properly.”
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analytic geometry could provide solutions as elegant and simple as those from pure geome-
try. Further, in several instances the analytic geometry solutions were “incomparably more
elegant and simple than any yet known” (ibid, 157).

In surveying his publications on analytic geometry from 1810 to 1817, Gergonne de-
emphasized his earlier methodological claims. He had previously argued that analytic
methods were superior and more convenient because they did not depend on the nature
of the individual figures. It was rare that such demonstrations “were not subject to sev-
eral exceptions or limitations” (Gergonne (1814a), 383). As an example, Gergonne showed
that, when an argument is based on figures, one must consider as distinct cases when a
given point was inside or outside of a closed curve, while an argument employing a single
coordinate equation required no such distinction. Similarly, Gergonne had proposed that
analytic geometry would lead to the most direct, the most elegant and the simplest solu-
tions of contemporary and ancient constructive geometry problems (Gergonne (1817b)). In
these earlier works, Gergonne’s examples and descriptive superlatives were often directed
against Simon Antoine Jean Lhuilier (1750-1840) who had defended classical geometry and
criticized modern analytic geometry for a lack of simplicity and elegance (Lhuilier (1809),
Gergonne (1810b)).1¢ Here, with Poncelet’s expressly methodological letter to the editor,
Gergonne found a new, more modern opponent and adapted his position accordingly.

Gergonne appeared to agree with both of Poncelet’s broader philosophical assertions: the
importance of choosing a method based on the specific geometric problem at hand and the
distinction between ancient and modern pure geometry (and preference for the latter over
the former). He further nuanced the discussion by admitting that some problems “remained
equally stubborn to all methods,” and critiqued Carnot’s so-called “mixed methods” for a
lack of elegance and simplicity despite their advantageous application in certain “beautiful
examples” (Gergonne (1817¢), 160).

In conclusion, Gergonne restated his goal of multiplying the examples of analysis applied
to geometry, while expressing confidence in the common goals of both pure and analytic
geometry. “[...] j'ose croire que la diversité de nos méthodes ne fera jamais naitre d’autre
rivalité entre nous que celle du zeéle pour I'avancement de la science” (ibid, 161).17 In ad-
vocating diversification and specialization to promote scientific progress, Gergonne claimed

to be merely elaborating and clarifying a consistent position. However, in comparison with

18T huilier set up a dichotomy between “la Géométrie ancienne et les méthodes modernes,” the former of
which he associated with purely geometric methods, while the latter involved the application of algebra and
use of calculations to geometric problems. Although Lhuilier demonstrated facility with both methods in his
Elémens d’analyse géométrique et d’analyse algébrique appliquées & la recherche des lieux géométriques, he
had a reputation for preferring “’ancienne géométrie” and using algebra only with parsimony (Trélis (1810),
170).

17«[.] 1 dare to believe that the diversity of our methods will give birth to no other rivalry between us

than that of the zeal for advancing science.”
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his earlier statements, Gergonne was discreetly yielding to Poncelet’s criticisms.'® His deci-
sion reflected well on the Annales for Poncelet, who continued to publish articles there and
indeed both pure and analytic geometry remained well represented in the journal’s contents.

The exchange of articles had been publicized to Annales readers as “mathematical phi-
losophy.” Between 1811 and 1831, there were twenty-four Annales articles listed as “mathe-
matical philosophy” most of which concerned methods of research and representation. The
subject category suggested an appreciation of philosophical discourse among the mathemat-
ical community. Whatever the degree of enthusiasm of the audience for such discussions,
Poncelet and Gergonne resolved that philosophy should be subsidiary to the mathematics:
the mathematical problem dictated which method would be best employed.

That said, in practice both Gergonne and Poncelet saw many of the exact same problems
as fitting research targets for their competing methods. The telling point in the method-
ological argument on both sides was the ability of the advocated method to solve problems,
as well as features of the solution (simplicity, elegance, brevity, etc.). This would have the
effect of demonstrating the effectiveness of their methods and thus publicizing them. For
example, Gergonne and Poncelet independently proved solutions to the problem of finding
a circle tangent to three given circles respectively employing analytic and pure geometry
(Gergonne (1817a), Poncelet (1821a)). With this evidence, each method could thus be com-
pared quantitatively, by the number of solved problems, and qualitatively, by the simplicity
and elegance of the solutions in the context of problems known to many readers.

Poncelet found an additional use for geometric problems as a means of staking his claim
for priority. Constructive solutions contained enough information to show his geometric
abilities, while he promised the theoretic underpinnings in a later work. For example,
Poncelet could give instructions on how to draw a circle tangent to three given circles
without proving that his instructions would always be possible to carry out. Retrospectively,
Poncelet would characterize himself as a young and ambitious officer wishing to promote
his first book, and Gergonne as a learned and esteemed editor somewhat wary of the new
upstart’s philosophical ideas. Poncelet’s first philosophical contribution to the Annales was
an effort to “advance a name for the publication of the Traité des propriétés projectives”
not merely an apology for pure geometry (Poncelet (1864), 466). Indeed, throughout his life
Poncelet’s geometric publications aimed at generating an audience for his Traité, and one
that would read the text in its entirety. For Poncelet, a controversy over choice of method
could be good publicity.

As articles in the Annales, both texts from 1817 courted the same potential public.
Poncelet framed his article as a deferential letter to the editor and spoke specifically to

Gergonne’s recent publications and role in the Annales. Poncelet attributed any accidental

18Gergonne further showed his support of Poncelet’s results, by publishing a posed problem generalizing
Poncelet’s solutions to three dimensions (Gergonne (1817d)).
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lapses from the formality of a well-prepared article to the epistolary format and space
restrictions. This form fused aspects of public and private, since the audience was foremost
Gergonne but also the anonymous other readers. He showed caution in his flatteries and
critiques, ending on a self-deprecating note. By contrast, Gergonne’s response was entirely
public and conformed to the standards of an article. He addressed Poncelet’s mathematical
concerns, but also added a lightness to the correspondence, both informing and entertaining
his readers—a savvy strategy to capture a still emergent market.

Both the form and content of their textual exchange express a hierarchical relationship
between the two mathematicians, who also filled the respective roles of editor and contrib-
utor. In his cultural references and expansive chronology of past publications, Gergonne
contrasted to Poncelet as an experienced geometer who respected Poncelet’s opinions and
mathematical status enough to publish and comment on them. Poncelet wrote deferentially
and directly to Gergonne, while Poncelet was not Gergonne’s primary audience. Choosing
to publish Poncelet’s variant methodological perspective spoke well to the open-mindedness
of the Annales editor, as Poncelet had noted. The methodological resolution also struck
an attractive balance, encouraging contributions from future pure and analytic geometers.
Gergonne had control of the message, and Poncelet’s critique was addressed with gravity.
Finally, the conclusion pointed to new and better geometry. Though Gergonne preferred
analytic geometry, this did not prevent him from reading and publishing articles with op-
posing positions, which were then often modified with editorial footnotes and responses.
Gergonne’s almost unlimited editorial capacities ensured the Annales was not only a venue
for individual articles, but also a compendium of conversations knitting together the math-

ematical content.

3.3 Generality and continuity: Poncelet’s modern pure ge-

ometry and its reception (1820)

Poncelet continued to promote the principles and theories behind his modern pure geometry
through journal articles, papers submitted to the Académie royal des sciences, and eventu-
ally his Traité in 1822. As we will see, Gergonne reacted with mixed approval. Their indirect
correspondence in this period further cemented their different perspectives on generality,
proof and discovery in geometry.'® As Poncelet’s scientific reputation grew, their former
hierarchical relations shifted toward greater professional equality. All of these developments

are instantiated in the 1820 publication in the Annales of a review by Augustin-Louis Cauchy

9The importance of generality in Poncelet’s geometry has been discussed above, as well as in the his-
torical analyses of Chemla, Nabonnand, Lombard, and Friedelmeyer (Chemla (1998), Nabonnand (2011b),
Nabonnand (2011a), Lombard (2011), Friedelmeyer (2011)). Moreover, Gérini has compared Gergonne and
Poncelet’s conceptions of generality in mathematics (Gérini (2010b)). Here, we consider generality as another
axis of potential contention between the two geometer’s understandings of geometry.
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(1789-1857) of a memoir by Poncelet on the principle of continuity, which he had submitted
to the Académie. Gergonne took the opportunity to publish his own mathematical research
and offer opinions on philosophical and scientific matters with extensive footnotes.

To establish the reputation of his forthcoming Traité, Poncelet submitted a memoir
on the projective properties of conic sections to the Académie royal des sciences in 1820.
Francois Arago, Siméon-Denis Poisson, and Cauchy reviewed this work, and their report
was written up by Cauchy. Shortly after, the text appeared with Gergonne’s footnotes
in the Annales, thus serving as the first public exposure to the modern pure geometry
that underlay Poncelet’s results, and which we explored in Chapter II. Among the many
novelties, the one controversial aspect was Poncelet’s principle of continuity, the principle
that certain properties of figures remain invariant under deformation, even when parts of
the figure disappear.?’ Consider, for instance, the points of intersection of two concentric
circles. Poncelet argued, contrary to perception, that the two circles intersected at infinity.

In his review, Cauchy warned against the principle of continuity.?!

Ce principe n’est, a proprement parler, qu’'une forte induction, a I’aide de laque-
lle on étend des théorémes établis, d’abord a la faveur de certaines restrictions,
aux cas ou ces mémes restrictions n’existent plus. Etant appliqué aux courbes
du second degré, il a conduit 'auteur a des résultats exacts. Néanmoins, nous
pensons qu’il ne saurait étre admis généralement et appliqué indistinctement a
toutes sortes de questions en géométrie; ni méme en analise : En lui accordant
trop de confiance, on pourrait tomber quelque fois dans des erreurs manifestes.
(Poncelet and Cauchy (1820), 73)2

As justification for this caution, he presented an example concerning definite integrals for
measuring lengths, areas, and volumes, in which the principle of continuity could be used
to derive untrue results.

In a mitigating footnote, Gergonne proposed applying the principle of continuity as a

valuable instrument toward mathematical discovery if not proof.

IT faut donc employer le principe de M. Poncelet, ainsi que le tour de démonstra-

29The historical development and mathematical details of Poncelet’s principle of continuity have been
studied is described by Nabonnand in Nabonnand (2011b) and by Belhoste in Belhoste (1998).

21Cauchy’s review of Poncelet and Poncelet’s directed response (not published until the mid-1860’s after
Cauchy had died) has been described as an “intense polemic” by Otero (1997) and is treated in detail as
a controversy by Claude Paul Bruter in Bruter (1987). However, compared to the duality controversy and
given the extended time interval between the textual exchange over which one of the participants was no
longer living, we suggest that it was of only minor importance to the actors involved at the time.

22«This principle is, properly speaking, no more than a strong induction, by aid of which one extends
theorems established at first by favour of certain restrictions, to cases where these same restrictions no
longer exist. If applied to second degree curves, it leads the author to exact results. Nevertheless, we think
that it should not be admitted generally and applied indistinctly to all sorts of questions in geometry, nor
even in analysis: in according in it too much confidence, one could at times fall into manifest errors.”
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tion introduit par Monge, a peu prés comme on employait le calcul différentiel
lorsqu’on n’en voyait pas bien encore la métaphysique; c¢’est-a-dire, uniquement
comme instrumens de découverte ; mais ce n’en seront pas moins des instrumens
trés-précieux ; car, le plus souvent, en mathématiques, découvrir est tout; et ce

ne sont pas d’ordinaire les démonstrations qui embarrassent beaucoup. (ibid)23

Gergonne thus suggested that proofs would be fairly easy to obtain following a mathematical
discovery, a perspective that went against Cauchy’s viewpoint.

In his paper submitted to the Académie, Poncelet also proposed the adoption of new
mathematical objects. In particular, he had defined ideal chords as the constructible line
segments “in common” between any two conic sections that did not share two real points of
intersection. Instead of representing chords visually by a line segment bounded by the inte-
rior of two conic sections, ideal chords could be recognized by a ratio relationship. Cauchy
declared ideal chords as one of the most remarkable aspects of Poncelet’s geometry and thus
meriting further study. Gergonne objected, describing Poncelet’s new definition as “subject
to numerous exceptions” [sujette d des exceptions nombreuses| and requiring “ingenious con-
cepts” [des conceptions ingénieuses] (80). Poncelet had argued that ideal chords followed
from the coordinate representation of conic sections as second degree equations. In analytic
geometry, one could derive an expression for non-intersecting conics through substitution.
Gergonne did not share Poncelet’s determination to import this generality from analysis to
geometry, especially at the risk of destroying geometry’s visual certainty. The use of ideal
chords would compromise the advantages and superiority of geometry over other sciences.
That is, a chord should look like a chord.

Unlike Poncelet, neither Gergonne nor Cauchy found any reason to privilege or modify
pure geometry when analytic geometry would suffice. Consequently, the article and foot-
notes contained almost none of the modern pure geometry underlying Poncelet’s derivations,
and was instead replaced by coordinate equations in Cauchy’s interpretation. Cauchy con-
cluded by recommending Poncelet’s memoir, but his summary of its contents was neither
favourable nor representative of Poncelet’s methodology.

Though a single critical review does not comprise a controversy, Cauchy’s caution against
Poncelet’s principle of continuity spread through the geometrical community. On the one
hand, ideal secants, chords, and points of intersection were soon adopted by several young
geometers in the Annales (including Charles Sturm (Sturm (1826a), Sturm (1826b)), Eti-
enne Bobillier (Bobillier (1827)), and Michel Chasles (Chasles (1828a))). In particular, we

234One must thus use the principle of M. Poncelet, just as the manner of proof introduced by Monge,
almost like how we used differential calculus when we hadn’t yet understood the metaphysics; that is to say,
only like instruments of discovery; but no less precious instruments; because, most often in mathematics
discovery is everything; and what is troublesome is not the proofs.” Based on an earlier reference to Jean
Baptiste Durrande, Gergonne appeared to associate Monge’s “manner of proof” with the application of
three-dimensional geometry to planar figures, thus enabling more general principles (Durrande (1820), 1-5).
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will see how the “German geometers,” Pliicker and Steiner, utilized Poncelet’s ideal objects
in Chapter IV. On the other hand, these same geometers avoided Poncelet’s dubious princi-
ple of continuity.?* Gergonne would later refer to the principle of continuity as “subject to
controversy” [sujettes d controverse]. Consequently, he would attribute Poncelet’s lack of
popularity to the uncertain status of this fundamental principle, as we shall see (Gergonne
(1827d)).

Following Cauchy’s reception of the principle of continuity, Poncelet continued to submit
memoirs for Académie review. Poncelet seemed to value the status associated with the
Académie (where he became a member for his contributions to engineering in 1834) and
the associated reviews contained enough positive publicity to merit wider publication in
the Annales. As an introduction to his Traité in 1822, Poncelet republished the projective
properties review without Gergonne’s footnotes (and then again in 1864). Cauchy’s review of
Poncelet’s memoir submitted to the Académie on harmonic ratios appeared in the Annales in
1826, where, as an anonymous reviewer in the Bulletin de Férussac remarked, Cauchy took
“cette occasion de combattre de nouveau le principe de continuité” (Anonymous (1826¢),
109).25 By 1824, the Académie had received a third memoir by Poncelet, this one on
polar reciprocity, but it was not to be reviewed until 1828. By this time, due to severed
relations between Poncelet and Gergonne, the review appeared in the Bulletin and not the
Annales. The memoirs on harmonic ratios and polar reciprocity that Poncelet submitted
to the Académie were first published in Berlin within August Crelle’s new journal, Journal
fiir die reine und angewandte Mathematik, between 1827 and 1829, and again by Poncelet
in the 1860’s (Poncelet (1865), Poncelet (1866)).

Presentations to the Académie might secure priority, but did not guarantee a public.
When Poncelet’s work was publicized, Cauchy’s review only gave an approximate picture
of Poncelet’s methods. The anonymous Bulletin summary of the Annales publication of
Cauchy’s review of Poncelet’s memoir on harmonic ratios noted that “M. Cauchy ayant
substitué des considérations de statique aux considérations de géométrie pure qui avaient
guidé M. Poncelet, ce rapport parait peu propre a donner une idée du mémoire de 'auteur”
(Anonymous (1826¢), 109).26 As with Poncelet’s 1817 article, the interested reader would

24For instance, Sturm was careful to disassociate his own general researches from those of Poncelet.

On ne doit pas d’ailleurs les confondre avec les considérations de M. Poncelet sur la loi de
continuité. La distinction en a été déja faite, avec soin, par M. Cauchy, dans son rapport
inséré au tome Xl.e des Annales (pag. 69) et placé depuis en téte du Traité des propriétés
projectives des figures. (Sturm (1826a), 279)
“One must not also confuse them [theories of transversals] with the considerations of M. Pon-
celet on the law of continuity. The distinction between them has already been made, with care,
by M. Cauchy in his report inserted in the IXth volume of the Annales (page 69) and later
placed at the start of the Traité des propriétés projectives des figures.”

25“[4..] this occasion to combat anew the principle of continuity.”

26«M. Cauchy having substituted considerations from statics for the considerations of pure geometry,

134



need to consult Poncelet’s Traité to see both his results and his method. Though Poncelet
was misrepresented by the Académie reports, his goal of publicity succeeded. Meanwhile
others also achieved an audience from Poncelet’s circuitous publicity. Cauchy had an op-
portunity to express hesitations about imprecise, unrestrained invocation of continuity.?”
Gergonne used footnotes to promote other Annales content, reassert methodological con-
siderations, and offer alternative proofs. From 1824 onward, the Bulletin found content
in summarizing these exchanges, and beginning in 1827, Crelle’s Journal gained relevant,
unpublished but anticipated new articles. The reception of Poncelet’s memoir demonstrates
that there existed a small but well-connected community of mathematical publications and
readers. These would be utilized as the setting for documenting and disputing evidence in

the ensuing controversy.

3.4 Duality and Pluker’s first publication

Poncelet’s multifaceted efforts to publicize his Traité des propriétés projectives underscore
some of the difficulties of disseminating new mathematics. Obtaining recent publications
appeared to be difficult as well. Despite having studied in Paris between 1822 and 1824,
Pliicker claimed to not have had access to the Annales past the eighth volume, even though it
was distributed in Paris by the publisher Courcier.?® Similarly, while Poncelet had published
his Traité in Metz in 1822, Pliicker only knew of it through catalog advertisements.

By 1826, Pliicker had returned to Bonn and was busy teaching. Throughout his math-
ematical career Pliicker’s interests lay exclusively in analytic geometry and, as we saw in
Chapter II, his first article was no exception. Upon reading Poncelet’s 1817 “Réflexions”,
Pliicker determined to show that Poncelet’s result on tangency between two conic sections
could be derived as simply through analytic geometry. However, Gergonne took Pliicker’s
article submission as a further opportunity to promote the principle of duality.

Gergonne initially propounded his concept of duality as mathematical philosophy. His
1826 article, “Considérations philosophiques sur les élémens de la science de I’étendue”, was
not the first research or even publication on what would soon be called duality (Gergonne
(1826)). Even in this early publication (with no priority dispute underway) Gergonne
claimed to have begun research in the field ten years prior. Here Gergonne first coined the

term duality, giving an explicit, though sketchy, definition of duality as a simple exchange

which had guided M. Poncelet, this report appears scarcely appropriate to give an idea of the memoir of the
author.”

2TCauchy is well-known today for his work on continuity within Calculus. For the historical development
of Cauchy’s approach to continuity see Grabiner (1981), Gilain (1989), and particularly the bibliography in
Gilain and Dhombres (1992). More recently Umberto Bottazzini and Jeremy Gray have analyzed Cauchy’s
mid-century work on continuity in Bottazzini and Gray (2013).

28In his biography of Pliicker, Wilhelm Ernst attests that Pliicker studied under Biot, Cauchy, Lacroix,
Poisson, Pouillet, Thenard as well as Clément, Dulong and Binet (Ernst (1933), 7).
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E.

of the words point and line in the plane or point and plane in space to pass from a theorem

to its correlative as illustrated with two facing columns (Figure 3.1).2
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Figure 3.1: Gergonne’s adoption of two columns in Gergonne (1826)

Gergonne had first used a two column format the year before in an article on polyhedra,
with corresponding sommet and face (Gergonne (1825)).3° In his philosophical article,
he explained the columns’ advantage in making the corresponding content more visually

striking.

Nous aurons méme soin, afin de rendre cette correspondance plus apparente,
de présenter les théoréemes analogues dans deux colonnes, en regard 1'une de
I'autre, comme nous en avons déja usé, dans l'article sur les polyedres rappelé
plus haut; de telle sorte que les démonstrations puissent se servir réciproquement
de controle. (Gergonne (1826), 212)3!

He further emphasized the novel nature of his research by offering an entirely elementary
treatment grounded solely in concepts from Euclidean geometry, and by citing very few
predecessors, among which Poncelet was notably absent. In this context, duality was not

used as a means of proving theorems, but to show a correspondence between theorems that

2 Gergonne extended this definition to spherical geometry as well. Karine Chemla has documented Ger-
gonne’s development of duality inspired from his work in spherical trigonometry (Chemla (1989)).

39We explored the visual aspects of a two column format in Chapter I1I.

3l«We will likewise take care, in order to render this correspondence more apparent, to present the analo-
gous theorems in two columns, one facing the other, as we have already been accustomed to do in the article
on polyhedra cited above, in such a way that the proofs can serve reciprocally as checks.”
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had been proved previously. Along with his elementary exposition of planar, spatial, and
spherical geometry in dual form, Gergonne also suggested that the work of others could
be rewritten and expanded through duality. As an example, he pointed out how a recent
theorem of the Belgian geometer Germinal Pierre Dandelin (1794-1847) could be expressed
in dual form. Overall, Gergonne emphasized duality as a “philosophical fact,” whose formal
character was considered even more important than the new results it generated.

Gergonne’s adoption of duality marked a transition in his research activities. He claimed
that geometry, la science de [’étendue, divided into metric (concerning measurable quanti-
ties) and non-metric (situational or positional) relations, and proposed that any non-metric
geometric property had a dual property. Gergonne presented duality as independent of
calculation and measurement, since the dual of a theorem was found by the proper word
substitution. Further, none of the articles he referenced employed coordinate equations to
represent geometric objects. According to Gergonne’s own subject headings, these were
articles on elementary geometry, geometry of the ruler, or pure geometry. The properties
and proofs within his “Considérations philosophiques” implied that Gergonne’s interest in
duality was at this point independent from, and had to some extent supplanted, his interest
in analytic methods in geometry.

At least some readers were impressed by the apparent power of this method. From its in-
ception in 1823, the Bulletin de Férussac summarized and reviewed almost every article pub-
lished in the Annales. Intriguingly, the Bulletin review of “Considérations philosophiques”
began by describing a constructive process using properties of perspective and black and
red pencils to arrive at bicolored dual figures on a plane and a sphere. From here, the
anonymous author proceeded to show how poles and polars could transform one planar
figure into a corresponding figure where points of one colour replaced lines of the other,
and the same positional properties held. Only after this introductory and highly visual
constructive procedure was Gergonne’s article discussed.

In this summary, the anonymous reviewer portrayed Gergonne’s contribution as deep

and reaching far beyond polar reciprocity.

Mais si les propriétés des poles, polaires et plans polaires mettent en évidence
cette espece de dualité d'une partie notable de la géométrie, ce n’est certainement
pas en vertu de ces propriétés, mais bien en vertu de la nature méme de ’étendue
qu’elle a lieu ; et c’est principalement a mettre cette vérité dans le plus grand
jour que M. Gergonne a consacré la livraison de son recueil qui vient de paraitre.
(Anonymous (1826b))32

32«But if the properties of poles, polars, and polar planes places this type of duality in evidence as a
notable part of geometry, this certainly does not take place in virtue of these properties, but in virtue of the
nature of extension; and M. Gergonne has devoted the most recent issue of his journal principally to place
this truth in the clearest light.”
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To convey Gergonne’s evidence, the Bulletin printed an example of Gergonne’s two corre-
sponding columns, and concluded by reiterating Gergonne’s suggestion of how duality and
the use of dual columns could be applied to certain recent Annales articles. Gergonne’s
enthusiasm for duality and dual columns would also manifest in future articles submitted
to his journal.

Gergonne’s form of duality was further affirmed in the seventeenth volume of the An-
nales, which contained two articles by a new German contributor, “M. Pluker, doctor from
the University of Bonn.” The first was classified under the subject headings “Géométrie
des Courbes et Surfaces” and “Géométrie de Situation” entitled “Théorémes et problémes
sur les contacts des sections coniques” (Pliicker (1826b)). In the introduction, the author
cited two texts, Brianchon’s Mémoire sur les lignes du second ordre (1817) and Poncelet’s
Traité (1822), the latter containing research on “a series of curious problems.” Without
explicitly criticizing Poncelet’s method, Pluker proposed to address these same problems
through “very simple” considerations. Since the propositions corresponded two-by-two, the
author would use the “form already adopted in different places in the present journal” of
dual columns (Pliicker (1826b), 38). An accompanying footnote cited several recent works
by Gergonne where dual columns had been employed.

The body of the text contained twenty-four theorems and sixteen problems, among
them the problem that had inspired Pliicker’s original article. As observed in Chapter II,
the resulting constructive solution was nearly identical to that from Poncelet’s 1817 paper,
which received no mention.

Regular readers of the Annales may have been struck by the similarity of form and ex-
pression between Pluker’s first article and Gergonne’s article on duality from the previous
volume. With its dual columns, elementary considerations, and particular applications of
ruler-based planar geometry, the Pluker article almost functioned as a sequel to Gergonne’s.
Just as Gergonne had incorporated Dandelin’s results into his duality paper, Pliicker’s re-
search had been rewritten to serve as evidence in favour of Gergonne’s version of duality.
However, while Dandelin’s original results had already been published in the Annales (Dan-
delin (1825)), there was no indication that the work of Pluker was not entirely that of
Pliicker. In this, Gergonne seemed to take advantage of Pliicker’s status as a young, for-
eign scholar. Gergonne had entirely abandoned Pliicker’s analytic geometry and with it
his methodological argument and theory of tangent conics. Finally, by changing Pliicker’s
citations, originally limited to the eighth volume of the Annales, Gergonne gave the impres-
sion that Pluker was well-versed in recent Annales publications as well as Poncelet’s Traité
and Brianchon’s Mémoire. On the one hand, this brought Pliicker’s original paper into a
more contemporary context, described in greater detail in Chapter II. On the other hand,
the article’s contents, limited to planar constructions and deformations, suggested a rejec-

tion of the modern principles and theories advocated particularly in the work of Poncelet.
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With respect to duality, Pluker cited the exact same texts as those in Gergonne (1826),
again slighting Poncelet’s contributions. Poncelet appeared only as a source of “une série
de problémes curieux,” whose proofs had been replaced by simpler ones.

Poncelet was completely absent from the subsequent Bulletin summaries of Pluker’s
articles, which appeared later in 1826. After a brief technical synopsis, the first article was
described as “extremely simple” and the second as having been deduced from a “very short
and very simple analysis” (Anonymous (1826a), 272-273).

The following year Gergonne continued to publish results presented in dual columns
derived from the principle of reciprocity. While Gergonne had demonstrated that his results
in both columns could be proved through Euclidean geometry in 1826, by 1827 he was
confident enough to state theorems on polar reciprocity without proof pertaining to algebraic
curves and surfaces of any order (Gergonne (1827b)). In particular, Gergonne suggested
that a curve and its dual would have the same order, even though this had only be shown
for curves of second order. This generalization combined with the recent Bulletin reviews

would be the initial sparks to ignite the duality controversy.

3.5 The duality controversy erupts (1826-1832)

The attacks and rebuttals that we alluded to in the introduction of this chapter quickly
escalated. Poncelet condemned Pluker’s article in a letter to Gergonne (Poncelet (1826)),
of which Gergonne published excerpts and responded with a public defence (Gergonne
(1827f)). Following this, Poncelet wrote two more articles restating his argument for the
Bulletin (Poncelet (1827b), Poncelet (1828c)). Gergonne then republished Poncelet’s Bul-
letin content and the remainder of Poncelet’s original letter, taking the opportunity to
add footnoted commentary in the Annales (Gergonne (1827¢), Poncelet (1827a)). In 1828
Pliicker offered his own interpretation in the Bulletin, which elicited a reply from Poncelet
(Pliicker (1828c), Poncelet (1829)). That same year, Poncelet’s original writings on polar
reciprocity would finally be published not in the Annales, as had his previous work, but in
Crelle’s Journal (Poncelet (1828a)). We turn to the publicity in these texts, which together
comprised the main drama of the duality controversy.

In 1824, Poncelet had read and submitted a memoir on polar reciprocity to the Académie,
which had yet to be reviewed by 1826. Gergonne wished to share details of this work which
he correctly surmised bore strong relations to his duality, and wrote to Poncelet requesting
additional information. Poncelet’s response included a lengthy preamble and postscript
responding to Pluker’s article and his own priority. However, Gergonne edited out the
charges against Pliicker and published only an excerpt, “Analyse d’un mémoire présenté a
I’Académie royale des Sciences” (Poncelet (1826)).

As in 1817, Poncelet was limited in his exposition by the bounds of the letter, and
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often referred the reader to his Traité for a more in-depth treatment and further examples.
Poncelet recognized his polar reciprocity as Gergonne’s duality, and used the two terms
more or less interchangeably. In this text, both terms referenced “a simple substitution of
names and letters” and a process independent from calculation. Both geometers viewed
the mechanical or reason-free derivation of dual propositions as its primary advantage and

appeal. As Poncelet wrote,

Le but principal que je me propose, dans ce mémoire, c’est d’examiner quelle
espece de modification éprouvent une figure donnée et les relations qui lui appar-
tiennent, lorsque 'on passe a celle qui en est la polaire réciproque, et vice versa,
et de réduire, en quelque sorte, & un pur mécanisme, a une simple substitution de
noms et de lettres, écrites a la place les unes des autres, la traduction de toutes
les affections, de toutes les propriétés tant soit peu générales qui appartiennent
a une figure donnée et a sa réciproque ; enfin de montrer comment on peut, au
simple énoncé d’une proposition qui se rapporte soit aux relations projectives,
en général, soit aux relations d’angles des figures situées dans un plan ou dans
I’espace, comment ou peut, dis-je, obtenir sur-le-champ et sans recourir a au-
cun calcul ou raisonnement, une, deux ou trois autres propositions, tout-a-fait
distinctes de la premiére et néanmoins tout aussi générales. (Poncelet (1826),
266)33

Poncelet described Gergonne’s treatment as “very philosophical” [trés-philosophique] and
perhaps subject to “too vague generalities” [des généralités trop vagues]. He attempted
to show that his method did not possess these disadvantages by giving several concrete
examples. Furthermore, Poncelet emphasized the role of a reference conic section in deriving
dual properties, which Gergonne had mentioned but not employed in his presentation. While
Gergonne stressed the application of duality to non-metric relations, Poncelet demonstrated
that his principle could also be applied to metric properties. Finally, Poncelet hinted at even
a three-fold [trial] or four-fold [quadrial] correspondence between propositions through the
transformation of projective properties, such as those concerning angles. This multiplicity
suggested that the term dual and the use of dual columns, would be insufficient for conveying

the entire scope of the potential relationship.

33«The principal goal that I set myself in this memoir is to examine which type of modification a given
figure, and the relations which belong to it, undergo when one passes to its polar reciprocal, and vice versa;
and to reduce this, in some sense, to a pure mechanism, a simple substitution of names and letters, written
one instead of the other, the translation of all the relations, of all the properties, no matter how slightly
general though they may be, that belong to a given figure and to its reciprocal; finally to show how one
can, by the simple statement of a proposition which concerns either projective relations, in general, or to
relations of angles of figures situated in a plane or in space; how one can, I say, obtain immediately and
without recourse to any calculation or reasoning, one, two or three other propositions, completely distinct
from the first and nevertheless all also completely general.”
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Gergonne’s response followed directly, and like in 1817 he addressed the broader read-
ership of the Annales, not specifically Poncelet. He praised Poncelet’s contributions, but
suggested that Poncelet himself, who worked in applied mathematics and had just revealed
his apprehension toward Gergonne’s philosophical leanings, might not comprehend their

full significance.

Les esprits superficiels, ceux qui n’étudient les sciences que comme on apprend
un métier, et qui n’en comptent pour rien la philosophie, pourront ne voir dans
le beau travail de M. Poncelet, que quelques théoremes nouveaux ajoutés a ceux
dont nous sommes déja en possession, et une maniére nouvelle de démontrer des

théoremes. déja connus. (Gergonne (1827f))34

Gergonne portrayed the new doctrine of duality as a “revolution for science.” He explained
that duality was “important and eminently philosophical” because it revealed part of the
underlying structure of geometry, where perhaps every theorem had a “double face.” This
was the revolution. Here Gergonne referred to the recent article by “Pluker” where more
general and complete solutions were already known “as people have remarked to us al-
ready several times.” However, Gergonne argued, the form was almost everything, and this
form was what principally recommended “Pluker’s little memoir.” Unknown to Gergonne’s
readers, he was the person responsible for the published form of Pluker’s little memoir.
Gergonne was not so much defending Pliicker as engaging in self-promotion through the
advertisement of his new technology.

After defending his philosophical approach, Gergonne took the offensive. He acknowl-
edged Poncelet’s early contributions to duality, but insinuated that Poncelet had at first
regarded polar reciprocity as “very accessory” and did not realize its import. Gergonne
suggested that by mixing the theory of polar reciprocity with the “controversial” principle
of continuity, Poncelet had diluted the significance of the former and rendered it subject to

attacks aimed at the latter. Finally, Gergonne criticized Poncelet’s use of language:

Il est au surplus un obstacle réel a la propagation facile des doctrines que M.
Poncelet et nous cherchons a populariser, et cet obstacle, comme nous ’avons
déja insinué plusieurs fois, réside dans l’obligation ou nous nous trouvons de
parler la langue créée pour une géométrie bien plus restreinte que celle qui nous
occupe. (275)3°

34«Those who superficially study science like one learns a career, without taking account of philosophy
will only appreciate Poncelet’s beautiful work for its new theorems and as a new manner of demonstrating
already known theorems.”

35Tt is moreover a real obstacle against easily propagating the doctrines that we and M. Poncelet are
trying to popularize, and this obstacle, as we have already suggested several times, resides in the obligation
to speak a language created for a much more restricted geometry than that with which we are occupied.”
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Gergonne proposed that the new theory would be the most advantageous if one could
first create a language suited to it, but acknowledged that this would be difficult to make
and that perhaps it would be difficult to obtain full acceptance for such a language. He
implied that duality had not yet become widespread because of an inherent conservatism
in the language of geometry. This sentiment coheres with Gergonne’s overall efforts toward
propagating duality to a wider audience.

The tone of this interchange between Poncelet and Gergonne contrasted sharply with
that of 1817. Perhaps most strikingly, Gergonne now praised Poncelet’s numerous contribu-
tions, while Poncelet appeared only concerned with Gergonne’s research as far as it related
to Poncelet’s publications and legacy. This shift in their hierarchical dynamic was further
reflected in the context of Poncelet’s letter written only as a response to Gergonne’s request.
By 1826, Gergonne appeared to believe that even Poncelet’s as yet unpublished work would
be of interest to his readers. Though as an editor Gergonne still had full power to decide
what of Poncelet’s letter would be printed, Poncelet had since become a well-respected and
established geometer whose research was an asset in popularizing duality. Poncelet’s repu-
tation beyond the Annales is evidenced by his reception in Académie reports and subsequent
Bulletin summaries (Poncelet and Cauchy (1820), Poncelet and Cauchy (1825), Anonymous
(1826¢)).

The Bulletin only devoted a paragraph to the correspondence of Poncelet and Gergonne
(Anonymous (1827b)). The paper submitted by Poncelet to the Académie was described as
including more ample developments on the same subject. Poncelet’s particular results were

listed summarily:

[...] ila trouvé quun grand nombre de théorémes relatifs a des relations métriques,
soit d’angles, soit de longueurs, étaient, comme les théorémes de situation, sus-
ceptibles de cette sorte de dualité signalée par M. Gergonne, et a donné des regles
pour reconnaitre les théoremes de cette classe et pour en déduire leurs corrélatifs

par de simples mutations de mots et de symboles. (Anonymous (1827b), 274)36

By attributing duality to Gergonne, the article implied that Poncelet’s results were deriva-
tive. Neither the article published in the Annales nor the Bulletin review mentioned the
date of Poncelet’s 1824 Académie submission, and thus the readership of the Bulletin might
easily infer that Gergonne was the first to recognize duality. Poncelet sensed this possibility,
and took action.

The following volume of the Bulletin contained a “Note” by Poncelet commenting on re-
cent articles published in the Bulletin (Poncelet (1827b)). Taking advantage of the scientific

36«[..] he has found that a great number of theorems relative to metric relations either of angles or of

lengths, are, like theorems of position, susceptible to this sort of duality introduced by M. Gergonne; and has
given rules for recognizing the theorems of this class and for deducing their correlatives by simple mutations

”

of words and symbols.
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hierarchy, Poncelet addressed his paper to those geometers “who did not have the advan-
tage of attending the Académie of sciences,” and thus had missed Poncelet’s presentation on
polar reciprocity on April 12, 1824. To prove his version of events as authentic, Poncelet in-
voked as witnesses the people who had been present, and recalled the reception of his work,
“dont la singularité des vues a méme fait dire plaisamment a d’illustres académiciens, que
c’était de la géométrie romantique, de la géométrie a quatre dimensions” (Poncelet (1827b),
110).37 Poncelet observed that the marked response of such a well-informed and important
public had already been noted in the Annales the previous year (Poncelet (1826)), and
verified the priority of Poncelet’s results. His 1827 article in the Annales had been only an
extract of this earlier presentation, sent to Gergonne upon request. Meanwhile, Poncelet
had been occupied with the professional public obligations of military service and teaching
mechanics applied to machines at the engineering school in Metz. Despite this lapse in
mathematical activity, Poncelet desired to claim credit for his already semi-public earlier
achievements.

In particular, Poncelet presented the Pluker article as an example of how little acknowl-
edgement he had received for his new theories and principles. Poncelet explained that
he had written about the matter in a letter to Gergonne, which had been “suppressed.”
Because of his “high esteem” for Gergonne, Poncelet had initially remained silent, hoping
that Gergonne would eventually address the omission publicly. The Bulletin review had
prompted Poncelet to seek a new outlet, in which he could establish proper priority.

Poncelet argued that he was seriously committed to research on polar reciprocity as
evidenced by an entire memoir on the subject as well as treating it at length in his Traité. He
contended that Académie reports had misrepresented his work as controversial by suggesting
that Poncelet practiced a “espéce de géométrie ou I’on remplace la rigueur du raisonnement

par des inductions hasardées, des apercus de pur sentiment” (115).38 Poncelet attributed

37«[...] whose singularity of views has even pleased the illustrious academicians, that this was from romantic
geometry, from geometry of four dimensions” This unusual descriptor offered an alternative delineation
between classical mathematics and romantic mathematics. The descriptor romantic geometry and Poncelet’s
self-described marginalization may seem to serve as examples in favour of the “romantic narrative” and
“romantic mathematics” described in Alexander (2006). However, Poncelet repeatedly emphasized that the
value in his work was toward deriving the “useful new results” that Amir Alexander has classified as the
province of eighteenth century mathematicians. Indeed, the term “romantic” carried assorted meanings, as
Gergonne would later apply it to describe disputable new mathematics Gergonne (1827e). The adjective
“romantic” might also describe qualities associated with novels and poems, as defined in the Dictionnaire
de I’Académie frangoise in 1798.

Il se dit ordinairement Des lieux, des paysages, qui rappellent a 'imagination les descriptions
des poeémes et des romans. (Anonymous (1798), 510)

“One calls [romantic] usually places, landscapes, that recall in the imagination the descriptions
of poems and novels.”

38«1 ] type of geometry where one replaces the rigour of reasoning by lucky inductions, perceived through

pure sentiment.”
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this reproach to a lack of understanding of his Traité in its entirety, where his exposition

was fully deductive.

Nous aurions bien mal employé notre temps et nos peines, si nous n’avions pas
réussi [...] & mettre le résultat de nos démonstrations & I’abri de toute attaque ;
peut-étre méme n’en saurait-on dire autant de beaucoup d’écrits géométriques de
notre époque, ou la logique sévere des anciens est quelquefois négligée par suite
de I’habitude acquise, assez généralement, d’accorder aux symboles et aux opéra-

tions de I’algébre une rigueur mathématique presque indéfinie. (ibid, 116)3°

Unlike Gergonne, Poncelet had not “rushed into a revolution.” He proceeded “prudently”
from “ordinary” geometry exemplified in his Traité, which contained over 400 pages of me-
thodical exposition. Poncelet pointed specifically to how he had established his propositions

through “synthetic geometry” just as in all the elementary geometry texts.

Cette recommandation de la géométrie synthétique sera, si I'on veut, une con-
cession faite aux idées du siecle, un moyen détourné de faire gotiter les nouvelles
doctrines et de ne point effrayer les géometres qui tiennent & I’ancienne forme
des élémens ; (ibid, 116)4°

Poncelet reiterated his position on synthetic geometry, earlier stated in his Traité, as a
restrained geometry comparable to “ancient pure geometry.” Even so, he admitted its
usefulness as a medium for introducing conservative geometers to new material, such as the
principle of duality.

While Poncelet praised Gergonne as the “learned editor” of the Annales, his description
appears more formal than heartfelt. Without any explicit charge of plagiarism, Poncelet set
up a subtle contrast. He expressed his admiration for Brianchon as a modest geometer with
enough of his own achievements not to envy those of others, while Gergonne’s 1826 paper
bore what Poncelet delicately termed an analogy with his prior researches. Yet, Poncelet’s
main concern in this article was not the fault of Gergonne, but rather of the subsequent
Bulletin articles publicizing Gergonne’s research at the expense of his own.

Poncelet concluded by correcting and cautioning against the overenthusiastic generality
and scope of Gergonne’s duality. Gergonne had “exaggerated” the importance of duality

in order to reach uncertain or even controversial conclusions. While Poncelet did not think

39«We would have very badly employed our time and pains, if we had not succeeded [...] in sheltering the
result of our demonstrations from all attack; perhaps even one could not say as much for many geometric
writings of our time, where the severe logic of the ancients is sometimes neglected by following the rather
generally acquired habit of according an almost indefinite amount of mathematical rigour to the symbols
and operations of algebra.”

404This recommendation of synthetic geometry will be, if one likes, a concession made to the ideas of the
time, a roundabout way to introduce new doctrines and not frighten the geometers who value the older form
of the elements;”
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anyone “could attack the exactitude of his results,” he showed wariness toward publicizing
duality in general. Instead of encouraging future research in the subject, Poncelet drew
attention to his own past contributions.

Poncelet’s article extended his audience to reach readers of the Bulletin who were neither

1" For Gergonne, Poncelet’s

members of the Académie nor avid readers of the Annales.*
demand for priority amounted to a public accusation, and so Gergonne would respond
publicly as well.

However, Gergonne shifted the exchange back to the Annales by republishing Poncelet’s
Bulletin article accompanied by the suppressed preface and postscript from Poncelet’s 1826
letter (Gergonne (1827¢)). He placed this collection of articles and notes under the subject
heading “Polémique mathématique”the first and last use of this title in the Annales. In
an introduction, Gergonne described Poncelet’s article as “une sorte de note diplomatique,
en forme de manifeste, otl, a travers des expressions beaucoup trop flatteuses pour moi, on
voit percer, de toutes parts, beaucoup d’amertume, des reproches et méme des accusations
assez graves” (125).42 Gergonne explained to his readers that he had intended to convince
Poncelet that his accusations were unfounded in private, and thus chose to leave these
segments of the original letter unpublished. He phrased his motivation strategically, “finally,
to add still more, if it is possible, to the publicity which he [Poncelet] desires to obtain”
[afin d’ajouter encore, s’il est possible, a la publicité qu’il a désiré d’obtenir].

By organizing his response into footnotes, Gergonne implied a sort of editorial objec-
tivity. Poncelet’s text was presented as polemical and through editorial commentary his
suggestions seemed more like accusations. By contrast, Gergonne’s response was delivered
less as a rebuttal than a rectification. Beneath this veneer of scholarly dispassion, Ger-
gonne’s language oozed with vicious sarcasm and subtle insults. Each of Poncelet’s claims

was interpreted as extreme then swiftly ripped apart, still Gergonne claimed neutrality.

Le lecteur jugera. Je ne fais d’ailleurs aucun reproche, j’énonce simplement une
opinion. (ibid, 136)%3

In these frequent asides, Gergonne played with his readers by making fun of the debate
itself and letting them in on his jokes, thus securing their support of his position. We
will not attempt to simulate the peculiar format of footnotes, although traces remain with
the numerous parenthetical asterisks (e.g. (*)), and consider Gergonne’s response as a

cohesive piece comprising three main themes. First, in response to Poncelet’s reactive

41 At the time Poncelet speculated that Gergonne himself was working as an editor for the Bulletin and had
composed the anonymous summaries in his own favour. Gergonne heard of these insinuations and quickly
denied them (Anonymous (1828b), 25).

42«1 ] a sort of diplomatic note, in the form of a manifesto, where, in terms too flattering to me, one
perceives, in all parts, much bitterness, many reproaches, and and even very serious accusations.”

43«The reader will judge. I make no reproach, I simply announce an opinion.”
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accusations that Gergonne was coveting undue credit, Gergonne supplied evidence of his
earlier and independent researches. Secondly, Gergonne portrayed Poncelet as melodramatic
and overreacting. Finally, without suggesting that Poncelet was a plagiarist, Gergonne
shifted the blame for Poncelet’s lack of recognition to Poncelet himself.

With his 1826 paper, Gergonne explained that he had intended to provide an elemen-
tary introduction to duality following the shared views of Poncelet and himself. This equal
division of credit implied that Gergonne’s own research was independent, and Gergonne
asserted that he had begun developing the idea in 1819. He referred to three of his earlier,
duality-infused, publications on polyhedra and spherical trigonometry from 1825, which pre-
ceded his publications in planar geometry. The duality of spherical trigonometry, Gergonne
explained, was well known, “there is not, I think, a single geometer for whom this duality is
a mystery” [il n’est, je pense, aucun géométre pour qui cette dualité soit un mystére] (126).

From a different angle, Gergonne insisted that he could not have stolen Poncelet’s ideas
because they were not public until 1824, and then only presented to the Académie in Paris,
while Gergonne was in Nimes. He scoffed at the possibility of co-opting Poncelet’s private
research: “Qui sait? J’écoutais peut-étre aux portes” (130).#* Gergonne followed up with
a hypothetical reconstruction of the events that could have merited Poncelet’s very serious
accusation: Gergonne had hidden the date of Poncelet’s memoir, continued to avoid citations
cautiously, and finally written long memoirs on the subject of duality. Gergonne concluded
that none of these events had actually occurred, and the accusation was “a pure phantom
that the lightest breath could easily cause to vanish” [un pur fantéme, que le souffle le plus
léger pourrait faire aisément évanouir| (131). In truth, Gergonne reminded the reader that
he had published Poncelet’s notes on polar reciprocity shortly after receiving them in 1826,
and any delay in publicizing Poncelet’s 1824 presentation was the fault of the Académie,
whose members had waited three years before issuing a report.

Not all of Poncelet’s criticisms were dismissed. Gergonne conceded that when he had
failed to mention Poncelet’s name with respect to polar reciprocity, this was because the
association was so strongly identified as to be “superfluous”—just as we invoke the prop-
erties of right triangles, “without naming Pythagoras.” With respect to the “suppressed”
preamble and postscript, Gergonne suggested he had done so in Poncelet’s best interest, and
apologized for unintentionally obscuring the 1824 date of Poncelet’s Académie submission.
However, Gergonne continued, had Poncelet wished to gain greater publicity for his work,
Gergonne would have happily printed Poncelet’s 1824 memoir in its entirety when it was

first written:

[...] les Annales y auraient gagné un article fort piquant, et tous les miens

n’eussent ainsi paru quaprés celui-la. (133)%

444Who knows? Perhaps I listen at doors.
45“[4..] the Annales would have gained an extremely stimulating article, and all mine [Gergonne’s publi-
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By choosing a closed venue for his research, Poncelet’s obscurity was perhaps his own fault.
And while Gergonne acknowledged and admired Poncelet’s current engineering contribu-
tions, Poncelet could not expect “the whole world to cross their arms and wait” for his
eventual return to mathematics.

Ultimately, Gergonne’s footnotes depicted Poncelet increasingly frivolous in his insis-
tence on priority and paranoid in his fear that Gergonne would receive all the accolades.
“Who dreams to deny it?” Gergonne retorted in response to Poncelet’s assertion of his inde-
pendent results. Gergonne interpreted the Bulletin’s review as simply stating that Gergonne
had reported on duality in 1826. However, Gergonne went on, “Je veux, bien d’ailleurs que le
Bulletin se soit trompé, pour peu que cela puisse étre agréable a M. Poncelet, car ’essentiel
est ici que la vérité se manifeste, et il importe peu qu’elle emploie tel ou tel autre organe”
(131).%6 That is, Poncelet and Gergonne were merely vessels for mathematical knowledge
and any concern over priority was to ignore the collective scientific gain. Gergonne pointed
to common and well-known sources available to both geometers, in particular research by
the engineer Gaspard-Gustave Coriolis.*”

Turning finally to the mathematical content, Gergonne reinforced his earlier criticisms
that Poncelet had de-emphasized the significance of duality and rendered it vulnerable
through association with Poncelet’s romantic geometry, that the latter had highlighted in
Poncelet (1827D).

Je persiste a penser, comme je ’écrivais alors, que M. Poncelet a gravement
compromis ses doctrines, en mélant au classique, que tout le monde admet, le
romantique que, pour ma part, je suis fort loin de repousser, mais sur lequel enfin
on dispute encore, et que MM. les commissaires de I’Académie eux-mémes, au
jugement de qui M. Poncelet déclare attacher beaucoup de prix, ont traité assez
séverement. (Gergonne (1827¢), 135)48

Gergonne’s version of duality showed correspondence between theorems that could be inde-
pendently derived through Euclidean methods. Poncelet’s Traité and associated memoirs
were not only subject to dispute, they were also lengthy, “ou les recherches sont assez dif-

ficiles & faire, & raison du grand nombre des résultats de détail qu’il embrasse;” (134).%9

cations on duality] would thus not have appeared until afterward.”

4641 would even want the Bulletin to be mistaken, however little that might be agreeable to M. Poncelet,
because the essential thing here is that the truth appears, and it matters little whether it employs this or
the other organ”

47 Alexandre Moatti has addressed the contributions and life of Coriolis, including the relationship between
Coriolis and Poncelet as engineers during this time period (Moatti (2011)).

48«1 persist in thinking, as I wrote then, that M. Poncelet has gravely compromised his teachings, in
mixing with the classic, which all the world admits, the romantic which, for my part, I am very far from
rejecting, but about which however one still disputes, and which MM. the commissaries of the Académie
themselves, whose judgment M. Poncelet declares to attach great importance, have treated rather severely.”

49¢[...] where research is rather difficult to do because of the great number of detailed results he includes;”
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Gergonne professed to be more interested in developing new methods than new theorems,
and so perhaps some of the theorems that he proved were also contained in Poncelet’s
Traité. He contrasted Poncelet’s 400 pages with his simple announcement that theorems of

non-metric geometry:

1. are double, and 2. could be established without any form of calculation.
(139)

Moreover, a change in organization might have encouraged the reception of Poncelet’s work.

M. Poncelet aurait pu débuter par une géométrie dans le genre de celle dont
j’ai ébauché les premieres pages ( tom. XVI, pag, 209 ) et contre laquelle
aucune objection ne se serait élevée. Il aurait pu traiter ensuite de la théorie
des transversales et des projections, dont les principes sont également admis,
par tout le monde, et réserver, pour la fin de son livre, tout ce qui pouvait étre

controversé. (ibid)®°

Then Poncelet would not have seemed to “rush into a revolution” [brusquer une révolution)
and his work would have gained greater acceptance. Beginning with his principle of conti-
nuity and only treating polar reciprocity later suggested that Poncelet had not recognized
the importance of duality at the time.

Poncelet had concluded his article by pointing to a potential flaw in Gergonne’s appli-
cations, as Gergonne had incorrectly claimed that the dual of a curve of given order was
another curve of the same order (Gergonne (1827b)). Poncelet had specifically cited an 1817
paper published in the Annales, where he had arrived at “very different results” (Poncelet
(1817b)). These results also featured in Poncelet’s submitted memoir to the Académie and
accorded entirely with Gergonne’s earlier research on algebraic lines and surfaces (Gergonne
(1818)). Instead of addressing the error, Gergonne interpreted Poncelet’s caution as a sign
of a more particular version of duality. Poncelet linked polar reciprocity to duality, while
Gergonne claimed duality applied to all non-metric geometry. On the other hand, Poncelet
found that polar reciprocity also applied to some metric properties. Gergonne dismissed
this as a separate domain of research. “Il est clair, en effet, que les relations métrigues sont
du domaine du calcul; mais il n’était nullement question de ces relations dans mes réflexions
sur Panalyse du mémoire du M. Poncelet” (Gergonne (1827¢), 140).51 He proposed that
finding the dual to a given statement was more a matter of constructing the correct lan-

guage, but in this early stage of development the correct corresponding vocabulary was less

50«M. Poncelet could have begun with a geometry in the genre of that in which I have drafted the first
pages (tom. XVI, pag. 209) and against which no objections would be raised. He could have then treated
the theory of transversals and projections, whose principles are equally admitted by everyone, and reserved,
for the end of his book, all that which might be controversial.”

5141t is clear, in effect, that the metric relations which are from the domain of calculation; but there was
no question of these relations in my reflections on the analysis of the memoir of M. Poncelet.”
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important than the assurance that the principle of duality itself “suffered neither exceptions
nor any modifications” applying to all geometric objects with “absolute generality.”

This mock dialogue continued in Gergonne’s publication of Poncelet’s “suppressed”
preamble and postscript. The communication was again one-sided: Poncelet addressed
Gergonne directly and Gergonne spoke to his wider public. In fact, Gergonne repeatedly
invoked “tout le monde” in his statements against Poncelet, thus suggesting he held a
unanimous opinion. Gergonne was able to use the footnote medium to interject wherever
he felt it appropriate, and his commentary formed a fragmented but consistent response to
Poncelet’s complaints.

The postscript was entirely devoted to complaints against Pliicker (who now was referred
to as Plucker rather than Pluker, but we will employ the proper spelling) and his lack
of sufficient citation in his 1826 articles. To this Gergonne declared that he did not see
“another salvation for geometers except to learn this treatise by heart without omitting a

b

single number.” The Pluker article had opened with a general citation of the Traité, but
this was not scrupulous enough for Poncelet, who argued for references to specific results.
Poncelet pointed in particular to the similarity between his printed figures and the figures
suggested by Pliicker’s constructions.

Gergonne questioned Poncelet’s assumption that Pliicker had read his Traité. Instead he
noted Pliicker’s citation of the Annales with respect to Poncelet’s construction from 1817.
However, as Gergonne might have recalled, this manuscript citation had been edited out of
the published version.

To Poncelet, Pliicker’s insufficient citation was further compounded by the use of dual

columns.

Quant a l'usage de mettre en deux colonnes les propositions de la géométrie de
la régle (****) | il me semble que c’est un double emploi trés-pénible, peu motivé

*****)

quant aux démonstrations ( ; et qu’il suffira toujours d’indiquer, d’apres

les principes de la théorie des polaires réciproques, la maniere de conclure les

unes de ces propositions des autres déja démontrées. (148)%2

Gergonne, who we know was the author of this very feature, responded that “mes quelques
articles a deux colonnes ont plus efficacement servi la cause de la dualité que ne 'ont fait
les 400 pages de son ouvrage.”® Gergonne thus implied that new geometry might better

be introduced in short articles, than in voluminous books.?*

52« As for the use of putting propositions from ruler geometry into two columns, it seems to me that this
is a very painful repetition of work (****)| little motivated from the point of view of the demonstrations
(**F*F**): and that it suffices always to indicate, after the principle of the theory of polar reciprocity, the
manner of concluding one of these propositions from the others already demonstrated.”

53¢[...] my few articles in two columns have more efficiently served the cause of duality than have the 400
pages of his work [Poncelet’s Traité].”

54In Chapter V, we will examine Gergonne’s suggestion by considering the content of contemporary books
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Whereas Poncelet’s research articles had promised the appearance of new research in

future publications, here he promised only more complaints.

J’aurais, Monsieur, plusieurs autres réclamations a vous adresser pour mon pro-
pre compte, mais elle trouveront naturellement leur place ailleurs, et la tache

deviendra alors pour moi moins délicate et moins pénible.?®

Gergonne categorized this behaviour as bordering on censorship, suggesting its deleterious

effects on scientific publications.

Certes, il parait que si la censure s’étendait jusqu’aux recueils scientifiques, et
qu’elle fiit dévolue & M. Poncelet, les ciseaux n’en demeureraient pas oisifs dans

ses mains. (140)%6

Poncelet’s personal accusations, which Gergonne had initially withheld from publication,
became exaggerated with footnote commentary. Gergonne declared them “a charge of the
most egregious and shameful plagiarism” and as such “completely unrealistic.” He claimed
to have been protecting Pliicker as a “completely unknown man” from such accusations, by
choosing originally not to publish this postscript. In these concluding remarks, Gergonne
had painted Poncelet as not only ill-mannered, but ultimately valuing his own success over
scientific progress.

The mathematical polemic continued indirectly within the context of research publica-
tions. In the polemical exchange, Gergonne had dismissed Poncelet’s specific corrections
blithely: “Si M. Poncelet n’avait pas autant dédaigné I’étude de la dualité de situation,
il pourrait prendre ici un ton plus décisif” (142).>” But Gergonne was more serious than
he affected. Shortly afterward, he published “Géométrie de situation. Rectification de

quelques théorémes énoncés dans les Annales,”

in which he created the proper vocabulary
with which to express the correlation between dual curves (Gergonne (1827¢)). In dual

columns, Gergonne defined the term degree on the left-hand side,

A planar curve is of mth degree, when it has m real or ideal intersections with

a line.

On the corresponding right-hand side he defined the curve’s class,

on geometry.

5541 have several other claims to address to you on my own account, but these will naturally find a place
elsewhere, and the task will become less delicate and painful for me.”

56«Certainly, it appears that if censorship extended as far as scientific publications, and it was vested in
M. Poncelet, the scissors would not remain idle in his hands.”

57«If M. Poncelet did not disdain studying the duality of position, he could take a more decisive tone
here.”
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A planar curve is of mth class, when one can draw m real or ideal tangents to

it from a point on its plane.®®

The definitions similarly held for curved surfaces. Now, Gergonne could simply substitute
degree in the left hand column and class in the right hand column for the term order
to correct his earlier theorems, a process that Gergonne described as “neither very great,
nor very difficult.” Most importantly, Gergonne preserved the generality of his form of
duality.”® However, not all geometers found Gergonne’s rectifications satisfactory since
they eluded the uncomfortable result that the order of a curve was not always preserved
by its dual. Pliicker would address this issue in his Analytisch-geometrische Entwicklungen
as well as later articles published in Crelle’s Journal (Pliicker (1828a), Pliicker (1829b),
Pliicker (1834)).

The Bulletin printed a synopsis of the mathematical polemic that described Poncelet’s
complaints as “baseless” and expressed disbelief that Poncelet would wish to block all
research analogous to his (Anonymous (1828b)). Gergonne was described as having been
a “zealous propagator” of Poncelet’s doctrine for the past ten years. Poncelet’s criticisms
were dismissed as “vague” and Gergonne’s inexactitudes excused based on the “novelty of
the research” and “the imperfection of language.” Overall, the review was more a summary
of Gergonne’s footnotes than of Poncelet’s text and so it appeared that Gergonne held the
upper hand.

Poncelet would not let this be the last word, and responded again in the Bulletin (Pon-
celet (1828c)). He began by limiting the scope of the controversy to a priority dispute
and establishing a timeline of his research from 1818 onward with due credit to the earlier
contributions made by Delahire, Monge, and Brianchon. By contrast, Poncelet questioned
why the “indefatigable activity of Gergonne’s pen” [l'activité infatigable de la plume de M.
Gergonne] had not published until 1826, if he had “completely fixed” [complétement fizées]
ideas on duality before then. Poncelet suggested that Gergonne was disguising Poncelet’s
own polar reciprocity behind the more “seductive” [séduisant] name of duality. This general
principle of duality was “empty of sense in mathematical philosophy and absurd” [vides de
sens en philosophie mathématique, et absurdes| when divorced from the justification of polar
reciprocity. According to Poncelet, the process of polar reciprocity was necessary, useful,

and had been covered at length in his Traité.

[...] ni qu'on pit songer sérieusement & en faire une doctrine toute nouvelle,

indépendante de la théorie des poles et polaires, comme I’a tenté, sans succes,

58Gray has analyzed Poncelet’s correction and Gergonne’s rectification as well as Pliicker’s ultimate reso-
lution in Gray (2010b).

59 Ideal was an adjective first used by Poncelet to describe geometric objects containing real and imaginary
points (Poncelet (1822)). Notably, Gergonne used Poncelet’s term ideal tangents in his definitions without
remark—apparently they had by now been more or less accepted in the geometer’s lexicon.
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M. Gergonne [...] (Poncelet (1828c), 298)%°

As far as Gergonne’s efforts to correct his mathematical errors, Poncelet disapproved of
the newly minted definitions of degree and class, which “tortured” the sense of the words

61 Gergonne’s defence of Pliicker likewise

solely in order to support Gergonne’s theorem.
failed to convince Poncelet. Poncelet contended that his Traité had received insufficient
citation precisely in order to preserve the “scaffolding” of double columns, as a matter of
“proselytizing” for Gergonne’s duality.

Poncelet’s argument was little changed from his earlier Bulletin notes. The article served
more as clarification and condensation: Poncelet was the first to publicize polar reciprocity,
later forms of duality were derivative or senseless, and, if his work was left unacknowledged,
plagiarized. The most significant departure from Poncelet’s two articles was in his descrip-
tion of Gergonne. Whereas Gergonne had originally appeared as a knowledgable editor,
who supported and encouraged Poncelet’s geometrical methods, he was now portrayed as
suspiciously seeking to undermine Poncelet’s credit and credibility. Consequently, “Plucker”
was merely a consenting pawn. The priority dispute had become very personal.

Later that year Poncelet published his original memoir on polar reciprocity in Crelle’s
Journal (Poncelet (1828a)). The Académie had only just approved it in February, nearly
four years after Poncelet’s submission. Aware of the current tensions, Crelle introduced
the article with a very diplomatic footnote referring to the “discussion” between Gergonne
and Poncelet and refraining from further comment. The article included a newly written
postscript by Poncelet. Poncelet observed that the material treated in his memoir had
recently been the research subject of several geometers, and wished to clarify that the
version printed here conformed completely to the 1824 manuscript. He explained that he
had made progress with his research since that date and included a summary of the several
practical applications of his polar reciprocity theory. The civil tone of this research article
contrasted sharply with Poncelet’s contemporary polemical writings. Poncelet may have
felt that Crelle’s Journal, published outside of France, was not the place to carry on such
charged discourse.

By 1828, Gergonne could claim that the principle of duality was now established (Ger-
gonne (1828b)). When he had first begun its study in 1821 “the ideas of duality were not

yet as widely known,”

Aujourd’hui, au contraire, qu’il doit étre bien connu que tous les théoremes de

situation marchent par couples, il nous suffira d’avoir démontré I'un d’eux, a

60«[ ] we cannot seriously dream to make a totally new doctrine of duality, independent of the theory of

poles and polars, as was attempted, without success, by M. Gergonne [...]”
61 Gergonne responded to Poncelet (1828c) in prefacing a series of corrections to a recent article by Chasles
(Gergonne (1828c¢)). He quipped, “M. Poncelet has so frightened us that we do not have the courage to

reread this memoir (Gergonne (1827c)), in fear of finding too much to correct.”
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'endroit cité, pour que 'autre soit admis sans contestation. (115-116)52

In this technical paper on three dimensional geometry, Gergonne took the opportunity to
rewrite a theorem from Coriolis in a new style expressing duality. Here, instead of dual
columns, Gergonne employed curly brackets, where each dual pair was presented one on

top of the other in the text, as shown in Figure 3.2.

points

THEOREME. Soient, dans l'espace, 72; ; quelconques

plans
numérotés arbitrairement ainsi qu’il suit

(1) (3, B)sewmn (@) « (1.7 Série).

points
plans
diatement supérienr, déterminera une droite; de telle sorte qu'on
aura ainsi #—1 droites, que l'on pourra désigner respectivement
points
plans

Chacun de ces{ , avec celni qui portera le numéro immé-

par l'ensemble des indices des deux % iqui déierminent cha-

cune delles, en celle maniére

Figure 3.2: Gergonne’s alternative duality format (Gergonne (1828b))

This new format saved space and presented an even more striking picture of the similarity
between dual forms. In his introduction and footnotes, Gergonne described Poncelet as a
severe critic who had made some reasoned observations on particular theorems, and would
never be completely satisfied. So as far as Gergonne was concerned, the general principle
of duality could progress without any deep corrections.

However, other geometers could not ignore Poncelet’s criticisms so flippantly. Pliicker’s
defence against Poncelet’s accusations appeared in the Bulletin that year (Pliicker (1828c)).
He had learned of the “unjust attacks in a letter from Berlin three or four months prior.”
However, he had not responded because he did not know the exact details. With Pon-
celet’s “tireless” [infatigable] reiteration of the same accusations, Pliicker had found a new
opportunity to defend himself before the Bulletin and its readers.

In short, Pliicker was not responsible for the material Poncelet had found objectionable.
Pliicker had willingly given Gergonne “the liberty to change the writing of his memoir” [la
liberté de changer la rédaction de mon mémoire]. Though Pliicker “was absolutely igno-
rant” [j’ignorais absolument] of duality before reading the Bulletin in 1827, Gergonne had
found the contents favourable to a presentation in double columns. Likewise, Gergonne had

chosen to cite Poncelet’s Traité, which Pliicker had only heard of through the Bachelier

62«Today, to the contrary, as it must be very well known that all the theorems of position march two
by two, it suffices for us to have demonstrated one of them [...] for the other to be admitted without
contestation.”
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catalogue.%> Poncelet’s 1817 article had been his sole inspiration. For the same reason,
Pliicker explained he had been unable to give thorough citations to Poncelet in the first

volume of his text, Analytisch-geometrische Entwicklung.6*

Though Pliicker seemed sym-
pathetic to the misunderstanding and admired Poncelet’s research in general, he dismissed
the significance of Poncelet’s specific contested results, claiming they were “all corollar-
ies of a known theorem,” [tous corollaires d’un théoréme connu] and consequently of little
importance (Pliicker (1828c), 331).

Pliicker recounted that he had only learned of duality through his public involvement
in the priority polemic. Since then, he had developed his own theory of duality, which he
described as “very different” from that of Gergonne or Poncelet. Pliicker advertised that
his purely analytic method had “uncovered the secret of duality,” and concluded by hoping
that Gergonne would publish it, thus demonstrating his continued faith in the editor.®
Though Pliicker would never explicitly criticize either of his predecessors, his decision to
reform duality suggests a dissatisfaction with earlier versions.

Pliicker followed Gergonne in assuming duality as an open area of research, but Poncelet
did not welcome this additional interpretation of duality and quickly responded in the Bul-
letin (Poncelet (1829)). He reasoned that if Pliicker had not been responsible for his article,
then the polemic was entirely between Poncelet and Gergonne, the author of the double
column memoir. As for Pliicker, Poncelet “did not have the advantage of knowing him.”
Though Pliicker seems to have accepted Gergonne’s editorial choices, Poncelet found in this
further means of attack. He suggested that Gergonne had originally withheld publishing
Poncelet’s complaints, in order to conceal his own interference. Until reading Pliicker’s ex-
planation, Poncelet would never have imagined that a man of Gergonne’s character would
“mutilate” the work of a “foreign scholar.” Poncelet considered the Pluker article as part
of Gergonne’s efforts to convince readers that earlier contributions to duality (including
Poncelet’s Traité) were insignificant.

On a less personal level, Poncelet contrasted his practical and original research with

53In the midst of Poncelet’s counterattacks of 1828, he received a letter from Chasles. Apparently, Poncelet
had written to Chasles about his lack of proper citation, to which Chasles begged off with an identical excuse
to that of Pliicker—he hadn’t had access to the original material while in Nice. Chasles claimed to have not
seen the Annales except those before 1813 and a few after 1822, which he confessed to not have fully read,
even though he had contributed to the volume in 1827. This civil private correspondence, under very similar
circumstances to the Pliicker exchange, illustrates an alternative medium to resolving questions of proper
citation.

%In the introduction to his Analytisch-geometrische Entwicklung, Pliicker recognized that despite their
bases in “entirely different ideas” [ganz wesentlich verschiedenen Ideen] his general analytic method and the
method of Poncelet’s Traité yielded strikingly matching results. Pliicker admitted that without an under-
standing of the underlying groundwork, one might judge “the first method as paraphrasing or a plagiarizing
of the second” [die erste Methode als eine Periphrase, als ein Plagiat der zweiten (Pliicker (1828a)).

55Following Pliicker’s statements, the Bulletin editor noted that the publication of Pliicker’s response had
been delayed through editorial forgetfulness, and “some epithets unnecessary to the success of the discussion”
[quelques épithétes inutiles au succeés de la discussion] had been removed. Thus also in the Bulletin, Pliicker’s
work remained vulnerable to editorial modifications.
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that of Gergonne and Pliicker. He explained that his theories had “applications utiles aux
arts graphiques, et qui ne doivent pas, en elles-mémes, étre dénuées de toute espece de
mérite, puisqu’elles sont devenues entre les mains de MM. Gergonne et Plucker, le sujet
de développements fort étendus.”® In this attention, Poncelet appealed to a specific and
possibly new audience of applied mathematicians, thus turning his work as an engineer into
a complementary asset, rather than a competing distraction, to his mathematics.
Gergonne and Pliicker had emphasized the importance of the geometric form, exem-
plified by the use of dual columns, over content. Poncelet contended the opposite, and

denigrated the importance of form as an afterthought.

La facilité et la simplicité méme avec lesquelles ces questions dérivent [...] n’en
font qu’accoitre [sic| le mérite a nos yeux, comme ils 'accroitront sans doute, aux
yeux de tous les vrais amateurs des sciences, qui tiennent encore plus au fond
qu’a la forme, et qui n’apprécient pas uniquement les résultats des recherches
mathématiques d’apres la facilité plus ou moins grande de les démontrer d pos-
teriori. (332-333)57

Thus, Poncelet’s work was more useful and important, and his scientific understanding
broader than that of his opponents. Poncelet’s response marked the end of direct exchanges

on the controversy, but research and publications continued.

3.6 Aftermath: resolution and irresolution

Plicker drew upon the principle of duality in two subsequent articles, and presented theo-
rems in dual column form, but at first without citing Gergonne or Poncelet (Pliicker (1828b),
Pliicker (1829a)). His “secret” of duality appeared in an 1830 article in Crelle’s Journal
(Pliicker (1830)). “Uber ein neues Coordinatensystem” principally concerned the introduc-
tion of homogeneous coordinates, which afforded a new way of addressing “the theory of

768 Pliicker advertised his “purely analytic theory” as superior to all previous

reciprocity.
ones because it was independent of a conic section. In expressing duality in coordinate
equations, Pliicker maintained the mechanism of finding a dual that had been provided by

Poncelet’s form of polar reciprocity. At the same time, he achieved a method that could

66«[...] useful applications to graphic arts, and must not be stripped of all types of merit, because they

have become, in the hands of MM. Gergonne and Plucker, the subject of very extended developments.”

57«The ease and simplicity with which these questions are derived, [...] only increases their merit in our
eyes, as they increase it, undoubtably, in the eyes of all true lovers of science, who value content still more
than form, and who do not uniquely appreciate the results of mathematical research according to the ease,
more or less great, of proving them a posteriori.”

58For the history of coordinate systems in geometry, including the three variable homogeneous coordinates
of Pliicker, see Boyer (1956), Coolidge (1940), or Gray (2010b). Sections of of Pliicker’s article as they pertain
to Poncelet’s research are summarized in Appendix E.
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be applied to curves and surfaces of any degree, thus satisfying the advantage of generality
inherent in Gergonne’s form of duality. This division of attributes was further reflected in
Pliicker’s citation, where both geometers were equally credited. Pliicker continued to pursue
questions raised by duality through the 1830s, and through this work he has been credited
with “resolving” the theory of duality.®® One important aspect lay in Pliicker’s solution to
the problem of degree change between a curve and its dual. Pliicker specifically addressed
this problem in an article published in French in Crelle’s Journal in 1834, where he claimed

that the problem remained unresolved.

La découverte du principe de réciprocité (théorie des polaires réciproques) ou
ce qui est identiquement la méme chose, celui de dualité a fait naitre une foule
de questions nouvelles, dont I’'une que je regarde avec M. Poncelet comme fon-
damentale n’a pas été résolue jusqu’a ce jour malgré les efforts des plus habiles
géometres. (Pliicker (1834), 105)7

Pliicker continued by explaining Gergonne’s initial mistake that the degree of a curve was
equal to that of its polar curve, as well as his correction by introducing the word “class”.
Pliicker accepted the value of this new classification, “la méprise d’un homme d’esprit porte
ses fruits,” by which Poncelet seemed to mean the results from Gergonne’s error. However,
Pliicker remained interested in the explanation behind the fact that the number of points
of intersection of an algebraic curve of any degree was mot always equal to the number of
tangents to the same curve passing through a given point. Pliicker set aside the analytic
interpretation of this problem for his books, the recent Analytisch-geometrische Entwicklun-
gen (1828, 1831) and the forthcoming System der analytischen Geometrie (1835) (Pliicker
(1828a), Plicker (1831), Pliicker (1835)). Here he presented an informal explanation that
one could either consider curves as described by a moving point, in which case they would
generally not have cusps but have inflection points; or one could consider curves as en-
veloped by a moving straight line, in with case they would generally not have inflection
points but instead have cusps. Following the principle of duality, one representation of a
curve would be the dual of the other. From these two means of generation, which Pliicker
promised he could prove within a system of analytic geometry, Pliicker counted exactly how
the degree of a curve would change depending on its number of inflection points and cusps.
Plicker thus reunited the duality controversy with the initial methodological controversy

from 1817, demonstrating another practical application of analytic geometry.

59Pliicker’s contributions to duality have been examined in detail and praised in texts from Clebsch to
Gray (Clebsch (1872), Gray (2010b)).

T0«The discovery of the principle of reciprocity (theory of reciprocal polars), or what is exactly the same
thing, that of duality has given birth to a series of new questions, of which one that I regard with M. Poncelet
as fundamental has not been resolved up to this day despite the efforts of the most able geometers.”
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The Annales ceased publication in 1832. In 1847, at the age of 78, Gergonne gave a
very brief paper at the Académie des Sciences de Montpellier on the principle of duality
in geometry (Gergonne (1847)). Spurred by a contemporary publication on poles and
polars, Gergonne recalled that he had deduced a new principle of geometry, called the
principle of duality, more than 30 years ago. He took this opportunity to repeat his two
philosophical propositions: that duality applied to all non-metric geometry and that the
duals of individual results followed directly from substitution. Gergonne asserted that by
1813 the principle of duality was “no longer a mystery” to him. As for dual columns,

Gergonne credited their 1824 usage with the proliferation and publicity of the principle.

A dater de 1824 pour faire mieux saisir cette dualité, j’ai écrit, dans deux
colonnes en regard les uns des autres les doubles théoréemes que me fournissait
mon principe (1). Malgré cette précaution ce principe a passé presque inapergu.
(Gergonne (1847), 63)7!

This was Gergonne’s only published admission that dual columns may not have been an
effective means toward popularizing duality. After his publications, Gergonne noted that
research applying the principle of duality in geometry had been pursued by Steiner, Pluker
(whose name had reverted to the 1826 misspelling), and Chasles. Poncelet was not in this
group, but rather appeared as the “sole antagonist” to Gergonne’s duality principle.
According to Gergonne’s reconstruction, Poncelet had read no work but his own and con-
sequently attacked dual columns as “awkward,” “superfluous,” and even sometimes “faulty.”
Poncelet, Gergonne continued, was an engineer with an admirable reputation. However,

Gergonne saw more to science than practical applications.

Dans le siecle et dans le pays ou nous vivons tout ce qui peut contribuer a
développer a étendre et a fortifier les facultés de l'intelligence ne saurait étre
regardé avec indifférence et il est bien connu, d’ailleurs, qu’'une nation qui ne
cultiverait les sciences que sous 'unique point de vue de leurs applications pra-
tiques et immédiates de leurs résultats matériels, ne saurait se flatter de les voir

long-temps fleurir au milieu d’elle. (64)72

In Gergonne’s account, as an active engineer, Poncelet appeared to have compromised his
commitment to mathematical research by emphasizing applications. Gergonne’s foreboding

conclusion may have also been a comment on his perception of deeper national trends.

T14Tn 1824 to make this duality easier to grasp, I wrote, in two columns facing each other, the double
theorems that my principle provided (1). Despite this precaution this principle passed almost unperceived.”

"24In the century and in the country where we live, everything that can contribute to develop, to extend
and to fortify the faculties of intelligence would be impossible to look upon with indifference, and it is well
known, moreover, that a nation which cultivated the sciences only from the unique point of view of their
practical applications and immediate material results, could not vaunt itself to see them flourish in her midst
for long.”
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Nearly twenty years later, Poncelet republished his Traité with supplements including
many of his older articles as well as “historical” commentary. Poncelet used this venue to

aggressively refuse Pliicker’s proposed resolution to the duality controversy.

[...] en 1828, & une communication tendant & prouver que lui aussi (Plucker)
était arrivé, par une voie purement analytique, au principe de réciprocité, objet
de la dispute, il prétend 'avoir présenté sous un point de vue beaucoup plus
général (préface, p. 6, texte, p. 259). Mais je crains fort qu’il y ait 1la quelque
méprise ou illusion; car, malgré I’honneur qu’il me fait de citer ici mes travaux
antérieurs a ceux de MM. Steiner, Gergonne, et Bobillier, imprimés dans les
Annales de 1827 a 1829, je n’apercois méme dans le Mémoire de M. Plucker
sur un nouwveau systéme de coordonnées et un nouveau principe de Géométrie
(Crelle, t. V, 1830, p. 1 et 268), que des essais algébriques plus ou moins
fructueux, et qui rappellent ceux de ces savants, pour établir une tardive et
incomplete prééminence des méthodes soi-disant purement analytiques sur les
miennes. (Poncelet (1866), 409)73

Poncelet interpreted Pliicker’s resolution as continuing the 1817 methodological debate, but
not contributing to generalizing the principle of duality. He proceeded to list geometers who
had given improper attribution to any of his results and theories, among whom Gergonne
certainly counted. He died in 1867 shortly after this final attempt to leave a legacy of victory
in this academic struggle, alongside his professional success and international acclaim in

engineering.

3.7 Conclusion

In contrast to the philosophical exchange between Poncelet and Gergonne over methods in
geometry, the two geometers could not agree on the origins, scope, or applications of the
principle of duality. Based on their articles from 1817, both geometers theoretically agreed
that the choice of problem should determine the choice of method. While we observed
in Chapter IT (and will see further in Chapter IV), the dependence of a method on the
problem at hand was often reversed in practice, both geometers appeared satisfied with the
proposed resolution. The different arguments, participants, and conclusions to these three

sets of exchanges indicate that these constituted multiple, but interdependent controversies.

73“[...] in 1828, he intended to prove that he also (Plucker) had arrived, by a purely analytic view, at the
principle of reciprocity, the object of the dispute, he claimed to have presented a much more general point
of view [...]. But I greatly fear that there was some error or illusion in that; because, despite the honour
that he does me to cite my works as preceding those of MM. Steiner, Gergonne, and Bobilier, printed in
the Annales from 1827 to 1829, I only perceive, even in the Mémoire of M. Plucker on a new system of
coordinates and a new principle of Geometry [...], more or less fruitful algebraic efforts that recall those of
scholars, to establish a late and incomplete preeminence of so-called purely analytic methods over mine.”
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Arguments from all sides of the duality controversy drew from the earlier publication history.
In light of the use of algebraic analysis in geometry and the principle of continuity, we can
better comprehend Poncelet’s position with respect to introducing new mathematics in
a restrained synthetic geometry setting, Gergonne’s drive toward mathematical progress
with or without complete proof, and Pliicker’s decision to explore the principle of duality
through coordinate equations. Moreover, by direct comparison, we find that repetition and
presumed lack of recognition proved a far greater impetus toward professional and public
opposition than methodological differences. The oppositional nature of early nineteenth
century geometry posited in Chapter I, resulted in part from these concerns of priority and
credit.

From its beginning, Poncelet and Gergonne disagreed about the nature of duality and
the role of the surrounding controversy. Poncelet classified the duality controversy as a
priority dispute and pitted his chronology against Gergonne’s (and Pliicker’s) list of pub-
lications. Gergonne labelled the exchange as a mathematical polemic and emphasized the
independence of duality from Poncelet’s polar reciprocity. Each employed publicity to argue
for their respective interpretations and the necessary corollaries.

While Poncelet reached out to five different publications (the Académie, his Traité, the
Annales, the Bulletin, and the Journal) and hence multiple, though overlapping, publics,
his publicity strategy remained consistent: duality was no more than the polar reciprocity
Poncelet had developed and first published in his Traité. He encouraged developing prac-
tical applications of the theory of polar reciprocity with due credit, but strongly cautioned
against the unproven generality of Gergonne’s duality. For Poncelet, the principle of polar
reciprocity was established and foundational discussions were closed (Poncelet (1829)).

Gergonne had only one direct publication on the matter, but enjoyed full editorial au-
tonomy.”™ He presented duality as an exciting, new, open geometrical endeavour. Gergonne
desired maximal generality, and for this he urged the participation of his readers. To visually
communicate a new style of mathematics, he developed dual columns and other formatting
devices. He suggested how Poncelet could change the vocabulary and presentation of his po-
lar reciprocity to gain more popular support. In the controversy dispute, Gergonne reserved
his harshest criticisms to expose and denounce Poncelet’s exclusivity.

The dichotomy between these closed and open representations of duality, is further
reflected in Gergonne’s decision to bring Pliicker into the controversy, while Poncelet si-

multaneously attempted to dismiss him.” In this aspect, Gergonne’s publicity strategy

"With reference to Gergonne’s contributions of anonymous articles to his own journal, Stephen Stigler
suggests that Gergonne “contrived controversy” in his journal to appeal to his readers (Stigler (1976), 73).

"In a more particular scope, Poncelet’s publicity strategies for polar reciprocity ally strikingly with
Habermas’ assessment of publicity work “aimed at strengthening the prestige of one’s own position without
making the matter in which a compromise is to be achieved itself a topic of public discussion” (Habermas
(1991), 200).
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ultimately proved more effective. While Poncelet may have obtained a more notable po-
sition in the academic hierarchy as an esteemed engineer and regular contributor to the
Académie, he had no authority over what Gergonne could print in his Annales.

At the individual level the controversy remained at a standstill from the mid-1820s
until Poncelet’s death forty years later. Poncelet and Gergonne often referred to specific
(albeit inconsistent and receding) dates marking the origins of their unpublished ideas and
continuing through past publications showing evidence of duality. Poncelet and Gergonne
continued to trace their respective ideas back, ceding less and less potential influence from
the other. Their last bitter attempts to have the final word suggest that the priority
dispute would never be resolved satisfactorily. Gergonne continued to believe that duality
had not caught on and Poncelet continued to believe that his theory had been obscured.
Poncelet and Gergonne remained irresolute. Further, their ultimately personal aggression
jeopardized the controversy’s potential for resolution. For members of the mathematical
community to endorse either position could have dangerous ramifications, as the case of
Pliicker showed. Gergonne’s reaction to Poncelet’s accusations against Pliicker suggest the
severity of plagiarism charges, especially for one without an established career.

Yet, the duality controversy achieved resolution. Partially obscured by the personal
vitriol, Poncelet and Gergonne’s mathematical criticisms signalled open questions. Each
geometer wished to show the superiority of his own form of duality, and their critical ex-
change promoted duality as a subject of research and reform. In attempting to control
their publics, neither Poncelet nor Gergonne was omnipotent. Their attention to public-
ity (even at the expense of research) further proves the inherent collective dimension of
controversies. Poncelet and Gergonne both strove to have the last published word, each
addressing duality within their final publications. With this attention to publicity the du-
ality controversy became less a dispute between Poncelet and Gergonne, as an attempt by
each to craft a favourable and properly informed public. Moreover dialog on the duality
controversy brought to light how Gergonne and Poncelet believed new mathematics should
be introduced. Poncelet advocated the use of synthetic geometry and Gergonne similarly
chose Euclidean geometry in order to show how a new general principle could be used
without risking unproven or controversial material. In line with this, they used familiar
problem sets (such as described in Chapter II), to show the efficacy of the new principle.
Both geometers also discussed the importance of language in new geometry. For Gergonne,
duality would best succeed with a new set of vocabulary, but he admitted that the latter
feature would not likely be adopted. Poncelet criticized Gergonne’s definitions of degree
and class, for redefining old words with new meanings solely in order to show the veracity
of a result. These aspects point to the presumed difficulty of introducing new geometry and
the necessary efforts involved in securing a public.

In this dimension, their efforts could even be complementary. Although neither Poncelet
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nor Gergonne expressed satisfaction, the historical literature suggests that both respectively
succeeded: Poncelet’s Traité and the general principle of duality gained appreciative and
dedicated audiences. To take one early historical example, Chasles praised the advances
of Gergonne and Poncelet in his Rapport sur les progrés de géométrie written shortly after
Poncelet’s death in 1870.

C’est Gergonne qui a émis I'idée du principe du dualité en Géométrie, idée in-
spirée, on peut le croire, par les beaux résultats de la théorie des polaires récipro-
ques de Poncelet, seule méthode que 'on connfit alors pour les transformations
de cette nature. (Chasles (1870), 59-60)7°

This distribution of credit between both French geometers can be found in historical sum-
maries up to the present day.””

While Gergonne and Poncelet were still living, geometers tried to stay clear of picking
sides in the priority dispute, yet were eager to employ the techniques of word and symbol
substitution to gain new theorems. The establishment of Crelle’s Journal, and the conse-
quent widening of the controversy’s public to an international arena, further encouraged
the resolution of the controversy as much as the reviews in the Bulletin had aggravated
its beginning. Beginning in 1826, geometers including Charles Sturm, Etienne Bobillier,
Michel Chasles, Jakob Steiner, and C. G. J. Jacobi employed duality or reciprocity in their
research publications (for instance, see Sturm (1826a), Bobillier (1827), Chasles (1828a),
Steiner (1828b), Jacobi (1828)). Attempting to remain uncontroversial, they often cited
both Poncelet and Gergonne. Moreover, the duality controversy revealed that Annales, the
Bulletin, and the Journal were all available venues (at least until 1832) for publishing this
line of research. Almost as soon as it began, the duality controversy transcended its initial
antagonists.

The controversy encompassed academic practices condemned by present-day standards
as deceitful, vindictive, and unprofessional. However, like Gergonne’s dual columns or
Poncelet’s presentations to the Académie, the duality controversy served as a tool in the
distribution of knowledge. Though none of these factors should be considered indispensable,
each introduced a new, potentially overlapping, public to duality. The controversy revealed
a unique time and space where the geometrical community was secure enough to allow such
unrestrained public discourse and keen enough to find an invitation within a polemic.

In the duality controversy, we saw how French geometry began to spread to German

audiences through the publications and involvements of Julius Pliicker. In this particular

7641t was Gergonne who expressed the principle of duality in Geometry, an idea inspired, we believe, by
the beautiful results from the theory of polar reciprocity of Poncelet, the only method that was then known
for transformations of this nature.”

""Chasles’ accolades in this text are especially noteworthy in contrast to his less generous portrayal of both
Gergonne and Poncelet in his Apercu historique sur l’origine et le développement des méthodes en géométrie
of 1837, which Poncelet sharply criticized in 1865 (Chasles (1837), 377; Poncelet (1866), 417).

161



circumstance, we found that Pliicker’s national and linguistic differences contributed to his
unusual reception among French geometers. Similarly, we saw in Chapter I how histories
have presented a common narrative of migration from France to Germany, specifically from
Poncelet to Pliicker and Steiner. The duality controversy suggests one path in this pro-
gression, although Pliicker’s commitment to methods of analytic geometry appears to have
preceded and even motivated his involvement with French mathematicians. In Chapter
1V, we will follow the chronological development proposed in the historiography, by fur-
ther examining how Poncelet’s geometry was further taken up by the so-called “German
geometers”: Pliicker and Steiner. Drawing on questions raised in Chapters I and II, we
will consider how their allegedly analytic and synthetic geometries shaped the terms of the
methodological debate, and in particular their attention to the visual and application of the

figure.
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Chapter 4

Ce principe parait ne pas étre
inconnu aux géometres allemands:

Jakob Steiner, Julius Pliicker and

French geometry

4.1 Introduction

As we saw in the previous two chapters, Poncelet and Gergonne debated the appropriate
choice of method in geometry over a series of articles published in the Annales in 1817
(Gergonne (1817b), Poncelet (1817c), Gergonne (1817¢)). Both geometers resolved that
the question should be decided by the problem or theorem at hand, and not a priori.
The simplest and most elegant geometric solution depended on the nature of the given
objects and desired construction or property. While seeming to resolve the debate, the
agreement simply shifted the issues to a more particular domain: for how was one to decide
which method was best in any given context? What were the criteria for elegance and
simplicity? The compromise strategy only succeeded when a single solution or proof could
be found. In instances where Poncelet and Gergonne solved the same problem or proved the
same theorem using different methods, neither conceded any advantages to the other (for
example, see Brianchon and Poncelet (1820), Gergonne (1821), Poncelet (1821a)). Such
repetition, with or without precise acknowledgement, was common among early nineteenth
century geometers as evidenced, for instance, by the numerous printed solutions to challenge

problems posed in journals.!

"Historical evidence of this repetition is well-documented in Simon (1906) and Coolidge (1940) Chapter
V.2. Norbert Verdier has compared European mathematical journals during the first half of the nineteenth
century, including Gergonne’s Annales and Crelle’s Journal (Verdier (2009b)). Deborah Kent has investi-
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Ten years later, similar themes emerged in reviews of two young geometers: Jakob
Steiner and Julius Pliicker, who independently arrived at the same results using distinctly
different methods and often within a year of each other. Steiner was a young Swiss geome-
ter, who had studied mathematics under the famous pedagog Johann Heinrich Pestalozzi.?
In 1821 he moved to Berlin, where he worked as a private tutor for Wilhelm von Humboldt
and struggled to maintain a position as a mathematics instructor, first at the Friedrich-
Werderschen Gymnasium (1821-1822) and then at the Gewerbeschule where he was even-
tually promoted to a senior position (1825-1835).3 Meanwhile, Pliicker continued to worked
at the University of Bonn beginning in 1825, and was appointed as a professor there in 1828
where he would remain until 1833.4

A review in the 1828 Bulletin de Férussac by Auguste Cournot (1801-1877) of Steiner’s
1827 article “Verwandlung und Theilung sphérischer Figuren durch Construction”® declared
a reemergence of pure geometry, as represented best by Gergonne, Steiner and Poncelet.
According to Cournot, these geometers had succeeded through “pure contemplation” of
geometric properties in creating a form of “rational analysis” [l’analyse rationnelle] more

“1"6—

general than algebraic analysis when applied to geometry and extending beyond the
strained” methods of Greek geometry (Cournot (1827), 299). Cournot particularly admired
Steiner for solving long-standing geometric problems and stating (often without proof) a
wide variety of geometric theorems. Steiner’s frequent choice of coordinate-free, figure
based geometric constructions, situated him as an advocate of what was considered pure
geometry.6

On the other hand, Bulletin reviewers occasionally found Steiner’s enthusiasm for an-
nouncing new problems and theorems excessive. Many of Steiner’s articles, with titles like
“Einige geometrische Satze,” “Einige geometrische Betrachtungen,” or “Démonstrations de

quelques théoremes,” were essentially lists of results only sometimes accompanied by proofs

gated the role of posed problems in attempting to create an audience for early nineteenth century American
journals (Kent (2008)). Finally, the continued interest in these same areas of geometry research can be seen
in contributions by British mathematicians to international scientific journals, primarily in geometry and
algebra, later in the nineteenth century documented by Sloan Despeaux in (Despeaux (2008)).

2Maarten Bullynck examines Pestalozzi’s role in reforming mathematics education during the turn of the
nineteenth century in Bullynck (2008).

3The many details of Steiner’s early life and career have been a popular focus in late nineteenth century
biographies including Geiser (1874), Biitzberger (1896), Graf (1897), and Lange (1899).

4In Chapter I, we noted the role of methodological opposition in several of Pliicker’s biographies, which
also contain expositions of Pliicker’s life (Bertrand (1867) Clebsch (1872), Dronke (1871), Ernst (1933)).

STranslated in the French review as “Transformation et division des figures sphériques, au moyen de
constructions graphiques.” In the early 1820’s, Cournot studied mathematics under Lacroix alongside Lejeune
Dirichlet (1805-1859), soon to become a professor at the University of Berlin and whose work would appear in
the third volume of Crelle’s Journal. Although his later work emphasized probability theory and philosophy
of science, Cournot achieved his doctorate with a more geometrically oriented thesis on “Le mouvement d’un
corps rigide soutenu par un plan fixe” in 1829. A brief biography appears in Granger (2008).

SCournot proposed that certain minds pursued geometry, the theory of extension, for purely ideal enjoy-
ment [jouissances purement idéales|, rather than applications to common needs [boisons vulgaires| or natural
philosophy [philosophie naturelle].
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(Steiner (1826b), Steiner (1826a), Steiner (1828b)). Ome such article, “Développement

)

d’une série de théoremes relatifs aux sections coniques,” was described in the Bulletin by
an anonymous reviewer (who may have been Cournot again) as containing too many the-
orems even to list within the bounds of the review. The anonymous reviewer continued
that while Steiner’s fruitfulness might be impressive, his complicated presentation required

extraordinary patience and fortitude even for a well-disciplined reader.

Ce mémoire décele, chez M. Steiner, une grand force de téte, et beaucoup
d’habitude des ressources de la géométrie; mais la maniére de procéder de
l'auteur, et les figures et constructions, souvent assez compliquées, auxquelles il
a recours, en rendent la marche lente et la lecture pénible. (Anonymous (1828a),
245)7

In conclusion, the reviewer recommended the use of analytic geometry, or some other of
“the broad methods [les larges méthodes] from the school of Monge,” to render Steiner’s
results with less difficulty and greater brevity. The reviewer suggested that the Annales
offered several beautiful examples of the applications of any of these latter methods.

Perhaps by no coincidence, the next issue of the Annales contained an article of ana-
lytic geometry by Julius Pliicker, in which one could find alternative versions of several of
Steiner’s recent theorems (Plicker (1828b)). In particular, though we will find that they
gave quite different statements of the theorem, both Steiner and Pliicker credited one result
to Gabriel Lamé (1795-1870), and this common source enabled the translatability from
one version to the other.® Pliicker’s article ran one-third the length of Steiner’s (with far
fewer theorems), and its review in the Bulletin was correspondingly more succinct (the two
reviews fell within two pages of each other). With respect to method, Pliicker was credited
with demonstrating, without any sort of calculation, a multitude of properties of second
order lines (Anonymous (1828a)).

This was not the first common content between Steiner and Pliicker. The year before
Pliicker had proved results in the Annales announced by Steiner in Crelle’s Journal. The

Bulletin review provided a more in-depth assessment of Pliicker’s analytic geometry style,

M. Plucker est fort sobre de calculs, et tous les siens peuvent, en quelque sorte,
étre suivis de l'oeil ; mais il les choisit avec beaucoup d’art et de gott [;] aussi
arrive-t-il tres-brievement, non seulement a la construction du cercle qui en
touche 3 autres donnés, mais encore a la construction du cercle qui coupe ceux-

la sous des angles donnés, ainsi qu’a la construction du cercle qui en coupe 4

"“This memoir indicates, in M. Steiner, a great force of mind, and much habituation to the resources
of geometry; but the manner of the author’s proceeding, and the often rather complicated figures and
constructions, to which he has recourse, make the going slow and the reading painful.”

8For purposes of abbreviation and clarity, we will refer to the theorem proved by Steiner and Pliicker and
attributed to Lamé as Lamé’s Theorem.
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autres sous des angles égaux, ou plus généralement, sous des angles dont les

rapports des cosinus soient donnés. (Anonymous (1827a), 173)?

The reviewer noted that Pliicker’s brevity of presentation was all the more impressive from
a German. Later in the Bulletin, Cournot assessed Pliicker’s monograph Analytisch-
geometrische Entwicklungen (1828) as a simple work, in contrast to what he claimed to
be “le reproche souvent mérité, que I'on fait aux savants de sons pays, d’affectionner la
complication.” (Cournot (1828), 179).10

However, Cournot also noted the drawbacks to Pliicker’s style of analytic geometry.
While Pliicker’s minimalist analysis was very useful for demonstrating already known the-
orems, it was not the best means for mathematical discovery. Indeed, in this text and
other articles, Pliicker had emphasized his originality of method, rather than of results. His
geometric publications contained proofs of theorems originally attributed to other mathe-
maticians, very often Poncelet or Steiner. Because Pliicker avoided all calculations that did
not concern the final result, and so revealed this result, Cournot suggested that Pliicker’s
analysis strongly resembled “la synthese” (ibid, 178). Cournot employed the term synthesis
to emphasize how Pliicker’s presentation worked toward a known result, and thus functioned
well for proving known theorems.!!

Overall, the Bulletin reviews suggested a dichotomy of advantages between the methods
of Steiner and Pliicker. Steiner’s method yielded almost too many new theorems, and was
subject to complications too unwieldy for readers to follow. Pliicker’s method was concise
and simple, but barren of novel results. Steiner and Pliicker self-advertised with these
descriptions. Steiner described his early articles as full of new and fruitful problems and
theorems. Pliicker drew attention to his novelty of method. Even their choice of titles
reflected these characteristics. While the Bulletin’s assessment of Steiner and Pliicker was
not universally shared, we will see that the overall tone was corroborated in the French
context by similar contemporary comments from Gergonne and Poncelet as well as among
German scientists who wrote letters of recommendation for Steiner and Pliicker.

As we saw in Chapter I, by the end of the nineteenth century, historical accounts would

9«M. Plucker is very restrained in calculations, and all of his can, somehow, be followed by the eye; but
he chooses them with great art and taste as he very quickly reaches, not only the construction of the circle
tangent to three other given circles, but even the construction of the circle that intersects those three in a
given angle, as well as the construction of the circle which intersects four others in equal angles, or more
generally, in angles whose cosine ratios are given.”

10“[...] the often merited reproach to scholars of Pliicker’s country, to love complication.”

111 the context of this review, Cournot’s juxtaposition of analysis and synthesis was somewhat ambiguous
due to the numerous possible meanings of the terms. Cournot first described Pliicker’s “discussion analytique
des équations,” thus suggesting an approach where algebra was applied to geometry through coordinate
equations (similarly to his use of “analytique” in Cournot (1827)). However, by “’analyse” as a noun
Cournot seemed to intend a mode of research or presentation. Finally, “la synthese” stood for an exposition
in which the desired result was known in advance. For Cournot, then, the adjective “analytique” and the
noun “I’analyse” carried very different connotations.
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point to Steiner and Pliicker as both representative and symptomatic of the opposition
between geometric methods. However, we have also seen how the qualities ascribed to the
synthetic and analytic methods did not always coincide with the individual descriptions of
the practising geometers. Yet, as suggested by the above Bulletin reviews and will be further
demonstrated, the early research of Steiner and Pliicker resisted simple categorization. How
then did their respective styles become emblematic of the synthetic and analytic methods?
Our findings from Chapters IT and III suggest that difference in form was emphasized to
distinguish the similar findings of Gergonne and Pliicker to those of Poncelet. The historical
literature has further portrayed the frequent repetition of results in early nineteenth century
geometry, as the above examples show with respect to the early career of Steiner and Pliicker.
Thus, in examining similar results from Steiner and Pliicker, we will be able to consider
their strategies for differentiation, in particular, with respect to methodological positions.
Further, through reviews of their texts we compare how the “German geometers” were
viewed in the eyes of their contemporaries.

We will find that Pliicker and Steiner were quick to adopt the objects and techniques

introduced in Poncelet’s “modern pure geometry,”

and other contemporary developments
in French mathematics. The creation of the Ecole polytechnique and its journals in the
1790’s, followed by the advent of Gergonne’s Annales in 1810, provided multiple venues
for geometers to share new research. The interconnected contents and citations of these
geometers point to a substantial audience interested in new solutions, new proofs, new
theories, and new pedagogical strategies. French and German speaking geometers drew
upon a common research tradition emerging from “the school of Monge,” published in
the same mathematical journals, and referenced the same set of contemporary books and
authors. These international factors complicate the common historical narrative of the
progression of geometry and methodological opposition from Poncelet in France to Pliicker
and Steiner that we discovered in Chapter I.

Instead, by considering the early publications of Pliicker and Steiner we aim to discern
what elements of their methodological positions preceded their French interactions. Then,
following Poncelet’s commitment to the figure, as described in Chapter 11, we will examine
how the latter two geometers employed geometric figures and whether the figure could serve
to categorize pure and analytic geometry in their published research. Likewise, Gergonne
dramatically moulded the initial contributions of both Pliicker and Steiner, and his vo-
cabulary, use of duality, and commitment to planar geometry problems shaped their later
work.

We will focus on two case studies: the solution to a common problem and the proof of
a common theorem found in the writings of Steiner and Pliicker (and incidentally, also in
Poncelet and Gergonne!). Both the problem and theorem concerned relationships between

conic sections in the plane, an active area of research for both pure and analytic geometers.
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The proximity (in time and space) of the two versions, the common sources, and the com-
prehensibility of the results recommend these cases as a fruitful site on which to examine
and contrast the geometric approaches of Steiner and Pliicker between 1826 and 1828.

Our case studies are drawn from constructive planar geometry, whose reemergence as
an open area of mathematics, practitioners attributed to the pioneering texts of Monge,
and, to a lesser extent, Carnot.'> Monge’s contributions to analytic geometry and his
codification of descriptive geometry were celebrated in references from Gergonne, Poncelet,
and Pliicker, who defined his own “pure analytic geometry” as that which was practiced
by Monge (Pliicker (1828a)). Likewise, we have seen in prior chapters how Carnot’s results
on transversal lines, harmonic points, and conic sections fuelled the findings of Gergonne,
and Poncelet. Steiner also incorporated Carnot’s geometric theorems and responded to
Monge’s results from descriptive geometry. On a methodological level, Carnot had originally
proposed that pure geometry could achieve the same generality as analytic geometry, and his
work toward demonstrating this was continued by Poncelet and then Steiner (Nabonnand
(2011b)).

Another claimed source for early nineteenth century geometry was ancient Greece, the
alleged origin of Apollonius problem. The so-called Apollonius problem was to describe a
circle tangent to three given coplanar circles. Based on the number of published solutions,
this may have been the most popular problem of the nineteenth century. For example, M.
Simon provided around 100 references to solutions for the Apollonius problem, also known
as one of the Taktionsprobleme in his 1906 history of geometry Uber die Entwicklung der
Elementar-Geometrie im XIX. Jahrhundert. As we will see, geometers could invoke the
Apollonius problem by name and expect to be understood. Steiner and Pliicker addressed
this elementary geometry problem early in their respective careers. Because of the prob-
lem’s accessibility and unique reputation, Steiner and Pliicker’s solutions were reviewed in
critiques situating them with respect to each other and their other contemporaries. We will
see how this problem illustrated still developing styles of geometry. Steiner’s text was figure
based, with a plethora of newly minted definitions, but truly elementary in the modern
sense of having minimal prerequisites. Pliicker’s text began with coordinate equations and
assumed a common vocabulary and technology beyond elementary geometry. Both articles
received positive receptions among French geometers, although we will see how Pliicker’s
text remained eclipsed by Steiner’s slightly earlier publication.

In 1828 Steiner and Pliicker published proofs of a theorem attributed to Gabriel Lamé,
for which reviewers negatively contrasted Steiner’s prolix constructions to Pliicker’s simple
equations (Anonymous (1828a), 282-284). Here Pliicker exhibited what he would come to

describe as an “aesthetic” interest in analytic geometry (Plicker (1839), viii). His empha-

'20n the influence of Monge in nineteenth century geometry, see Sakarovitch (2005), Taton (1951), Lau-
rentin (2007), and Dupin (1813).
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sis on the visual properties of equations would become even more prevalent in his slightly
later work on homogeneous coordinates and algebraic curves.!®> Meanwhile, Steiner had
seized upon “modern” geometric practices of projection and perspective that would feature
prominently in his 1831 monograph, Systematische Entwicklung. By contrast, this case
study illuminates the particular methods of geometry that would come to be associated
with Steiner and Pliicker. We benefit particularly from considering Lamé’s original proof
as a marked point of contrast to both later versions. Like the Apollonius problem, Lamé’s
theorem has the benefit of being easily communicable without too much geometric prereq-
uisite knowledge. Nevertheless, the proofs contained “modern” techniques that would have
required familiarity with recent publications and trends.

In this investigation, we will see how Steiner and Pliicker chose different representations,
applications and contexts, while remaining within the bounds of geometry in their choice
of theorems and problems, their language of objects and relations, and their citations (and
lack of citations) to the literature. The conservatism of this geometric framework, and in
particular the recycling of well known theorems and problems, enabled a common standard
of comparison and retained enough features of older work to remain familiar. In Steiner
and Plicker we find this juxtaposition of novelty and tradition, of idiosyncratic methods
and common geometric results, and of a desire to push the bounds of imagination and
stay true to what they saw as the natural, simple, immediate, and intuitive qualities of
geometry. Further, we will see how these multiple geometries gradually incorporated recent
innovations, moving toward what was known as “modern” geometry.

For ease of comprehension, we will include figures illustrating several of the descriptions
from texts in Gergonne’s Annales. The texts of Steiner and Poncelet as published outside of
the Annales suggest that the use or non-use of figures in these particular articles may have
been motivated more by choice of venue than by the content itself. Where original figures

exist, they will be included (either in their original or in more easily readable reproductions)

BIntroducing his Theorie der algebraischen Curven gegrindet auf eine neue Behandlungsweise der ana-
lytischen Geometrie, Pliicker motivated his approach and argued for an aesthetic criteria in assessing results.

Das Kriterium fiir den Wert oder Unwert eines neuen Resultates, wie einer neuen Methode,
liegt keineswegs in ihrer moéglichen Nutzanwendung, sondern unmittelbar in ihnen selbst: sie
miissen, ich glaube mich nicht bezeichnender ausdriicken zu kénnen, ein rein asthetisches In-
teresse fiir sich in Anspruch nehmen. Keine der verschiedenen mathematischen Disziplinen ist
einer solchen Eleganz mehr fihig, als die analytische Geometrie, der Einfluss, den, in dieser
Beziehung, namentlich Monge’s Arbeiten auf mathematische Darstellung iiberhaupt gehabt
haben, ist allgemein anerkannt. (Plicker (1839), viii)

“The criterion for the value or lack of value of new results, such as a new method, lies not in
their possible practical applications, but directly in themselves: they must, I do not think it can
be expressed more characteristically, possess a purely aesthetic interest. None of the various
mathematical disciplines is capable of such elegance as analytic geometry, whose influence
that, in this respect, Monge’s works have ever had on mathematical representation, is widely
recognized.”
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to coincide with their use in the text. Finally, we will retain the use of emphasis or quotes

following the original texts.

4.2 Tangent circles in the plane (1826—1827)

Among Steiner’s six articles that appeared in the 1826 inaugural volume of Crelle’s Jour-
nal, his paper “Einige geometrische Betrachtungen” and its sequel, “Fortsetzung der ge-
ometrischen Betrachtungen,” were the two that generated attention among the French
mathematical community (Steiner (1826a)). As we will see, this was not so much due
to the novelty of Steiner’s results, as much as his development of geometric concepts that
seemed valuable in further research and pedagogy.

The first half of Steiner’s paper was extracted, translated, edited, and republished the
following year in Gergonne’s Annales under the title “Théorie générale des contacts et des
intersections des cercles” (Steiner and Gergonne (1827)). This was an unusual practice for
Gergonne and the translation would have involved a substantial effort, thus suggesting the
perceived value in Steiner’s original contribution. Gergonne lauded Steiner for his solution
to the Malfatti problem, the problem of inscribing three tangent circles to a triangle (Figure

4.1), which was generally considered to have not yet received a satisfactory solution.

Figure 4.1: Tllustration of the Malfatti problem as solved by Steiner

However, Steiner’s solution to this problem was not included in Gergonne’s transla-
tion, another instance of the latter’s editorial intervention. Instead, Gergonne developed
Steiner’s exposition toward a solution of the Apollonius problem. Steiner had advertised the
Apollonius problem in his introduction, and researched several aspects of the relationship
between three coplanar circles, but not far enough to provide his own solution. By 1826 the
Apollonius problem had a long pedigree of previous solutions, including three publications
by Gergonne, and Poncelet’s solution to the Apollonius problem, which had been published
in the Annales upon Gergonne’s request in 1821 (Poncelet (1821b)). Even so, Gergonne’s
version of Steiner was received with praise for the latter’s definitions and procedure in a

Bulletin review shortly after its publication.
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Later that year, Pliicker published an article on tangents and intersections among planar
circles and analogous considerations for spheres in space (Pliicker (1827)). He acknowledged
Steiner’s text, but argued for the relevance of his own work as a preferable alternative.
Plucker also presented three solutions to the Apollonius problem. While his analytic proofs
were new, he attributed two of his three constructive solutions to Gergonne and Poncelet
respectively.

The repeated appearance of the Apollonius problem displays the conservatism of geo-
metric content amidst evolving methodological approaches, also documented in Chapters
I and II. The problem functioned as a multifaceted prop for achieving diverse dramatic
effects. Steiner applied the problem to emphasize the fruitfulness of his definitions and
theories and their potential for generalization. Gergonne first applied the problem to show
the potential for coordinate equations to solve planar geometric problems, and then in his
translation of Steiner the same solution was repurposed to display Gergonne’s agility in pure
geometry. Poncelet applied the problem to advertise his new principle of continuity and
points at infinity. Pliicker applied the problem to repeatedly demonstrate ease, elegance
and brevity of his analytic approach. The Apollonius problem provided a familiar signpost
for prospective readers and a theatre of competition for active geometers. In turn, we can
use this problem as a point of comparison for methodological differences.

While our focus will remain on Steiner and Pliicker, the historical significance of both
of their works will be enhanced by an understanding of their contemporary environment
as illuminated by the texts of Gergonne and Poncelet. We will consider these latter texts
slightly out of chronological sequence, because Steiner declared his first publication had
been derived with complete independence from contemporary results. In Section 4.2.1, we
will see how Steiner developed his own set of definitions to describe relationships between
coplanar points, lines, and circles. When introducing these purportedly new objects, Steiner
relied upon figurative illustrations. Then to better observe the background to Gergonne’s
adaptation of Steiner, we first review his original proof, and the work of Poncelet. Ger-
gonne’s adaptation appeared in 1827 followed by Pliicker’s proof of the Apollonius problem,
in which the latter referenced all three prior geometers.

The progression of results surrounding the Apollonius problem appears relatively con-
sistent in broad outline. In each of the texts considered here, the same geometric objects
were employed, though under different forms of representation—from illustrated figures, to
virtual figures, to coordinate equations, to mere names devoid of additional description. For
all these geometers novelty of results seemed a secondary concern, new theorems appear
alongside ancient ones. Nevertheless, each geometer argued for the relevance of his own ap-
proach and we will use this comparison to consider when a result was described as elegant,
simple, fruitful, general, or worthy of further commentary and favourable review.

Before we turn to the texts, we will briefly clarify two of the geometric terms employed
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in many discussions of the Apollonius problem, including those of Steiner, Gergonne, and
Pliicker. Since Viete’s Apollonius Gallus, geometers were aware that in general the problem
of finding a circle tangent to three given coplanar circles had eight solutions. The solutions
could be divided into pairs dependent on the type of tangency, exterior or interior.

We will describe a situation in which two circles have no common interior point by
calling the circles “exterior circles.” Three or more circles will be also called exterior circles
if any pair of them are exterior. We will say that two circles are “interior circles” if one lies
completely inside the other. Exterior or interior circles may be tangent or not (Figure 4.2).
In the texts below, Steiner differentiated these circles as “ausser oder ineinander liegende
Kreise,” (Steiner (1826a), 168) while Gergonne and Pliicker focused on tangency, writ-
ing “cercles se touchent intérieurement ou extérieurement” (Steiner and Gergonne (1827),
291). When employing exterior and interior circles, none of the above geometers specified
whether the points of tangency might be real or imaginary. However, the application of the

Apollonius problem implied that the points would be constructible.

L (©

Figure 4.2: Exterior and interior tangent circles

4.2.1 Potenzkreise: Steiner’s theory toward a solution to the Apollonius

problem

Through an in-depth study of one of Steiner’s earliest publications, we will focus on features
of his approach to geometry as they relate to both his later method and our understand-
ing of pure and synthetic geometry as informed by the arguments of Poncelet and later
commentaries from previous chapters. Immediately, we will see how Steiner often divided
his investigations into cases based on specific figures, thus succumbing to the particular-
ity that Poncelet had criticized in “ancient pure geometry” (Poncelet (1817¢)). However,
Steiner supplemented these particular configurations by claiming his results based on circles
extended to general conic sections, as well as by arguing in reverse, by assuming that prop-
erties were both necessary and sufficient for a desired condition. Steiner further modified
Poncelet’s delimitation between pure and analytic geometry, by including calculation in his
article that had been labelled as “pure geometry” by Gergonne. Finally, we will find that
while Steiner worked toward solving well-known problems, he did so by introducing new

definitions. In later reviews of Steiner’s work, these new definitions would be considered as
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innovative and valuable contributions.

Steiner began his “Einige geometrische Betrachtungen” by clarifying its vague title.

Die in den nachstehenden Paragraphen angefangenen Betrachtungen enthalten
die Grundlage der geometrischen Untersuchung iiber das Schneiden der Kreise.
Es lassen sich daraus die Auflésungen fast aller Aufgaben tiber das Schneiden und
Beriihren der Kreise entwickeln, und zwar in den meisten Féllen sehr einfach,
auch wird durch sie oft zwischen mehreren Aufgaben, welche auf den ersten
Anblick keine Gemeinschaft zu haben scheinen, ein gewisser Zusammenhang
sichtbar. (Steiner (1826a), 161)*

Steiner’s research on this subject over the past three years had been motivated by three
sets of problems: finding a circle tangent to three given planar circles (the Apollonius
problem), the Malfatti problem, and the fifteenth theorem of the fourth book of Pappus’s
Collectiones mathematicae (concerning ratios between tangent circles inscribed in a semi-
circle). Although acknowledging that each of these problems possessed well documented
recent solutions, Steiner avowed that his work was entirely independent, relying only upon
theory developed by Viete and Pappus. In fact, Steiner admitted that he had but recently
become aware of contemporary French publications in geometry, in particular Poncelet’s
Traité des propriétés projectives des figures, where many of his own results had already
appeared. However, Steiner also promised new findings that would further demonstrate the

independence of his research.

Fiir die Versicherung, dass der Verfasser Dasjenige, was die Franzosen in dieser
Hinsicht getan, vorher nicht gekannt habe, hofft er, werden nicht allein diejeni-
gen seiner Bekannten, welche, bei taglichem Umgange mit ihm, die Entste-
hung und Entwicklung seiner Arbeiten beobachteten, sondern dem Sachken-
ner wird auch schon die umfassendere, allgemeinere Entwicklungsweise in den
Untersuchungen, aus welcher nicht nur alle jene Betrachtungen, sondern auch
eine grosse Menge neuer Resultate von selbst hervorgehen, ein Zeugnis ablegen.
(162)1°

Specifically, Steiner promised his work contained new generalizations to a greater number

H«The following paragraphs of introductory remarks contain the groundwork of geometric research con-
cerning the intersections of circles. These permit us to develop the solutions of almost all problems about
intersection and contact of circles, and in fact in most cases very simply. As well a certain connection often
becomes visible through them between several problems that at first sight seem to have no commonality.”

15«For insurance, that the author of this work did not know previously what the French had done in this
regard, he hopes to rely on the witness not only of those of his acquaintances who, by daily interaction with
him, observed the origin and development of his work, but also, for those who know the subject, the more
comprehensive, more general mode of development in the research, from which not only all those matters
but also a great quantity of new results issue forth of themselves.”
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of given circles, to circles intersecting at given angles rather than in tangent points, and to
analogous results for second degree curves and three dimensional surfaces.

Despite his promise to address three sets of problems, at the end of this text Steiner
only included his solution of the Malfatti problem, a solution that he left unproven. Though
Steiner claimed that his theorems could be applied to many more problems concerning
coplanar circles, the details of his solution to the Apollonius problem would only appear in
Steiner’s anticipated book on circles, spheres, and spherical circles.'® We will see how the
Apollonius problem served as an invisible motivating force for the definitions and results
throughout the body of the text, which would become visible in Gergonne’s later translation.

Steiner organized his mathematical content into four parts, each devoted to a particular
geometric relationship, and a total of nineteen numbered sections, each beginning with a
particular configuration of objects and leading to a property or theorem to be referenced
by citation to that section, for example “nach (1.):” As Gergonne would observe, Steiner’s
exposition often delved into the very elementary, too elementary for the average Annales
reader. In this feature, the entire text served to reinforce Steiner’s introductory remarks
about the independence of his results. Until Steiner arrived at the final part, in which he
posed and solved a series of problems, very few results were assumed as known and there
was only one external citation.

The text developed as an exploration, from two points to a point and a circle, to two
circles, to three circles, to more complex planar relationships. Steiner modelled his presen-
tation as a discovery beginning from the ground up and resulting in surprising, even when
already known, results. Figures served as clarification, and were never invoked as a tool
of proof. In our summary, like Gergonne, we aim toward the Apollonius problem and will
skip and summarize certain results to this end. Unlike Gergonne, we will still attempt to
preserve Steiner’s idiosyncrasies and personal style.

Although Steiner presented his research without a clear map of his intended progression,
a brief summary here will motivate our understanding of his development. All new defini-
tions will be described and illustrated in detail below, where our summaries of sections will
serve as guideposts.

The first part concerned defining the power relationship between coplanar circles and
contained five sections each examining a different set of geometric objects: on equations

relating to perpendicular lines (1), on the power of a point with respect to a circle (2), on

16This book was published in 1931 as Allgemeine Theorie tber das Beriihren und Schneiden der Kreise
und der Kugeln worunter eine grosse Anzahl neuer Untersuchungen und Sdtze vorkommen en einem sys-
tematischen Entwicklungsgange dargestellt edited by Rudolf Fueter and Ferdinand Gonseth (Steiner (1931)).
In the late nineteenth century, the mathematician Fritz Biitzberger had found the unpublished manuscript
dating between 1823 and 1826 in a box at the Library of the Naturalist Society of Bern. The manuscript
was then rediscovered by the editors, Fueter and Gonseth, amongst Biitzberger’s papers. The final text ran
360 pages and expanded upon the content from the published article discussed here. We will observe the
relevant distinctions in footnotes.
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the line of equal power between two circles (3), on the point of equal power between three
circles (4), and on power relationships between multiple and orthogonal circles (5). The
concept of the power of coplanar circles and points derived from a well-known Euclidean
relationship: when two chords of a circle intersect, then the rectangles formed by their
respective segments are equal (Proposition II1.35) and when a tangent and a secant line
are drawn from a point to a circle, then the square on the tangent is equal to the rectangle
formed by the intersected segments of the secant (Proposition I11.36).

In his second part, containing sections 68, Steiner continued his examination of circles,
now with respect to similitude points and similitude lines. These points and lines were
determined with respect to a constant ratio determined by the positions of the circles’ cen-
tres. In the three sections Steiner progressed from examining ratios between three coplanar
points (6), to defining the similitude point and line between two circles (7), and then the
similitude line between three circles (8).

Steiner combined the concepts of equal power and similitude to define the common power
of coplanar circles in the third part of his paper. He began by examining the relationship
between lines of equal power and similitude points (9), which he applied to define the concept
of common power between two circles (10), power circles (11), and the power position of
a point or circle with respect to a similitude point (12). Finally, Steiner applied these
definitions to a series of theorems concerning tangency and power circles (13). The fourth
part of his paper concerned solutions and generalizations of the Malfatti problem.

With a sense of Steiner in outline, we now turn to the details of his exposition.'” Steiner’s
figures are reproduced in full in Figure 4.27 in Section 4.2.7, the remaining figures are based
on Steiner’s illustrations, but have been redone for ease of readability. We reference his

original numeration (with our present numeration in parentheses).

Equations relating to perpendicular lines (1)

Steiner began with two points M, m situated as pictured in Figure 8 (our Figure 4.3). If the
lines M'm and PG remained perpendicular, Steiner concluded that all points P constructed
on a perpendicular to Mm with foot G conserved the fixed equality M P? —mP? = MG? —
mG?. Conversely, he considered the locus of points P whose distance from each given point
M and m when squared was equal to a given quantity. The same fixed equation determined

that this locus would be a perpendicular line PG to Mm.

17 A contemporary presentation of several of Steiner’s results on circles can be found in the recent textbook
Geometry by Its History (Ostermann and Wanner (2012), 98-104).
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Figure 4.3: Steiner’s Figure 8 (reproduced following (Steiner (1826a))

Power of a circle with respect to a point, power of a point with respect to a
circle (2)

“In the school books on geometry,” Steiner vaguely remarked by way of introduction, “one

"8 Consider, as in Steiner’s Figure 9 (our Figure 4.4), a point P

finds this relationship.
exterior to a circle centred at M. Two secants to circle M passing through P would cut the
circle at points A, B and C, D respectively, such that the product PA x PB was equal to
PC x PD. This product Steiner called “the power of a circle with respect to a point” or
reciprocally “the power of a point with respect to a circle” In an accompanying footnote,
he pointed to the “ancient” use of power of a hyperbola as a precedent in this choice of
vocabulary.!?

Steiner elaborated three possible cases. If the point P lay outside of the circle, as in
Steiner’s Figure 9, the power of P would be equivalent to the square of the tangent segment
to circle M from P. This distance could also be calculated as PM? minus the square of the
radius, MA. Thus PT? = PM? — R

If point @ lay inside the circle, as in Figure 10 (our Figure 4.5), then the power of @
with respect to M would be what Steiner described as “the square of half the shortest chord
one can draw through ) to the circumference of M,” that is, the square of the segment
QC. Equivalently, the length of QC' was the square of the circle’s radius minus the distance
M@?. So, QC? = R?> — MQ?. The symmetry of the two equations showed how the tangent
segment functioned like the circle’s semi-chord.

Finally, the power of a point would be zero when the point lay on the respective circle’s

8Steiner’s manuscript more precisely attributes this result to Euclid TT1.36 (Steiner (1931), 28).

19The power of a hyperbola is the area of the rhombus described on the major and minor axes. An
explicit definition of the power of a hyperbola as “la moitié du quarré du demi-axe” can be found in the
twenty-seventh volume of the Encyclopédie ou Dictionnaire raisonnée des sciences, des arts et des métiers
(Anonymous (1778), 793).
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Figure 4.4: Steiner’s Figure 9 (Steiner (1826a))

Figure 4.5: Steiner’s Figure 10 (Steiner (1826a))
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circumference. Steiner gave no pictorial correspondence to this final case, but it followed

from either equation.

Line of equal power (3)

Steiner progressively extended his research to more complicated configurations. In Section
3, Steiner combined his results from the two prior sections, considering now two circles
of given size and position, which were centred at and denoted by points M and m. He
calculated that the locus of points of equal power to both M and m would form what he

’ a line perpendicular to the line containing their centres,

called the “line of equal power,’
Mm.

The case of intersecting circles is illustrated in Figure 10 (our Figure 4.5), although
circle m is unlabelled, where the line of equal power contained the common chord of M
and m. In the case when the two circles were tangent, their shared tangent line would also
be their line of equal power. Generalizing from this configuration and the common power
equation (here written with respect to radii as M P? — mP? = R? — r?), Steiner concluded
that tangent segments drawn from any point on the line of equal power, PG, to circles M
and m respectively would be equal. Thus, reciprocally, circles orthogonal to both M and

m would be centred on the line PG.

Point of equal power with respect to three circles (4)

In Section 4, Steiner considered three given circles My, Ms, M3, which pairwise determined
three lines of equal power, denoted [(12),1(13),1(23), as represented in Figure 11 (our Figure
4.6).

Figure 11 included only the centres of the three circles without their circumferences, thus
illustrating a seemingly general case of ambiguous circle positions. Depending on their size,
the three circles might all intersect, all be tangent, not intersect at all, or some combination
of those possibilities. Steiner considered each line of equal power in turn. The lines [(12) and
[(13) met at a point of equal power for both circles M;, Ms and circles M7, M3. Therefore
the intersection was also a point of equal power for Ms, M3. So the intersection of any two
of the three lines of equal power would be the point, denoted p(123), where all three lines
concurred, “the point of equal power for three circles.” When the three circles My, Mo, M3
all intersected, their three common chords would then intersect at the point of equal power,
as shown in Figure 12 (our Figure 4.7).

When instead the three circles were pairwise tangent, their three common tangent lines
would then meet at the point of equal power. This configuration was not illustrated by
Steiner.

Steiner considered one other case, Figure 13 (our Figure 4.8), when circles M; and M>
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Figure 4.6: Steiner’s Figure 11 (Steiner (1826a))

Figure 4.7: Steiner’s Figure 12 (Steiner (1826a))
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did not meet, but were each intersected by the third circle M3. Then the common chords
between M; and M3 and between Mo and M3 would intersect each other on the line of equal
power of My and M,. With this property, Steiner declared “one easily sees” how to find the
line of equal power of any two given circles with an arbitrary third circle that intersected
the two given. In this situation, the line of equal power would be perpendicular to the line

containing the centres and would pass through the point of equal power.

Figure 4.8: Steiner’s Figure 13 (Steiner (1826a))

Shifting his focus to the determined line of equal power, Steiner considered some point
P on the line of equal power for two given circles My, Ms. From this point Steiner drew
two tangent lines to M; (lines PA and PD) and two tangent lines to My (line PB and
PC) Considered pairwise, these four tangent points were also the tangent points of circles
tangent to both given circles, such as the circles through A, B and through C, D shown in
Figure 14 (our Figure 4.9). Because each tangent segment drawn from the line of equal
power was the same length, these same four points A, B,C, D would all lie on a circle
centred at P that cut given circles M7 and Ms orthogonally. Then by the same reasoning,
for a circle drawn with centre P orthogonal to circles M and M at points A, B, C, D, one
could draw four circles tangent to both given circles through these points taken pairwise.
In this latter property, Steiner’s result showed how reversing his argument could lead to a

result that could be stated independently of his new definitions.
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Figure 4.9: Steiner’s Figure 14 (Steiner (1826a))
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Bundles of circles and orthogonal circles (5)

From the case of two orthogonal circles, Steiner generalized his investigations to the rela-
tionship of two bundles [Schaar] of orthogonal circles.?’ With reference to Figure 15 (our
Figure 4.10), Steiner considered all possible circles Py, Py, Ps, ... orthogonal to circles M;
and M.

JJ

Figure 4.10: Steiner’s Figure 15 (Steiner (1826a))

In this situation, the line of equal power for Py, P», Ps, ... would be the axis containing
the centres of the circles M; and My, which Steiner designated as MjMs. Reciprocally, the
locus of centres of all circles My, Mo, M3, ... orthogonal to the circles previously defined as
Py, Py, P3, ... was also the axis M Ms. So when any two of the Py, P, Ps, ... circles intersected
each other at points A and B, their common chord AB lay on M;M>s. Further, all chords
common to M; and any P, P, Ps, ... would respectively cut MjM> at a unique point that
Steiner labelled as M. Steiner declared that “on equal grounds” all chords common to the
circle P; and My, My, M3, ... respectively would meet the line P; P> at a determined point
called P. By construction, the circles My, Ms, M3, ... were orthogonal to P; and likewise
Py, Py, P;, ... were orthogonal to M;. So, from the definition of orthogonality, the radii
drawn from centres My, Ms, M3, ... to their respective intersection points would be tangent
to the circle P;, and the radii from P;, P», P3, ... would be tangent to the circle M.

Steiner applied these findings to prove a construction of the common intersection point

20Following Louis Gaultier de Tours (1776-1848), Gergonne refers to “une suite de ces cercles” rather than
a set (Steiner and Gergonne (1827), 299).
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P for a given line M; M, and a circle P;. Pairs of tangent lines drawn from any points
My, Mo, M3, ... on My M> to circle P; would define contact points on the circumference of
P;. The chords drawn by connecting these pairs of contact points would all pass through
the same point P.

Steiner thus demonstrated constructively that for a given coplanar circle and line there
existed one unique corresponding point, lying on the perpendicular from the given line
passing through the circle’s centre. His constructions are shown in Figure 16 (our Figure
4.11) for the case where the line M;Ms intersected the circle P; and by constructing the
respective tangents M1C, M1 D and MyH, MsI one determined the secants CD and HI

which intersected at P. In this case P fell outside of circle P;.

Figure 4.11: Steiner’s Figure 16 (Steiner (1826a))

Steiner then described the case where the line P P, did not meet the circle M;. Then
respective tangents P E, P F and P,C, P, D determined chords EF and C'D meeting at M.
The constructed point M thus lay inside circle M, as shown in Figure 17 (our Figure 4.12).

Curiously, Steiner did not assign a name to this relationship, which was already well-
known as polar reciprocity among contemporary French mathematicians, and would be

interpreted as such by Gergonne.?! Steiner concluded his analysis of lines of equal power by

2In Steiner’s posthumous book on circles, he did include a discussion of poles and polars. The suggested
dates for this text would imply that he knew of their use in France in 1826, but chose not to use their
terminology in his published article. Although there is no mention of editorial updating in the introduction,
we cannot wholly rule out this possibility. As written in the published manuscript,

Die Franzosen nennen zwei solche zusammengehorige Punkte (M, g oder M1, q1) Poles conjugés;
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Figure 4.12: Steiner’s Figure 17 (Steiner (1826a))

suggesting that the same properties held similarly for second degree curves and analogously
on second degree surfaces. He gave no hint about how these results might so be extended.

Already we observe how Steiner exhibited a distinctive presentation style. The content
emphasized positional relationships, with suggestive rather than rigorous reasoning. For
instance, proofs of concurrence or collinearity were left to the reader and Steiner often
argued in reverse without justification. Despite his introduction of new vocabulary, many
of his results could be stated without reference to the “power” relationship and thus may
have appeared attractive to his readers.

While Steiner’s choice of method in this article would be described by Gergonne and
Cournot as elementary or pure geometry, this did not obviate the use of computation.
Steiner defined “power of a point” with respect to a proportion, rather than a constructive
operation, and used a “constant product” to describe relationships between circles and their
points or lines of similarity. Nevertheless, the only calculation Steiner employed with these

equations was simple addition, and they served more as abbreviations of constructions or

auch nennen sie den Punkt q in Bezug auf die Linie M; M2 oder den Punkt ¢; in Bezug auf die
Linie Ppp1 Pole, und umgekehrt die Linie in Bezug auf den Punkt Polaire. Wir wollen uns bei
Losung der folgenden Aufgabe kiirzehalber dieser franzoésischen Benennung bedienen. (Steiner
(1931), 54)

“The French call two such associated points conjugate poles; and call the point ¢ pole with
respect to the line M M> or the point g; the pole with respect to line Ppp:, and reciprocally
the line polar with respect to the point. We will use the following abbreviation of this French
designation in our solution of the following problem.”
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lengthy verbal relationships than as tools for deriving new geometric information.??

By attending to the static figure, Steiner had to consider multiple configurations, which
resulted in several cases for each concept. He employed actual figures to represent some, but
not all of these discussed configurations. In particular, configurations of interior circles were
declared analogous and not displayed pictorially. Much of the textual detail was omitted in
the figures themselves. There were no circles in Steiner’s Figure 11 and his Figures 9 and
14 only displayed arcs of certain given circles. This enabled a more general representation,

as in the case of Figure 11 representing multiple circle relationships at once.

Ratios between three points (6)

In Part II, On similitude points and similitude lines of coplanar circles, Steiner set aside
the concept of power to investigate a seemingly new relation between two given points, m
and M, depicted in the two possible configurations of Figures 18 and 19 (our Figures 4.13
and 4.14).

1T i"'-[

=

Figure 4.13: Steiner’s Figure 18 (Steiner (1826a))

By construction of parallel lines, point I could be determined by the ratio M N : mn =
MTI : mI and point A by the ratio MN : mn = M A : mA. Steiner called these points the

“inner and outer similitude points with respect to M and m.”

22This moderate use of algebra in representing proportional relationships was normal in contemporary
elementary geometry textbooks, see for example (Lacroix (1799), Legendre (1800)).

185



\4{
L

Figure 4.14: Steiner’s Figure 19 (Steiner (1826a))

Similitude points and lines of two circles (7)

Steiner extended his definition, by considering the points as circles centred at M and m,
still with reference to Figures 18 and 19. Here the pairs of lines M N, mn and M Ny, mn,
represented pairs of parallel radii, either lying on the same side (Figure 18) or opposite sides
(Figure 19) of the axis containing the circles’ centres Mm. The lines Nn, Nin; containing
the endpoints of these radii would intersect each other at a point A when the points lay on
the same side of M'm and a point I when the points lay on the opposite side of M'm. Both
points A and I lay on the line Mm.

With reference to Figure 20 (our Figure 4.15), Steiner argued that for any such line
Ani Ny or NilIn; passing through A or I as defined with respect to points M and m, such
that the pairs of parallel line segments M N; and mn; were in the same ratio as the radii
of circles centred at M and m, then M N7 : mny = M N : mn. So when the radii of circles

M and m were of respective length R and r,
R:r=MA:mA=MI:ml. (4.1)

The points A and I he called, the “similitude points of both circles M, m.” Further, any
line passing through a similitude point, such as the lines Ani/N; in Figure 18 or ny /Ny in
Figure 19, were designated as “similitude lines of circles M, m.”

For two exterior tangent circles, their common tangent point would be the outer simil-
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Figure 4.15: Steiner’s Figure 20 (Steiner (1826a))

itude point A since the respective radii would be M A, mA. Likewise the tangent point of
interior tangent circles would be the inner similitude point I. Focusing on the case of two
exterior circles, Steiner argued that any two tangent lines common to both circles would
intersect at one of their two similitude points as shown in Figure 21 (our Figure 4.16).
Reciprocally, one could “easily” use these similitude points to find a common tangent to

the two given circles.

Similitude lines for three given circles (8)

As in Part I of this text, in the second part Steiner followed a pattern in progressive
sections from two points, to two circles centred at those points, to three circles. For three
given circles My, Mo, M3 considered pairwise, there would be three outer and three inner
similitude points. The similitude points of three circles were illustrated in Figure 22 (our
Figure 4.17), where the circles were represented by their centres alone as points My, Mo, Ms.
As in Figure 11, here the absence of drawn circles extended the result to any set of three
circles whose centres were not collinear because the possible intersections of the three circles
remained unspecified. The position of I’s and A’s suggested the size of the circles, but by
leaving the circles unconstructed the important collinear properties could be seen without
distraction and the procedure could be more easily translated to any given set of three
circles. Steiner designated the outer and inner points of circle M; and My as Az and I3 and

likewise for points As, I, Ay, I1.
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Figure 4.16: Steiner’s Figure 21 (Steiner (1826a))

M

Figure 4.17: Steiner’s Figure 22 (Steiner (1826a))
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Steiner first considered the line containing points As and As. Since As was a similitude
point for circles My, M>, the line A3As would be a similitude line for circles M1, Ms, and
likewise by considering the point As, the line A3As was a similitude line for My, M3. Thus
A3As would be a similitude line for all three circles, and called the outer similitude line
since it contained the points A1, Ao, A3. Thus all outer similitude points were collinear.

Steiner stated that in “wholly similar ways,” one could show that Ail5I3, Asli13, and
Asli I, were collinear, the “inner similitude lines” with respect to the three given circles.
When M, Ms, M3 were exterior circles, Steiner showed that all pairs of outer or inner
tangent lines to any pair of circles would intersect at a point on one of the similitude lines

as shown in Figure 23 (our Figure 4.18).

Figure 4.18: Steiner’s Figure 23 (Steiner (1826a))

Here in the text, Steiner made his first contemporary and only precise citation to a
geometer other than himself. He credited a special case of his result to M. Hirsch, who had
previously considered the concurrence of the outer tangent lines in Sammlung geometrischer
Aufgaben 11 on page 368.%

23Meier Hirsch (1770-1851) was a prolific textbook writer in elementary mathematics on algebra, arith-
metic and geometry, who also worked as a private instructor in Berlin. His publications of Sammlung
geometrischer Aufgaben was continued by Ludwig Magnus in the 1830s (Vogel (1972)). Among a series of
so-called “mixed” geometry problems and theorems, Hirsch proved this theorem on circles using proportional
relationships. The list-like structure of Hirsch’s text is paralleled in many of Steiner’s early articles, and this
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Lines of equal power and similitude points (9)

In Part III, On circles of common power in a plane, Steiner synthesized his findings on
two coplanar circles. With reference to Figure 24 (our Figure 4.19), if P was any circle
orthogonal to circles M; and M, at respective points A, D and C, B then Steiner could
define four new circles by their points of tangency to circles M7 and M» at the pairs of points
A,B; D,C; A,C and D, B. Steiner had shown that both tangent points of a circle tangent
in the same way to circles M; and M, would be collinear with As (the outer similitude point
of M; and My) and both tangent points of a circle tangent in different ways to M; and Mo
would be collinear with I3 (their inner similitude point). Thus the circle P determined four
lines, each containing three of the above points: A3AB, AsDC, AIsC, DIsB.

Figure 4.19: Steiner’s Figure 24 (Steiner (1826a))

As an “equivalent” result, Steiner presented the following theorem: if from any point P
on the line of equal power PG of circles M1, Ms one draws four tangent lines PA, PD, PC, PB
to the circles, and joins the four tangent points pairwise to form six lines, then the lines
BA and CD will intersect at A3 and the lines AC' and BD will intersect at I3. Further the

reference and resemblance may suggest Steiner’s similar pedagogical aims (Hirsch (1807)). However, as we
will see in Steiner’s later methodological commentary, he negatively assessed most contemporary geometry
textbooks as mere compilations of disjointed results—a criticism risked in his own work.
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locus of intersection points P of the lines DA and CB will be the line PG itself. Finally,
DA and CB will always pass through Mj M, at the respective points @1 and Q2 (though
Steiner did not name these points, )1 and ()2 were what would be called the poles of the
line of equal power with respect to circle M; and circle Ms.).

Steiner’s exposition here was greatly assisted by the illustrative clarity of Figure 24 to
differentiate which points denoted which type of tangency. We will see that this relationship
would require very precise language when independent of a visual aid as later presented by

Gergonne.

Common power of two circles (10)

Steiner explored the consequences of this result by considering all possible circles P orthogo-
nal to both circles M7, Ms. These P circles would share the line of equal power AsM7I3Mos.
So when a straight line A3AB or AI3C intersected circle My at A and circle Ms at B or
C, then the product A3A x A3B (the power of A3 with respect to circle P) or Als x Cl3
(the power of I3 with respect to circle P) would remain constant as long as the radii M; A
and MsB or M7 A and MsC were not parallel to each other. Steiner named this constant
product the “common power of circles My, Ms with respect to their similitude point Az or
I3

Power circle of two circles (11)

Again extending the definition from points to circles, Steiner called a circle centred at As,
whose radius equaled the square root of the respective common powers determined above,
the “outer power circle of My, My.” The “inner power circle of My, Ms” was centred at Is.
So the power circle [Potenzkreise] was uniquely defined with respect to two given circles
and one similitude point. This concept would prove crucial in later proofs of the Apollonius

problem given by Gergonne and Pliicker.

Power position with respect to a similitude point (12)

If three collinear points X, I3,Y were situated on either side of I3 such that I3X x I3Y
equaled the inner common power with respect to the given circles, then the points X and
Y were said to be in “power position” [potenzhaltend] with respect to the point Is. The
same relationship held for points X and Y on the same side of the outer similitude point,
As. Circles could also be in power position with respect to similitude points, when the
power of I3 or A3 with respect to the new circle equaled the inner or outer common power
of with respect to M7, M. Steiner concluded that “clearly” each circle passing through any
two points in power position with respect to given circles My, My would thus be a circle

in power position with respect to the given circles. Further, when the similitude point As
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or I3 was in power position to a circle K, then the power circle centred at As or I3 would

intersect K orthogonally.

Relationship between tangency and power circles (13)

From these definitions Steiner constructively showed that each circle tangent in the same
way (that is, either all exterior or all interior tangent points) to both exterior circles M;
and Ms would be in a power position to the outer similitude points of M; and My and
orthogonal to the outer power circle of My and Ms. Any circle tangent in different ways
(for example, with an interior tangency to M; and an exterior tangency to Ms) would be
in power position to the inner similitude points and orthogonal to the inner power circle.
Steiner suggested that “similar” results followed when M; and Ms were interior circles or
intersected one another.

Steiner extended his investigation to all possible circles tangent to the given circles
My, My (here Steiner did not differentiate the respective position of M;j, Ms, nor did he
provide any figures). If all circles in the set Ni, Ny, N3, ... were tangent in the same way
to the given circles, then the outer similitude point As of My, Ms would be the common
point of equal power for the entire set of circles. If all such circles were tangent to the
given circles in different ways, then I3 would be the common point of equal power for them.
Moreover, the line of equal power, I(12), of M1, My would be the common similitude line for
all Ny, No, N3, .... Steiner interrupted his exposition here, promising further developments of
these theorems, but for want of time and space proceeded to the problem solving promised
in his introduction. The remainder of the paper contained a solution to the Malfatti problem
and further generalizations with their solutions.

We note that Steiner solved the original Malfatti problem without reference to any of
his newly coined definitions. However, he then suggested a more general case of the Malfatti
problem, namely: given any three coplanar circles to describe three new circles each tangent
to the others and to two of the given circles (the sides of the triangle had been replaced
with circles). To solve this version of the problem, Steiner used both similarity points and
power circles. Figure 26 (our Figure 4.20), depicting his construction, shows the three outer
similarity points A1, A2, A3 along a line on the right hand side of the figure as well as faintly
traced arcs denoting the power circles centred at these points. However, we will not go into
further detail about these solutions here since they were not reiterated by Gergonne nor
Pliicker.

Steiner’s power circles united the properties of similitude points and points of equal
power. According to Gergonne’s assessment, as we will see, Steiner’s power circles were
apparently new objects and it was this synthesis of planar relationships that enabled Steiner

to reach a solution and generalization of the Malfatti problem and promised to lead toward
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Figure 4.20: A simplified version of Steiner’s Figure 26 (Steiner (1826a))

the Apollonius problem.

While breaking chronological order, in order to appreciate Gergonne’s subsequent trans-
lation of Steiner, it is useful to remind the reader of Gergonne and Poncelet’s earlier publi-
cations on the subject of the Apollonius problem. Even if Steiner derived his own method
and solutions completely independently, when his work reached an audience of French ge-

ometers, it was rewritten and reviewed in light of these already published results.

4.2.2 Gergonne and the Apollonius problem (1810-1817)

Prior to 1826, Gergonne had published three separate articles on the Apollonius problem,
with essentially the same solution but different degrees of explanation (Gergonne (1810b),
Gergonne (1814b), Gergonne (1817a)). His most extended version appeared in the Annales
in 1817. Gergonne justified his repetition by explaining he had received complaints about

lacking a complete justification in his earlier version.

J’écrivais pour des savans consommeés, et je crus devoir étre court il paralt que
je le fus un peu trop; plusieurs géometres, qui eurent connaissance de mon
mémoire, me firent le reproche, fondé sans doute, que le fil qui m’avait guidé
n’y était pas assez apparent, et que mes calculs semblaient plutét propres a
légitimer une construction trouvée par un heureux hasard, qu’a faire découvrir

cette construction. II parait méme que, par suite de mon excessif laconisme,
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beaucoup de géometres n’ont pu suivre mes méthodes et en saisir ’esprit; car on
est revenu encore postérieurement sur ces deux problémes, sur lesquels pourtant

j’avais cru ne plus rien laisser & dire. (Gergonne (1817a), 289-290)%4

Against these reproaches of merely having “legitimatized a graphic construction, discovered
in advance,” Gergonne would show that an analytic treatment led “naturally” and “abso-
lutely inevitably” to his conclusions. The solution was “elegant,” “simple” and “direct”-not
“fashioned after the fact.” Finally, the exposition would be entirely elementary, even though
involving coordinate representation.

Gergonne began by laying out his strategy in detail, which we summarize here. He would
successively reduce the problem to determining simpler and simpler geometric objects. The
desired circle could be determined by its three tangent points. Finding three tangent points
reduced to finding a single tangent point. Finding that point reduced to finding a second
line containing that tangent point. Finding that second line reduced to finding any two
points on that line, and so on.

Gergonne then chose a set of coordinate axes with the origin at the centre of one of the
given circles ¢ and axes through the centres of the remaining two circles ¢ and ¢”’. With
these coordinates, each given circle could be represented by an equation, and there were as

many equations as variables. Gergonne introduced the equation of the given circle:

He then calculated with the remaining equations, to find an additional equation, that

of a second line containing the tangent point:

ax +by —r"(r" —r)  dx+by—r"(r"—1r")

(a2 + b2 — (T” _ r)z - a’? + b2 — (7,// _ 7”’)2

These two equations could be combined to solve for one of the tangent points at (z,y).
Rather than solving this equation (which Gergonne admitted would be complicated by
radicals), he worked backward following the steps of reduction outlined above, showing
that analytically simpler lines and points could instead be constructed and still lead to a
uniquely determined point. This analytic proof concluded with a planar construction.

In the construction, which we illustrate from Gergonne’s “virtual figure,” Gergonne

differentiated two kinds of tangent lines shared by a pair of circles. The two interior tangents

2441 wrote for consummate scholars, and if T thought it right to be brief it appears that I made it a bit too
much; several geometers, who knew of my memoir, reproached me without doubt because the thread which
had guided me was not very apparent and that my calculations seemed rather to legitimize a construction
found by happy accident, than to lead to discovering this construction. It appeared even that, due to my
excessive brevity, many geometers had not been able to follow my methods and capture their spirit; because
they return again to these two problems, about which I believed that nothing was left to say.”
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intersected between the two given circles, while the two exterior tangents intersected on one
side of both given circles. We will see that Gergonne would later change his use of adjectives
in describing these pairs of lines.

Given three coplanar circles ¢, c,c”, begin by drawing the common exterior tangents
to the three circles considered pairwise and the chords of contact defined by the tangent
points for each circle. The two chords of contact of circle ¢ will meet at a point M, and
their parallel chords on ¢’ and ¢ will meet at N. Similarly, the two chords of contact on ¢’
will meet at M’ with their parallel chords meeting at N’, and the two chords of ¢’ meeting
at M" with parallels at N” (Figure 4.21).

Figure 4.21: Construction of tangent lines and chords of contact

Then draw M N, M'N’', M"N". Line M N will meet circle ¢ at points ¢ and 6, M’ N’ will
meet ¢ at t' and ¢/, M"N" will meet ¢ at ¢”,6”. Finally the two circles drawn through

t,t',t" and 0,6’,0"” would be the circles sought (Figure 4.22).

Figure 4.22: Construction of intersection points and tangent circles

The remaining six solutions could be found by substituting combinations of exterior and

interior tangents. Gergonne concluded in suggesting that the equations could be modified to
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include equations of the radical axes of ¢, ¢’ and ¢/, ¢” with a radical centre O, and showing
that the three constructed lines M N, M'N’, M"N" concurred at O. We will see shortly
that Gergonne’s radical axes were exactly the lines of equal power used by Steiner.
Gergonne described his solution as the simplest yet, presenting “une face entiérement
nouvelle” for the application of analytic geometry in solving planar problems. Further,
the construction could be applied “exactement de la méme maniere” to the case where the

circles lay on the surface of a sphere.

4.2.3 Unrapprochement curieux: Poncelet solves the Apollonius problem
(1811, 1821)

Poncelet’s first solution from 1811 attests to the ubiquity of the Apollonius problem. The
problem had been posed by Jean-Nicholas-Pierre Hachette in the Correspondance sur I’Ecole
polytechnique the previous year as the sixth of eight problems on circles and spheres for
students to solve. Hachette’s introduction addressed contemporary use of the figure, as well

as anticipated approaches to solving the problem through descriptive geometry.

Supposant le lecteur habitué a lire dans ’espace, j’ai cru pouvoir supprimer
les figures; et suppléer par des caractéres aux dessins géométraux: ainsi pour
désigner des plans, des sphéres ou des points remarquables, je me suis servi de
lettres disposées de maniére a indiquer leurs positions respectives; cette notation
a l'avantage de rendre les explications plus concises et de présenter les mémes

objets plus souvent, en évitant les répétitions de mots. (Hachette (1804), 17)%

Hachette provided a solution to the problem by considering the given circles as great circles
of three spheres and posing the three dimensional question of finding the sphere tangent
to three given spheres whose centre is coplanar with the three given centres. He also cited
analytic solutions from Newton in the Arithmétique universelle and from Euler and Fuss in
the Mémoires de I’Académie de Pétersbourg.?

Poncelet’s solution also appeared in the Correspondance and marked his first publication
in geometry (Poncelet (1811)). He relied upon results proved in the Hachette article, but his
constructions are limited to the plane, and illustrated by two labelled figures that appeared

printed at the end of the volume.

25«Supposing the reader habituated to reading in space, I felt I could suppress the figures; and supply
geometric designs by characters: thus to designate planes, spheres, or remarkable points, I used letters
arranged in a manner to indicate their respective positions; this notation has the advantage of rendering
the explanations more concise and of presenting the same objects more often by avoiding the repetition of
words.”

26Helena Pycior details the publication of Newton’s Universal Arithmetic, where the Apollonius prob-
lem featured as one of sixty-one geometric examples, as well as Newton’s inconsistent stance toward the
application of algebra to geometry in Pycior (1997) (167-208).
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Poncelet would refer to this solution fifty years later in his Applications d’analyse et
de géométrie, where he presented several “synthetic” solutions to the Apollonius problem
accompanied by in-text figures. The last solution he described in a footnote as analogous
to that from 1811 (Poncelet (1864), 38). Even in 1862, Poncelet refrained from the modern
terminology of circle relations that he employed in 1821. We recall from the introduction to
Chapter II that for Poncelet, “synthetic” denoted a more “restrained” method of geometry
than his “modern pure geometry” (Poncelet (1822), xxi).

By contrast, Poncelet’s 1821 article advertised an application of Poncelet’s new and
“controversial” principle of continuity.?” The article appeared by request of Gergonne.
The year before, Poncelet had submitted a memoir on the projective properties of conic
sections to the Académie royale des sciences. As we observed in Chapter III, this article was
reviewed by Arago, Poisson, and Cauchy, the last of whom wrote up a report subsequently
published in Gergonne’s Annales. While criticizing some of Poncelet’s methods, Cauchy had
complimented Poncelet’s “very elegant” solution of the problem to draw a circle tangent to
three others (Poncelet and Cauchy (1820), 82). Intrigued, Gergonne requested Poncelet’s

construction, and accordingly introduced Poncelet’s response in a footnote.

Les constructions dont il va étre question sont celles qui ont été annoncées a la
page 82 de ce volume. Nous avons pensé qu’elles pourraient offrir un rapproche-
ment curieux avec celles de M. Durrande, insérées également dans le présent
volume; et, & notre priére, 'auteur a bien voulu nous les communiquer. (Pon-

celet (1821b), 317)28

The constructions presented could be understood independently, but their proofs rested
upon propositions and principles only fully explained in Poncelet’s Traité, which would
appear the following year.?’

Poncelet began by defining direct or inverse homologous points as two points, one on
each circumference of two coplanar circles, which are collinear with one of the circles’
similitude centres and belong to two arcs whose curvature is directed in the same sense,
direct or the contrary sense inverse with respect to this similitude centre. Consequently,
two axes, chords, tangent lines, etc. of a pair of circles could be directly or inversely
homologous according to the position of their endpoints or points of tangency. Poncelet

noted that directly homologous chords and tangents would concur on the common chord

2TAs we saw in Chapter II, Poncelet used similitude centres extensively in his Traité. In this article,
Poncelet employed, but did not define, similitude and radical objects, for which we can now rely upon
Steiner’s and Gergonne’s expositions or that of Gaultier in Appendix F.

28«The constructions which are going to be in question are those that have been announced on page 82 of
this volume. We thought that they could offer a curious link to those of M. Durrande, also inserted in the
present volume; and, upon our request, the author has kindly communicated them to us.”

29This delay between construction and proof explains Pliicker’s comments from 1827, in which it appears
that he had read the Annales article, but not the Traité.
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at infinity (a concept briefly explained in Cauchy’s review), while inversely homologous
lines would concur on the finite common chord between two circles, their radical azis. This
relationship presented “a very simple means to construct this axis.” Poncelet asserted that
these properties could be “easily extended” to spherical circles, right cones sharing the same
vertex, cylinders with parallel axes, spheres, coplanar curves, or curves of double curvature
“soumises ou non a la loi de continuité” provided the set of objects shared a similitude
centre.

By means of the radical axis and its relationship to inversely homologous points, Poncelet
presented several different construction variations towards finding a circle tangent to three
given circles. He began by designating the circles C, C’,C”, with a footnote explaining that
for practical exactitude it would be convenient to let C be the biggest of the three circles.
Poncelet brushed aside the constructive details over which Steiner would labor five years
later. The four similitude axes were assumed, and each one corresponded to a type of circle
tangency. Whatever axis was chosen in advance would contain whichever three similitude
centres were concerned.

Poncelet’s first construction began with an arbitrary point M on the circle C. With the
chosen similitude axis, Poncelet could determine the points M’ inversely homologous to M
on circle €', M’ inversely homologous to M” on circle C” and N inversely homologous to
M" on C. In the case where M and N concurred at the same point, the three points of
tangency for the desired circle would be M, M', M”. Otherwise, the line M N would meet
the similitude axis at a point P. The polar of P with respect to the circle C would intersect
C at its points of contact with each of the two solution circles. One could then either
perform a similar construction for C and C”, or find the respective inversely homologous
chords to the one found on C', which would play the same role in finding the two pairs of
tangency points. The same operation repeated for each of the four similitude axes would
lead to all eight circle solutions. Alternatively, Poncelet summarized what he considered a
simpler construction employing polars of the radical centre, with respect to each of the three
circles. Poncelet advertised the advantages of all of these constructions in only employing a
simple ruler, thus being independent of the compass, once one knew the similitude centres
of the given circles.

In order to simultaneously and symmetrically find the three chords containing the tan-
gent points, Poncelet continued finding inversely homologous points to N on C’, and so on
as above, until one obtained six points. In this construction, the seventh point would always
coincide with M, and thus one could create a closed hexagon whose invariant properties
would determine the three desired chords. Poncelet claimed this construction was very
simple because one only traced straight lines, and did not need to construct the common
chords or the radical axis. However, one could even avoid directly employing the simili-

tude axis, instead choosing any three collinear similitude centres. Then by constructing an
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arbitrary chord of C, finding its homologous inverse on C’, and so on, the sixth operation
would return to the first chord. The intersections of these chords ultimately determined the
chords of contact, as in the prior constructions.

Poncelet suggested that all the preceding constructions and associated propositions con-
tinued to hold “in an analogous manner” for three and four spheres, three cones sharing
a common summit and three spherical circles. He expanded upon the spherical situation,
explaining that the planar circles then followed as a special case.

Referring to his Annales article on inscribing and circumscribing polygons from 1817,
Poncelet claimed that these propositions were analogous to those found in that paper and
it would be “very easy to pass from one to the other by invoking the principle of continuity.”
Poncelet concluded by advertising his original memoir, where these relationships were more

fully explained.

C’est un rapprochement que je n’ai pas manqué de faire, dans le mémoire dont
M. Cauchy a rendu compte a I'Institut. (Poncelet (1821b), 322)3°

Indeed, Poncelet’s Traité published in 1822 contained these solutions, which Poncelet
favourably compared to those of M. Gaultier because they were “more general and only
required the use of a ruler” (Poncelet (1822)).3! Moreover, in his book Poncelet provided
a figure for the homologous point construction as well as the representation of similitude

centres and axes for three exterior coplanar circles (our Figures 4.23 and 4.24).

Figure 4.23: Poncelet’s Apollonius construction Figure 39 (Poncelet (1822))

39«This is a relationship that I did not fail to make in the memoir that M. Cauchy has reported to the
Institute.”
31Gaultier used a ruler and a compass, as we see in Appendix F.

199



]'lg. do. \

Figure 4.24: Poncelet’s Apollonius construction Figure 40 (Poncelet (1822))

Along with the above solution, Poncelet showed how to reach a “very elegant solu-
tion” with the same basis as that of Gergonne’s from 1814. Poncelet assessed Gergonne’s

presentation favourably,

[...] la marche purement algébrique qu’a suivie ce géometre est entierement
neuve, et parait susceptible de s’appliquer a un grand nombre de questions
réputées difficiles dans I'état actuel de I’Analyse. (Poncelet (1822), 138)32

Poncelet’s positive comments suggest that for him, providing another proof for Gergonne’s
solution was not intended as a critique of the original analytic approach. The Apollonius
problem invited multiple solutions, and the elegance of one did not preclude the advanta-
geous qualities of another. Poncelet’s brief references to his law of continuity and lines at
infinity signaled new geometric technology, aspects of which we will see featured in our next

case study.

4.2.4 Gergonne translates Steiner (1827)

Gergonne’s long-term interest in the Apollonius problem, illustrated by his own publica-
tions and interest in publishing Poncelet’s solutions, may explain why Steiner’s article was
quickly translated and appeared in the Annales under the title “Géométrie Pure. Théorie
générale des contacts et des intersections des cercles” in 1827 (Steiner and Gergonne (1827)).
Gergonne prefaced his exposition of “Théorie générale des contacts et des intersections des
cercles” by explaining the advantages and flaws of Steiner’s approach. Steiner had pre-

sented the elementary theories of “similitude centres, axes and planes, radical axes, planes

32«[] the purely algebraic path that this geometer has followed is entirely new, and appears susceptible

to apply to a great number of questions reported difficult in the current state of Analysis.”

200



and centres, and finally poles, polars, polar planes and conjugate polars” in order to re-
solve “difficult” and “general” problems with “very elegant” solutions. While the above
theories had appeared often in the Annales, “ 'auteur a tout & fois, étendues et simpli-
fiées d’'une maniére assez notable” (Steiner and Gergonne (1827), 286).33 Further, school
teachers [MM. les Professeurs de nos écoles publiques] would find “abundant resources” for
“profitable” student exercises within the text. Gergonne’s version of Steiner’s “doctrine”

promised to be even better than the original German text.

Nous pensons donc faire une chose tres-utile pour le progres de la géométrie
pure, et conséquemment tres-agréable a nos lecteurs, en offrant ici, dans un
cadre resserré, les principaux points de la doctrine de M. Steiner ; mais sans
toutefois le suivre servilement, et en nous permettant de nous écarter un peu
de sa marche, toutes les fois que nous penserons qu’il en peut résulter quelque
avantage, sous le rapport de la clarté ou de la brieveté, nous exposerons, en un
mot, ces théories comme nous pensons qu’elles pourraient et devraient ’étre dans
les traités élémentaires, en nous rappelant toutefois que nous n’écrivons pas pour
des commencans ; c¢’est-a-dire, en négligeant, pour abréger, des développemens
faciles & suppléer pour tout lecteur intelligent. (Steiner and Gergonne (1827),
287)34

Here was Steiner clarified, abbreviated, and overall adapted to a mathematically literate
French audience. We will see how Gergonne updated his vocabulary, added contemporary
(French) references,® and set a standard for what could be properly assumed as well known
for Annales readers. None of Steiner’s eighteen figures were reproduced, and we will pay
close attention to how Gergonne conveyed similar content with words alone. Perhaps these
figures were also well known enough to the audience to be effectively omitted. Notably,
this mode of exposition resulted in an abridged Steiner, which was in fact longer than the
original German piece.

Structurally, “Théorie générale des cercles” was divided into eleven untitled parts la-
belled with roman numerals, each of which introduced a particular geometric object or
relation. Like Steiner, Gergonne also employed numbered sections that were then used as

reference points for individual results through the text, for example (3). Overall, Gergonne

33¢[.] the author at once had extended and simplified in a very notable manner.”

344We thus suppose it will be a very useful thing for the progress of pure geometry, and consequently very
agreeable to our readers, to offer here, in a concise framework, the principal points of M. Steiner’s doctrine;
however, without slavishly following him and permitting ourselves to deviate a bit from his path, whenever
we think that it may result in some advantage with respect to clarity or brevity. We will present, in a word,
these theories as we think they could and should be in elementary treatments, remembering, however, that
we do not write for beginners; that is to say, in withholding, in order to abbreviate, developments which are
easy for any intelligent reader to supply.”

35Steiner’s sole contemporary reference to Hirsch did not survive its French translation.
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more than doubled the number of sections, using 74 all together, in part because of a larger
volume of total content and in part because of shorter section divisions. We will focus our
comparison on the common content to both texts, namely the developments of similitude
centres (Steiner’s similitude points), radical axes (Steiner’s lines of equal power), and power
circles. However, we will deviate from Steiner’s original text, by also including Gergonne’s
solution to the problem of Apollonius, now independent from its initial analytic proof.
Through Gergonne’s re-interpretation, we will elucidate how Steiner’s figure-based, ex-
ploratory style and German terminology came to be allied with contemporary French ge-
ometry. Yet, unlike in the case of Pliicker’s Pluker article, Gergonne maintained Steiner’s
original figure-based method, even though his original proofs of the Apollonius problem
relied on the use of coordinate equations. This demonstrates a fluidity of Gergonne’s com-
mitment to a single geometric method. Moreover, since Gergonne did not use illustrations
of figures and applied results from “modern geometry”, we will see the potential variation
within one method. Without illustrated figures, we may consider how Gergonne commu-
nicated Steiner’s results, and what was lost and gained in this visual transfer. Finally, to
better understand the phenomenon of repetition in early nineteenth century geometry, we
attend to Gergonne’s arguments for republishing Steiner and which aspects of Steiner’s text
remained intact. Just as we saw with Pliicker in Chapters II and III, Gergonne was the
medium by which Steiner’s work first became known to a broader French audience.
Gergonne began by describing two arbitrary unnamed coplanar similar polygons. If
each pair of the corresponding polygon sides were parallel, then they would be considered
homologous and the polygons were similarly situated. In particular, the polygons were
directly similar if the homologous sides were in the same order and inversely similar if the
homologous sides were in the inverse order. Gergonne credited Monge for having shown
that lines connecting directly or inversely homologous vertices would concur at a point
called respectively the direct or inverse similitude centre. Gergonne noted that here he
found the adjectives direct and inverse preferable to external and internal, which had been
employed previously. Gergonne argued that external and internal could be misleading since
a so-called external point could lie inside both polygons and vice versa. As we saw above,
in Gergonne’s 1817 proof of the Apollonius problem he had used exterior and interior to
describe types of tangent lines. Likewise, in Durrande’s 1820 proof he used the designators
exterior and interior to describe geometric relations. Here Gergonne modified both his and
Steiner’s vocabulary from exterior and interior to direct and inverse. This evidence suggests
that Gergonne derived his choice of vocabulary from Poncelet’s article, discussed above
(Poncelet (1821b)). This change in vocabulary reflected a divorce from the illustrated circle
relationship, and toward a more abstract representation. However, Gergonne continued to

use exterior and interior to describe the position of circles.
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Gergonne claimed it would be “easy to demonstrate” that any line containing a side of
either similarly situated polygon would pass through the similitude centre and contain the
other homologous side. Such a line was called a similitude azis of the two given polygons.
For three similarly situated polygons, which Gergonne named P, P’, P”, there could be up
to four similitude axes: one direct and three inverse. The direct similitude axis contained
the three direct similitude centres for the polygons considered pairwise, and the inverse
similitude axes contained two inverse centres and one direct centre. In explaining the con-
struction of centres and axes, Gergonne employed a virtual figure. Objects were described,
labelled and manipulated, but not actually pictured. One achieves a sense of the visual

language here in reading the first case of Gergonne’s proof.

4. Soient trois polygones P, P’, P", directement semblables, tracés sur un méme
plan, et soient d,d’,d” respectivement les centres de similitude de P’ et P”, de
P" et P, de P et P'. Si, par les deux points d’ et d”, on conduit une droite
D, cette droite sera (3) axe de similitude directe de P” et P, aussi bien que de
P et P'; elle sera donc aussi axe de similitude directe de P’ et P” et passera
conséquemment (3) par le point d; de sorte que les trois points d,d’,d”, seront
sur la droite D. (288)3¢

Gergonne’s work invoked a figure that the reader might either conceive or construct, and

for ease of understanding we include one below in Figure 4.25.

Figure 4.25: The direct similitude axis of three directly similar polygons

Gergonne noted that homologous, regular, evenly many sided polygons had direct and
inverse similitude centres and direct and inverse similitude axes because each side of one had

to be parallel to both a directly and an inversely homologous side of the other. Gergonne

36«Let, there be three directly similar coplanar polygons P, P’ P”, and let d,d’,d” be the respective
similitude centres of P’ and P”, of P” and P, of P and P’. If, by the two points d’ and d”, one draws a line
D, this line will be (3) the direct similitude axis P” and P, as well as of P et P’; thus it will also be that of
P’ et P" and will consequently pass (3) through the point d; such that the three points d,d’,d”, will be on
the line D.”
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then introduced circles as regular, even sided polygons with infinitely many sides and focused
on finding centres of similitude. In general, two exterior circles would share two pairs of
tangent lines. When the circles were both on the same side of the tangent lines, these lines
intersected at the direct similitude centre. When the circles were situated on different sides
of the tangent lines, the lines intersected at the inverse similitude centre. Both of these
points were collinear with the circles’ centres. In the case where two circles were tangent
to each other, they would be tangent at their similitude centre, a direct centre for interior
circles and an inverse centre for exterior circles.

Next, Gergonne considered three exterior coplanar circles, which he designated as C, C’, C".
Pairwise, these circles would have three direct d,d’,d” and three inverse 7,4’,4” centres of
similitude. All three direct centres of similitude would be collinear, belonging to D the di-
rect similitude axis. Additionally, each direct similitude centre would be collinear with two
inverse centres of similitude, belonging to lines I, I’, I”, the three inverse axes of similitude.
Gergonne’s constructive steps again illustrated the use of unambiguous figurative language
that the reader might employ to develop their own construction.

While Steiner had limited his study to fixed figures of given magnitude, Gergonne ex-
tended his research to circles of variable size and position. He employed visually oriented
language in these descriptions. One could “see” that as one of the three given circles varied,
the line joining the two variable inverse similitude centres and the line joining the two vari-
able direct similitude centres would rotate on the direct similitude centre defined by the two
fixed circles. Similarly, the two lines joining each pair of variable direct and inverse centres
would rotate on the fixed inverse similitude centre. Gergonne concluded that this result
provided a means of constructing the similitude centre when one could not draw common
tangents to two circles. We note that this exception was a relic of figure based geometry,
where common tangent lines were undefined for interior circles. The dynamic quality of
Gergonne’s result further shifted Steiner’s material from its original static presentation.

Steiner had generalized from points to circles centred at these points, while Gergonne
particularized from similar polygons, to similar regular even-sided polygons, to circles. Their
different approaches emphasized different aspects of the concept of similitude. For Steiner
similitude depended upon a fixed ratio. For Gergonne similitude followed from homologous
sides. Though Steiner’s approach seems more abstract and removed from construction, he
was able to fully visualize his two primary objects: points and circles. Gergonne’s choice
to not use figures facilitated defining circles as infinitely sided polygons. As our figure of
three equilateral triangles shows, any figure of a polygon would immediately particularize
the concept, and many sided polygons could cause unnecessary visual complication for the
relationship discussed. Gergonne was further able to take advantage of an independence
from the figure by considering variable circles. This form of animation added another

dimension to Gergonne’s exposition, allowing him to consider multiple cases simultaneously,
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or extend a result from one configuration to another, not unlike Poncelet’s principle of
continuity.

The advantages to Gergonne’s figure-free presentation were mitigated by the necessary
profusion of names and labels corresponding to respective relationships in each possible
combination of cases. Steiner’s figures enabled an immediate transfer of information, al-
lowing the reader to see concurrence, collinearity, tangent lines, etc. Though Gergonne
employed verbs suggestive of visual cognizance, the reader could only see text and whatever
figures he or she constructed following Gergonne’s instructions. In the situation of a vari-
able figure, the reader would need to imagine the variable objects discussed, perhaps with
the aid of multiple figures. Gergonne classified this article as pure geometry, but animated
figures exceeded the bounds of circle and straight-edge constructions.3”

Having fully elaborated the constructions and properties of similitude, Gergonne turned
his audience’s attention to the relationship between a coplanar circle and point. He spoke
confidently with reference to his readership’s background knowledge: “On sait que si, par
une point situé comme on le voudra sur le plan d’un cercle, on méne & ce cercle une sécante
arbitraire ; le produit des distances de ce point aux deux intersections de la sécante avec
la circonférence sera une quantité constante, indépendante de la direction de cette sécante”
(ibid, 294)3% Gergonne acknowledged that Steiner had designated this constant product
“indistinctly” as the power of a point with respect to a circle or the power of a circle with
respect to a point.

Following Steiner, Gergonne explained how to construct the power of a point that is
exterior, on, or interior to a circle. However, as Gergonne continued to describe the re-
lationship between two circles, his technical vocabulary and order of exposition aligned
instead with the French geometer Louis Gaultier, who had first coined the adjective radi-

cal to describe objects in the fixed product ratio that Steiner called equal power (Gaultier

37Gaultier, whom Gergonne referenced directly, had employed variable figures, but only to the extent of
describing when a circle became a line or reduced to a point. In all of these cases, he provided accompanying
figures for various stages of the derivation (Gaultier (1813), 153). However, the use of animated figures was
common in descriptive geometry, particularly with respect to developable curves, for instance in generating
a curve of double curvature by a continuous movement of a line tangent to a given curve (Monge (1798),
40, 106). Carnot employed variable points to transform a primitive system. His first example concerns a
triangle ABC', in which one raises a perpendicular from BC to A, called AD, that Carnot initially supposes
falls between points B, C'. Then to transform the system,

[...] concevons que le point C' se meuve vers le point B, jusqu’a ce qu’il ait passé le point D.
La base BC' est donc variable, ainsi que le segment CD, tandis que l’autre segment BD est
constant. (Carnot (1803), 20)

“[...] imagine that the point C' moves toward the point B, just until it passes the point D. The
base BC thus varies along with the segment CD, such that the other segment BD is constant.”

We have seen how Carnot’s systems were adapted by Poncelet in Chapter II (Section 2.5), and Gergonne
may also have been drawing from these more recent publications (Poncelet (1822)).

38«One knows that for any secant drawn from a coplanar point through a circle, the product of the distance
from the point to the two intersections of the secant with the circumference will be a constant quantity,
independent of the secant’s direction.”
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(1813)). With respect to the order of exposition, Gergonne began with circles, again skip-
ping over Steiner’s preliminary treatment of points. In particular, a second coplanar circle
whose radius squared was the power of its centre with respect to the given circle was called
the radical circle, and the given circle was declared primitive.

In the next section, Gergonne considered the locus of all points such that the difference
of the squares of their distances to two fixed points would be constant. He asserted that

)

one could demonstrate “by the elements,” referring most likely to Euclid’s Elements, that
such a locus would be a straight line, perpendicular to the line containing the two points.
So by definition, all points of equal power with respect to two circles would lie on a straight
line perpendicular to the line containing their centres. Gergonne acknowledged Steiner’s
designation of the line of equal power, but decided “we will continue to call it their radical
azxis, after M. Gaultier.” Gergonne elaborated four possible cases of two circle relationship—
one interior with no common points, exterior with no common points, intersecting, or
tangent (interior or exterior) at a point. In the latter two cases, the radical axis would be
respectively the common chord or the common tangent—in which case the common power
would be 0. For a pair of exterior circles, the radical axis would bisect their common tangent
segments. Thus, a third circle perpendicular to both given circles would have its centre on
their radical axis. With interior circles, a third circle in which the four smallest half chords
to the other circles passed through its centre would have its centre on the radical axis.

With the concept of a radical axis, Gergonne examined many of the same consequences
as had been detailed by Steiner with his line of equal power.?? Likewise, both geometers
examined equivalent properties in the concept of a radical centre. In Gergonne’s nota-
tion, three non-concentric circles C,C’, C” would have three radical axes R, R', R” when
considered pairwise. If r was the point of intersection of axes R’ and R” then r would si-
multaneously have equal power with respect to circles C” and C' as well as circles C' and C’.
Thus point r would also lie on line R. So the three radical axes concurred at what Steiner
had called the point of equal power, and Gergonne would call, again following Gaultier, the
radical centre of three circles.

Gergonne returned to his earlier technique of a circle of variable size and position and
determined that as one of the three circles varied, the radical centre would traverse the
radical axis of the two fixed circles. He declared that this result provided a means to
construct the radical axis of two non-intersecting circles with the aid of an arbitrary third
auxiliary circle intersecting them both. Further, in all cases one could also construct the
radical centre of three given circles. By again allowing one circle to move and grow in
the plane, Gergonne was thus able to simultaneously consider multiple positional cases and

generalize from an initial particular configuration.

39 A series of circles orthogonal to these circles and centred on their radical axis had also been considered
by Gaultier, in the section of his memoir titled “Suites radicales des cercles” Gaultier (1813).

206



Gergonne posited that three coplanar circles generally would only have one radical
centre, except in the case where three or more circles shared two common points. In this
exceptional case, all the points through the common chord could be considered as radical
centres of all the circles. With a dash of suspense, Gergonne claimed there existed additional
situations where circles could share an infinite number of radical centres, “Nous allons méme
voir que des cercles peuvent avoir une infinité de centres radicaux sans passer par les deux
mémes points” (ibid, 299).40 As Steiner and Gaultier had observed, all circles N, N', N, ...
orthogonal to two given circles M and M’ would have radical centres lying on the radical
axis of M and M’. Reciprocally, the common radical axis to all such N, N’, N”, ... would
be the line joining the centres of M and M’. Gergonne offered the “familiar example” of
the Ptolemaic or Mercator circles, the projection onto a plane of perpendicular spherical
lines of meridians and parallels, that is, longitude and latitude. Within these or any sets of
perpendicularly intersecting circles, any line of latitude could be considered as the radical
axis of any two lines of longitude and reciprocally. Thus, any set of such N, N, N”, ...
would share an infinite number of collinear radical centres, but without necessarily sharing
the same two points, as Gergonne had advertised.

In the following Part VIII, Gergonne veered from Steiner’s text to formally discuss poles
and polars. Gergonne’s choice of content appears motivated toward reproving his construc-
tion for the Apollonius problem, now by purely geometric methods. As we saw above,
Gergonne’s original solution had been framed as evidence in favour of analytic geometry.
The same construction, except for a change in point names, remained as simple and elegant
in a purely geometric setting, thus in some ways undermining Gergonne’s initial intent.
Gergonne unabashedly explained his divergence from Steiner’s text as an opportunity to

showcase his preferred solution.

Tout amour propre d’auteur a part, cette construction, que nous avons don-
née pour la premiere fois il y a plus de douze ans (Mémoires de Turin pour
1814), nous parait de beaucoup préférable a toutes celles qu’antérieurement et

postérieurement on a données du méme probléme. (ibid, 310)%!

Having asserted the priority and superiority of his solution, Gergonne returned to
Steiner’s concept of common power in the tenth part. He carefully elaborated a construc-
tion of the circle of common power. Gergonne exhibited a meticulous textual attention to
point names and object relations, which Steiner had been able to achieve through the use

of a figure.

40«We will even see that circles can have an infinity of radical centres without passing through the same
two points.”

41« A1l self love on the author’s part aside, this construction, that we gave for the first time more than a
dozen years ago (Mémoires de Turin in 1814), appears to us preferable to all those that have been given of
the same problem before or afterwards.”
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Gergonne’s virtual figure is illustrated in Figure 4.26. Consider the circles C' and C,
mutually tangent to a third circle O. The respective points of tangency ¢ and ¢’ would be
collinear with the direct similitude point of C' and C’, d”, if the circles were tangent in the
same way; or collinear with their inverse similitude point ¢’ if the circles were tangent in
different ways. The common tangents drawn to circles C' and O at t and to circles C' and O
at t/, would intersect at a point o, lying on the radical axis of C' and C’. From this point as
a centre, Gergonne instructed the reader to describe a fourth circle w with radius ot = ot’.
The constructed circle w would intersect C' and C’ orthogonally at ¢ and ¢’. Then from
properties of circles centred on the radical axis, either the tangent segment or the smallest
chord drawn to w through point d” or ¢’ would be constant regardless of the situation of
the tangent circle O. Moreover, the square of the tangent or the smallest chord will be the

constant product d”t - d’t' or i"t - i"'t.

Figure 4.26: Construction of circle w for C, C’ tangent in the same way

Gergonne summarized the results of his construction in a theorem. If one draws an
arbitrary common secant through one of the two similitude centres determined by two given
circles, then the product of the distances from this centre to the respective intersections of
the secant with the circles will be constant regardless of the secant’s direction, as long as the
corresponding radii are not parallel. This constant is the common power of the circles. A
further circle centred at one of the centres of similitude of the two given circles, whose radius
squared equal the common power of the two circles with respect to this similitude centre
was defined as a circle of common power. Gergonne noted that Gaultier had “already
considered” such circles, but had not given these circles a special designation (Gaultier
(1813)). Circles of common power of two given circles C' and C’ would be orthogonal to all
circles tangent to both C' and C’.

In the eleventh and final section, Gergonne returned to three given coplanar circles,
essentially the hypothesis of the Apollonius problem. Using Steiner’s concept of common
power, Gergonne derived a theorem, which he attributed to Gaultier. The centres of the

eight circles tangent to three given circles are distributed pairwise on the perpendicular lines
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drawn from their four similitude axes to the radical centre of the three circles. Gergonne
thus brought Steiner’s research another step toward solving the Apollonius problem, but
without elucidating the details of a full proof.

Gergonne’s presentation of Steiner’s article brought the idiosyncratic German article up
to date with contemporary French mathematics. To begin with, the article was now in a
language readable by French audiences, or at least those who read the Annales. Further,
Gergonne had added several citations and modified Steiner’s vocabulary to reflect current
French usage. While much was added, not all of Steiner’s original content survived transla-
tion. Most notably, Steiner’s figures were not repeated, and with the change of notation his
figures as published in Crelle’s Journal would not have been very useful to a non-German
reader. Further, the French article assumed a stronger knowledge base, and skipped over
Steiner’s foundational exposition. Instead, Gergonne spent more space describing how con-
structions could be found for all possible cases of circle relationships. Sometimes Gergonne
treated the cases individually, and at other times he used a variable circle to derive a gen-
eral statement. By orienting Steiner’s content toward the Apollonius problem, Gergonne
obscured its initial appearance as a set of tools applicable to a variety of problems. Most
significantly, while Steiner had emphasized that the same properties determined for a circle
would likewise hold for any planar conic section, Gergonne only mentioned this generaliza-
tion in the introduction and hinted at it in the conclusion.

Gergonne’s conclusion, designated as a post-script, commented upon another article of
Steiner’s (Steiner (1826b)) in which he had pointed out several exceptions to a theorem
due to Monge. Gergonne defended Monge and dismissed the exceptions as too particular to
affect the theorem in its entirety. He further assessed the importance of variable magnitudes

in the work of Steiner himself.

On doit étre d’autant plus surpris que M. Steiner ne l’ait pas entendu dans ce
sens que précisément un des principaux avantages de ses belles constructions,
pour les probléemes de contact, est de se plier sans effort aux cas ou tous ou
partie des cercles ou des spheres donnés deviennent des points, des droites ou
des plans. (314)%?

Steiner had perhaps failed to recognize the crucial role of this effortless generalization in his
own constructions. In the work of Steiner, there was no stated mechanism for generalizing
from a sphere to a plane or from a circle to a general conic section. The process was simply
assumed as possible. Gergonne continued by comparing ancient and modern geometry, to
the advantages of the latter. For example, ancient geometers had not had the “freedom” to

consider a straight line as part of the circumference of a circle of infinite radius.

42«3We are all the more surprised that M. Steiner has not understood it in this sense, as precisely one of
the principle advantages of his beautiful constructions, for problems of contact, is to effortlessly conform to
cases where all or some of the circles or spheres given become points, lines, or planes.”
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[...] mais n’est-ce pas précisément a cette maniere plus large d’envisager ’étendue
géométrique que les modernes sont en partie redevables de leur supériorité dans
la géométrie pure? Supériorité que les mémes géometres pourront bien aussi
leur contester; mais qui n’en demeurera pas moins un fait patent pour qui ne

voudra pas se refuser a I’évidence.*3

Gergonne took full advantage of the dynamic capabilities of these modern concepts. Thus,
Steiner’s article, as interpreted by Gergonne, functioned as evidence in favour of the supe-
riority of modern pure geometry, just as Gergonne’s earlier Apollonian proofs had served

as representatives of the superiority of analytic geometry.

4.2.5 La publicité que ce géometre a donnée a son travail: Steiner re-
viewed in the Bulletin and attempts at funding in Berlin

Soon after Gergonne’s interpretation of Steiner’s paper appeared it was reviewed and sum-
marized in the Bulletin de Férussac. Here too, the solution to the problem of Malfatti
was advertised as finally receiving a satisfactory purely geometric solution, and the con-
tent extended beyond Gergonne’s translation by actually providing a summary solution. In
describing Steiner’s exposition, the circle of common power was emphasized as a fruitful

innovation in problem solving.

Les moyens de solution de M. Steiner se tirent uniquement de la théorie connue
des centres et axes de similitude, de celle des axes et centres radicaux, de celle
des poles et polaires, et enfin de celle de ce que l'auteur appelle cercles de
commune puissance de deux cercles donnés, ce qui montre toute la fécondité et
toute I'importance de ces diverses théories, et justifie ’attention particuliere qui
leur a été donnée par plusieurs géometres francais depuis déja plusieurs années.
(Anonymous (1827b), 277)%

The Bulletin further pointed out how Gergonne had modified Steiner’s work to include his
solution of the Apollonius problem, which Gergonne “persiste & croire bien préférable a
toutes celles qui ont été données antérieurement et postérieurement du méme probléme.”*?

The review continued by explaining Steiner’s circle of common power, in order to provide

43“[...] but is it not precisely in this broader way of envisaging geometric magnitudes that the moderns

are in part owed their superiority in pure geometry? Superiority that the same geometers could also contest;
but is no less a patent fact for those who will not deny the obvious.”

44«Steiner’s means of solution rest uniquely on the known theory of similitude axes and centres, of that
of radical axes and centres, of that of poles and polars, and finally of that which the author calls circles of
common power of two given circles, which shows all the fruitfulness and all the importance of these various
theories and justifies the particular attention that several French geometers have given them already for
several years.”

454 ] continues to believe very preferable to all those which have been given before and after of the same
problem.”
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“une idée des procédés de M. Steiner.” In this summary Gergonne’s vocabulary and nota-
tion were employed, and the reviewer showed how the circle of common power could be used
to sketch a solution to the Malfatti problem. More so than in the text of Gergonne, a back-
ground knowledge in geometric constructions (such as similitude centres, constant ratios,
and tangent circles) would be required to follow the review. No intermediate constructions
were presented and no figures were employed.

The reviewer concluded by considering some philosophical issues concerning the rela-
tionship between analysis and geometry. In particular, he noted the simplification of both

methods effected by the development of new concepts and terminology.

Les analystes s’étant apercu que certaines fonctions assez compliquées se repro-
duisaient fréquemment dans leurs calculs, les ont appelées exponentiels, loga-
rithmes, sinus, tangentes, dérivées factorielles, etc.; ils ont créé des signes abrévi-
atifs pour les désigner, et leurs formules en ont acquis beaucoup de clarté et de
concision. Puis donc qu’il est certains points, certaines droites et certains cer-
cles dont la considération se représente fréquemment dans les spéculations de
géométrie, il est naturel d’en user de méme a leur égard, et de les appeler, suiv-
ant leurs propriétés, centres de similitude, centres radicaux, polaires, axes de
similitude, axes radicaux, cercles de commune puissance, etc. Cette attention
doit introduire inévitablement des simplifications analogues dans ’énoncé des
théoremes et dans la solution des problemes qui appartiennent & la science de
I'étendue. (279)46

Such a comment appeared to reinforce the importance given to Steiner’s development of
new vocabulary, such as circles of common power. Although the review had begun by
praising Steiner’s problem solving, the emphasis ultimately returned to his new tools and
their potential for future use. In this respect, the review presented a much more accurate
summary of Steiner’s original mode of presentation than had Gergonne’s “translation.”
Meanwhile, Steiner was working as a private teacher in Berlin, and solicited his well-
placed acquaintances, Karl Friedrich von Kléden (1786-1856), an educator and the director
of the Berlin Gewerbeschule where Steiner then worked, and Friedrich Bessel (1784-1846),
a mathematician and astronomer, to write in support of his application for funds from the

ministry. Their letters along with Steiner’s applications and the ministry’s response were

46« Analysts perceiving that certain quite complicated functions are reproduced frequently in their calcula-
tions, have called them exponentials, logarithms, sines, tangents, factorial derivatives, etc.; they have created
abbreviated signs to designate them, and their formulas have acquired greater clarity and conciseness. And
thus for certain points, certain lines and certain circles whose consideration is frequently represented in
geometric speculations, it is natural to do the same with respect to them, and to call them, following their
properties, similitude centres, radical centres, polars, similitude axes, radical axes, circles of common power,
etc. This attention must inevitably introduce analogous simplifications in the statement of theorems and in
the solution of problems which belong to the science of magnitude.”
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published in Julius Lange’s 1899 biography (Lange (1899), 18-26). Here Steiner emphasized
his methodological choices and declared his dedication to synthesis. But while labeled as
“synthesis,” Steiner’s contemporaries recognized his method as personal and unique. Kléden

began his review by pointing out the novelty as a positive attribute.

Dabei ist die Methode durchaus eigentiimlich und bisher fiir diese Aufgaben
nicht versucht. (Lange (1899), 18)47

Similarly, Bessel described Steiner as “ein erfindungsreicher und origineller Kopf,” even in
comparison to the work of Poncelet (21).4% In particular, both Kléden and Bessel char-
acterized recent geometry as almost exclusively confined to analytic approaches. On the
one hand, they praised the speed of analytic methods that could address problems “com-
pletely inaccessible” [véllig unzugdnglich] to synthetic methods. On the other hand, syn-
thetic geometry had pedagogical benefits. Steiner’s publications revealed the “formative
power of geometry” [bildende Kraft der Geometrie] and formed more “coherent” and “com-
plete” educational material than the “disjointed problems” of analytical geometry. Like
Gergonne, Cournot, and anonymous Bulletin reviewers, Kloden and Bessel noted a reemer-
gence of pure or synthetic geometry, now capable of favourable comparison against analysis.
Though Steiner was presented as contributing to this reemergence, his method was set apart
from past examples of synthetic geometry in the work of Gregory Saint-Vincent, Christian
Huyghens, or Newton (21).

Steiner framed his dedication to synthetic geometry as illustrative as his broader philo-
sophical search for systematicity [Systematiztit], organic unity [organischen Einheit], and
intuition [Anschauung] based on his early education under Johann Heinrich Pestalozzi
(1746-1827). Steiner supported a unified geometric approach, and so dismissed many con-
temporary results in mathematics, regardless of method, as invented haphazardly.

Steiner provided a narrative in which he studied and rejected combinatorial analysis
and differential calculus. Even his first encounters with geometry textbooks had revealed
an arbitrary or even empirical approach, as if the individual theorems were the aim of
science and the general organic unity remained obscured. Steiner likewise distinguished his
form of synthetic geometry from that of the ancients, as more general and complete, but still
employing a rigorously genetic path [streng genetischen Gang| building up from simple to
more complex concepts. In these qualities of generality and completeness, Steiner observed

the connection and possible contributions between his method and analytic geometry.

Dem analytischen Geometer endlich diirfte die Arbeit eine reiche Ausbeute, wohl

gar eine Erweiterung seiner Methode gewihren. (ibid, 21)%°

47«The method is quite particular and has not previously been tried for these problems.”
48«[ ] an inventive and original thinker [...]”
49The work finally will enable a rich profit for the analytic geometer, as well as an expansion of his method.
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While his reviewers and recommenders saw Steiner’s work as synthetic geometry in com-
petition with analytic geometry, Steiner viewed synthetic geometry as a much greater and
autonomous achievement, whose systematicity, unity, and intuition contrasted against all

of mathematics.

Demzufolge wandelte sich der Begriff der Systematizéit, wie er aus den vorhan-
denen geometrischen Lehrbiichern zu entnehmen ist, ganz und gar um; den
Zusammenhang der Anschauungen strebte ich aus der Einheit der Construc-
tionsvermogens selbst an; ohne es mir besonders bewusst geworden zu sein,
strebte ich nach der eigentlichen Genesis, die der synthetischen Methode, An-
schauungen miteinander zu verkniipfen, zu Grunde liegt, und auf welcher alle
geometrische Erfindung beruht. (ibid, 23)%°

In this respect, Steiner separated his work as more universal and grounded in higher prin-
ciples, compared to even contemporary synthetic geometry as practised at the Ecole poly-
technique.

Steiner presented his work as above all systematic and intuitive, qualities that he seemed
to recognize were not immediately apparent in his initial publications. He proposed that his
recent articles in Crelle’s Journal constituted samples [Proben der Technik] of his manner of
proceeding [ Verfahrensweise]. His request for funding was motivated in part by wishing to
publish a larger text, already written, that fully revealed his geometric approach based on
a few theorems of elementary geometry. We saw similar language in Steiner’s introduction
to “Einige geometrische Betrachtungen,” where he suggested a visible connection between
seemingly disparate problems.

However, the ministry replied, there was no money available for such enterprises. They
suggested Steiner seek employment at a Gymnasium. Steiner would only obtain a position
at the University of Berlin in 1832 with the support of Jacobi, and Wilhelm and Alexander
von Humboldt.’! As we will see, Steiner’s struggle for full employment was not unique, as

the lack of available positions equally affected the analytic geometer, Pliicker.

50« Accordingly, the concept of systematicity, as it is to be taken from the existing geometry textbooks, is
entirely transformed; I strove for the connection of the intuitions from the unity of the means of construction
itself; without it being especially known to me, I strove for the actual genesis that lies at the foundation
of the synthetic method, seeking to link intuitions with each other. On [this genesis] rests all geometric
invention.”

510n the recruitment of Steiner to the University of Berlin, and his links to the Humboldt brothers, see
Kurt Biermann’s Die Mathematik und ihre Dozenten an der Berlin Universitat (Biermann (1973), 38-41). On
Alexander von Humboldt’s scientific influence through his direct involvement with German mathematicians
on the subject of number theory see Pieper (2007).
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4.2.6 Un exemple fort remarquable de DP’application de cette derniere
méthode: Pliicker’s proof of the Apollonius problem (1827)

Plicker was well aware of the French version of Steiner’s article and the associated publicity
when he composed his introduction to “Géométrie Analytique. Mémoire sur les contacts
et sur les intersections des cercles” (Pliucker (1827)). Although Pliicker followed the same
narrative as Steiner, from similarity to common power, we will see that Pliicker’s use of
coordinate equations, classified by Gergonne as géométrie analytique, rendered his objects
very different. Further, Pliicker had begun publishing and corresponding with contemporary
French mathematicians in 1826. Consequently, even just one year later, he was far more in
tune with contemporary research. In particular, he appeared comfortable using ideal radical
axes—a descriptor only recently introduced by Poncelet in 1820 and just beginning to be
acknowledged by other geometers.®? In fact, Poncelet’s influence in this text is evidenced
by much of Pliicker’s choice of vocabulary including ideals, conjugates, and inverse or direct
relations as well as one of his constructions. However, in introducing his work Pliicker
explicitly compared it to Steiner’s and strongly suggested that his own presentation was

simpler and more rapid.

[...] mais la publicité que ce géometre a donnée a son travail ne nous a pas paru
un motif suffisant pour renoncer a publier un sommaire du notre, qu’on sera
peut étre bien aise [sic] de lui comparer, et dont on trouvera peut-étre méme la

marche plus rapide et plus simple a quelques égards. (Pliicker (1827), 29)°3

Pliicker was also familiar with Gergonne’s several solutions of the Apollonius problem in
1827, which he summarized in his Analytisch-geometrische Entwicklungen the following year
as an analytic determination of the tangency points to the desired circle lying on each of
the given circles (Pliicker (1828b), 102-105). In his book, Pliicker credited Gergonne with
simplifying the problem by finding tangency points rather than centres of the desired circles.
The solution and proof Pliicker provided in his Entwicklungen followed Gergonne much
more directly than his solution published in the Annales. The former version was a very
short exposition relying upon well chosen coordinate axes, without any “modern” geometric
terminology. In the article we consider here, Pliicker would briefly cite Gergonne’s solution,
but his method differed substantially through the adoption of Poncelet’s new geometric
objects.?*

52Following Poncelet’s introduction, ideal secants, chords, and points of intersection began to appear in
the Annales in 1826 (including texts by Charles Sturm (Sturm (1826a), Sturm (1826b)), Etienne Bobillier
(Bobillier (1827)), and Michel Chasles (Chasles (1828a))).

53“[...] but the publicity that this geometer has given to his work does not appear to us as a sufficient
motive for renouncing publishing a summary of ours, so that one will be able to better compare them, and
then one will perhaps even find our path more rapid and more simple in several respects.”

54 Although Pliicker’s name remained misspelled as “Pluker” in the title page of this article, we are fairly
certain that the article was written by Pliicker himself due to numerous footnotes either signed by “JDG”
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Pliicker organized his article into enumerated sections, each one roughly corresponding
to a new construction or proposition that he could then refer to parenthetically. Overall,
his pace was more advanced than that of Steiner or Gergonne. His definitions were succinct
and clearly motivated toward the problem solving at hand. Pliicker began directly with
three circles, which he designated as ¢ = 0,¢ = 0,¢” = 0. Considered pairwise the real
or ideal common chord, “that is, radical axis,” for these circles would have the equations
d—d"=0,d"-c=0,c—c = 0. Since these radical axes each intersected two by two at the
same = and y coordinates, they all three would concur in a single point, the radical centre.

In a footnote, Pliicker attributed this “turn of reasoning” [tour de raisonnement], where
common points between two coordinate equations were represented through subtracting
linear equations, to Gergonne. This use of coordinates would come to be known as “abridged
notation”%® In an extended proof using conventional coordinate equations (occupying three
pages with one footnote), Pliicker proved that the radical axis to a point on the circle’s
circumference would be a tangent line through this point.

Pliicker asserted that the concurrence of the common chords (Pliicker used this designa-
tor here, rather than radical axes) could be “easily” applied toward finding a circle passing
through two points and tangent to a given circle. He reasoned that the problem would in
general have two solutions, and the two desired circles would share a radical centre with
the given circle. The radical centre would lie on the common chord of the two solution
circles—that is, the line containing the two given points. The common tangents to the given
circle and each of the two solution circles would all intersect at the radical centre. Should
one of the solution circles be replaced with any other circle passing through the two given
points, the radical centre would remain invariant. Thus Pliicker constructively determined
how to find the unique radical centre of the desired circles by intersecting the line containing
the given points with the common chord shared by the given circle and an arbitrary circle
containing the two given points. With the use of an arbitrary fixed circle, Pliicker achieved
the same result as Gergonne had with a variable circle.

Having found the radical centre, tangents from this point to the given circle would
determine the tangent points shared with the desired solution circles. Finally, extended
radii drawn from these tangent points would intersect the perpendicular raised from the
midpoint of the two given points at the centres of the desired circles. Pliicker’s exposition

was wholly descriptive, without any use of letters to name objects.

or by “Plucker”a more correct spelling and indicative that Pliicker knew of the contents prior to final
publication. In the Gergonne-edited Pliicker (1826b), the lack of any JDG signed footnotes is conspicuous!

55Carl Boyer traced the invention of this “abridged notation” back to Lamé’s 1818 text (Boyer (1956),
Lamé (1818)). Pliicker was among the early adopters, along with Etienne Bobillier (1798-1840), who had
employed abridged notation in the article immediately preceding Pliicker’s. Pliicker would frequently employ
abridged notation in his Analytisch-geometrische Entwicklungen (Pliicker (1828a)).
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Pliicker then considered the situation where the given circle degenerated into a straight
line, in which case his initial construction “se trouve en défaut.” Returning from abridged

notation to coordinate analysis, the second degree equations of any two given circles were
(x—a)+ (y—b)> =7 (z =)+ (y - V)" =1~

By taking the difference of these equations and choosing the origin as the radical centre,
Pliicker derived the equation 72 — (a? + b%) = r2 — (a’? + b'?) as that of the radical axis.
He concluded that from any point on the radical axis the tangent segments drawn to the
two circles would be of equal length. Since the given line would be a common tangent for
both solution circles, this line would meet the radical axis midway between the two tangent
points. As in the previous construction, the radical axis would not change when any other
circle passing through the given points replaced one of the solution circles. Further, the
tangent segments drawn from the radical axis to the two circles would still be of equal
length. Pliicker proceeded to elaborate the geometric construction. Notably, he persisted
without labels for objects, thus eliminating the profusion of letters found in Steiner and

Gergonne.

Soit décrit arbitrairement un cercle qui passe par les deux points donnés ; par
I'intersection de la droite qui joint ces deux points avec la droite donnée soit
menée une tangente a ce cercle ; soit portée la longueur de cette tangente de
part et d’autre du méme point sur la droite donnée ; on déterminera ainsi ses
points de contact avec les cercles cherchés ; alors les perpendiculaires élevées
a cette droite par ces deux points couperont la perpendiculaire sur le milieu
de la droite qui joint les deux points donnés aux centres de ces mémes cercles.
(Pliicker (1827), 33)°¢

Following this introductory construction, Pliicker applied these same tools toward finding a
circle tangent to three given circles, his solution to the Apollonius problem. In this context,
Plucker considered circles of variable size, which he described precisely as represented by
coordinate equations with variable coefficients. He began by presenting equations of the

three given circles, which he would afterward describe as “primitive.”

(0= 0+ (g~ b)? =1?

56« Arbitrarily describe a circle through the two given points; from the intersection of the line joining these
two points with the given line, draw a tangent to the circle; carry the length of this tangent segment from
the same point on the given line; one thus determines the points of contact of the line; then perpendiculars
raised to this line through the tangent points will cut the perpendicular on the midpoint of the line joining
the two given points at the centres of these circles.”

216



(.T _ al)2 + (y _ b/)2 — 7“/2

(.’E . a//)2 + (y o b//)2 — 7“,/2.

Then, three new circles, respectively concentric to the three given circles, with their

radii augmented by a single fixed quantity R would have the following equations:
(2 =0)* +(y=b) = (1 R (2= a2+ (y—V)? = (4 R)% (= a2 (y—B')% = (' R

Pliicker chose a coordinate system such that the origin was the radical centre of the three
primitive circles. He then calculated with several lines of subtraction, multiplication and
addition that when all the radii of three coplanar circles were augmented or diminished by
the same quantity R, their radical centre would describe a straight line as R varied. This

line passed through the origin and had the linear equation,
{r(d —d")y+7" (" —a)+r"(a—a) o +{r(b=0")+7" " —b)+r"(b—-b)}y =0. (4.2)

Uncharacteristically Pliicker did not enumerate his equations in this article. However, we
designate this line as (4.2) as it would reappear frequently in different guises throughout
Plicker’s exposition.

In his fourth section, Pliicker continued to consider the same three given circles. He
introduced similitude centres, stating the “known” equations of the direct similitude centres

for the three given circles with the same equations as above considered pairwise:

T = ,,,/a//_,r,//a// T = ,r,//a//_,’,a/// r = T,a/_rla

r/—rlt r/—r r—r’
oy o p—rb! b —r'b
Z/ — T —rlT y — T y — =7

These points were collinear, lying on the direct similitude axis of the three circles of

which one could “easily” find the equation:

r =)+ =b)+r"(b-V)r =r(d" —a)+1r'(a" —a)+1r"(a—d)y.

Considering this equation with respect to the equation of the line traced by the radical
centre found in the previous section (4.2), Pliicker concluded the lines were perpendicular,
and announced this as a new theorem that enabled an alternative construction of the line
containing the variable radical centre.

Pliicker began his fifth section by constructively describing three new circles derived

from his primitive circles. Each pair of the three primitive circles defined a direct similitude
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centre. Each of the three new circles would be centred on one of these direct similitude
centres and share a radical axis with the respective circle pair. Then the three new circles
would have the same radical centre as the given circles. Moreover, direct similitude centres
were collinear and the circles shared a unique radical axis through the radical centre and
perpendicular to the line containing their similitude centres. This new radical axis was “none
other than” the line traced by the variable radical centre (4.2). Thus Pliicker provided yet
another way to find what he now called that line. Gergonne interjected with a footnote, these
new circles were “what we have called, following M. Steiner, circles of common power of
three primitive circles, taken two by two.” Pliicker gave no special designation nor equations
for these new circles in this context.

Pliicker presented an alternative construction of circles concentric to the three primitive
circles. Instead of simultaneously augmenting their radii, the three circles could alternatively
augment or diminish, but still by the common variable quantity R. Then their centres of
similitude would vary along a line perpendicular to the inverse similitude axis of the three
given circles. Pliicker observed that he could replace circles with lines or points in this
context without altering the results. This comment connected to Gergonne’s concluding
remarks to his review of Steiner on the advantage of generality in modern geometry (Steiner
and Gergonne (1827)).

Pliicker declared that applying the properties of these variably concentric circles toward
finding the eight solutions of the Apollonius problem was “visible.” He limited the problem,
“pour fixer les idées,” to the situation where the circles sought were tangent to the three
given circles in the same way: either all exterior [les touche tous trois extérieurement], all
enveloping [les enveloppe tous trois], or all enveloped [enveloppé]. By varying the hypotheses
with respect to the “la nature des contacts,” Pliicker arrived at the general theorem that the
centres of eight circles that are simultaneously tangent to three given circles are distributed,
two by two, on the perpendiculars raised to the radical centre of these three circles from their
four similitude axes. He suggested that by “following a path analogous to that of Viete”
[en suivant une marche analogue a celle de Viéte] one could deduce the solution of the
Apollonius problem from this theorem. However, his own analysis would be “much more
elegant and brief” [beaucoup plus élégantes et plus briéves] (Pliicker (1827), 37). Indeed,
Viete’s solution, which was referenced also by Gergonne, contained numerous cases.

Working toward this promised solution, Pliicker transitioned to more constructive lan-

guage and considered the equations of two named circles (¢), (¢/) respectively,

(SC *CL)Q +y2 — 7’2,(56 7a/)2 +y2 _ T/2.57

5TThe second equation is misprinted in the Annales as (z — a’)* + ¢y'> = r'2.
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Choosing the y-axis as their radical axis, then a — > = a2 — r"2. Using this relation,

Pliicker combined these equations to demonstrate that circles (C), (C’) both tangent to
circles (¢), (¢) would share a similitude centre lying on the y-axis, that is, the radical axis
of (¢),(c!). If the two circles were tangent in the same way, then their direct similitude
centre would be on the radical axis, otherwise their inverse similitude centre would be.
Pliicker declared that this relation was “evidently” reciprocal between the circle pairs.

He then introduced a third circle (C”), also tangent to circles (¢) and (¢), and deduced
from the reciprocal relationship that the radical centre of the three circles would coincide
with one of the two centres of similitude of (¢) and (¢/). The similitude centre was direct
or inverse depending on whether the mode of tangency between the circles was the same
or different. Pliicker concluded with a generalization of these results, “one sees that even if
the circles (C), (C"), (C"), ... were very numerous, they would all have their radical centre
at the same unique point” (39).

Pliicker continued to investigate this unique point in his seventh section, constructing a
circle centred around this point with radii equal to a tangent segment drawn to any one of
circles (C), (C"), (C"),.... This new circle would intersect (C), (C"), (C”), ... orthogonally,
and so Pliicker called it their orthogonal circle. Gergonne again footnoted this statement,
reminding the reader that this circle was Steiner’s circle of common power. However, Ger-
gonne’s attributions obscure the fact that Pliicker designated these circles as orthogonal with
respect to circles (C), (C”), (C"), ..., while they are circles of common power, in Steiner’s def-
inition of the term, with respect to circles (¢), (¢). The two geometers emphasized different
constructions in defining these circles, which are reflected in their names.

Pliicker then examined the relationship between the orthogonal circle and the circles
(¢), (). If (¢), () intersected, one could consider their points of intersection as circles with
no radii, to which circles (¢) and (¢’) would both be tangent. Thus the intersection points
would be among the circles (C), (C'), (C”), ..., and consequently the orthogonal circle would
pass through them, providing an easy construction of the orthogonal circle in this case. In
all other cases, the orthogonal circle would share a radical axis with circles (c), (¢/). This
constructive property subtly confirmed that these were the same circles Pliicker had first
described in Section 5 with respect to (c), (¢).

Combining his earlier results, Pliicker concluded that any pair of the three circles (C),
(C"), (C™), as specified in the previous sections, would have one similitude centre on the
radical axis of (¢), (¢/). So three of their six similitude centres will lie on this radical axis.
Pliicker attributed the general result to Monge, that the four similitude axes of three circles

would also be the radical axes of the four pairs of circles at once tangent to these three.®

58 Monge explored properties of curves using cones and their vertical and horizontal projections in his
descriptive geometry, however these terms were defined by their three dimensional corresponding objects (see
Monge (1798), in particular, pages 96-98). In his descriptions, Monge used neither the term “similitude”
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Finally, in Section 9, Pliicker began describing “diverses modes” of construction for
solving the Apollonius problem. The first solution was presented as original, and derived
from his most recent findings, as referenced in parentheses to section numbers. Pliicker

employed the orthogonal circle (circle of common power) as the primary tool.

Soient construits le cercle qui coupe orthogonalement les trois cercles donnés,
ainsi que leurs quatre axes de similitude. Si ces axes coupent le cercle orthogonal,
on acheévera (8) la construction, en décrivant (1) des cercles passant par chaque
couple de points d’intersection et touchant en méme temps 'un quelconque des
cercles donnés. (ibid, 40)5?

The other two constructions required further theoretical development. Pliicker began a
new section and constructively described the pole and polar relationship.%° Let p and p’ be
the points where circles (¢), (¢/) were respectively tangent to one of the three given circles
designated as (C'). Then the line pp’ would pass through the similitude centre of (¢), (),
which by (6) was also the radical centre of the three given circles. Common tangents drawn
from points p and p’ would concur at the radical centre of circles (¢), (¢’) and (C), and
consequently the line pp’ contained the pole of the radical axis of (¢) and (¢/) with respect
to the circle (C).

These properties led to Pliicker’s second construction. First, draw the radical centre
of three given circles, their four similitude axes and the twelve poles of the four axes with
respect to the three circles. Lines emanating from the radical centre to these twelve poles
would intersect the given circles at twenty-four points, which considered in sets of three
would determine the tangent points with the eight solution circles. Pliicker briefly ex-
plained how to use poles and polars to derive Gergonne’s “elegant construction,” which
he cited as Annales, volume VIII, page 289. In a footnote, Gergonne reminded the reader
that this construction had been reproduced in Steiner’s article in the Annales XVII page
309. However, Gergonne’s version, as it appeared in the previously volume, divided the
construction into cases. In the single case presented, one only constructed three lines and
six intersection points. By contrast, in avoiding cases, Pliicker’s comprehensive description
resulted in all solutions at once.

To derive his third and final construction, Plicker stated that the polar of any point
on the line pp’ would pass through the pole of pp’, which he defined as the intersection of

common tangents from points p and p’ to circle (C'). This point would also be on the polar

nor “radical”, which, as said above, would not be coined for at least another decade.

59«Construct the orthogonal circle to the three given circles and construct their four similitude axes. If
these axes intersect the orthogonal circle then (8), we will reach the construction by describing (1) circles
passing through each pair of intersection points and at once tangent to one of the given circles.”

50He would first give an description of polar reciprocity using coordinate equations in 1830 as we show in
Appendix E (Plicker (1829Db)).
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of the radical centre of the three circles (C), (C'), (C”) with respect to (C'). Following
this property, the radical centre would have three polars with respect to the three given
circles. Then the four similitude axes would intersect these polars at twelve points. By
drawing tangents to the respective circles, one would obtain the twenty-four tangent points
belonging to the eight circles sought. As the source of this construction, Pliicker cited

Poncelet, underscoring Poncelet’s lack of analysis.

Les constructions indiquées, sans analyse, par M. Poncelet (Annales, tom. XI.

pag. 318 ) doivent nécessairement rentrer dans les précédentes. (ibid, 41)6!

Pliicker extended these constructions by elaborating modifications necessary when substi-
tuting points or lines for the given circles. He emphasized that these offered “no difficulty”
and could be demonstrated with “full analytic rigour.”

The remainder of Pliicker’s article concerned more general versions of the same problem,
such as finding a circle that intersected three given circles at a fixed given angle or with
fixed cosines of the angles, where the angle of two circles was the the angle formed by
the intersection of their arcs “whose concavities are oriented in the same way.” Pliicker
followed an analogous path for both cases, beginning again each time with the derivations
of section 6 and proceeding to constructions that paralleled his first one. Pliicker was thus
able to present and prove all of Steiner’s promised constructions, and claimed analogous
constructions could be found without difficulty for spheres and spherical circles. These
“ordinary methods of analytic geometry” [méthodes ordinaires de la géométrie analytique]
could even be applied to constructions where the orthogonal circle “becomes imaginary,
that is, when the square of its radius becomes negative” [devient imaginaire, c’est-a-dire,
lorsque le quarré de son rayon devient négatif], although this could imply the problem was
impossible — for Pliicker, an imaginary circle would not suffice as a possible solution (ibid,
44). Pliicker concluded in explaining concisely how one could approach the same sets of

problems when any second order curve replaced the circles.

Il suffira pour cela de projeter les données sur un plan tellement situé que les
projections soient des cercles; de résoudre le probléme plan pour ces cercles et de

projeter ensuite les cercles obtenus sur la surface du second ordre. (ibid, 47)%2

Although this was an entirely geometric description, Pliicker’s explanation of projection in
his final paragraph appears strikingly like his use of coordinate representation throughout

his article. Both projection and the use of analysis were treated as tools applied to planar

51«The constructions indicated, without analysis, by M. Poncelet (Annales vol XI, page 318) must neces-
sarily enter into the preceding.”

62«1t will suffice for this to project the givens onto a plane so situated that the projections will be circles;
to resolve the planar problem for these circles and to then project the circles obtained onto the second order
surface.”
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problems. With projection, second order curves were effectively translated onto another
surface where they became circles. With analysis, geometric objects were translated into
coordinate equations. In both cases, the translated forms could be manipulated accordingly,
and then translated back to their original plane. In Pliicker’s presentation, the use of
projection presented a parallel structure to the use of coordinate equations in geometry.

Pliicker’s use of analytic equations in this 1827 article was minimal and appeared only in
the beginning. Within the twelve sections summarized above, his computations were limited
to the first four sections and section 6. Further, his use of analysis in geometry remained like
that of Gergonne in 1817, as we will see by comparison to his research the following year.
While he began by describing the circles with abridged notation, after the first section the
circle equations were given in their standard extended form. Further, Pliicker only applied
analytic geometry to find the radical axes, perpendicular lines and concurrent points. The
new geometric objects, such as those mentioned in the Bulletin review of Steiner, were
primarily described with respect to their positional relationship in purely geometric terms.
While one could have derived analytic representations from Pliicker’s exposition, he did
not show the equation of an orthogonal circle, a pole, or a similitude centre, to take three
such examples. His brief mention of imaginary circles only allowed imaginary objects as an
intermediate step in obtaining a real solution, not as a solution itself, which would have to
be represented constructively.

This minimalist computation was viewed as admirable in the subsequent Bulletin review.

Mais d’ordinaire on se trouve beaucoup mieux, dans un grand nombre de recherches,
de passer alternativement des ressources que fournit le calcul, a celles qui sont
offertes par la géométrie pure, et de ces derniéres aux premiéres, on évite ainsi a

la fois et les lenteurs qu’entrainent des calculs compliqués et I’obscurité que fait
naitre ’accumulation d’un trop grand nombre de lemmes. Dans le ler. article
de la livraison, M. Plucker donne un exemple fort remarquable de ’application
de cette derniére méthode [...] (Anonymous (1827a), 173)%3

The anonymous reviewer suggested that too much calculation made the reader lose sight of
the problem, and that Pliicker’s good taste enabled a comprehensible presentation. We note
this review implied that geometric understanding could presumably be achieved without the
use of figures.

Pliicker’s constructions abound with geometric objects, but the majority of these objects

were at most enumerated and not named. With the use of coordinate representation and

53«But ordinarily it is much better, in a great number of researches, to pass alternatively from resources
provided by calculation to those offered by pure geometry, and from the latter to the former, one thus avoids
at once both the delays to which complicated calculations lead and the obscurity that the accumulation of
great number of lemmas creates. In the first article of the issue, M. Plucker [sic] gives a very remarkable
example of the application of this latter method [...]”
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the new ideal objects, Pliicker was able to avoid delving into various cases, except his initial
degenerate straight line case. Although he observed the different situations of interior
and exterior circles, for the most part his analysis enabled covering all cases with a single
construction or proof. Most notably, while both Steiner and Gergonne had painstakingly
listed which similitude points or centres were collinear, Pliicker simply stated that three
of the six centres would lie on the radical axis. Within Pliicker’s constructions the only
named objects were five circles (C), (C”), (C"), (¢), (¢/) and the two tangent points p,p/,
which defined the line pp’. Part of this brevity may be attributed to the fact that Pliicker’s
publication came after those of Steiner, Poncelet and Gergonne. Pliicker could rely, even
without direct citation, on the more elaborate constructions of his predecessors.

As situated in the Annales and on the very same content treated by Steiner less than
a year earlier, Pliicker’s article could not escape comparison with Steiner’s, a fact that he
acknowledged in his introduction. This liaison was also mentioned in the Bulletin review,
which cited Steiner’s treatment of the theory of circle tangency by pure geometry in Crelle’s
Journal. However, without Gergonne’s footnotes, any acknowledgement to Steiner in the
body of the text was strikingly absent. The last two constructions instead were respectively
linked to the earlier work of Gergonne and Poncelet.

With respect to this and earlier Pliicker publications, Gergonne concurred that few of
the results were original, but this was no fault. Pliicker’s innovation was in the form of his
geometry, and the ability to show that analytic geometry could achieve as much as pure

geometry.

Qu’importe, par exemple, que quelques-unes des solutions données récemment
par M. le docteur Pluker (pag. 37) soient déja connues et soient méme moins
générales et moins complétes que celles que d’autres géometres ont pu donner
des mémes problemes, comme la remarque nous en a déja été faite plusieurs fois
? [...] mais ici le fond est de peu d’importance, et la forme est & peu pres tout
; et ce qui recommande principalement le petit mémoire de M. Pluker, c’est
qu’il nous montre les deux géométries marchant constamment de front, sans

qu’aucune d’elles ait rien & emprunter & I'autre. (Gergonne (1827f), 273-274)54

Certainly Gergonne’s positive assessment of Pliicker was in part aimed at self-promotion,
but his choice of points on which to comment coincided with those of the Bulletin reviews.
Pliicker’s article and Bulletin review resurfaced the following year in a letter of recom-

mendation written for Pliicker by August Leopold Crelle to the Prussian culture minister,

64“What does it matter, for example, that some of the solutions given recently by Dr. Pluker (page 37)
are already known and are even less general and less complete than those that other geometers were able to
give of the same problems, as we have remarked already several times? [...] but here the content is of little
importance, and the form is nearly everything; and what principally recommends the small memoir of M.
Pluker, is that it shows us the two geometries walking constantly abreast, without either of them having to
borrow anything from the other.”
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Karl vom Stein zum Altenstein in July, 1828 (published in Eccarius (1980) as “Document
1: Gutachten Crelles fir den Kultusminister von Altenstein iber J. Plickers”). The let-
ter aimed to promote Pliicker’s recently published Analytisch-geometrische Entwicklungen,
which had appeared earlier that year, and provides further evidence of Pliicker’s perceived
intermediary position between analytic and synthetic methods. Moreover, in this letter
Crelle provided a thorough description of the differences between the “two different meth-
ods of research in studying figures in the plane and in space.” His description far exceeds
the level of detail observed in either Pliicker or Steiner’s published records. However, as
Crelle was writing a letter of recommendation, some of this detail may be attributed to
simply listing Pliicker’s many merits. First Crelle contrasted the opposing “synthetische,
oder graphische, oder anschauliche Methode, mehr oder weniger nach Art der Alten” to
the analytic method that uses calculations and is more mechanical. He then outlined the
advantages and disadvantages of either approach. The first method benefitted from a clear
intuition about the object under investigation and mindful awareness of the operative steps
of research. Thus, the synthetic method was most useful, clear, and convincing in simple
cases. Whereas, the analytic method seemed too difficult in simple cases, yet required no ad-
ditional effort to be applied generally to complicated cases. Crelle admitted that the merits
of each method had been debated, with Synthesists accusing the analytic method of “bloss
mechanische Operationen” and Analysts defending “die grosse Kraft und Fruchtbarkeit der
analytischen Operationen” as well as its ease. However, he insisted that both methods had
their own “eigenthiimlichen Werth.” While the analytic method was the method of discov-
ery, the synthetic method achieved the greatest clarity and certainty of insights. For Crelle,
the study of mathematics required both qualities, and both qualities had been achieved in
the recent work of Pliicker.

In advertising Pliicker’s publication record, Crelle cited Pliicker’s recent Bulletin re-
views, in which Pliicker had united both methods (Anonymous (1826a), Anonymous (1827a)).%°
Crelle then explained that despite Pliicker’s claim in his preface that his monograph was
purely analytic, it actually combined both methods with success. Crelle also corrected
Pliicker’s accusation from the same preface that Steiner had merely been following in the
footsteps of Poncelet, and clarified that Steiner’s work had been independently derived and
was useful in its own right. Overall, Crelle suggested that the “fremden” prefatory remarks
expressed a tendency against synthetic methods and practitioners that was not apparent in
the body of Pliicker’s text.

Crelle concluded by listing the diverse subjects of new geometry that Pliicker had in-

cluded: transversals, ideal chords, polars and poles, similarity points and axes, lines of

55Tt is worth pointing out that this first review (Anonymous (1826a) contained a synopsis of the article
by Pluker, which indeed was not analytic geometry, but also was not fully written by Pliicker, as we saw in
Chapters I and III.
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second order, osculation points, imaginary expressions, curves of higher order and other
figures in space, etc. In Crelle’s description, we find a menagerie of new geometry “betray-
ing” Pliicker’s capabilities in both synthetic and analytic methods. Thus, although Pliicker
framed his work as analytic geometry, or even “pure analytic geometry,” his contemporaries
interpreted different methodological tendencies in his attention to form that would become

increasingly apparent in his later works.

4.2.7 The Apollonius problem: conclusions

The texts considered above offer just a sample of early nineteenth century solutions to the
Apollonius problem. Even in the early nineteenth century, another solution to the Apol-
lonius problem would hardly qualify as breakthrough research in the absence of method-
ological novelty. Even so, Steiner’s theories on circle relations in the plane offered enough
innovation to be seen as worthwhile for a French audience. A strikingly similar publication
to Steiner’s “Kinige geometrische Entwicklungen” had appeared in the Annales in 1820 by
the young French mathematician J. B. Durrande entitled “Théorie élémentaire des contacts
des cercles, des spheéres, des cylindres et des cones” (Durrande (1820)). Gergonne had en-
couraged Durrande’s talents from his first publication in 1816, at the age of 17, until his
recent and sudden death. In “Théorie élémentaire des contacts des cercles, des spheres, des
cylindres et des cones” Durrande showed how to derive solutions to the Apollonius problem
using what he considered to be “purely elementary considerations” (Durrande (1820)). A
comparison between the first few figures of Steiner (Figure 4.27) and Durrande (Figure 4.28)
offers a cursory understanding of the common material and approach, compare for example
Durrande’s Figures 1 and 2 with Steiner’s Figures 16 and 17.56

Gergonne’s interpretation further accentuated the common language and content. In
introducing Steiner’s work Gergonne cited Durrande’s text by volume and page number
(though not by name), and moreover followed Durrande in defining and employing poles
and polars, though Steiner did not. Despite these connections, the texts of Steiner and Dur-
rande experienced dramatically different receptions. Steiner was propelled to recognition
and critical acclaim with two additional posthumous publications of the original German
version. Durrande’s work remained marginal. Why did Steiner’s paper eclipse Durrande’s?
There are several possible reasons. First, Steiner directed his research to a diverse assort-
ment of problems, including the as yet unsolved Malfatti problem, which had frustrated
geometers since 1810. Durrande focused solely on proving known problem solutions. On

a deeper level, Steiner emphasized defining new objects of geometry, concepts extended

56The uncanny similarity between the two original texts has been discussed in the 1931 foreword to
Steiner’s unpublished manuscript edited by Rudolf Fueter and Ferdinand Gonseth (Steiner (1931)). The
authors mention that Steiner had excerpted large passages from Durrande’s 1820 article in January 1824,
which were found in his Nachlass.
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Figure 4.27: Steiner’s Figures 8 through 26 from Steiner (1826a)
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Figure 4.28: Figures from Durrande (1820)
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beyond their initial problem solving applications. Durrande reinterpreted modern solutions
to known problems in terms of elementary geometry, but did not suggest new tools for
practice and research. Further, Durrande presented his results within a highly conservative
framework restricted to Euclidean geometry. Although Gergonne criticized Steiner’s lack
of generality, Steiner’s methodological stance appeared receptive to modern geometrical in-
novations and extended beyond a Euclidean framework. Finally, by 1826 there were more
opportunities for publication and circulation of geometry articles. After its initial publica-
tion in Crelle’s Journal, Steiner’s findings were reiterated and discussed within the Annales
and the Bulletin. The repetition bolstered his reputation.

Similarly, Pliicker achieved recognition less from his particular results, although he did
state several new theorems, than from his application of analytic geometry. As in his first
publication from 1826, Pliicker had drawn inspiration from earlier and apparently unproven
Poncelet constructions. Pliicker repurposed Poncelet’s Apollonius problem solution as well
as his use of ideal common chords. For both Plicker and Poncelet, ideal common chords
enabled a single construction for the case of intersecting and non-intersecting circles. Sig-
nificantly, although tentatively, Pliicker represented his ideal common chords with abridged
notation, which had only been introduced in 1817. Thus Pliicker succeeded in combining
two of the most innovative contemporary developments in both pure and analytic geome-
try. These considerations foreshadow Pliicker’s emerging analytic style, which was already
praised for its moderate computation.

Reviews of both geometers focused on the potential for future applications to other
areas of geometric research. The Apollonius problem, for all its fame, merely functioned
as a showcase to display new geometric objects, techniques, and methods. In this setting,
differences of method were emphasized. This extended from the Annales subject headings
where Steiner’s article was labelled as pure and Pliicker’s as analytic geometry, to the
author’s introductions where Steiner drew attention to the “Entstehung und Entwicklung”
of his work and Plicker advertised the path toward the solutions, rather than the solutions
themselves. The texts themselves reflected this order of priorities. Steiner never even
provided a solution to the Apollonius problem, and Pliicker’s solutions were attributed
to Gergonne and Poncelet. All four geometers proclaimed the superiority of their own
solutions, but without overtly criticizing the work of their recent predecessors (Newton’s
and Viete’s solutions, on the other hand, were declared overly complicated). Indeed, the
Apollonius problem provides a counterexample to the dictate that the choice of method
should be based on the problem at hand, as advocated by Poncelet and Gergonne in 1817.
Gergonne even provided two different methodological approaches without advocating one
over the other.

Distinct methodological approaches arrived at the same constructions and often by em-

ploying the same vocabulary. Steiner, Gergonne, Pliicker, and Poncelet all invoked simili-
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tude points (or centres) and lines (or axes). These objects had become familiar enough in
the 1820s that they could be left undefined or described as in the constructions of Pliicker
and Poncelet. With the widespread adoption of increasingly technical vocabulary, we can
simultaneously trace various replacements for the illustrated figure from Gergonne’s virtual
figures, to Poncelet’s advanced summary that eliminated reference to individual construc-
tions, to Pliicker’s coordinate equations and abridged notation. In this context, Steiner’s
page of illustrations published in Crelle’s Journal in 1826 became unnecessary in the French
version.

As the Bulletin review noted, by assigning names to geometric objects and relations,
geometers could avoid repeating their constructions. Pliicker scarcely needed virtual figures,
not so much because of his use of coordinate equations, but because he could simply write
similitude centre or radical axis and at once convey the object’s constructive composition
and properties. Poncelet was likewise able to quickly convey constructions and minimize
the naming of intermediate points and lines. The use of these increasingly complex terms
eliminated the need for illustrated figures or painstaking figure descriptions such as those
found in Gergonne. Concurrently, the new vocabulary necessitated a greater background
knowledge, thus rendering the mathematics less accessible. In this respect, the presence or
absence of a figure did not speak to the choice of pure or analytic geometry, just as the
absence or presence of arithmetic calculation was independent of method. The case of the
Apollonius problem thus forces a modification to Poncelet’s claim for the methodological
importance of the figure, as described in Chapter II. Here the disappearance of figures did
not imply the ability to visualize had lost importance.

Several other factors also advanced the trend away from figurative representation. Both
Steiner’s 1826 text in Crelle’s Journal and Poncelet’s 1822 Traité contained figures, while
their respective summaries in the Annales did not. Gergonne published the Annales as
if the entire journal was available to his readership. He casually referenced prior volumes
(sometimes, as we have seen, citing an article by volume and page number without naming
the author or the text’s title), and frequently posed problems based on past content and
soliciting future reader responses. Gergonne’s decision to leave out Steiner’s original figures
allies with his unproven statement of the constant power of a point with respect to a circle,
this information was assumed as known to the Annales readership. This regular readership
suggests that much of his circulation may have been by subscription, either individuals or
institutions.

Finally, the ability to visualize was independent of illustrations. Steiner delved into three
dimensional depictions, without any figures to assist his readers. Gergonne described seeing
or conceiving of objects, which the reader must draw or imagine animatedly from their
textual descriptions. Recalling Cournot’s assessment of Pliicker, even analytic geometry

could be “followed by the eye.” In 1827, geometry remained a graphic discipline, even when
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the images only existed in the imagination.

Even in Pliicker’s analytic approach, content in this context remained mostly elementary.
Tangents and intersections among coplanar circles could be achieved through Euclidean
constructions and despite their new nomenclature, the relationships conveyed by similitude,
powers, and radicals were grounded in simple proportions, collinearity, and concurrence.
However, Steiner and Pliicker both remarked that these same results would continue to
hold should circles be replaced by any conic sections, and Pliicker described the necessary
projective procedure to apply circle specific constructions to any second order curve. This
generalization extended the domain of research beyond elementary geometry. Poncelet and
Gergonne also applied results from circles to general conic sections, but the concept was

novel enough that in 1828 Chasles announced as a new theorem that,

IT suit de 1a, en particulier, que tant de cercles qu’on voudra, tracés sur un méme
plan, peuvent toujours étre considéres comme les projections stéréographiques
d’un pareil nombre de sections planes faites dans une surface du second ordre,
et leurs centres comme les projections stéréographiques des sommets des cones
circonscrits a cette surface, swivant ces mémes sections planes (*).5” (Chasles
(1828b), 309)

Gergonne modified Chasles’ claim with a footnote, signalling both the special position
of Steiner and Pliicker as German geometers and their publications at the forefront of

contemporary French geometry.

Ce principe parait ne pas étre inconnu aux géometres allemands. M. Plucker
[sic] I'invoque formellement, & la pag. 47 du présent volume, et M. Steiner s’en
appuye également dans le mémoire dont nous avons donné un extrait a la pag.
285 de notre XVIl.e volume, pour transporter ses constructions planes sur des

surfaces quelconques du second ordre.%®

Though Gergonne would later apologize for seeming to have trivialized Chasles’ research,
his remarks proved prescient in forecasting Steiner and Pliicker’s early adoption of new

principles and practices.

57«Tt follows from there, in particular, that any circles that one likes, traced on the same plane, can always
be considered as the stereographic projections of the same number of planar sections made in a second order
surface, and their centres as stereographic projections of the vertices of cones circumscribed to this surface,
according to these same planar sections.”

88«This principle does not appear to be unknown to German geometers. M. Plucker invokes it formally
on page 47 of the present volume, and M. Steiner relies on it equally in the memoir of which we gave an
extract on page 285 of our XVIIth volume, to transport planar constructions onto any surfaces of second
order.”

230



4.3 Conic sections with four common points (1828)

Our first case study portrayed Steiner and Pliicker adapted by and adapting to the standards
of French geometry and by 1828, their efforts had succeeded in generating recognition.
Since his first publication in 1826, Steiner had contributed six additional articles to Crelle’s
Journal and three to the Annales, along with numerous posed problems in both. Pliicker
had recently published the first volume of his two-part monograph, Analytisch-geometrische
Entwicklungen and had published a total of three articles in the Annales and one in the
Journal. Both Steiner’s and Pliicker’s articles from this period had been summarized and
reviewed in Ferussac’s Bulletin, and cited in contemporary journals and textbooks (for
instance, Anonymous (1826a), Anonymous (1827a), Didiez (1828)).

Our second case study considers different proofs of the same theorem, originally at-
tributed to Lamé, and aims to convey distinctive styles. As opposed to problem solving,
geometry theorems were often independent of constructions, more theoretical, and hence
better suited toward exhibiting methodological differences. As such our discussion will be
deeper, narrower, and more technically involved. We will first examine Lamé’s statement
and proof of his theorem in order to understand the original context of his theorem as it
appeared in the Annales in 1817. In the intervening decade between Lamé’s first state-
ment of his theorem and Steiner’s proof, the subject of Lamé’s article, the correspondence
between conic sections and their conjugate diameters, remained popular in geometric ar-
ticles within the Annales. The central concept of conjugate diameters has ancient roots
and has been traced back to Apollonius. In the Thomas Heath version, Apollonius defined
conjugate diameters as those which bisect all chords parallel to the other given diameter
(Apollonius (1896), 17). The concept is made clearer through construction. Consider a
conic with diameter d. Draw tangent lines to the conic parallel to d, these will intersect
the conic at two points P, P’ lying on PP’, the conjugate diameter to d. In order to extend
this constructive definition to all conic sections, one would need to include infinite points
of intersecting parallel lines and the line at infinity containing them. However, in the texts
considered here geometers assumed conjugate diameters as known, and often used projec-
tion to extend a simpler construction to a more general result. In particular, the research
of Gergonne, Brianchon, and Poncelet employed a variety of geometric methods towards
exploring the conditions necessary to determine second order lines and the relationships
between conjugate diameters (Brianchon (1817), Brianchon and Poncelet (1820), Gergonne
(1821), Poncelet (1822)). For instance, in his 1822 Traité, Poncelet included his own proof
of Lamé’s theorem, which he described as a direct corollary to his more general theorem
on polar reciprocity found by passing a planar point to infinity. Though Poncelet’s memoir
was yet to be read by Steiner or Pliicker in 1828, his reference to Lamé gives evidence to

the result’s popularity.
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Thus, in 1828 Steiner’s choice of studying the relationship between conic sections in
the plane engaged with a set of geometric questions still under lively investigation. Ap-
proximately two-thirds of the content in the nineteenth volume of the Annales was devoted
to articles on the study of geometric curves and surfaces by at least nine different geome-
ters (several articles were signed only as un abonné). Steiner’s subject matter was well
established and represented. His approach, as we will see, was idiosyncratic.

The following issue of the same volume of the Annales opened with an article of analytic
geometry, “Recherches sur les courbes algébrique de tous les degrés” by “ M. le docteur
Plucker, professeur & 'Université de Bonn” (Pliicker (1828b)). Pliicker’s ten page article was
the first in a two part series, the second of which explored the same questions for algebraic
surfaces. In a concise introduction, Pliicker explained his intention: “donner quelques
exemples d’'une méthode a 'aide de laquelle on peut déduire, immédiatement et sans aucune
sorte de calcul, un grand nombre de propriétés générales des courbes de tous les degrés, de la
simple considération de la constitution algébrique des équations qui les représentent” (97).69
Pliicker’s development of coordinate representation without calculation characterized a new
type of analytic geometry. As we will see, Pliicker’s new method involved a combination of
abridged notation, where a curve was represented by a single capital letter, and well-chosen
coordinate axes that enabled directly studying the coeflicients of the equation of the general
second-order curve, Az? + By? + 2Czy + 2Dz +2Ey + F = 0.

Unlike the case of the Apollonius problem, both geometers proved Lamé’s theorem as
an intermediate and not particularly noteworthy result, in markedly different language.
While both articles were about relationships between planar curves, the diverse treatments
maskedl their parallel content except for their common citation. If the Apollonius problem
reinforced the similarities between different geometric methods in their common invocation
of illustrated or virtual figures, frequently repeated constructions, and use of the same set

of new geometric objects, the case of Lamé’s theorem will emphasize their differences.

4.3.1 Lamé’s theorem (1817)

Lamé had just graduated from 1'Ecole polytechnique in 1817 when his article “Géométrie
analitique. Sur les intersections des lignes et des surfaces. Extrait d’un mémoire présenté
a I’Académie royale des sciences, en décembre 1816” was published in the Annales (Lamé
(1817)). As the lengthy title indicates, the article was excerpted from a longer memoir, later
revised and published in 1818 as Examen des différentes méthodes employées pour résoudre

les problémes de géométrie (Lamé (1818), 30-41).7° The article’s subject matter, the use

69“[...] to give several examples of a method, by aid of which one can deduce, immediately and without

any sort of calculation, a great number of general properties of curves of any degree, simply from considering
the algebraic constitution of their representative equations.”

"Evelyne Barbin has shown how Lamé demonstrated the potential for progress and discovery in associating
analysis and geometry (Barbin (2009)). In particular, Barbin considers the content of Lamé’s Ezamen des
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of coordinate equations to solve geometry problems, was dear to Gergonne’s heart and he
may have requested this contribution from Lamé (there is evidence that Gergonne actively
inquired after the contents of geometry articles submitted to the Académie in the case of
Poncelet). This brief article set out to use rectangular coordinate equations in order to find

conditions such that:
1. three first or second order curves [lignes| on the same plane concur in a point;
2. three first or second order surfaces in space meet on a curve;
3. four first or second order surfaces in space concur in a point.

The result on conjugate diameters was considered by Lamé as an “interesting theoretical
and practical consequence.”
For his first problem, Lamé used the generality of coordinate equations to represent

three curves of second order.

az? + 2bxy + cy? + 2dx +2ey + f =0
a'x? + 20y + dy? +2d x4+ 2y + f1 =0
a”:L‘2+2b”:ﬂy+c"y2+2d”:n+2€”y+f” =0

By multiplying the first two equations respectively by the indeterminate constants m and
m’ and then finding their sum, he derived a single equation. Because of the indeterminacy
of m,m’ this new equation represented all the lines of second order passing through the

intersections of the two first lines.
(am~+a'm)z?+2(bm+b'm")zy+ (ecm+m")y? +2(dm+dm )z +2(em~+e'm’)y+ (fm+ f'm’)

FExamining the equation, Lamé remarked that, under various relationships between the
coefficients, it could belong to two different parabolas, a circle, or an infinity of ellipses and
hyperbolas. The condition for the third line to have the same intersections would be met
by setting each coefficient in the new equation equal to its corresponding coefficient in the

third equation. That is,
am+adm' =d' bm+bm' =b",em +Im' =,

dm+dm' =d" em+em =¢" fm+ f'm = f".

Through elimination of indeterminates m,m’ one could arrive at four other equations that

expressed the concurrence of the three second order lines. Moreover, the three equations

différentes méthodes and his development of abridged notation.
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containing a,a’,a”, b,t',b", and d,d’,d” could be simultaneously satisfied, signifying that
three straight lines, each defined by one a,b, and d concurred in a point. Each of these
equations also belonged to the curve’s diameter that bisected all of its chords parallel to
the = axis. For this result, Lamé cited an article by Bérard from the Annales. Then, since
the direction of the z-axis could be chosen with respect to the second order lines, Lamé

concluded,

THEOREME. Si plusieurs sections coniques ont quatre points communs ; dans
quelque direction qu’on leur mene des diametres paralleles, les conjugués de ces

diamétres concourront en un méme point. (Lamé (1817), 233)"!

At this stage in the text, no figures had been employed, and all geometric objects were
represented by their coordinate equations. Having derived his theorem, Lamé then applied
it to graphically determine the centre of a conic given five points on its perimeter and the
slope of the diameters of a parabola given four points on its perimeter. These two problems
referenced straight edge figures, copied below. Though the problems themselves featured
conic sections, the figures (Figure 4.29) contained only the given points, as was common
practice for published geometrical figures at this time.

Each problem had a unique figure, and all pictured lines and points were referenced in
the construction. Following these applications, Lamé asserted that one could determine the
other elements of the curves, but because these proceedings were “completely foreign to his
object” [tout-d-fait étrangers a notre objet], he returned to the second problem of his paper.

Within this article, Lamé chose coordinate equations to prove his theorems and then
used these theorems to solve associated problems through figures without coordinate rep-
resentation. Lamé was thus able to employ the generality of algebraic expressions, without
sacrificing the practice and application of graphic constructions. These respective advan-
tages of different geometric methods were not the same as those touted by reviewers of
Plicker and Steiner ten years later. In fact, Lamé explicitly suggested that the application
of algebra to geometry served as the method of discovery in his Fxamen des différentes
méthodes employées pour résoudre les problémes de géométrie. Following a long list of po-
tential applications of algebraic representation of geometric loci beginning with the study

of straight lines and extending to second degree curves, Lamé concluded,

[...] enfin ne rien négliger dans toutes ces applications pour faire remarquer

P’accord constant de I’Algebre avec la Géométrie, accord qui permet de confier

au calcul le soin de découvrir de nouveaux théorémes. (Lamé (1818), 5-6)72

"ITheorem. If three or more conic sections have four common points; then in no matter what direction
one draws parallel diameters to these conics, the corresponding conjugate diameters will concur in the same
point.

72«[.] finally in all these applications do not neglect to notice the constant agreement of Algebra with

Geometry, an agreement that permits us to entrust calculation with the task of discovering new theorems.”
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Figure 4.29: Lamé’s Figures (Lamé (1817))

In the case of Lamé’s theorem, his assessment appears to be correct, as his successors

repeatedly credited his algebraic proof as the theorem’s source.

4.3.2 Développement d’une série des théorémes relatifs aux sections coniques:
Steiner proves Lamé’s theorem (1828)

Steiner’s first publications in Crelle’s journal were described by Gergonne and in Bulletin
reviews as employing a method completely unique to the author. As Steiner continued
writing for a French audience, his knowledge of the background literature and terminology
transformed accordingly. Now writing in French, Steiner cited Gergonne, Carnot and Lamé
(and himself).

Unlike the above examples, most articles in the Annales and the Journal had fairly
descriptive titles. When an article was simply labeled as a proof of “several” theorems or
solutions to several problems, this was most likely in response to posed problems. Articles
of this sort were usually brief and to the point. “Développement d’une série des théoremes
relatifs aux sections coniques” ran thirty pages in twenty-eight sections and included dozens
of theorems and problems, which were only designated as such by the use of quotation marks
around their statements (Steiner (1828d)). If the reader had any expectations from the

title, they could only be based on the content of Steiner’s earlier publications. The list-like
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form of Steiner’s article was emphasized by his vague title, lack of preface or introduction,
and extensive enumeration of small sections—some as short as a sentence, others extending
several paragraphs. The same format featured in at least two of Steiner’s recent publications,
“Démonstration de quelques théoréemes” and “Einige geometrische Sétze” (Steiner (1828b),
Steiner (1826b)), and seemed to go against his earlier systematic intentions or desire to show
an organic unity. Yet these shorter publications could also be interpreted as publicizing
results that would be systematically developed in his forthcoming book (Steiner (1832)).
The Bulletin review later summarized Steiner’s article as based on a single proposition:
given a triangle and three points on the lines containing the sides of this triangle, then
perpendiculars raised through these points would concur in the same point. If one drew a
circumference through these points, it would intersect the given lines in three new points
from which perpendiculars would also concur. Certainly, this proposition was Steiner’s first
result, but he only explicitly referenced it in deriving his second result, (whereas, for ex-
ample, his fifth theorem was referenced three times throughout the text) so its role as the
foundation of his research seems to be mostly positional. As well as articles devoted to
the proof of new results, Steiner’s other primary output at this time were posed problems
(without solutions) and theorems (without proof) offered to the readers of the Annales and
the Journal (Steiner (1827c), Steiner (1827d), Steiner (1827a)). These collections served
to both secure Steiner’s priority, and encourage readers to practice his methods. Struc-
turally, “Développement d’une série des théorémes” was reminiscent of these catalogs in
neither building from general considerations (like in Steiner’s Systematische Entwicklun-
gen) nor building toward some promised results (like in Steiner’s “Leichter Beweis eines
stereometrischen Satzes von Euler”). Even so, we will begin at this first derivation, both to
introduce Steiner’s style with an elementary result and for future comparison with Pliicker’s

proof of the same proposition.”™

"SPoncelet, for one, found little merit in Steiner’s form of geometry. Although he described an amicable
private correspondence with Steiner through the mid-nineteenth century, when retrospectively assessing
Steiner’s contributions in 1864, Poncelet suggested his colleague confused complication with depth.

On voit d’ailleurs que ce genre de propositions, dont ce dernier géomeétre [Steiner] a souvent
fait abus et qu’il a mis & la mode parmi une certaine classe de savants, appartient plutot
a la théorie des nombres et a la Géométrie de situation qu’a la Géométrie proprement dite
ou d’intuition; ce qui semble indiquer, & mon sens, une faiblesse, un manque d’initiative des
esprits qui, confondant la complication avec la profondeur, s’éloignent de I’élégante simplicité
des anciens géometres. (Poncelet (1866), 410)

“One sees moreover that this kind of propositions, which the latter geometer [Steiner] has
often abused and which has been popular among a certain class of scholars, instead belongs
to the theory of numbers and geometry of situation rather than geometry properly named or
geometry of intuition, which suggests, in my view, a weakness, a lack of initiative among minds
who, confusing the complication with depth, move away from the elegant simplicity of ancient
geometers.”

Poncelet suggested that Steiner’s frequent publication of new results without proofs was out of fear that
Poncelet might publish first and receive priority. Mitigating Poncelet’s opinion, we note that in a letter from
Jacobi to Steiner from 1833, Jacobi admitted that he did not cite Poncelet as much as Steiner might wish
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Steiner began with Figure 1 (our Figure 4.30), for which we will provide a series of

step-by-step illustrations following Steiner’s construction instructions.

Figure 4.30: Steiner’s Figure 1 (Steiner (1828d))

However, we will only go so far as the first theorem, and thus certain features of the
finished Figure 1, only described later and not relevant to proving Lamé’s theorem, will
not be introduced. From a point P in the plane of a triangle ABC drop perpendiculars
PA’, PB', PC’ respectively to BC, CA, AB. Though not specified in the text, we follow
Steiner’s figure by placing P inside the triangle ABC' (Figure 4.31).

B

™

Figure 4.31: Triangle ABC and point P

Then join the vertices A, B,C to P (Figure 4.32).

These new segments determine relationships between the parts of the right triangles.

BA® _CA” =BP> - CP,

(Jahnke (1903a)). Jacobi’s comment suggests that Poncelet had ample support with respect to Steiner’s
allocation of credit.
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Figure 4.32: Segments AP, BP, CP

CB” - AB"” =CP° — 4P’
AC” - BC” = AP° - BP.

By “adding, reducing and transposing” [ajoutant, réduisant et transposant] the above

equations Steiner derived,

AB” + BO” + CA” = BA” + CB” + AC".

This proportional relationship was the necessary and sufficient condition that perpen-
diculars raised from the points A’, B, C’ on the three respective sides BC,CA, AB of a
triangle ABC' all concur in the same point P. Steiner concluded immediately that from
this resulted (1) that the perpendicular bisectors of the sides of a triangle concurred in a
point and (2) that the perpendiculars from each side to its opposite vertex concurred in a
point. In Section 2, Steiner introduced a circumscribed circle, and gradually derived further
theorems on the ratios of triangles inscribed to conics.

The progression of Section 1 revealed how tenuous the line between pure and analytic
geometry might be. Here Steiner began with a figure illustrating the relationship he intended
to derive: the concurrence of three lines. From an algebraically computed equation, Steiner
determined a criterion for the desired relationship, followed by two exemplary cases. Though
Steiner’s criterion was constructible, the form of presentation, as well as the use of “adding,
reducing, and transposing,” suggests an algebraic affinity not present in the figure. Further,
the sufficiency of the condition only followed because each of the steps were reversible.
Figure 1 served as a representation of the hypothesis and the conclusion, but concealed the
intermediary non-constructive steps.

We now jump forward to Lamé’s theorem, stated toward the end of the text. The

preceding section had concluded with a result on parabolas inscribed to triangles, and with
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Section 22 Steiner initiated a new line of research, explicitly referencing only Section 6 and
Figure 7. In order to understand his description of the figure manipulated in Section 22,
Steiner thus required his reader’s knowledge and memory of points only defined in Section
18, where Figure 7 had been introduced. In order to explain Steiner’s derivation of Lamé’s
Theorem, we must determine the necessary results from Section 6, the construction of Figure
7 in Section 18 and its special case in Section 19, before turning to Steiner’s proof in Section
22.

Section 6 began by describing the relationships between points pictured in Figure 2 (our

Figure 4.33), a circle with centre P circumscribed to a triangle ABC'.

Figure 4.33: Steiner’s Figure 2 (Steiner (1828d))

Steiner had shown in Section 2 that perpendiculars raised from AB, AC, BC to P bisect
their respective sides at C’, B’, A’. In Section 6 he employed this result, though without
any direct citation.

Drawing B'C’,C'A’, A’B’, he concluded that these lines were respectively parallel to
the sides BC,C A, AB of the original triangle. Then, for example, if the line AP’ was
perpendicular to B’C’ it would be perpendicular to BC. So, from a result proved but
not referenced from Section 1, P’ would be the point where perpendiculars dropped from
vertices to opposite sides coincided. Steiner designated the feet of these perpendiculars as
A", B",C". Then points A’, B',C’", A” , B”,C" would all lie on the circumference of a circle
centred at O, the midpoint of PP’. These constructive steps are shown in our Figure 4.34.

Steiner referenced Carnot (without a date or a title) in finding a fourth point G on PP’
such that GO : GP :: P'O : P'P.™ From this ratio P’ and G were the centres of similitude
of the two circles centred at O and P.™ Thus the circle centred at O also passed through

"4 This proportion reappears in many early nineteenth century pure geometry texts. Poncelet attributed the
result to Pappus, and also noted Brianchon’s treatment (Poncelet (1822),12). Brianchon in turn references
“I'illustre auteur de la Géométrie de position,” that is, Carnot (Brianchon (1817), 6). Poncelet, Brianchon,
and Steiner refer to the division as harmonic or harmonic proportion. Carnot proved the existence of the
fourth proportional point for any three given points in space in De la corrélation des figures de géométrie in
1801 (Carnot (1801), 103-125).

">The centres of similitude between two circles were defined by precisely this ratio relationship between
circles with radii GO and P’P in Steiner (1826a).
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Figure 4.34: Constructing Steiner’s Figure 2
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the midpoints of the segments P’A, P'B, and P'C. This was the result that Steiner would
employ in Section 22.

As we have seen with Figure 1 and Figure 2, each of Steiner’s figures carried its own,
usually new, definition of points. Often these new points would have overlapping names
with the points from prior figures. Since Section 22 cited Figure 7, we must now set aside
the point names from Figure 2, except in translating the application of results from Figure
2 as noted. This will hopefully help avoid too much confusion over the changing roles of
points. Our exposition, then, is more careful and drawn out than Steiner’s, but hopefully

to the reader’s advantage!

¥ —_— T _y!, *.-'

Figure 4.35: Steiner’s Figure 7 (Steiner (1828d))

Figure 7 (our Figure 4.35) pictured a circle, but was described in Section 18 as any conic
circumscribed to a triangle ABC'. As in the previous figures, we will construct Figure 7 step
by step with intermediary illustrations along the way (Figure 4.36). However, we note that
Steiner’s Figure 7 pictured the construction in its entirety and incorporated other elements
not featured in Section 18 or 22, which we will leave out of our progressive illustrations.

Consider any conic circumscribed to a given triangle ABC, as in Steiner’s Figure 7 we
begin with a circle.

Through the vertices of this triangle and through any planar point P’, draw lines
AP'A"a, BP'B"3, CP'C"~. These respectively cut the extended triangle sides opposite
the three angles in A”, B”, C" and the conic at «,3,v. If through any point D on the
circumference, one drew lines Da, D3, D~ cutting respective sides BC, AC, AB in o/, 3,
~'" then these three points would always be on a line o/3’y’ containing P’. This collinearity
result followed when one considered DGBCAaD, or any six such points, as an inscribed
hexagon to the conic. Then Pascal’s theorem proved the intersections of opposite sides Dj
and CA, BB and Aa, BC and aD, respectively at ', P,a’, were collinear. Choosing a
different hexagon and applying the same procedure would ensure the collinearity of all four
points. Finally, as D moved along the circumference, the line o3’y rotated on the point

P’, and (as Steiner put it) vice versa.
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In Section 19, Steiner considered the special case where the conic was a circle, then
P'A" = A"«a, PPB" = B"j3, and P'C"” = C"~. While Steiner did not state whether or not
the conic was a circle in Section 22, he did begin with this particular equality result. This
also allied with the application of Section 6, proved only for a given circle not a general
conic.

So, in Section 22 points A”, B”,C"” were now the respective midpoints of segments
P'a, P'3, P'~y, particular cases of the points constructed in Section 18. If from A”, B"” K C”
one drew three lines respectively parallel to Da, DS, D, where D was some point on the
circumference, they would then pass through each of the midpoints of P'a/, P'/3', P’y and
concur at a point D’. Then, from Section 6, a conic would pass through A’, B’, C' midpoints
of B8v, va, af (the former BC,CA, AB of Section 6) and A”, B”, C" the midpoints of P'«,
P'3, P'y (the former P'A, P'B, P'C of Section 6). From the construction, the point of
concurrence D’ would also lie on this circumference and by Pascal’s Theorem D, D’, P’
would be collinear. Steiner declared that from this resulted a theorem due to Lamé (with

no date or text cited).

Quatre points A, B, C, P’ donnés sur un méme plan déterminent trois systémes
de deux droites AP’ et BP', BP' et AC, CP' et AB, qui se coupent respec-
tivement en A”, B”, C”. Si 'on coupe ces systémes par une droite quelconque
o' 8’y P’ conduite par P’ et si, par les points A”, B”,C”, et par les milieux des
segmens de cette droite, on mene des droites A” D', B”D’, C" D', ces droites con-
courront en un méme point D', et le lieu de ce point sera une conique passant par
les points A”, B”,C"” et par les milieux des droites BC,CA, AB, AP', BP' ,CP’,
etc. (ibid, 61)7

The overall effect of the theorem juxtaposed to the construction is disorienting. Perhaps
most jarringly, Steiner had reassigned the point names in his theorem’s statement, «;, 3,
were suddenly A, B, C (thus better corresponding to Section 6, but in complete disregard of
Figure 7). Like in Section 1, where Steiner began by assuming the desired result, here many
constructive steps were inverted. The line containing points o/, 8, 7/, and P’, found in Sec-
tion 18, was in the theorem described as any straight line. The midpoints of P'a’, P'5’', P’/
here defined the three lines respectively through A”, B”,C", on which they had been proved
to lie in the proof. The point D remained unmentioned as did the parallel relation and the

given circle (or conic).

"0«Four coplanar points A, B, C, P’ determine three systems of line pairs AP’ and BP’ [sic, Steiner appears
to mean BC], BP' and AC, C P’ and AB, which intersect respectively in A”, B” C”. If one intersects these
systems by any line o’ 8’7y’ P’ passing through P’, and if, by the points A", B”,C” and by the midpoints of
the segments [o’ 8", B'%', 4" P] of this line, one draws the lines A” D', B D', C" D’, then these lines will concur
in the same point D’. And the locus of this point will be a conic passing through the points A”, B”,C" and
through the midpoints of the lines BC,CA, AB, AP’', BP',CP’, etc”
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These latter omissions were precisely what Lamé’s Theorem originally featured in 1817.
It was only in the constructive proof and Figure 7 that one could recognize that the four
common points were «, 3,7, D (or A, B,C,D in the theorem’s statement—although D is
missing), the diameters were Do, D3, D~ with parallel conjugates A”D’, B"D', C" D’ con-
curring at D’.

Although in this proof Steiner only examined the case of the circle, Steiner used in
numerous other examples parallel projection and central projection in order to extend circle
properties to any conic section. However, Steiner’s final statement of Lame’s theorem
referenced a general conic section, without providing an argument of how one might apply
projection to extend the proof from the case of a circle. In Section 23, Steiner began a new
line of inquiry, and did not further reference Lamé’s Theorem, nor use its conclusion, in the
remainder of his article.

Throughout Steiner employed a common theme of progressing from a simple case to
ever more general elaborations. Each new line of inquiry began with simple particular
figures—most commonly a circle and straight lines—that Steiner generalized into any conic
sections. He often repeated a three-step argument pattern, first a specific result, then via
projection to a broader result for a set of conic sections, and finally via perspective to
an even more general result applied to all conic sections.”” Finding the reciprocal result
was another common technique for Steiner. Sometimes he simply stated “Réciproquement”
or “vice versa,” sometimes he wrote out the reciprocal in full in the same section, and
sometimes he devoted an entirely new section to the exposition of the reciprocal. These
choices do not appear motivated by the subject matter or the length of the process.”™
The symmetry of Steiner’s argument patterns unified his article more than the particular
contents, which ranged across objects in the geometric plane, leading to numerous results
and then backtracking to different hypotheses. Further, the repetition of generalization
could serve as a guide to the reader in following and applying Steiner’s system.”™ Though it
did not make for easy reading, this linear form of argument perhaps more closely resembled
an imitable method of discovery than an argument directed toward a specific result. Here,
no one result was placed above another. Some results were employed more frequently, but
because Steiner proceeded from particular findings to generalizations, the more specific

results appeared more often despite their limited applicability.

"TFor instance, in Section 10 Steiner proved a result for an equilateral triangle circumscribed to a circle.
Through parallel projection he extended the result to any triangle and the smallest possible circumscribed
ellipse in Section 11. Then in Section 12 he applied central projection or perspective to generalize the result
to any triangle and any circumscribed conic section.

™ Although Steiner had used dual columns in previous articles (such as Steiner (1828b)), and his results
from this article were summarized with dual columns in the Bulletin review, he did not use them here.

™ As an extreme example of this pedagogical zeal, Steiner concluded his first monograph, Systematische
FEntwicklung with a list of 85 practice problems that could be mailed to Crelle’s Journal for review and
potential publication.
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As in the case of Section 2 and Section 18, each new line of inquiry included a new
figure, where Steiner took the opportunity to wipe the slate clean and redefine previously
designated points. As we have seen, this practice was not without confusion, perhaps due to
some errors in production. Although Steiner included many theorems, not every proposition
was illustrated. Steiner referred to figures economically, often using one figure to illustrate

several constructions. All of his figures fit onto a single sheet (Figure 4.37).

Tom XIX, plan.Lpag.37-G4.

Figure 4.37: Steiner’s Figures (Steiner (1828d))

Gergonne designed the prints for all figures in his journal, and clearly took care in his
layout. In order to fit all of Steiner’s figures on a single sheet, the figures were not arranged
linearly, but almost in a clockwise fashion beginning with figure one in the lower left corner.
The straight lines in the figures were either solid or dotted, apparently motivated more
by visibility concerns than denoting a different step in the construction process. All seven
figures included full or partial conic sections. In Figure 5 there were two ellipses, otherwise
the conics were circles, or as in Figure 6, partial circles—due to page space constraints.
Unsurprisingly, then, when we consider when figures are invoked, they remain linked to

preliminary and more particular theorems rather than the general results derived through
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projection and reciprocity.

Despite the elementary nature of the figures, they contained recent geometric inno-
vations. Specifically, both Figure 3 and Figure 4 indicated an infinite point P’ as the
intersection of parallel lines. As in the figures of Poncelet, the point at infinity was sug-
gested as being off the page. In generalizing his theorems, Steiner referred to cases where
the points of intersection passed to infinity or were situated at infinity. These procedures of
projection, perspective, and reciprocity maintained an analogy to constructive results yet

extended beyond their constructive limitations.

4.3.3 Recherches sur les courbes algébrique de tous les degrés: Pliicker
proves Lamé’s theorem (1828)

Pliicker’s research on algebraic curves appeared only 30 pages later in the same Annales vol-
ume (Pliicker (1828b)). Steiner’s article had been classified as pure geometry and Pliicker’s
was labelled as analytic geometry. Though either article might have equally well fit un-
der the heading geometry of curves, their disparate subjects contrasted with their spatial
proximity. Further, Pliicker’s research was succinct and driven toward a clearly enunciated
goal. Pliicker promised to deduce a great number of properties of curves, while refraining
from calculation. He would continue these investigations with respect to algebraic surfaces
in another essay.

The article comprised three sections. The first motivated the research with a review of
Cramer’s paradox and a discussion of well-known curve properties. Pliicker cited Cramer
in his Introduction a ’analyse des courbes algébriques as the first geometer to have noted
that a planar curve of degree m was completely determined by mfﬂ . mT“ — 1 points, but
two planar curves of this degree could intersect in up to m? points. When m > 2, there
was an apparent paradox, since different curves could share as many or more points than
the number required to completely determine one of them. For instance, when m = 3 two
planar curves could intersect in 9 points, which should determine a single curve of degree 3.
Following Cramer, Pliicker explained with professed ease this seemingly “surprising” result
by remarking that when completely determining a planar curve one always assumed the
given points were chosen “by chance and contain no particular common relation.” Turning
to his own research in the theory of osculating curves and its geometric interpretation,
Plicker had met several similar theorems that initially appear rather “singular,” but were

7

“very fruitful with beautiful corollaries”” Though these theorems had appeared elsewhere
(Pliicker did not say where precisely), he would reproduce them here in a more developed
manner followed by some of their applications.

The second section contained Pliicker’s two main theorems and their proofs, these were

the only theorems labelled and enumerated in the text. Pliicker began with an analytic
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representation of the properties discussed in Section I, showing that if one represented two
curves of any degree m > 2 as
M =0,M" =0,

then the equation of the same degree
uM + M' =0,

in which p is a constant indeterminate coefficient, would express an infinity of other curves
of degree m passing through the m? points of intersection of M, M’. But if one found an
arbitrary new point on one of the curves, one could find y from the resulting linear equation,
and so the curve containing the new point would be completely determined. Continuing

m+1  m+2
1

with this line of reasoning in the case where there were 5= — 2 given points (one

fewer than to completely determine a conic), and invoking the principle of duality, Pliicker

demonstrated his Theorem I in parallel columns.®’
THEOREME I. Toutes les courbes du THEOREME I. Toutes les courbes du
m."me degré qui passent par les m. "M classe qui passent par les
mT‘H . mT“'Q — 2 mémes points fixes, se mTH . mTH — 2 mémes droites fixes, se
coupent en outre aux coupent en outre aux
m? — (2L mE2 9 autres mémes m? — (2L ™2 9 autres mémes

1 2

points fixes.? droites fixes.®
As an example, and still in parallel columns, Pliicker detailed the case of third degree curves
passing through the same eight points and thus meeting in a ninth fixed point. Or dually,
tangent to the same eight lines and thus tangent to a ninth fixed line. Similarly, fourth
degree curves passing through thirteen points will meet in another three fixed points, and
so on. Returning to a single column, Pliicker noted that some of the points could be of
higher order, and so not necessarily unique.
Pliicker then continued to consider the situation when the coefficients of the representa-
tive equations were not indeterminate, but instead subject to certain conditions, this would
serve to lower the number of necessary fixed points for the theorem’s hypothesis. Pliicker

summarized these results in Theorem II-presented in only one column.

Etant donnés n coefficiens de ’équation générale du m.**"® degré a deux in-
déterminées, ou encore étant données n équations linéaires entre tous ou partie

de ces coefficiens ; toutes les courbes représentées par ’équation générale, ainsi

modifiée et passant par les mT“ . mTJ“? — (n + 2) mémes points fixes donnes, se

2 _ m+l

1 L;Q + (n + 2) autres mémes points fixes.

couperont en outre aux m

80Tn all theorems in this article, Pliicker consistently described both given and deduced points and lines
as “fixed,” perhaps in order to fix the general equation of the second order curve.
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(ibid, 100)%3

Pliicker concluded his second section with a reminder that the theorem required the in-
equality, n > mT“ . mT” — 1.

In the third and final section, Pliicker demonstrated the fruitfulness of Section II, by
showing assorted examples of easily deducible curve properties, including Lamé’s Theorem.
In particular, Pliicker focused on consequences of Theorem II, which could be applied to
second degree curves. In this case, given n coefficients or n linear equations containing the
coefficients, then all the curves passing through 4 — n fixed points would have n additional
fixed points in common.

Pliicker began with the a general equation of a second degree curve in two indeterminates

with six coefficients.
Az® 4+ By? + Cxy + 2Dx +2Ey + F = 0. (4.3)

Then if F' was supposed known, any combination of four coefficients, equations containing
coefficients, and points on the curve (e.g. one coefficient and three points) would give an
infinite number of curves passing through the same four points. This relationship formed
the basis for all Pliicker’s subsequent investigations in this article.

Pliicker began with the special case of the equilateral hyperbola. In rectangular coor-
dinates, the equation representing equilateral hyperbola would have coefficients such that
A+ B = 0. Such an equation reduced the number of necessary givens in equation (4.3).
Drawing from this relationship, Pliicker determined that all equilateral hyperbolas sharing
three given points would meet in a fourth point. Since systems of two perpendicular lines
could be considered as hyperbolas, Pliicker extended the property to show that the three
heights of a triangle concur in the same point. Though not relevant to the remainder of
his argument, Pliicker’s unexpected triangle result provides a striking contrast to Steiner’s
proof of the same result merely 70 pages earlier in the same journal and indicates another
points of intersection between their respective routes.

Pliicker returned to the general conic. From (4.3), Pliicker concluded that knowing
either ratio % or % would give two conjugate diameters of the curve, where one would be
parallel to one of the coordinate axes. Thus all conics with two conjugate diameters parallel
to two fixed lines and passing through three fixed points would meet in a fourth fixed points,
and conversely.

In particular, the equation of a diameter whose conjugate was parallel to the z-axis

would be By + Cx + E. So if the ratio % were given then one would know the intersection

83«Given n coefficients of the general equation of m'" degree in two variables, or given n linear equations
among all or part of these coefficients; then all the curves represented by the general equation, so modified
and passing by the same “5H - ™2 — (n + 2) fixed points, will meet in the same m?* — ™ . m£2 4 (n 4 2)

1 2
other fixed points.”
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point of the given diameter with the y-axis. That is, if the y-axis met the curve, then the
intersection point would be the midpoint of the chord intercepted. Further, given any point
(a,b) on the diameter’s extension, one could conclude that Bb+ Ca + E = 0. Similarly, if
one were given another point (a’,b’), now on the extension of the diameter whose conjugate
is parallel to the y-axis, Aa’ + CV + D = 0.

Continuing this investigation with a given line of the form ax + Sy +~ = 0, the equation
of the diameter whose conjugate is parallel to this given line would be a(By + Cz + E) =
B(Ax + Cy + D), a linear equation relating A, B,C, D, E. One could thus be given one,
two, three, or four equations of the same form containing A, B,C, D, E. In the last case,
and supposing one of the coefficients as given, the curves would be completely determined
except for the last term F. From these considerations, Pliicker deduced “sur-le-champ” that
all conics passing through three given points and in which the conjugates of the diameters
that were parallel to the same fixed line concurred in the same fixed point, would meet at
a fourth point. Further, if any number of conics passed through the same four points, the
conjugates of their diameters parallel to the same fixed line would concur in a fixed point.

The latter result Pliicker attributed to Lamé, giving a precise citation of the Annales

VII, page 229. He suggested that the theorem could be completed as follows.

Si la droite, a laquelle les diametres sont paralleles, tourne sur 1’'un quelconque
des points de sa direction, le point de concours des conjugués de ces diametres
décrira une conique, lieu géométriques des centres de toutes les coniques passant

par les quatre points donnés (*).

Si deux coniques sont telles quelles interceptent, sur une méme droite donnée,
des cordes dont les milieux coincident ; la méme chose aura lieu pour toutes
les coniques qui, passant par les quatre points d’intersection de ces deux la,

couperont la droite donnée. (ibid, 105)%*

Finally, Pliicker generalized the result for conics passing through 4 — n given points,
which would then have conjugate parallel diameters meeting in n points. Pliicker explained
that if n = 4, then the conics would be similar and concentric such that the given points
of intersection would pass to infinity. Pliicker’s consideration of this special case shows an
attention to Poncelet’s innovations in the Traité des propriétés projectives (1822) in which

he established the common points at infinity among similar, concentric conics.

84«If the line to which the diameters are parallel turns on one of its points, the point of concurrence of the
diameters describes a conic, the geometric locus of the centres of all conics through the four given points
(*).77

“If two conics intercept, on the same given line, chords whose midpoints coincide; then the same thing
will occur for all the conics which, passing by the four points of intersection of these two, intercept the given
line.”
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As in Lamé’s proof, Pliicker used coordinate equations without digressing into compu-
tation. Pliicker presented as known the necessary equations representing conjugate parallel
diameters, from there the reader only needed to count the number of coefficients and the
number of givens in order to reach the desired result. The entire article remained within
the system of rectangular coordinate equations. The conic section was represented exactly
by (4.3), and Pliicker seemed to use the two terms of reference (conic and equation) inter-
changeably in his proofs. Specific conics, such as the equilateral hyperbola, were designated
with respect to their coordinate relations in (4.3). Pliicker’s only mention of constructing
the determined conics was to point out that the construction of a fourth point shared by two
conics would be very easy and one could then find all the points one desires. Nowhere did
he give a constructive procedure, thus there were no problem solutions, only theorems and
proofs. That this was geometry, and not algebra, was emphasized in the names of things,
equations represented geometric objects. While equations and not figures were the form of
representation, the objects remained conic sections, diameters, parallel lines, hyperbolas,
and points of intersection. Just as Steiner’s figures were nowhere to be seen in his theorem
statements, so, too, Pliicker made no mention of his coordinate equations and coefficients
when drawing conclusions.

Though Lamé and Pliicker both used coordinate equations to represent geometric ob-
jects, we begin to see how the label “analytic geometry” carried dissonant connotations in
the context of the two different publications over ten years apart. Lamé would introduce the
use of abridged notation in 1818, but in 1817 he relied upon standard coordinate equations
to represent curves and surfaces. In Lamé’s exposition, the equations became increasingly
complex and numerous. While his paper did not include a great deal of calculation, this
was because Lamé left the elimination of variables to the reader and simply showing the
end result. In part relying upon the technology later developed by Lamé, Pliicker could
use symmetry and the best choice of coordinate axes to simplify his equations. Pliicker
further avoided calculation by emphasizing that the curves could be determined, without
showing how one might use a given equation to find the exact coefficients. There was no
hidden calculation because it was not necessary to secure the geometric result. Pliicker’s
particular form of analytic geometry without calculation was more apparent than it had
been in Pliicker (1827) or the as yet unpublished Pliicker and Schoenflies (1904).

As pointed out in Cournot’s 1828 review, Pliicker often progressed toward already known
results, rather than making new discoveries (Cournot (1828), 178). However, his method
towards these known results incorporated recent developments that had not yet been repre-
sented through coordinate equations. Gergonne had introduced dual columns in 1824, but
they had been used almost exclusively in non-coordinate geometry since that time. In this
article, Pliicker’s used dual columns to state his theorems and showed how to apply polar

reciprocity in his final example, where he provided an equation that represented when one
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point with coordinates (a,b) lay on the polar of another point (a’,b") with respect to the

second order curve (4.3).
Aaad' + BbY + C(ab/ +ba') + D(a +d') + B(b+ V) + F =0 (4.4)

Pliicker deduced from the symmetry of equation (4.4) that the result was reciprocal-the
point (a’,b’) lay on the polar of the point (a,b).®®

Pliicker further incorporated new geometric practices with his use of common points at
infinity between any concentric conics. Poncelet had motivated this terminology to explain
why “analytic geometry” could in general represent points of intersection for any two second
degree equations. In importing this concept to an article considered as analytic geometry,
Plicker did not provide a coordinate representation for these points, although the step of
passing points or lines to infinity was not strictly constructive either. Nevertheless, it was
becoming a common procedure, even in articles that Gergonne designated as “elementary
geometry” (Steiner (1828c)). Pliicker demonstrated a strong familiarity with contemporary
research, and an eagerness to expand the domain of analytic geometry. With the new
geometric objects developed by Poncelet and the new abridged notation, the practice of

using coordinate equations to solve geometry problems was evolving.

4.3.4 Gergonne’s footnote, citation, and text

The asterisk in Pliicker’s so-called completion of Lamé’s theorem referred the reader to a
footnote by Gergonne who succinctly stated that “this is precisely what was demonstrated
on page 106 of the preceding volume.” Gergonne’s note was perhaps not precisely Pliicker’s
statement, but certainly a special case. There, Gergonne had given a proof that the con-
jugate of the parallel diameters of all the ellipses circumscribed to the same quadrilateral
concur in a point and this point was constantly on the perimeter of the hyperbola which
was the locus of centres of the ellipses (Gergonne (1827a)). The first part of the result
was attributed to Lamé, although a different text than Pliicker’s citation. As reference in
an accompanying footnote, Gergonne pointed to “une démonstration fort élégante de cette
proposition, ainsi que beaucoup d’autres choses intéressantes, dans un petit ouvrage de M.
LAME, ayant pour titre : Ezamen des différentes méthodes, etc. ;” (Gergonne (1827a),
106).56

Gergonne, although proving the extended version of this theorem, attributed the original
statement to an article by Steiner in Crelle’s Journal from 1827 written in response to

a question posed by the geometer Etienne Bobillier in the Annales on finding an ellipse

85Pliicker would develop the implications of this last example when he turned his attention to the use of
duality with coordinate representation in 1830 (Pliicker (1829b)). See Appendix E.
86“[...] a very elegant proof of this proposition, as well as many other interesting things, in a little work

o

of Lamé, Examen des différentes méthodes, etc. ;
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closest to a circle given certain limiting conditions (Steiner (1827b)). Despite admiring
what he described as Steiner’s elegant theorem, Gergonne expressed dissatisfaction with
the proof, claiming that it too often relied upon “generally known” results which were not
well known at all. Indeed, the criticism from Gergonne’s assessment of Steiner in 1826
had reversed. Gergonne did not attempt to reconstruct Steiner’s proof, instead taking the
material in his own direction. While Steiner’s proof had been constructive, Gergonne’s
proof relied upon calculations with coordinate equations. Accordingly, Gergonne did not
consider this a translation or abridgement of Steiner, but claimed it as an independent
result. Like Pliicker, Gergonne began with the same general form of a conic, (4.3). Unlike
Plicker, he then introduced many other variables to serve in algebraic, trigonometric, and
differential calculations. These were eventually simplified to reach the desired conclusions.
In demonstrating his version of Lamé’s theorem, Gergonne derived the equation of a tangent
line drawn to the extremities of the diameter (y —u = m(z —t)) of the circumscribed ellipse

as

—k

k=
A—|—Bm2+Cm.+ 0,

(A+Cm)x + (Bm+C)y+ (D + Em)\/

which resulted in the comparatively simple equation of the conjugate diameter, as
(A+Cm)(x —t)+ (Bm+C)(y —u) =0.

Gergonne then substituted in the fixed line y = max to find the fixed point given by the
equations
Az +mBy+ (D+mE) =0,mz+y=0.

Even in this brief excerpt, we can see that Gergonne delved into algebraic computation.
Gergonne’s method had neither Pliicker’s simplicity nor Steiner’s use of figures. The proof
only applied to ellipses and resulting hyperbola loci, not a general second order curve.
Gergonne made no comment on the particularity of his version nor whether one might be
able to extend the results to other conic sections.

Thus, readers of the Annales, and certainly Steiner among them, might have known that
Steiner had already given another version of Lamé’s Theorem in an earlier context. In fact,
turning to Crelle’s Journal, Steiner had stated the so-called completion of Lamé’s Theo-
rem while determining an optimal ellipse, without proof and with the vaguest of possible

references in 1827.

Alle Kegelschnitte, welche durch vier gegebene Puncte gehen, haben ein Sys-
tem konjugierter Durchmesser, die parallel sind, und ihre Mittelpuncte liegen in

der Peripherie eines anderen bestimmten Kegelschnitts K. Dieses ist bekannt.
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(Steiner (1827b), 65)57

On the one hand, Lamé’s theorem and its proof was known. On the other hand, Steiner’s
extreme brevity (this article runs less than two full pages—Gergonne’s analytic proof of the
same results goes for ten), certainly demanded a great deal of background knowledge on
the part of his reader. However, we suggest that Gergonne’s proof in the Annales was also
motivated by an opportunity to advertise his analytic geometry prowess, or perhaps just
utilize the only method readily available to him. Steiner himself made no reference to this
earlier result when returning to Lamé’s theorem the following year, and as we have seen his
statement of the theorem took quite a different form without conics or conjugate diameters
in this later version. It is only through Gergonne’s reference that we are able to identify
the two results as following from the same source. So we find another instance of theorem
identification through a common reference, as well as further evidence of the popularity of

reproving Lamé’s theorem.

4.3.5 Lamé’s theorem: Conclusions

That Lamé’s theorem was repeatedly re-proven was not a statement against Lamé’s original
proof. Then why prove Lamé’s theorem at all? Certainly, none of these texts aimed at a
comprehensive or systematic survey of conic section properties. Steiner’s assorted theorems
had little to no overarching design. Pliicker described his applications as a chance assortment
of possible results. Both geometers hinted at selecting examples from a vast wealth of other
similar results. With Lamé’s theorem, either geometer might have simply cited the well-
known result, but chose instead to use the opportunity for proof to show off their particular
methods. Yet, neither geometer attempted an entirely self-contained exposition. Steiner
pointed the reader vaguely to Carnot for the rationale behind finding a point of determinate
ratio. Even less explicitly, Pliicker introduced several equations with the preface “one
knows.”

In deciding to also present a proof of Lamé’s theorem, Pliicker may have been following
Steiner. Plucker’s shorter proof, free from construction and calculation, could have con-
trasted favourably, especially following the Bulletin review of Steiner’s paper which had
recommended the use of analytic geometry. Pliicker had also applied his method to show
that the perpendicular bisectors of the sides of a triangle concur in a point. This had been
Steiner’s first theorem, which he proved using proportion equations “adding, reducing, and
transposing” in a very computational manner. Pliicker proved the same result by consid-

ering perpendicular lines as a special case of an equilateral hyperbola. Although Pliicker

87« All conic sections that go through four given points have a system of conjugate diameters, which are
parallel; and their common points lie on the periphery of another determined conic section K. This is
known.”
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may have had Steiner in mind with the inclusion of these two theorems, the overall thesis
of his article suggests an independent and long-standing research topic into the relation-
ship between n'* degree curves and given points. Lamé’s theorem and the theorem on
perpendicular bisectors were only evidence of the theory’s fruitfulness.

For Steiner, too, proving Lamé’s theorem did not motivate his article’s content. However,
its inclusion by both geometers associated their research with contemporary geometry. If
a method was capable of proving well known results, then it could be considered fruitful
and worth adopting. In a pedagogical context, the general applicability of a method might
carry even more weight. In order to generate support for their methods, they needed to
demonstrate the methods’ capabilities in familiar geometric territory.

Although Pliicker and later Steiner promoted new methods over new results, the re-
sulting theorem statements in their articles obscured the derivation. In both Steiner and
Pliicker, the theorem’s hypothesis stated the minimum required givens to reach the conclu-
sion, without trace of the approach. For Steiner, in the proofs and figures, each point and
line was defined with respect to a given conic section, which disappeared entirely in the
theorem’s statement. Since three non-collinear points uniquely determined a circle, there
was no need to explicitly describe it. For Pliicker, the representation of geometric objects
with coordinate equations was stated as well-known. “All conics” implied the general second
degree equation in two variables with six coefficients. The method could not be inferred
from the individual results.

Turning to the proof structure, Steiner began with what he wanted to show and worked
backward to initial conditions. This strategy worked well in proofs, and could be used to
extend a particular result to further cases. As discussed above, Steiner’s argument structure
was perhaps more imitable in his mode of generalization through projection, perspective,
reciprocity, and points at infinity. In this way, Steiner demonstrated an applicable method
of discovery.

Pliicker began with a general initial theorem pertaining to curves of any degree. He
then proceeded to focus on the more particular case of second degree curves. His specific
arguments were well-anticipated and his use of coordinate equations straightforward to
follow, but did not suggest applicability beyond variations on the same theme of four given
conditions to determine a set of conic sections because the number of variables was so crucial
to the argument. This was also the case for Lamé’s original statement. For Pliicker the use
of coordinate equations to represent geometric objects opened a path toward simplification
for analytic geometry, a contribution that outweighed discovering particular theorems or

problems.
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4.4 Conclusion

We have seen how Steiner and Pliicker produced different representations, applications, and
contexts for familiar geometric content. Steiner’s geometry was criticized as complicated
and laborious, but capable of generating many problem and theorems, both old and new.
As constructive geometry, Steiner’s geometry could be directly applied to figures in the
plane, although, unlike Poncelet’s synthetic geometry, we found no descriptions of Steiner’s
contributions as practical. Pliicker’s geometry was praised as simple and followable, yet
dependent on old results for content. His use of coordinate representation required trans-
lation back into geometric figures for solving geometric problems, and this translation was
not included in Pliicker’s theorem and theory driven article, though explicit in his problem
solving.

Both of Steiner’s articles reviewed here were classified as pure geometry by their section
heading in the Annales, and most likely this designation had been decided by Gergonne.
At this point in his career, Steiner seemed open to any number of geometric methods, and
even commended Bobillier’s use of analytic geometry (Steiner (1828a)). In his articles, he
did not describe his own method as pure geometry, and his only published methodological
commentary at this time had been with respect to the pedagogy of Pestalozzi. While we have
seen that he was much more explicitly methodological in correspondence, his appreciation
for synthetic methods was not in opposition to the use of coordinate equations.

In 1832 Steiner published his first book, Systematische Entwicklungen, where he devel-
oped a public formal statement of his personal geometric method (Steiner (1832)). However,
even in this context, Steiner did not exclude or denigrate other geometric methods. To the
contrary, in prefacing a list of posed problems and theorems for his readers, he offered the
option to employ and practice his method or to follow another method instead (Steiner
(1832), 439). In this later text, when Steiner described pure geometry, he intended geome-
try without the use of sensual mediums ( Versinnlichungsmittel) such as figures or equations,
conducted only by the use of imagination ( Vorstellungskraft) (ibid, 306). This was certainly
not the kind of geometry employed in his solution to the Apollonius problem nor proof of
Lamé’s Theorem. Steiner’s desire for systematicity, unity, and intuition did not entirely

manifest in shorter articles.%®

88Gteiner’s lifelong dedication to these higher principles is attested by Jacobi’s 1845 letter of recommen-
dation for Steiner to receive a full professorship, in which Jacobi summarized Steiner’s contributions over
the past twenty years. Jacobi described Systematische Entwicklungen as a holistic and exemplary text for
all of mathematics.

Indem er so den Organismus aufdeckte, durch welchen die verschiedenartigsten Erscheinungen
in der Raumwelt miteinander verbunden sind, hat er nicht bloss die geometrische Synthese
gefordert, sondern auch fiir alle anderen Zweige der Mathematik ein Muster einer vollkommen
Methode und Durchfiihrung aufgestellt. (Jahnke (1903b), 278)

“Thus he revealed the organism through which diverse manifestations in space are intercon-
nected, he has not only promoted geometric synthesis, but also established a model of a perfect
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Pliicker’s methodological position emerged more powerfully in his Analytisch-geometrische
Entwicklungen (Pliicker (1828a)). In the preface, he described his method as “pure ana-
lytic geometry” and criticized Steiner for “following in the footsteps of Poncelet.” Yet,
as suggested by Crelle’s letter of recommendation described above, Pliicker’s preface was
not necessarily indicative of his monograph’s contents. Moreover, we suspect that Pliicker
may have directly belittled Steiner’s recent publications, in order to further contrast the
independence of his own work that had already suffered by comparison to Poncelet.

As we saw in Chapter I, by the 1870’s Steiner and Pliicker had become emblematic of the
competing methods of analysis and synthesis. Contrary to these stereotypes, neither Steiner
nor Pliicker exhibited an orthodoxy of method in these early articles. Our two case studies
reveal that the line between pure and analytic geometry was but faintly drawn and could
be classified neither in terms of calculation nor by the presence of figures. Both Steiner
and Pliicker used some calculation and both geometers provided constructions based in
figure manipulation (in Pliicker’s monograph and Crelle publications, there are illustrated
figures too). The tools of figures and calculation were at times complementary, and cer-
tainly served different purposes, one could not replace the other. An analytic proof without
translation into figures would not qualify as a geometric solution. Analogously, while the
common (ideal) chord between two non-intersecting conics could be easily portrayed in a
linear equation, drawing such an object defied common sense (and in part explains why the
less figurative term “radical axis” was often preferable). Moreover, these two cases have
shown that Steiner and Plicker displayed personal styles that resisted standard method-
ological classification. Steiner’s “synthetic geometry” and Pliicker’s “analytic geometry”
were peculiar to them.

We have commented in several places on the cause of repetition in the repeated solving
and proving of the Apollonius problem and Lamé’s theorem. With respect to the criteria
decided by Gergonne and Poncelet, the theorem or problem alone was not sufficient in
determining the best method. Choice would also depend upon the ultimate purpose the
theorem or problem intended to serve. Should the geometer (like Steiner or Pliicker) intend
to use the theorem or problem primarily to promote their own method, then the method
chose the content and not vice versa. Repeating well known results functioned as evidence
of a method’s worthiness and simultaneously advertising familiar material to a potential
reader.

At the same time, we must consider the potential effects of repetition on the geometry.
From the case studies considered here, two facets of repetition stand out as powerful forces
in shaping the image of geometry. First, repeated content enabled the disappearance of

the constructive figure from non-elementary texts. New vocabulary continued to replace

method and execution for all other branches of mathematics.”
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the process of finding geometric relationships, as we saw in the case of similitude and
radical objects. These tools allowed abbreviation and appeared to simplify, but to actually
draw a radical axis required a step by step constructive definition. A seemingly short
construction, like those of Pliicker and Poncelet, might in fact be quite labor intensive to
execute. Secondly, geometers emphasized the differences between their methods in order
to compensate for the similarity of their results. The importance of method only came to
the front when geometers described their work, or their work was described by others. In
1839, Crelle wrote a letter of support for Pliicker to the ministry, in which various styles of

synthetic geometry were lumped together in order to differentiate Pliicker’s contributions.

Auch die der analytischen gegeniiberstehende, oder vielmehr neben ihr beste-
hende synthetische Methode, mit welcher Poncelet, M&6bius usw. und besonders
Steiner so Vieles und Bewunderungswertes geleistet haben, mag zu allen Resul-
taten ebenfalls gelangen kénnen, indessen kommt es bei der weiteren Entwick-
lung der Mathematik fast noch mehr als auf die Resultate auf die Vervollkomm-
nung der Methoden an; denn die Methoden sind die Werkzeuge, um immer noch
weitere neue Resultate zutage zu fordern; und um der Vervollkommnung der an-
alytischen Methode in der Geometrie hat sich nach meiner Uberzeugung Herr
Pliicker seinerseits schon durch seine fritheren Schriften und jetzt wieder durch
die vorliegende, ein wesentliches und bedeutendes Verdienst erworben. (Ernst
(1933), 31)%?

From a different perspective, we have seen how French mathematicians associated Steiner
and Pliicker as German geometers. This same muting of idiosyncrasies between Poncelet
and Steiner as synthesists or between Gergonne and Pliicker as analysts, each of whom
saw the other’s work as very different, resulted in an apparent dichotomy. The image
of geometry that appeared in the late nineteenth century portrayed their predecessors as
separated and ultimately calcified by a spurious methodological divide. In support of this
image, late nineteenth century geometers cited the frequent methodological claims made by
their French and German predecessors. Yet, the methodological claims did little to describe
the qualities of the particular geometer or of the recurring content.

In the midst of this repetition, geometers argued for novelty of form or novelty of method.
However, we have not yet examined what constituted the older or even “ancient” geometry,

nor what kind of geometry was practiced by contemporaries of Gergonne, Poncelet, Pliicker

89«The analytical opposed, or rather next to its ruling synthetic method, by which Poncelet, Mébius, etc.
and especially Steiner have accomplished so much that is so admirable, can succeed as well in all results,
however the further development of mathematics occurs almost more with the improvement of method than
the results; because the methods are the tools to promote still further new results; and to the improvement of
the analytic method in geometry, in my opinion, Herr Pliicker has in turn acquired meaningful and significant
worth by his earlier and now the present writings.”
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and Steiner outside of Gergonne’s Annales. In order to evaluate these claims for novelty,
we look to the context of French books on geometry published in the first third of the

nineteenth century.
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Chapter 5

Claims for novelty in geometry

research in the context of French
books (1800-1833)

The historical conception of early nineteenth century geometry, as described in Chapter I,
motivated our focus on the the texts of Gergonne, Poncelet, Pliicker and Steiner, as epito-
mizing the progress and innovation within geometry during the first third of the nineteenth
century, particularly between 1817 and 1832. As our case studies in Chapters I, ITI, and IV
have demonstrated, Gergonne, Poncelet, Pliicker and Steiner knew and responded to each
other’s work within a close network of researchers, mostly publishing in the Annales. While
the Annales boasted a wide range of French and European contributors over its existence, it
does not necessarily provide a model for the majority of French geometry published between
1810 and 1832.! By focusing on our particular authors, we have emphasized research ar-
ticles. Even Poncelet’s Traité was subsequently reiterated in numerous Académie readings
and article publications (Poncelet (1828b), Poncelet (1826), Poncelet and Cauchy (1825),
Poncelet and Cauchy (1820)).

Alongside the texts considered above, the early nineteenth century also boasted a sub-
stantial output of books on geometry. The first third of the nineteenth century includes the
time in which Poncelet, Pliicker and Steiner received their formal education and wrote their
first monographs as well as the entire existence of Gergonne’s Annales, and we will consider
texts published in this interval as contemporary to our above studies. We further limit our

corpus to French publications in reflection of the formative training in French geometry and

1For a statistical analysis of Annales contributors by nationality, subject matter, and professional affilia-
tion, see Otero (1997). Gerini and Verdier document the contents of the Annales as compared to the later
Journal de Liouville in Gérini and Verdier (2007). Similarly, Delcourt compares the contents of the Annales
and the Nouvelles Annales with respect to elementary geometry in Delcourt (2011b).
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demonstrated desire for a French audience exhibited by all four of our main actors. We
have seen that Poncelet, Gergonne, Pliicker, and Steiner presented their work as modern
or new, and Chapter III revealed concerns regarding properly introducing new principles
of geometry to the mathematical community. However, as the case studies in Chapters 11
and IV show, geometers often re-appropriated problems, solutions, theorems, and proofs
from contemporaries or older sources. By surveying the books published between 1800 and
1833, we will provide a deeper picture of how geometers saw the geometry of their time, in
order to better evaluate claims for novelty in geometry research. Further, we will use the
context of books to reexamine the questions considered with respect to articles in earlier
chapters. Namely, what was the role of the figure? How prevalent was repetition? Were
methods differentiated, and if so, how? We will find that these books reveal a different
set of interests, authors, audiences, and method definitions than those involved in research

articles.

5.1 Defining a corpus: catalog of the Bibliotheque national

de France

To obtain an appropriate corpus of contemporary geometry books, we first queried the Bib-
liotheque nationale de France library catalog for all texts including the keyword “Géométrie”
and published between 1800 and 1833 (www.bnf.fr). This search returned ninety-two
unique titles, about a quarter of which appeared in at least two editions (the elementary
geometry texts of Sylvester Francois Lacroix and Adrien-Marie Legendre were published in
fourteen different editions each!).?

We refined our corpus by removing about thirty books on practical geometry, including
those with the title “géométrie pratique” and geometry applied to industry or design. Prac-
tical geometry, as described by F.-J. Servois in Solutions peu connues de différens problémes
de géométrie-pratiques concerned the study of executing “diverse geometric operations on
the terrain” (Servois (1803), 1). Although texts on practical geometry included preliminary
theory, they emphasized geometry in the field, using particular measuring tools and creating
working diagrams. Authors of these texts explicitly stated that their audience consisted of
surveyors, workers, architects, and designers. Since our case studies so far have focused on
geometry written for those who considered themselves as students, teachers, and geome-

ters, we limited our comparative survey of books accordingly. Even with this pre-emptive

2Three texts were listed in the BnF catalog, but reported “hors usage,” and thus could not be accessed.
These were Jules Planche Observations sur les propositions de géométrie en général, et sur les problémes en
particulier. Hachette, Paris, 1828; Charles-Félix Fournier, Elémens de géométrie. Lefournier et Depériers,
Brest, 1829; A. Brocchi Elémens de géométrie. Boisgard, Paris, 1833. G. F. Olivier’s text Géométrie usuelle
could only be accessed in its third edition (published in 1835), although appearing after 1833, because the
first two editions were published in our time frame (1828, 1832), we included it in our analysis.
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exclusion, we will see that nearly every text on geometry included discussions and examples
of applications. For this reason, we did not classify texts on geometry with applications as
“practical geometry,” such as Charles Dupin’s Développements de géométrie, avec des Ap-
plications a la stabilité des Vaisseauz, auxr Déblais et Remblais, au Défilement, a I’Optique,
etc.; ouvrage approuvé par l'Institut de France, pour faire suite a la géométrie descriptive
et a la géométrie analytique de M. Monge, which is included in our corpus (Dupin (1813)).
We have further seen this fluidity between theory and application in the work of Poncelet,
who wrote and worked both as a mathematician and an engineer, and indeed subtitled his
Traité as also containing “applications to descriptive geometry and to geometric operations
on the land” (Poncelet (1822)). However, Poncelet segregated these research interests, as
we found with respect to his description of professional obligations that restricted his ge-
ometric research in Chapter III (Section 3.5), and can also be seen in the organization of
his book. While a potential reader might find practical uses in the articles on geometry
in Gergonne’s Annales, the excluded books on practical geometry were written primarily
if not exclusively for the purpose of application to a particular industry. We thus defined
practical geometry with respect to a specific intended public that overlapped, but was not
representative of, the public who wrote and responded to research articles on geometry.
We next removed any titles dedicated to the theory of parallels or the quadrature of the
circle. This included not only texts explicitly designated as such, but also Joseph-Marie
Lancon’s texts Découvertes intéressantes dans la géométrie élémentaire and Supplément
a la géométrie, renfermant des découvertes importantes, and Laurent Potier Deslauriéres’
Nouwvelle découverte qui embrasse toute la géométrie, qui donne la solution de ses plus
grands problémes, et qui va reculer les bornes de l’esprit humain (Langon (1801), Langon
(1802), Deslaurieres (1805)). Both of these authors claimed to offer new discoveries on
quadrature of the circle as the primary goal of their texts. In fact, we found Deslaurieres’
article collected in a 400-page collection of circle quadrature papers written between 1804
and 1876.3 Although we are removing these texts from our corpus, we note that they
bore certain similarities to other geometry publications. Deslauriéres presented his text
to the Académie des sciences (where it apparently received no response) and Langon had
figures engraved by the same artist who engraved Lazare Carnot’s well-regarded Géométrie
de position (Carnot (1803)). Finally, their innocuous titles promising new and interesting
discoveries were not unlike the geometry collections entitled Mélanges de mathématiques
or Mélanges d’analyse algébrique et de géométrie, which will be discussed below. These
texts on circle quadrature represented a small trend still current in elementary geometry.

As Deslaurieres commented, the Institut national “empéchoit ses Membres de s’occuper de

3Marie Jacob analyzes several eighteenth century texts on the quadrature of the circle and the discussion
surrounding the subsequent ban by the Académie royal des sciences in Jacob (2005) and Jacob (2006).
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la découverte de la QUADRATURE DU CERCLE.* Nevertheless, this did not prevent
schoolteachers and members of other professions from seriously considering the possibility,
and as Deslaurieres reasonably suggested, “personne n’a pu donner encore la démonstration
exacte de son impossibilité: elle restait donc dans ’ordre des choses possibles” (Deslauriéres
(1805), ii).?

Finally, we eliminated from our corpus translations and commentaries of Fuclid’s FEle-
ments and a geometry book written as a series of questions and answers for children. Our
corpus thus reduced to fifty-two distinct titles, which appear chronologically in Appendix B.
When we consulted multiple editions of the same title, these received multiple chronological
entries in our table.

We acknowledge that this form of search did not gather all books on geometry pub-
lished in French between 1800 and 1833. For example, Poncelet’s 1822 Traité des propriétés
projectives was not found in this search because this first edition did not receive any clas-
sification within the library catalog and the word “géométrie” is cut-off from the full-title,
it reads “Traité des propriétés projectives des figures..”® To confirm that our search was
representative, we conducted the same search through the Library of Congress online cata-
log (http://catalog.loc.gov/), which resulted in twenty-one titles. All but one of these was
on our list (this was, the 1812 edition of Etienne Bézout’s Cours de mathématiques origi-
nally published in 1752 () (1812 (1752))). The same search through the Catalogue collectif
de France (http://ccfr.bnf.fr/portailccfr /jsp/index.jsp), not including the Bibliothéque na-
tionale, returned sixty-five unique texts, eighteen of which are not in our corpus.

For each text we consulted the title page, table of contents, any prefatory remarks,
and the sheets of figures (nearly always located at the very end of the volume).” When
the table of contents indicated methodological commentary or material on imaginary and
infinite objects, problems or theorems investigated in our earlier case studies, we reviewed
the relevant pages.

After reviewing the contents we separated the titles into five categories for comparative
analysis. Based on the titles, we assigned most texts to one or more of three major categories:
elementary geometry, analytic geometry, and three-dimensional geometry.

Titles of elementary geometry texts contained the term “géométrie élémentaire,” “élé-

bEAN14 ?

ments (élémens) de géométrie,” “cours de géométrie,” or “géométrie usuelle” We will see

4«].] forbids its Members from occupying themselves with the discovery of the QUADRATURE OF
THE CIRCLE.”

SDespite Deslauriés’ insistence, most early nineteenth century mathematicians believed these problems
were impossible, as discussed in Liitzen (2009).

5The 1865 editions were classified as Géométrie descriptive and the full title is printed, thus these do
show up if there is no date restriction.

"Unfortunately, when consulting scanned texts, the figure pages were often poorly copied. While dis-
appointing, this feature was in general not a detriment toward understanding the books’ content nor the
author’s textual use of figures.
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that these eighteen texts were all intended for beginning students with no formal knowledge
of geometry.
The sixteen texts classified as analytic geometry had titles including the phrase “ana-

bRIN1Y

lytique,” “analyse” or “algebre”. We also classified Olry Terquem’s Manuel de géométrie,
ou Ezxposition élémentaire des principes de cette science as both elementary and analytic
geometry following his preface where he described the use of algebra applied to geometry as
a feature in his book. We will further discuss Terquem’s unusual choice to include algebra
in elementary geometry below.

Intriguingly both texts entitled broadly as “Cours de mathématiques,” (Cours de mathé-
matiques by Charles Bossut (Bossut (1800), first edition 1772) and Nicolas-Louis de LaCaille
() (1811 (1741) first edition 1741), dated back to the eighteenth century. Consulting the
subtitles and tables of contents revealed that these texts were separated into multiple sec-
tions, where elementary geometry preceded “l’application de I’algebre a la géométrie.” As
such, we categorized these texts as both elementary geometry and analytic geometry. The
fact that no other texts in our corpus intended to cover all of mathematics in a single book
suggests that this approach was less prevalent among the nineteenth century authors.

Finally we classified as three-dimensional geometry, all texts entitled “géométrie de-
scriptive”, “géométrie perspective”, or “géométrie & trios dimensions.” As we will see,
these twelve texts all concerned techniques for representing solid objects in the plane and
interpreting planar drawings as solid objects. Based on their subtitles, Charles Dupin’s
Développements de géométrie [...] pour faire suite a la géométrie descriptive et da la géométrie
analytique de M. Monge and Jean-Nicholas-Pierre Hachette’s Eléments de géométrie  trois
dimensions divided into Partie synthetique and Partie algébrique, were classified as both an-
alytic and three-dimensional geometry (Dupin (1813), Hachette (1817)). We will find that
these two authors clearly separated the two approaches to geometry within their books, and
indeed Hachette may have originally published the two parts as distinct volumes.

From consulting the table of contents in the remaining nine texts, we found two distinct
additional categories. Five texts concerned what we will call “geometry of the ruler or
compass” (the “or” is exclusive in these texts) and four texts contained mixed collections
of problems, theorems, and methods. The particular qualities of all five categories will be

8

discussed at greater length below.® When multiple editions appeared in our designated

time interval, we consulted as many as were available. The exact titles and publication

information can be found in our references.?

8 Augustin-Louis Cauchy’s Lecons sur les applications du calcul infinitésimal & la géométrie is the sole text
on calculus returned by our search (Cauchy (1826)). As Cauchy’s position as a professor of analysis at the
Ecole polytechnique and the course sequence indicates, this area of study was not considered geometry. We
include this text in our count because of its title, but beyond the first 35 pages of analytic geometry review
the content bears little in common with any other considered here. While an interesting outlier, Cauchy’s
text did not inform our general survey of early nineteenth century geometry.

9We will initially refer to all geometer’s of these primary texts by their names as printed in the titles of
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Based on this survey, we are able to craft an image of early nineteenth century French
geometry as codified in books. This image provides a point of comparison and contrast
to contemporary geometry articles. We will first discuss several features common to these

texts, beginning with the definition of geometry itself.

5.1.1 The definition of geometry and other common features

Regardless of methodological or subject differences, authors uniformly defined geometry
as the study of objects in space. Though not every text included an explicit definition of
geometry, we found no significant difference between the definitions in elementary, analytic,
or descriptive geometry. While the notion of space was presented as more or less theoretical
or physical, these differences did not appear related to the level of abstraction in the ac-
companying text. As an early example, in his course on mathematics Charles Bossut began
by contrasting geometry and analysis, and concluded that geometry was more concrete and

grounded in sensual objects that could be seen or touched.

L’objet de la géométrie est plus déterminé et moins abstrait que celui de ’analyse.
Cette dernier branche des mathématiques compare ensemble toutes sortes de
quantités, et les symboles qu’elle emploie représentent des rapports généraux et
purement intellectuels. La géométrie considere la grandeur en tant seulement
qu’elle est étendue et figurée: elle emprunte le secours de la vue ou du toucher
pour établir les relations que les lignes, les superficies et les solides ont avec leur
unité fondamentale. (Bossut (1800), v)*°

For Bossut, the solids of geometry had real existence, while one could only imagine the
independent existence of a surface or line.

Other definitions more emphatically differentiated the qualities of geometric space and
the space where real bodies could be measured. In his text on elementary geometry, Louis
Bertrand described how geometrical space was infinite and homogeneous, an abstraction

from the physical.

La Géométrie est relative a I’étendue : I'étendue ou l'espace, abstraction faite
des corps qui s’y trouvent, est infini et homogene, ses parties ne sont séparées
par aucune limite; mais on peut les concevoir grandes ou petites, figurées de

fagon ou d’autre; la difficulté est de s’en faire des idées si distinctes, que l'on

their texts in order to maintain consistency. Several of the author’s were only known by their surnames or
first initials. In all subsequent references we will use only surnames, which are unique to each author here.
Authors’ full names, dates, and Ecole polytechnique classes (if known) are given in Appendix C.

10¢«The objective of geometry is more determinate and less abstract than that of analysis. This latter
branch of mathematics compares all sorts of quantities and the symbols it employs represent general and
purely intellectual relationships. Geometry considers size only as it is extended and figured: it makes use of
sight and touch to establish the relations that lines, surfaces and solids have with their fundamental unit.”
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puisse assigner les rapports qu’elles ont, soit entr’elles, soit avec le tout dont
elles font partie. (Bertrand (1812), iii)!!

Similarly, in his analytic geometry, F. H. Francfort described the space of geometry as

indefinite and relative.

L’espace tel que les géometres le considérent est une étendue indéfinie dans
laquelle on congoit que tous les corps sont placés. On ne peut donc y déter-
miner le lieu absolu des corps, mais seulement leurs situations relatives qui sont
les seules dont la connaissance nous soit nécessaire, et pour cela on rapporte
ces points a des objets fixes dont on suppose que la position en est connue.
(Francfort (1831), v)!2

Although abstract geometry could only be “conceived,” in its three dimensional qualities it
remained representable as a volume, an area, a length, or a position. In turn, geometry was
highly applicable to understanding, representing and manipulating space. Terquem traced

its historical dimension with respect to national and imperial divisions.

La délimitation des divers pays occupés par les nations, la fixation des bornes
entre les propriétés territoriales des particuliers, sont des opérations qui ont
donné naissance a une science que, d’apres son origine, on appelle Géométrie ou

Science de la mesure des terres. (Terquem (1829), iii)!?

Even the etymology of geometry served as a reminder of the connection of geometry to
physical measurement. As G. F. Olivier observed, geometry had developed beyond this

initial meaning, but remained the science of extension in space.

La GEOMETRIE tire son nom du principal usage auquel il semble que cette
science fut employée dans l'origine, je veux dire, du mesurage des terres, car
ce mot signifie art de mesurer la terre. Mais ensuite on I’a appliquée a tout ce
qui concerne I'étendue des corps: ainsi la Géométrie est devenue la Science de
I’étendue. (Olivier (1835), 1)

H«Geometry is relative to extension: extension or space, an abstraction made from bodies that are found
there, is infinite and homogeneous, its parts are not separated by any limit; but one can imagine them to be
great or small, figured somehow or other; the difficulty is to form distinct enough ideas that one can assign
their relationships either among themselves or with the whole of which they form a part.”

12¢The space that geometers consider is an indefinite extension in which we imagine that all bodies are
placed. One cannot thus determine the absolute position of bodies in it, but only their relative situation,
which is the only necessary knowledge for us, and for that one relates these points to fixed objects whose
position is supposed known.”

13«Demarcating different countries occupied by nations, fixing boundaries between particular territorial
properties, are the operations which have given birth to a science that, according to its origin one calls
Geometry or the Science of land measure.”

1«GEOMETRY takes its name from the principal usage for which it seems that this science was originally
employed, that is, land measurement, because this word signifies the art of land measuring. But then we have
applied it to anything which concerns bodily extension: so geometry has become the science of extension.”
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Together these definitions suggest a constant rapport between geometry and physical appli-
cations. Emphasizing this relationship, authors constantly cited the utility of their approach
and results to promote their texts. From its initial role in measuring the earth, geometry
remained bounded by sense perception. While not exactly seen and touched, the objects of
geometry could be conceived in space, and we will see this theme reiterated in discussions
on the relationship between geometry and algebra. Algebra could be applied to solving
geometry problems or proving geometry theorems, but geometry itself was the study of
measurement or position in space. All problems and theorems of geometry concerned either
measurement or relative position of geometric objects, and for the majority of practitioners,

geometry proper did not include coordinate equations.

5.1.2 Common qualities of French books on geometry: figures, publish-
ers, and the Ecole polytechnique

Most title pages contained not only the bibliographic details, but often also a subtitle
indicating the author’s intended purpose and a brief description of the author. In these two
descriptions, the Ecole polytechnique emerged as a common background institution among
about half of authors (Appendix C), as well as the explicit proposed audience for twelve
different texts (Lacroix (1803b), ) (1809 (1795), Poullet-Delisle (1809), Biot (1810), Dupin
(1813), Garnier (1813), Vincent (1826), de Fourcy (1827), Duchesne (1829), Mutel (1831),
Reynaud (1833), Olivier (1835)). Among the authors considered, six worked at the Ecole
polytechnique, which of course included the figurehead of polytechnique geometry, Gaspard
Monge. In addition, twelve of the authors proudly announced having been students at the
Ecole polytechnique, a number which can be considered only a minimum for attendees.
Eleven of the texts were explicitly intended as preparation for polytechnique exams or to
be used in courses. Finally, the Ecole polytechnique publishers and bookstore: Bernard,
Madame Bernard, and then Klostermann, published three of the titles.'®

Most of the books were printed and distributed by the same Imprimerie-Libraire for
mathematics in Paris that published Gergonne’s Annales. The printer and seller Jean
Courcier, followed by his widow (born Victoire Félicité Lemaire and referred to as “La veuve
Courcier”), and then his son-in-law, Charles Louis Etienne Bachelier, published thirty-five
of the books considered here. Throughout the various incarnations of this publishing house,

the title page of each geometry text listed the previous owner and current address.'® The

5The creation and influence of the Ecole polytechnique has been a subject of historical interest almost
since its inception. Consider Dupin’s 1813 introduction in which he expressed admiration for the legacy of
former Ecole polytechnique students tinged with pessimism about the institution’s trajectory (Dupin (1813),
xi). For more contemporary analyses, see Shinn (1980), Dhombres and Dhombres (1989), Langins (1987),
Belhoste (2001).

16 A brief history of Bachelier and his predecessors can be found in Verdier (2011). Verdier also discussed
printing, typography, and the general production of Liouville’s Journal in Verdier (2009a).
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remaining books were distributed by a score of different publishers. In contrast to Courcier
and Bachelier, often the two operations of printer and publisher were distinct, that is, the
book would be printed by an “Imprimerie” and then distributed from a “Libraire” or even
several different bookshops. In this case, the “Libraire” served the role of the publisher
by distributing and sometimes advertising existent or forthcoming texts. When separate
from the publisher, the printer’s information appeared before the title page in small font
usually toward the bottom of the page. Besides Paris, these books were also distributed
from Geneva, Brussels, Reims, Lyon, Metz, Bordeaux, and Nancy. To prevent plagiarism,
authors occasionally included a short paragraph declaring that unsigned books were not
legal copies, followed by their signatures.'”

At the end of each text, all but two of the books considered here contained at least a
page of figures. Often the figures were signed by the designer, engraver, or lithographer.!®
The most commonly used engraver was “Adam” who provided the figures for various texts
by Jean-Baptiste Biot, Charles Julien Dupin, Lacroix, Louis-Etienne Lefébure de Fourcy,
and A. Lefévre.! Among the thirty-one texts in which some signature was legible, we found
twenty-one different artists, most commonly designated as “sculp.” As distinct from other
scientific illustrations, geometry figures were intended to be reproducible by following the
author’s textual instructions, usually with a compass and a straight edge. Thus it is possible
that some artists might have worked directly from the text in producing their illustrations.
We were not able to ascertain how the authors chose the artists or communicated the
figures to them. However, the figure designer for Alexandre Vincent’s elementary geometry
text, Guilliaume Henri Dufour, wrote a text on perspective geometry the following year,
indicating a certain degree of cross-pollination between the two groups (Vincent (1826),
Dufour (1827)).2° While almost every geometry text contained figures of polygons and
circles, the variety of figures depended on the type of geometry. In M. H. Vernier’s Géométrie

élémentaire, he defined figures as strictly two-dimensional objects:

Chaque corps occupe une portion de I’espace plus ou moins grande, qui s’appelle
volume. Le volume est terminé de toutes parts par la surface, et la forme de

cette surface est la figure du corps. (Vernier (1830), 1)

However, these figures could still enclose a volume, as Vernier suggested from his plates

containing figures of spheres, cones and cylinders. Within descriptive geometry figures

70n the economics of the book trade and the history of French book production up until 1830 see Martin,
Chartier and Vivet (1982).

18The two books without figures were Joseph Adhémar’s 35-page Cours de géométrie descriptive and
Cauchy’s Lecgons sur les applications du calcul infinitésimal & la géométrie (Adhémar (1823), Cauchy (1826)).

19This may be Jean Adam, one of the engravers who worked on the Description de l’E’gypte under Napoléon
(Beraldi (1885), 13).

29Poncelet, for example, designed the figures for his Traité.

21«Fach body occupies a more or less sizable portion of space, which is called volume. The volume is
bordered on all parts by the surface, and the form of this surface is the figure of the body.”
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included two dimensional representations of more complex objects in space, as shown in

Figure 5.1.

Figure 5.1: Lacroix’s three-dimensional perspective, Cloquet Sculp. (Lacroix (1822))

Conic sections were mostly limited to analytic geometry, and although hyperbolas and
parabolas were occasionally pictured, as in Figure 5.2, the general conic section was almost
always represented by an ellipse. Coordinate axes, on the other hand, were rare and not

labelled x and y as they are today.

Trigomo. et appli. A3

Figure 5.2: Lacroix’s lines of second degree, Adam Sculp. Lacroix (1807)

Figures were referenced in text or in the margins where relevant. B. E. Cousinery even
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included figure citations in a column on the right side of his table of contents shown in
Figure 5.3 (Cousinery (1828)).

TABLE DES MATIERES.

Papes. Planch. Figures.

Avant-Propos........oceiieiiiiiiiiiinia Y,
CHAPITRE I*.

Définitions.— Projection duo Point....u..osrovaransss.s Ty
Projectiont d’ane drobte. .. ssvevsasenriarsacsarssnssses 3y 176, 1,
Projectiondo plan......cccuiiirnnerrininrensnerennss 3,
Nottions conventianselles dos épures de penpeeuve 4 3.
Intersgction de deux droites...........connvivieinneee. 6,

1** ProprénE. Grandeur @’upe droite panlmu.n nhluu .............. 7 1b.

Figure 5.3: Cousinery’s Table of Contents, with figures cited in the right column (Cousinery
(1828))

The figures themselves were almost always located at the back of the text, except in
cases where the text was divided into two parts and the corresponding figures were placed
following each conclusion. The separation of figures and text was likely due to technological
restrictions, as plates of figures (as illustrated in Figure 5.2, for example) were printed
separately from the text. Regardless of the book’s title, classification, publisher, or author’s
credentials, the presence of these kinds of figures declared a text on geometry.

Having described several common features to most of these books, we now consider
the texts categorically, and analyze how geometry was divided and what qualities and
constituents comprised each distinct discipline. Drawing from this analysis, we will return
to the Annales, and other research articles, to offer several conclusions on the audiences,

innovations, organizations, and relationships between books and articles in this context.

5.2 What is elementary geometry?

Our survey included seventeen different titles on elementary geometry, about half of which
were titled simply “Elements of Geometry.”??> The two most well-known early nineteenth
century geometry texts, Legendre’s Eléments de géométrie and Lacroix’s Elémens de géométrie,
each ran fourteen editions between the years 1794 and 1832.2% Additionally, the much older
texts by Alexis Claude Clairaut (first edition 1741), Bossut (first edition 1772), and LaCaille

22 A5 these titles indicate, the alternate spellings “élémens” and “éléments” were used simultaneously by
different authors.

23We were able to consult Lacroix (1799), Lacroix (1803a), Lacroix (1811), Lacroix (1819), Lacroix (1830)
and Legendre (1800), Legendre (1812), Legendre (1832).
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(first edition 1741) were all republished in our time period (Clairaut (1830), Bossut (1800),
de LaCaille and Labey (1811 (1741)). As further verification of the importance of these
authors, in 1906, Max Simon cited the textbooks of Legendre, Bertrand, Bézout, Clairaut
and Lacroix as the fundamental texts of early nineteenth century elementary geometry in
all “Kultursprachen” (Simon (1906), 27).24

To gain an idea of who wrote these texts, we consulted the authors’ advertised credentials
usually printed after their names on the title page. The authors of elementary geometry
texts emphasized their memberships in scientific and scholarly societies of various cities (ten
texts), their professorship positions (seven texts), and their association as former students
or current faculty at the Ecole polytechnique (five texts). These descriptions are included
in Appendix D.

In all but one text, elementary geometry was defined as requiring no prior knowledge
except basic arithmetic.?’> To take a typical example, Lacroix’s text progressed from planar
construction and measurement of lines, circles, and polygons to planes, polyhedra, and the
three round bodies in space: spheres, cylinders, and cones. While claiming to adhere to the
“ancient method,” these geometers represented measurements and proportions through al-
gebraic symbolism. Legendre claimed this approach was more “dextrous” (Legendre (1800),
iv). Above all, these authors described their texts as simple, natural, clear, and evident.

The bounds of elementary geometry, as they appear in the table of contents in these
books, were well-defined, and variations from this core content were rare. Only Legendre
and Vincent included figures on the sphere, and only N. J. Didiez and Terquem included
the study of conic sections. In each case, these geometric objects appeared at the end of
the text, thus confirming their more advanced status.

Without exception, authors explained in their subtitles and introductions that elemen-
tary geometry books were written for beginning students, either for independent study or as
formal course textbooks. Although geometry was perceived as less abstract than analysis,
the development of mathematical thinking was uniformly portrayed as requiring “courage,
perseverance, and dedication” (Bergery (1831), 6). New students had limited prior mathe-
matical experience, and authors spoke of the pervasive problem of student dropout. Criti-
cizing the usual practice of teaching geometry, Clairaut observed, “il arrive communément

que les commencants se fatiguent et se rebutent avant que d’avoir aucune idée distincte

2The mathematics of Lacroix and Legendre have been studied comparatively by Pierre Lamandé in
Lamandé (1993). Lamandé also addresses Lacroix’s understanding of numbers in his books on algebra,
geometry, and calculus in Lamandé (2004). Liliane Alfonsi’s biography of Bézout further describes the
influence of his textbooks from the eighteenth century onward (Alfonsi (2011)).

25The outlier here is Terquem’s Manuel de géométrie, ou Exposition élémentaire des principes de cette
science, in which he proposed condensing elementary geometry, trigonometry, conic sections, surfaces, pro-
jective and descriptive geometry into a one year class with the use of algebra (Terquem (1829)). As further
proof of his modern outlook, Terquem wrote a very favourable review of Poncelet’s Traité for the Bulletin
universal in 1823.
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de ce qu’on voulait leur enseigner” (Clairaut (1830), 1).26 To secure student interest, the
authors employed various teaching methods. They all agreed that geometry needed to be
motivated by practical application and utility. Indeed, the importance of learning geom-
etry was couched in terms of national pride and progress, as in Vincent’s dedication to

“students.”

Cet ouvrage vous appartient a plus d’un titre : c¢’est pour vous, ¢’est avec vous
que je ’ai composé : recevez-en la dédicace. Puisse-t-il, en vous rappelant les
heures de nos entretiens, alimenter en vous cet amour de I’étude qui vous mettra
bientot & méme (je 'espere) de payer le tribut que vous devez a 1'utilité publique.
(Vincent (1826), i)27

On a pedagogical level, authors debated whether theorems should appear before or after
their proofs, whether problems should be embedded in the text or collected in an appendix
(Develey (1812), Legendre (1800), Vincent (1826)), the appropriate use of proof by con-
tradiction (Lacroix (1803a), Schwab (1813), Olivier (1835)), and how much rigour could
be obtained without sacrificing the more important quality of simplicity (Lacroix (1799),
Vincent (1826), Develey (1812), Clairaut (1830), Mutel (1831), Terquem (1829), etc.). Dis-
tinct forms of teaching could be subtle but were still advertised, such as the decision by
Louis-Etienne Develey, Auguste Mutel, and Vincent to state propositions without reference
to the lettered figure, in order that the wording might more easily be committed to mem-
ory, which all three highlighted as important decisions in their introductions. As a further
example, LaCaille allowed his text to be more or less advanced through restricting “less
useful or less easy” material to small font that the reader could include or ignore depending
on preference (de LaCaille and Labey (1811 (1741), iv).

The methodological discourse extended to geometric definitions, in particular, the def-
inition of a straight line. Notably, none of the authors repeated the Euclidean definition,

such as that given in Francois Peyrard’s 1804 translation.
2. La ligne est une longueur sans largeur.

3. Les extrémités d’une ligne sont des points.

4. La ligne droite est celle qui est toute également interposée entre ses points.
(Peyrard (1804), 1)28

264,

it often happens that beginners tire and quit before having any distinct idea of what one wanted
to teach them [...]”

2T«This work belongs to you in more than name: it is for you, it is with you that I wrote it: receive it as
dedication. If you can, recall the hours of our talks, nourish in yourselves this love of study that you will
soon (I hope) contribute the same to the public interest.”

2849, The line is a length without breadth. 3. The extremities of a line are points. 4. The straight line is
that which is also equally placed between its points.”
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The straight line was also particularly significant because it was both an elementary concept
and, along with the compass, one of the two acceptable tools of construction. In 1800,
Legendre claimed that “the definition of the straight line is the most important of the
elements” [La définition de la ligne droite étant la plus importante des éléments]. In order
to avoid the difficulty for students of proving that the straight line was the shortest distance
between two points and unique, Legendre defined it as such. He claimed this was both a
definition and an axiom, on which he would “establish the entire edifice of the elements”
[d’établir ’édifice entier des éléments] (Legendre (1800), iii).

A similar attention to the importance of the straight line was first devised by Bertrand
in 1778. Bertrand began with the concept of homogeneous space, from there defined a
plane and then a straight line as the common limit to two halves of a plane divided such
that “we can say nothing about the one part which we cannot equally say about the other”
[on ne puisse rien dire de l'une qui ne puisse également se dire de l’autre] (as quoted by
Lacroix (1803a), xiii). Lacroix was impressed enough by this definition that he repeated it
in a footnote to his introduction, and even provided in text illustrations suggesting that the

characteristic described would not belong to a curved line (Figure 5.4).

pas planes, Le méme caractére convient a la ligne droite,

et la distingue des lignes courbes; car /—\..‘
quand leslignesab et A Bs'appliquercient 4/ ¢ ‘B

exactement, lorsqu'on présente le coté

convexe de I'une au coté concave de I'au- /"\

tre, elles cesseroient de le faire, si on op- ¢ b
posoit les cétés semblables , et comprendroient entre elles

un espace C. Il suit de-la que tontes les parties d’un plan

Figure 5.4: Lacroix’s illustration of how Bertrand’s straight line description excluded curved
lines. (Lacroix (1799), ix)

Bertrand claimed in 1812 that his definition “places its object before the eyes” [met
son objet sous les yeuz] and “excluded all superfluity” [exclut toute superfluité] (Bertrand
(1812), iv) He argued that beginning with points and adding dimensions “reversed the order
in which one forms ideas” [renversent l’ordre dans lequel on forme ces idées] (v).

A third strategy was avoidance of defining straight lines all together. For instance,

Develey instead presented two illustrations for reference.

La ligne droite, qu’il est difficile et peut-étre inutile de définir, mais dont chacun
a d’ailleurs une idée claire et distincte. La ligne AB, fig. 1 et 2, est une ligne
droite. (Develey (1812), 4)%

29«The straight line, which is difficult and perhaps useless to define, but about which everyone has a clear
and distinct idea. The line AB, fig. 1 and 2, is a straight line.”
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In a footnote, Develey explained that while one could represent lines by “ink, chalk, pencil.”
These were not geometric objects, only sensible images. He later claimed the properties of
uniqueness and the shortest distance between two points as axioms. Similarly, Terquem first
defined a line as the limit of a surface, and then claimed that “it is not possible and it is not
necessary to define” [il n’est pas possible et il n’est pas nécessaire de la définir] a straight
line, since it is a “first notion” [une notion premiére] (Terquem (1829), 3).3° Defining a
straight line could exemplify the authors’ positions on the dichotomy between the sensible
and the abstract, as well as the level of expected rigour and proof.

Within their introductions, authors both acknowledged and criticized the work of their
contemporaries in elementary geometry. Develey described the ongoing dialog on the best

form of presenting the elements.

On a beaucoup écrit sur la meilleure forme & donner aux Elémens de Géométrie;
je ne voudrais pas répéter ce que d’autres ont dit, et bien mieux que je ne
pourrais le faire. Mais avec ces excellentes directions, sommes-nous parvenus a
avoir des Elémens parfaits? Je ne le pense pas ; et je suis bien loin de croire que
les miens le soient. Quelques auteurs ont fait de grands pas vers cette perfection
que nous voyons tous en perspective ; j’ai voulu hasarder aussi quelques efforts
; peut-étre un jour quelqu’un plus heureux, mais surtout plus habile que moi,
atteindra-t-il le but désiré. (Develey (1812), v)3!

When evaluating who had succeeded in writing elementary geometry, Legendre was seen
as the standard. Develey considered Legendre’s Fléments as the best so far, though not
without fault, but sharply criticized the lack of rigour in Clairaut’s “unique” treatment.
Lacroix referenced with admiration Bertrand’s definition of the straight line, though he
chose to adopt a different one (Lacroix (1799), x). Olivier encouraged Ecole polytechnique
applicants to supplement his brief text with that of Pierre Louis Marie Bourdon, Lacroix, or
Legendre (Olivier (1835), vi). Vincent thanked his former teachers, Lacroix and Francoeur,
as well as Legendre, Dupin and Develey, while Legendre himself began each new edition by
thanking the various geometers who had recently offered new and relevant material includ-
ing Lhuilier, Pilatte, Cauchy, and Querret (Vincent (1826), ix; Legendre (1800), Legendre
(1812), Legendre (1832)).

Citations to contemporary research articles, correlated with the presence of new math-

ematical results. Both Terquem in 1829 and Didiez in 1828 demonstrated knowledge of

30Terquem also described directions of lines as a first notion that could not be defined (Terquem (1829),
5).
31« A Jot has been written on the best form to give to the Elements of Geometry; I do not wish to repeat
what others have said and very well for I could not do it. But with these excellent directions, do we achieve
perfect Elements? I do not think so; and I am far from believing that mine are them. Several authors have
taken great steps toward this perfection as we see everything in perspective; I have also attempted some
efforts; perhaps one day someone luckier, but above all abler than I, will achieve the desired goal.”
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Gergonne’s Annales, and from it adopted the concepts of similitude centre and axis (Didiez
(1828), 89, Terquem (1829), 379). While Terquem’s references only contained the geome-
ters’ surnames without dates or titles, Didiez provided an exact citation to Gergonne’s
translation of Steiner (Annales de Mathématiques pures et appliquées, rédigées par M. Ger-
gonne. t. XVII. p. 288), although Steiner’s name remains unmentioned. These texts are
unusual. Didiez’s text was the first part in a four part series on elementary geometry in the
plane, elementary geometry in space, analytic geometry in the plane, and analytic geome-
try in space. Terquem considered analytic geometry as part of elementary geometry. This
attention to algebraic applications may also explain why both included discussions of conic
sections.

Intended for novices, all elementary geometry texts included not only the elementary
contents of geometry, but also strategies for practising geometry. This tacit knowledge
made explicit appeared most prominently in Claude-Lucien Bergery’s 1832 text intended
for “les instituteurs primaires” in which he explained how to draw lines, what materials
were preferable to use and their cost, and gave illustrations of different line types in a

construction (Figure 5.5).

Les lignes données ., droites ‘u‘u courbes , sont trés—fines
et continues , comme celle-ci E28 e bt B o

Les lignes de résultat, droites ou courbes . sont continues
et un peu moins fines , comme celle-ci :

Les /i:;"ll("\ de construction , c'esi-a~dire toutes les autre .
sont Lrés—fines et l'(b[l:)(:l‘\ par des intervalles , comme
celle-ci — — — — —_Lorsqu'elles sont en grand nombre,
on (li\lil’;“!' f'l'”(‘\ 'I.“”l' (vl)t"l‘.ll%uil ‘il' (‘."i!( S ("”H(‘ Hll'l.l"‘.‘.
en mettant un, deux, trois points dans les intervalles.
S R R B S R TR D RS
Les partics de ligne coupée doivent étre a-peu—prés égales
entre elles; les intervalles blancs doivent étre trés—petits

rauX enire eux.

et aussi a—peu—prés ég

Figure 5.5: How to draw different kinds of lines (Bergery (1831), 9)

With respect to reading the provided figures, Olivier advised students to detach the
figure sheets and keep them in a notebook for ease of reference. Although figures were
numerous and often cited, Christian Kramp cautioned students to recognize the difference

between physical representation on paper and geometric objects.

Dans I'impossibilité de présenter a nos sens des points, des lignes, des surfaces
mathématiques, nous sommes obligés de leur substituer des points, des lignes,
des surfaces matérielles, donnés de toutes les trois dimensions, et ayant de plus
des qualités physiques, qui ne devroient jamais entrer dans une considération
purement mathématique. Nous faisons abstraction de ces derniéres autant que
nous les pouvons : et quant aux autres, nous tachons de donner a nos lignes

aussi peu de largeur, et a nos surfaces aussi peu d’épaisseur que I'imperfection
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inévitable des instruments nous permet de faire. (Kramp (1806), 3)32

Each text concluded with several sheets of figures, most often on folding out pages,
which gave more room for larger illustrations and could also serve to mark the page in
flipping between the image and text. In these elementary geometry books, there was an
average of 182 figures and 280 pages of written text. As discussed above, many of these
figures were signed by an engraver, draughtsman or lithographer. Figures were enumerated
and referenced by number in the text, margins, or table of contents. However, as mentioned
above, geometers advertised that their propositions could be read and understood indepen-
dently of figures. Geometers also needed to exercise caution when using figures in reductio
ad absurdum. For this reason, Lacroix attempted to use reductio ad absurdum as little as
possible, and when that “form of reasoning” [forme de raisonnement] must be used, figures

were better avoided.

[...] mais alors il faut éviter toute construction de figures, ou, s’il en faut absol-
ument, faire du moins en sorte que I'absurdité de la figure ne choque pas trop la
vue, parce que cette absurdité empéche ’esprit de suivre le fil du raisonnement,
et 'imagination est obligée de faire un effort assez pénible pour redresser la fig-
ure de maniére a y voir ce que 'on a voulu peindre dans le discours. (Lacroix
(1799), xviii)33

Likewise aiming to avoid “shocking” figures, Jacques Schwab decided instead to avoid con-

structions in general and reason with numbers when using proof by contradiction.

Dans le choix des démonstrations, j’ai préféré celles qui exigent le moins de con-
struction; mais c’est sur-tout dans les propositions ot ’on rencontre I'incommensurable,
et pour lesquelles on ne peut guere se passer de la réduction a l’absurde, que j’ai

taché d’éviter totalement les constructions et d’y substituer un raisonnement

sur les nombres; c’est bien I'idée des limites, mais perfectionnée de maniere a
emporter avec elle la méme rigueur que les figures d’Euclide qui choquent la

vue. (Schwab (1813), vii)3*

32«Due to the impossibility of presenting mathematical points, lines and surfaces before our senses, we are
obliged to substitute material points, lines, surfaces, given all three dimensions and having more physical
qualities, which must never enter into a purely mathematical consideration. We abstract from the latter
as far as we can: with respect to others, we try to give our lines as little width and our surfaces as little
thickness as the inevitable imperfection of our instruments allows.”

33«[ ] but then one must avoid all figure construction, or if one absolutely must do it, at least act as
though the absurdity of the figure is not too shocking to see, because this absurdity prevents the mind from
following the thread of reasoning and the imagination is obliged to make a rather painful effort to connect
the figures in such a way as to see what one wants to illustrate in the discourse.”

34¢In the choice of proofs, I prefer those that require less construction; but especially in propositions
where one encounters the incommensurable, and in which one cannot but use reductio ad absurdum, where
I have tried to totally avoid constructions and instead reason with numbers; this is like the idea of limits,
but perfected in order to bring the same rigour as the figures of Euclid that are shocking to see.”
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Though foundational to elementary geometry, proof by contradiction demonstrates a case
where figures could also be problematic.

As in Gergonne’s Annales, the definition of different methods, such as analytic and syn-
thetic, varied widely according to the author. Develey explicitly rejected employing the
terms analysis and synthesis to describe his methods because there was currently “no ac-
cord as to their distinct characters” [n’est point encore d’accord sur le caractére distinctif]
(Develey (1812), v). In a later text on method in mathematics, Develey eventually settled
on a definition of analytic and synthetic derived from Greek geometry, synthesis began with
the given properties and proceeded “by composition” to prove the truth of the consequence,
while analysis began by assuming the consequence as true and then proceeded “by de-
composition” to show that the truth rested upon the principal hypothesis (Develey (1831)).
However, as if to confirm Develey’s initial discomfort, that same year Mutel claimed exactly
opposite definitions of the two methods of mathematics. For Mutel, analysis proceeded by
deducing consequences from initial conditions and previously proved inquiries to reach the
solution. Synthesis, to the contrary, began by showing how to reach a result, and then

proving that this result satisfied the given conditions.

L’analyse consiste a déduire des conditions renfermées dans 1’énoncé une suite
de conséquences au moyen desquelles on ramene la solution de la question a un
petit nombre d’opérations élémentaires, ou bien a une ou plusieurs questions
déja résolues. Par la syntheése au contraire, on prescrit d’abord les opérations a
effecteur pour obtenir le résultat que ’on cherche, et on démontre ensuite que
le résultat obtenu satisfait & la question. (Mutel (1831), iii)3>

Even when analysis and synthesis were specified as inverse directions of proof, their meanings
varied between individual geometers.

Another pair of definitions, recognized but not adopted by Develey, was described by
Bossut and specifically applied to geometry. Synthesis was the “ancient” method in which
one directly employed the figure or solid to derive results, while analysis translated the
figures into algebraic calculations. Bossut described the advantages of the synthetic method,

despite modern preferences for analysis.

Il y a de précieux avantages attachés a cette méthode. Elle marche toujours le
flambeau de I’évidence a la main; et souvent elle fait trouver avec une extréme
facilité des théorémes qui seraient difficiles & découvrir par toute autre voie, ou

qui du moins se présenteraient sous une forme moins élégante. Les modernes

35« Analysis consists of deducing from conditions contained in the [problem’s] statement a series of con-
sequences by means of which one reduces the solution of the question to a small number of elementary
operations, or even to one or several already solved questions. Through synthesis, to the contrary, one first
specifies the operations to carry out in order to obtain the sought result, and one then demonstrates that
the result obtained satisfies the question.”
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ont un peu négligé la synthése, parce-que ’analyse leur a fourni dans la plupart
de leurs recherches des secours plus prompts, plus universels, et quelquefois
absolument indispensables. Cependant quelques uns d’entre eux 'ont cultivée
avec succes, et en ont fait de tres belles applications; tels sont principalement
Huyghens, Pascal, Newton et Maclaurin. (Bossut (1800), vii)36

Other geometers claimed different types of methods or rejected the distinction all together.
Clairaut described his geometry as following the “natural method of the inventors,” by
proceeding consistently from unknown to known (Clairaut (1830), 2). Terquem claimed
that rather than focusing on the synthetic-analytic distinction, the best teaching method
was one in which “without sacrificing rigour, students can learn the most truths with the
least hardship in the least time” (Terquem (1829), iv). While the definitions varied widely,
authors were generally consistent in citing at most two possible methods in geometry. A
combination of both methods was considered “mixed.” Olivier, whose elementary mathe-
matics text incorporated algebra, followed by elementary geometry and finally trigonometry,
took a more liberal view of methods and professed to use the shorter and easier method
of infinitesimals, while including the more rigorous proof by contradiction and method of

limits in a supplementary text.

J’ai adopté aussi, pour certaines démonstrations, le méthode des infiniment
petits, que la pensé saisit sans peine, parce qu’elle m’a paru satisfaire ’esprit et
surtout parce qu’elle est la moins longue et la plus facile. D’ailleurs on trouvera
dans le SUPPLEMENT aux Mathématiques usuelles, les mémes démonstrations
traitées par la réduction a l'absurde et par la méthode des limites; cette derniére
trés-rigoureuse est assez courte, mais tient un peu a I’analyse algébrique. (Olivier
(1835), ix)3"

Olivier’s hesitation to include algebraic analysis in his beginning geometry text reflected

the strict demarcation of what constituted elementary geometry.

36«There are precious advantages attached to this method. It always marches with the torch of evidence
in hand; and often it finds with extreme ease theorems that would be difficult to discover by another route,
or which at least would be presented in a less elegant form. The moderns have neglected synthesis a bit
because analysis has furnished them most of their research by more prompt, more universal, and sometimes
absolutely indispensable means. However some among them have successfully cultivated synthesis and have
made very beautiful applications of it; they are principally Huyghens, Pascal, Newton and Maclaurin.”

3741 have also adopted, for certain proofs, the method of infinitesimals, which is easily grasped because
it seems to satisfy the mind and above all it is the shortest and easiest. Moreover, one will find in the
SUPPLEMENT to the usual Mathematics, the same proofs treated by reductio ad absurdum and by the
method of limits; the latter is very rigorous and short enough, but depends a little on algebraic analysis.”
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5.3 Analytic geometry

The second largest category of texts were those on analytic geometry, including sixteen
different titles.?® Several titles received two editions, and the Essai de géométrie analytique
by Biot and the Traité élémentaire de trigonométrie rectiligne et sphérique et d’application
de lalgebre a la géométrie by Lacroix were respectively republished seven and eight times
between 1799 and 1827 (we include Biot (1810), Biot (1813), Biot (1826) and Lacroix
(1803b), Lacroix (1807), Lacroix (1813), Lacroix (1827)). Authors used the expressions “al-
gebra applied to geometry” and “analytic geometry” interchangeably, and the titles reflect
these two alternative descriptions. As an exception that proves the rule, Monge’s Appli-
cation de I’Analyse a la Géométrie explained how the calculus of functions could be used
to study curved surfaces and surfaces of double curvature. Otherwise, as described in the
series of courses by Lacroix, analytic geometry followed the study of arithmetic, elementary
geometry and algebra, and preceded differential and integral calculus.

Planar and spherical trigonometry featured in several of these texts, but were often sepa-
rated from the main analytic geometry content as in Bossut (1800), Bourdon (1825), Lacroix
(1803b), or Poullet-Delisle (1809). Otherwise, the content usually began with points, lines,
and curves in the plane and then proceeded to points, lines, curves, and surfaces in space.
In Antoine Charles Marcelin Poullet-Delisle’s comparatively short text, he supposed that
readers would find his exclusion of three dimensions “astonishing,” but he hoped to treat
the subject in a subsequent companion volume (Poullet-Delisle (1809)). By contrast, the
texts of Dupin and Jean-Nicholas-Pierre Hachette almost exclusively focused on geometry
in three dimensions, considered first “synthetically” and then “analytically” (Dupin (1813),
Hachette (1817)). As distinct from elementary geometry, every text in analytic geometry in-
cluded second degree curves, the conic sections. Because of the use of coordinate equations,
texts did not have to be organized by strictly geometric considerations. Reynaud described
his contents as beginning with the study of as many equations as unknown variables, then
one equation with more than one unknown, and finally more than one equation each with
more than one unknown (Reynaud (1819), v—vi). This sounded like algebra, and only those
versed in analytic geometry could interpret these descriptions as figures.

Introductions consistently emphasized the difference between, on the one side, elemen-
tary, rational, or ordinary geometry and, on the other side, analytic geometry. The authors
usually assumed their readers had already learned elementary geometry, and so would be
able to compare the advantages of both areas of study. As we saw above, elementary geom-
etry had been positively described as simple, easy to follow, natural, and clear. Analytic

geometry was described in these same terms and as elegant, rapid, fruitful, methodical, uni-

38Credentials for authors of analytic geometry texts were very similar to those of elementary geometry
texts, if slightly more prestigious with polytechnique references (eight texts), academic institution affiliations
(nine texts), and professor or adjunct positions (seven texts).
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form, general, or universal. Authors took care to offset advantages of analytic uniformity

with enough variety to keep students working.

L’uniformité des méthodes rendant ’esprit paresseux, j’ai dii chercher a les varier
et choisir celles qui font naitre des idées nouvelles. Les définitions que l'on
donne ordinairement des diamétres, des centres, des asymptotes et des tangentes,
n’étant pas toujours applicables aux courbes des degrés supérieurs, il devenait

nécessaire de généraliser ces définitions. (Reynaud (1819), v)3

These latter qualities were specifically demonstrated by showing that analytic geometry
could solve problems otherwise considered “inaccessible” and had the potential to easily
generalize results from two to three dimensions. By contrast, geometry without algebra
could be particular and overly complicated.

The profusion of analytic geometry texts in this period was acknowledged by the authors,
who often advertised their work as supplementing rather than replacing previous treatments.
Poullet-Delisle assured the reader that his publication should not be perceived as a criticism,

and only intended to be useful. He professed:

Je n’ai point ambitionnée d’étre neuf: dans un ouvrage de cette espece, ce serait

sans doute une prétention ridicule. (Poullet-Delisle (1809), v)4°

Authors repeatedly concluded their introductions by requesting constructive feedback from
other professors or students. Second editions would then often credit improvements to col-
leagues’ suggestions. In 1813, Jean Guillaume Garnier thanked Gergonne’s Annales Math-
ématiques, M. Simon Lhuilier, M. Puissant, and several unspecified articles from Journaux
des Sciences for helping to make his second edition more methodical, careful, and complete
than his first (Garnier (1813)). The ultimate test of a text’s success, as Biot observed, was
by experiment, “test it on the minds of the students, and verify by this proof the goodness
of the chosen methods” (Biot (1810), vi).

Authors differentiated their texts into roughly two overlapping objectives: either provid-
ing the necessary tools for immediate application, or preparing students for entrance exams
for the Ecole polytechnique, 'Ecole spéciale militaire, 'Ecole de marine, 'Ecole forestiére,
or for use in I'Ecole centrale des Quatre-Nations (Lacroix’s textbook). The pervasiveness
of Ecole polytechnique aspirations was epitomized by a book designed to prevent observed
difficulties among prospective students written by the entrance examiner, Reynaud. With
respect to the first goal, analytic geometry risked being too general or too abstract. Bour-

don, who emphasized practical applications to the extent of including instructions on how

39«The uniformity of methods makes the mind lazy, I have sought to vary them and choose those which
give birth to new ideas. The definitions that one ordinarily gives of diameters, centres, asymptotes, and
of tangents, are not always applicable to curves of higher degrees, it becomes necessary to generalize these
definitions.”

40941 have no ambition to be new: in a work of this kind that would be undoubtably a ridiculous pretension.”
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to construct different popular styles of archways, began with particular methods. Although
these methods “vary with the nature of the problem,” Bourdon claimed they were often
more simple then general approaches (Bourdon (1825), vi). He also cautioned against ab-
straction by beginning with “purely geometric” definitions of conic sections as curves formed
by the intersections of cones and planes, deriving equations from these properties, and then
using transformation of coordinates to show representation by second degree curves. Dupin
acknowledged that analytic geometry seemed “incontestably superior” because of its ease
and rapidity, but maintained that “rational geometry” was necessary for applications to
engineering (Dupin (1813), ix).4! Accordingly, those in public service should know both
methods and choose which one best applied to the problem at hand. Supporting Dupin’s
view, he received and included in his book a report of approval from the Institut de France,
written by Carnot, Monge and Poisson who praised his many geometric considerations in-
dependent of calculations. Hachette also considered both the “geometry of the ancients”
and “modern analysis” as complementary studies (Hachette (1817), vii). The latter yielded
more results, though the former was more sensible. Even so, analytic geometry was closely
associated with illustrated figure representation, each book contained figures, with an aver-
age of about 126 figures and 334 pages of text per volume. Judging by quantity, the figure
thus appears as only slightly less important here than in elementary or three-dimensional
geometry.

However, most analytic geometers did not advocate equal status to the two methods,
nor even consider analytic geometry as more abstract. Lacroix described the synthetic
method as necessary, but always “subordinate” to the analytic method (Lacroix (1807), vi).
Bossut claimed that, without the analytic method, reasoning could become long, abstract,
fatiguing, and liable to lose the attention of beginners (Bossut (1800), 247).

While elementary geometry was described in terms of its contents or the necessary
preliminaries, analytic geometry was defined as a process—the application of algebra to
solving problems and proving theorems from geometry.*> As Bourdon succinctly stated, the
process had two parts “traduire en Algebre les questions de Géométrie, et réciproquement,
traduire en Géométrie les résultats obtenus par 1’Algebre” (Bourdon (1825), 2). Others,

such as Jean-Louis Boucharlat, considered three distinct steps, which included finding the

“'Dupin proposed a division between rational and analytic geometry. We have seen in Chapters II and IIT
that Poncelet interchangeably employed the terms “pure”, “ordinary” and “rational” geometry as opposed to
analytic geometry, such as in Poncelet (1822), xi. Poncelet had also cited Dupin’s methodological approach
with approval in Poncelet (1817c). In Chapter IV, we further noted that Cournot used the phrase “analyse
rationnelle” to describe the method employed by Poncelet and Steiner (Cournot (1827)). This thus suggests
a well-represented alternative division within geometry

42In the paper “On Identities of Algebra in the 19th Century,” Caroline Ehrhardt and Frédéric Brechen-
macher examine whether algebra can be considered as a mathematical discipline in this time period. With
respect to the first third of the century, they conclude that algebra would be best be described as “the
practice of solving problems with the help of equations, which leads to concrete values” and not a discipline
(Ehrhardt and Brechenmacher (2010)).

280



value of the unknown through algebra (Boucharlat (1810), vii). Finally, Biot considered
the translation into an equation as one step, and the algebraic calculation as the other
(Biot (1810), 1). Despite the difference in enumeration, these descriptions were essentially
the same, and emphasized the translating procedure as a new process for those who had
only separately studied geometry and algebra. Thus, most texts began by explaining this
procedure, “mettre le probleme en équation.” Shorter texts, such as Francfort’s 64-page
Essai analytique de géométrie plane recommended the reader to consult other texts, such
as Biot, de Foury, or Bourdon, in order to understand how algebra could be applied to
geometry (Francfort (1831)).

Most authors introduced the process of writing geometry as algebra with a small set
of emblematic examples. Jean-Nicolas Noél broadly described one such case of finding a

triangle.

On supposera d’abord le probleme résolu ; puis on menera, s’il est nécessaire,
des droites propres a donner les triangles qui ont pour cotés les droites connues
et inconnues. Représentant ensuite chacune de ces droites par une lettre, et
faisant usage des propositions de géométrie qui établissent des relations entre

les lignes, on aura les équations du probléme proposé. (Noél (1822), 103)*3

The problem could now be solved algebraically, and then reinterpreted as a geometric figure.

Similarly, Bourdon described how to prove a theorem through analytic geometry.

Si la question proposée est un théoreme a démontrer, on traduit algébriquement
les relations qui existent entre les différentes parties de la figure, ce qui conduit a
des équations auxquelles on fait subir diverses transformations, dont la derniére

donne lieu au théoréme énoncé. (Bourdon (1825), 2)44

In presenting the elements of analytic geometry, Biot considered the form of points, lines,
and planes as analogous to the ruler and compass in the drawings of practical geometry
(Biot (1810), vi). The potential simplicity of any given problem rested upon the choice
of knowns and unknowns. Biot described a “fortunate choice of unknowns” [choiz heureux
d’inconnues] as an art most beautifully exemplified in Newton’s Universal arithmetic. How-
ever, as Lefébure warned, very often complicated questions could demand particular meth-
ods and artifices. He thus declared “the first rule to observe” [la premiére régle a observer]

was to penetrate the relationships established between the lines, angles, surfaces, solids of

43«One will first suppose the problem solved; then one will draw, if necessary, lines belonging to the
triangles which have known and unknown lines as sides. Then representing each of these lines by a letter
and making use of propositions of geometry which establish relations between lines, one will have equations
of the proposed problem.”

4441f the proposed question is a theorem to prove, one algebraically translates the relations that exist
between different parts of the figure, this leads to equations that undergo different transformations, where
the last yields the theorem announced.”
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the problem without distinction of knowns and unknowns (de Fourcy (1827), 3). Then these
relations could be expressed by equations and when possible, the values of the unknowns
could be deduced.

The discussion on how to choose the best equation underscored how different forms of
equations could represent the same geometric object. For this reason, Lacroix explained to
his audience of educators, there was a set of imperatives for students, including the need to

become familiar with the transformation of coordinates.

Classer en conséquence les lignes par leurs équations, faire remarquer que ces
équations n’ont pas une forme unique, mais qu’elles se compliquent plus ou
moins, suivant les relations que les lignes qu’elles représentent peuvent avoir avec
celles auxquelles on les rapporte ; en déduire la nécessité de savoir transformer
les coordonnées, et employer cette transformation a la classification des lignes,

par la simplification de leur équation: (Lacroix (1803b), xiii)%®

The identification of conic sections and second degree curves was a demonstrative example
of the variety of equation forms. Following Lacroix, “les diverses équations des lignes ne
sont que les énoncés de leurs diverses propriétés qui se contiennent les unes les autres des
qu’elles sont caractéristiques.”#® These properties could be discovered through a change in
coordinates, a calculation explained in every elementary analytic geometry text.

As elementary geometry was considered the “method of the ancients,” so analytic geom-
etry was considered “modern.” Bossut, whose text originally appeared in 1772, described
analytic geometry as producing a “revolution” in “the empire of mathematics” (Bossut
(1800), xii). From the opposite perspective, geometry was described by Boucharlat as one
of the most beautiful and fruitful uses of analysis (Boucharlat (1810), vii). Lagrange and
Monge were only the most recent examples of esteemed modern geometers. Boucharlat ded-
icated his text to Lagrange and “his sublime conceptions.” Dupin dedicated his to Monge,
and advertised his text as following the descriptive and analytic geometry of his “illustrious
master.” Late eighteenth and early nineteenth century geometers credited the origin of mod-
ern geometry to Viete and Descartes, admired the work of Newton, and were inspired by
both the form and content of Euler’s trigonometric and analytic texts. For instance, citing
Viete, Descartes, Newton, Euler and Cramer, Lacroix provided a brief history of analytic

geometry, which he prefaced in praising the “moderns.”

45«Consequently to classify these lines by their equations, to note that these equations do not have unique
form, but they are more or less complicated according to the possible relationships between the lines which
they represent and those with which we compare them; to deduce from this the necessity of knowing how to
transform coordinates, and to employ this transformation to the classification of lines, by simplifying their
equation :”

46«1 ] the different equations of lines are only the expression of their diverse properties that one or the
other contain as characteristic.”
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Vient ensuite I’application de ’algebre a la géométrie ; cette branche, due en-
tierement aux modernes, et dont la découverte leur a bientét donné une immense
supériorité sur les anciens, devait nécessairement changer de forme a mesure

qu’elle s’étendoit et se perfectionnoit. (Lacroix (1803b), vi)*”

Biot claimed that Euler had introduced the exhaustive table of contents format in listing
all propositions in order to enable ease of reference for students.*® Hachette recounted how
Fuler had classified all five types of curved surfaces in 1748: ellipsoid, hyperboloid of one
sheet, hyperboloid of two sheets, elliptic paraboloids, and hyperbolic paraboloids (Hachette
(1817), vii).

As citations back to the seventeenth century suggest, claims to modernity in analytic ge-
ometry did not necessarily imply recent development nor attention to new research. Analytic
geometry exhibited conservative tendencies when compared to the research publications of
Gergonne, Poncelet, Pliicker and Steiner. Algebraic solutions that indicated imaginary, infi-
nite, and to some extent negative points or curves were dismissed as impossible or absurd.*’
Biot described a parabola as an infinitely elongated ellipse and a hyperbola as an ellipse
with an imaginary axis, but when his calculations resulted in a curve defined by imaginary
points, he concluded that this was no curve. Solutions that could not be represented on
paper were non-existent. Reynaud made an especial point to show that negative and imagi-
nary solutions did not always imply impossibility and that real solutions found algebraically
might be impossible geometrically. He proposed that these properties “merit the attention
of all students,” but his inclusion of only two examples seemed to suggest such cases were
rare (Reynaud (1819), 219). The first example concerned division into mean and extreme
ratio of a line segment, that is, to find the point X on a given line containing points A and
B such that AB : AX :: AX : BX. Reynaud set up an algebraic formula with AB = 2a,
AX' =z, and BX' = 2z — z and solved for x = —a + \/a? + (2a)?. He considered sev-
eral cases, concluding by showing that this proportion excluded the case where the point
X was situated to the right of B such that AB < AX and BX < AX because algebraic

4T«Then came the application of algebra to geometry; this branch, due entirely to the moderns, and whose
discovery soon gave them a huge advantage over the ancients, had to change from form to measurement as
it was extended and perfected.”

48This index style was popular in all kinds of geometry textbooks, and J. de Stainville even apologized
for not doing so because his text was too long.

La grosseur de ce volume n’ayant pu permettre n’y joindre une Table détaillée, on s’est vu
restreint & présenter seulement dans celle-ci les principaux articles qu’il renferme. (de Stainville
(1815), 1)

The size of this volume does not permit including a detailed Table, we show restraint in
presenting here only the principal articles that it contains.

Nevertheless, his table of contents ran six pages!

49As the history of complex numbers in the nineteenth century indicates, imaginary numbers held an
ambiguous status within mathematics, and geometry in particular, through the 1820’s (Flament (1997),
Schubring (2005)).
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calculations indicated imaginary values of z. However, Reynaud asserted that the problem
had two “geometric” solutions, which he did not elaborate upon. His accompanying figure
to the mean and extreme value problem only showed the case of X being situated between
A and B (Figure 5.6).
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Figure 5.6: Reynaud’s Figure 9 for finding mean and extreme values (Reynaud (1819)

Reynaud described the fact that imaginary values did not always indicate the impos-
sibility of geometric problems as an “apparent contradiction” [contradictions apparentes]
caused by particular geometric conditions, which were “not susceptible to be expressed in
the equations of this problem” [ne sont pas susceptibles d’étre exprimées dans les équations
de ce probléme] (Reynaud (1819), 20). He thus exhibited a note of caution when interpreting
possibility or impossibility based on imaginary solutions to algebraic calculations.

In rare cases, authors slowly began to adopt the mathematical objects and principles
being developed and debated within the Annales. One example of this gradual incorporation
was the case of poles and polars—found in only two of our analytic geometry texts. Biot
added a discussion of poles and polars in 1826, his ninth edition, crediting both Monge and
the Annales. He defined the concepts geometrically with respect to a circle and extended
“analogously” to all second order lines (Biot (1810), 197). Biot did not apply these new
concepts to proofs or constructions nor reference them again for the remainder of the text.
In 1829, Terquem defined poles and polars with respect to a general second order line,
and claimed that their properties facilitated “the solution of many problems,” but only
gave examples within non-analytic geometry (Terquem (1829), 133). The definitions and
applications in these books mirrored those found in the Annales publications beginning in
1810. By 1813 Gergonne had given an analytic interpretation of poles and polars, which
was repeated and refined in the analytic geometry texts of Pliicker, Sturm, and Bobillier.

Even so, this was evidence that the nature of analytic geometry was evolving. Lacroix
described the development of analytic geometry from the first inventors, who saw it as a
means to combine geometry theorems, to its current incarnation as “the general means to
deduce the properties of extension from the smallest possible number of principles” (Lacroix
(1807), vi). Dupin directly addressed scientific progress, claiming that science was only truly
fruitful when elementary texts also progressed. In analytic and descriptive geometry, Dupin

attempted to transform “new conceptions, reserved at first to a small number of superior
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minds” into “general knowledge” (Dupin (1813), vii). The changing content reflected this

growing audience.

5.4 Three-dimensional geometry

Descriptive or perspective geometry was defined with respect to objectives. As Monge had

first introduced descriptive geometry, writing in 1798,

La Géométrie descriptive a deux objets: le premier, de donner les méthodes
pour représenter sur une feuille de dessin qui n’a que deux dimensions, savoir,
longueur et largeur, tous les corps de la nature qui en ont trois, longueur, largeur
et profondeur, pourvu néanmoins que ces corps puissent étre définis rigoureuse-

ment.

Le second objet est de donner la maniére de le connaitre, d’apres une description
exacte, les formes des corps, et d’en déduire toutes les vérités qui résultent et

de leur forme et de leurs positions respectives. (Monge (1798), 5)°°

Monge’s concise definition illuminated several features in the texts of our corpus on both
descriptive and perspective geometry, which we will see reiterated (sometimes word for
word) in the writings of his contemporaries and followers. Without exception, in these
texts Monge was celebrated as the creator of descriptive geometry.

The separate designations of descriptive or perspective referred to complementary and
overlapping practices intended to produce exact representations with a ruler and compass
on paper of three-dimensional objects. We will thus refer to them collectively as three-
dimensional geometry. The intended audience for these practices were artists, architects,
engineers and students destined for the Ecole polytechnique, Ecole militaire, or Ecole de
marine. The Ecole polytechnique added descriptive geometry to its entrance exam in 1827,
which may explain why half of these texts appeared between 1827 and 1829. Further, of the
twelve texts in three-dimensional geometry considered here, eight of them were by authors
associated with the Ecole polytechnique as students, professors, or examiners.

Authors argued for the value of their theories based on utility and application. Louis-
Léger Vallée characterized the figures executed through the principles of elementary ge-
ometry as “arbitrary” representations following “tacit conventions” with little exactitude.
He acknowledged that in mathematical proofs, both exact and inexact figures served the

same function to “fix in the mind the idea of magnitude” [a fizer dans esprit l'idée des

50«Descriptive geometry has two objectives: the first, to provide methods for representing on a sheet of
drawing paper has only two dimensions, namely, length and width, all natural bodies that have three, length,
width and depth, provided that these bodies can be rigorously defined.

The second objective is to provide a way to know, following an exact description, the form of bodies and
to deduce from it all the truths that result and their respective form and positions.”
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grandeurs| (Vallée (1819), ix-x). As an example, he pointed to the figure of the cylinder
circumscribed to the sphere, engraved on Archimedes’ tomb and represented in all elemen-
tary geometry texts as a great circle. However, in useful constructions and applications,
these three dimensional illustrations required as much rigour as that required in elementary
planar geometry. This graphic dimension was also apparent in Monge’s quote, and clearly
distinguished three dimensional geometry as practicable. These texts contained theory that
could be applied in physical space, or that it proved the precision of a technique.

As well as exactitude and precision, authors described their work with terms similar to
those used to describe elementary and analytic geometry: as clear and accessible. Unlike
the above mentioned geometries, descriptive geometry was also often considered beneficially
concise. This feature is confirmed by the average length, only 186 pages of text. Clarity
could be achieved by careful consideration of language and figures. E. Duchesne warned
that descriptive geometry presented new difficulties to geometry students, but described
his FElements of descriptive geometry as ideal for beginners because neither too wide in
scope nor too detailed (Duchesne (1829), 3). Background knowledge, if any was required,
was limited to elementary geometry: relationships between planar polygons and circles
and surfaces of revolution. Only Dupin and Hachette addressed analytic geometry, but
both segregated their texts into synthetic or descriptive and analytic memoirs that could
be consulted independently. Moreover, the extended titles of their two texts, respectively
Développements de géométrie, avec des applications d la stabilité des vaisseauz, aux déblais
et remblais, au défilement, a l'optique, etc.; ouvrage approuvé par l'institut de France, pour
faire suite & la géométrie descriptive et d la géométrie analytique de M. Monge and Eléments
de géométrie a trois dimensions. Partie synthétique. Théorie des lignes et des surfaces
courbes. Partie algébrique. Traité des surfaces du second degré,” suggested that descriptive
geometry was seen as a separate subject from analytic geometry. As both Dupin and
Hachette argued, the former was more sensible and more practical.

With three-dimensional geometry, geometers generalized the particular techniques of
artistic practices into a method. Lacroix noted that every two dimensional geometric ques-
tion had an analog in space, and a two dimensional object, like the circle, was only a
particular case of a three dimensional one, like the sphere. Rather than listing numerous
examples that the reader could only follow through “mechanical imitation,” Lacroix empha-
sized the importance of a methodical manner of employing perspective techniques (Lacroix
(1802), xiv). Hachette was praised by Legendre and Arago for his clarity and method (Ha-
chette (1817)). The distinction lay in the transition from a collection of examples to an
interconnected theory.

While based in a mathematically sophisticated method, three-dimensional geometry
produced results that could be used by non-mathematicians. Vallée declared one of the

principal advantages of descriptive geometry drawings was that they were “often intelligible
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for people who did not even know Geometry” [souvent intelligibles pour les personnes mémes
qui ne savent pas de Géométrie] (Vallée (1819), xvi).®! Vallée outlined descriptive geometry

as producing measurable, recognizable, and manipulable drawings.

C’est la science qui enseigne les moyens de représenter avec exactitude les
grandeurs géométriques, et a faire graphiquement sur ce grandeurs toutes les

opérations possibles. (Vallée (1819), xvii)>?

With similar consideration for those with limited mathematical training, Cousinery ex-
plained two forms of projection: linear projection, or perspective geometry, which was easy
to interpret although the real size of the object was unclear and orthogonal projection, or
descriptive geometry, where the size was provided but the designs were difficult to conceive
as three-dimensional objects. His text emphasized showing objects as they appeared by
incorporating linear projection to supplement “the already fruitful theory of projection”
(Cousinery (1828), v). With both perspective and descriptive geometry, Cousinery argued
that representations could then be understood visually and executed with precision, even
by those who did not understand the mathematical reasoning behind them.

Although, the promise of reading three-dimensional geometric representations might not
require much mathematics, it did require practice and an understanding of constructive ex-
actitude. Reynaud warned that students had become accustomed to seeing all the necessary
lines and points in proofs of planar geometry, and consequently had difficulty attending to
points and lines that did not appear in the projective planes. To remedy this he promised to
include additional lines on his figures to illustrate how to deduce unknowns from givens, and
then show which of these lines were actually necessary for the problem’s solution (Reynaud
(1833), vi—vii).

Three-dimensional geometry was independent of coordinate representation, and the as-
sociated vocabulary of spatial objects usually reflected this independence from equations
involving variables. Surfaces were denoted with respect to being curved, oblique, enveloping,
ruled, etc. These adjectives emphasized the generation or visual appearance, and not the
algebraic properties. In Dupin’s text on both analytic and descriptive geometry, he argued
against these multiple designations for the same objects. He expressed astonishment that
the “denominations of a science where all is harmony and precision are incoherent and often

Y

so imprecise,” and proposed new geometric nomenclature to describe surfaces and curves

modelled in part after the new language of modern chemistry.?

51Books written exclusively for artists, such as methods of painting in perspective, were excluded from our
corpus based on their applied titles as “practical geometry.” Nevertheless, we observe an overlap of intended
audiences here.

52«This is the science that teaches the means to represent geometric magnitudes with exactness, and to
graphically perform all possible operations on these magnitudes.”

53Some reforms to scientific language including chemistry that were proposed and adopted during the late
eighteenth and early nineteenth century are described by Pietro Corsi in Corsi (2005).
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Il me semble que pour perfectionner un peu la langue géométrique, imparfaite
a tant d’égards, il faudrait consacrer exclusivement la terminaison en ide aux
surfaces, et la terminaison en ique aux lignes courbes. [...] Je ferais plus, je
consacrerais le genre féminin aux surfaces, tandis que le genre masculin serait

réservé aux longueurs et aux volumes. (Dupin (1813), 291)54

He followed this proposal by a list of translations, for example the second degree curve
would be Le Deutérigue and its enclosed area would be La Deutérique, and suggested
unprejudiced men could judge the advantages and inconveniences of this innovation. Though
less comprehensive or considered than Dupin’s reorganization, Reynaud also suggested slight
abridgements of geometric expressions “consecrated by usage,” such as line for straight line
and arc for arc of a circle (Reynaud (1833), vii). With an eye on potential audiences, Lacroix
even proposed using the term “stereography” when teaching three-dimensional geometry to
artists so as to “not shock them” by mathematical terms (Lacroix (1802), xx).

Perhaps because “modern geometry” was so closely associated with analytic geometry,
the much newer descriptive geometry was rarely classified as such. But descriptive geom-
etry was also not considered the geometry of the ancients. To represent three-dimensional
bodies beyond the polyhedra, sphere, cone and cylinder required methods beyond elemen-
tary geometry, and the ruler and compass alone did not suffice for all possible geometric
configurations in space. Duchesne invoked “a law of continuity” to describe how points
form planar curves or curves of double curvature (Duchesne (1829), 69).5° Surfaces were
described and defined by revolution about an object, enveloped by the constant movement
of an object, or with respect to the curves formed by intersections with or projections onto
planes. These definitions bore little resemblance to analytic discussions of order or degree.

Even without analysis or algebra, authors often assumed some prerequisite geometric
study on behalf of their audiences. Hachette explained that when he simply stated proposi-
tions, they had either been proved in the Elements (presumably Euclid’s) or were evident,
thus claiming the evidence of three-dimensional geometry as a sound demonstration (Ha-
chette (1817), 1). In order to help artists understand his text, Vallée only provided “syn-
thetic proofs,” and consequently admitted “the method of infinitesimals.” Alternative proofs
using algebra were relegated to notes at the end of his volume (Vallée (1819), xviii). This
led to a more liberal use of infinity and imaginary points than many of his contemporaries.

Vallée described “imaginary parts” of spatial objects, defined by points of intersection when

544Tt seems that to somewhat perfect the geometric language, imperfect in so many ways, one must
exclusively consecrate the suffix ide to surfaces, and the suffix ique to curved lines. [...] I will do more, I
will consecrate the feminine gender to surfaces and so the masculine gender will be reserved for lengths and
volumes.”

55 As we saw in Chapter III, by the early 1820’s the law or principle of continuity began to be a charged
concept in many aspects of mathematics, for example in Cauchy’s reviews of Poncelet (Poncelet and Cauchy
(1820), Poncelet and Cauchy (1825)).
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the objects did not share any real points, and explained that one could consider a projec-
tion as a perspective where the point of view was “at infinity.” Both Vallée and Adhemar
also defined asymptotes as tangent lines meeting the curve at a point at infinity (Adhémar
(1823), 26). These were not literally constructive operations, and served to expand the
potential purview of planar geometry independent of coordinate geometry, just as in the
Annales the techniques of a dynamic geometry would be employed to describe conic sec-
tions and tangent lines. However, these two examples of three-dimensional geometry texts
were not intended for professional mathematicians. Vallée’s attention to his artistic and
mathematical readers shows how courting two audiences could enable exploration of more
or less rigorous methods. Similarly, Dufour warned research mathematicians that he spoke
the language of artists, “Les savans ne trouveront sans doute rien, dans cet Essai, qui soit
digne de leur attention” (Dufour (1827), viii).?¢

The usefulness of three-dimensional geometry for both artists and engineers was pro-
claimed as a manner of national pride. Monge declared descriptive geometry would advance
French machinery, diminish manual labor, and lead to independence from foreign industry
(Monge (1798), 2). Over twenty years later, Vallée, whose text was dedicated to the re-
cently deceased Monge, attributed the flowering of French industry to Monge’s geometry
(Vallée (1819)). Similarly, Hachette desired to “propagate three-dimensional geometry”
which would “give a new treasure to the arts, which are the principal source of public pros-
perity” (Hachette (1817), viii). Gabriel Gascheau described his particular applications to
“oblique surfaces because of their frequent usage in the arts where they are employed in the
construction of screws, stairs, several types of vaults, etc.” (Gascheau (1828), 5). Dupin
went beyond representations, explaining the use of descriptive geometry in the stability of
boats, the equilibrium of floating bodies, excavation, building embankments, and optics.

Readers could quickly judge the success of three-dimensional geometry by the figures
produced, and the volumes contained numerous examples following the text. In these ex-
amples, often the plates (planches) containing several related figures were numbered and
referenced, rather than the individual drawings in the plates. Descriptive geometry fig-

ures were also referenced as “épures,”

which could be translated as a sketch, diagram, or
blueprint. Vallée defined épures as a descriptive geometry term for all the figures in which
one employs two or more planes of projection. This term revealed the polyvalent nature of
these figures, not only to be drawn and viewed, but then utilized to create spatial designs.?”
The importance of figures was made especially apparent by the respective academy reviews
of Cousinery and Vallée, each of which accompanied the published text. In Cousinery’s re-

view, by Fresnel and Mathieu, his use of projection was praised for generating no more lines

56«[..] scholars will not find anything in this essay that is worthy of their attention.”

5"Because of the alternative figure or épure labelling and numbering, it does not make sense to give a
comparative average figure count for descriptive geometry texts.
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than in orthogonal projection (Cousinery (1828), vi). In Vallée’s review by Prony, Fourier,
and Arago, the 320 page text was not read in its entirety because it was too long, but the
figures were consulted and declared “perfectly designed” with all necessary construction
and “no confusion” (Vallée (1819), viii). Lacroix advised that when creating figures the
student should draw lines with a pencil and then erase the ones that did not lead to the
desired result. He then explained his use of four different kinds of letters in order to des-
ignate different parts of his figures. Lacroix spoke to the integrality of figures in geometry,
as important as computation in arithmetic. “Des figures chargées de toutes les lignes de
construction sont aux planches d’un traité de géométrie ce que des minutes de calcul sont
aux exemples d'un traité d’arithmétique” (Lacroix (1802), xi).%®¥ With projections from
points at infinity, not every step of the process could be represented on a plane or even in
finite space, but every point from the original three-dimensional body could be faithfully

represented and effectively reproduced in the final product.

5.5 Geometry of the ruler or compass

FElementary, analytic, and three-dimensional geometry were each well-defined categories
for early nineteenth century textbook authors. As we have seen, many titles or tables of
contents referred precisely to one or more of these three geometrical methods. However,
these categories were not exhaustive to our corpus. Although no geometer entitled their
work with this description, by “geometry of the ruler or compass” we intend titles on
geometry that focused on the non-metric positional relationship between geometric objects,
such as the articles labelled in Gergonne’s Annales as “géométrie de la regle” or “géométrie
de situation.”

The five texts considered here include Carnot’s two texts on the correlation of planar
figures (Carnot (1801), Carnot (1803)), Charles Julien Brianchon’s study of second order
lines (Brianchon (1817)), Chasles’ research on second degree lines and surfaces (Chasles
(1829)), and the 1828 edition of the French translation of Lorenzo Mascheroni’s geometry
of the compass () (1828 (1797), originally published in 1797). As the title of Carnot’s 1803
Géométrie de Position suggests, there were existent designations for alternate methods in
geometry, but these four authors were not uniform in their descriptions. Carnot also claimed
his geometry was elementary, Mascheroni’s research was “geometry of the compass” while
Brianchon described his work as “geometry of the ruler” and most of these texts could
be categorized as “geometry of curves and surfaces,” another subject heading found in
Gergonne’s Annales. Indeed, what these texts all emphasized was not so-much results as

much as the method employed toward reaching these results.

58«Figures filled up with all the construction lines are to the plates of a geometry treatise as the minutiae
of calculation are to the examples in an arithmetic treatise.”
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Originally written in 1798, by its title Mascheroni’s text clearly denoted the idea of
modifying the rules of elementary geometry. He admired the recent advances in analytic

geometry, which rendered ancient achievements child’s play.

Le domaine de la Géométrie continua a s’accroitre a l'aide de ces profondes
recherches et avec le nouveau secours de I’analyse finie et infinitésimale, au point
que les inventions qui d’abord avaient fixé 'admiration des anciens, et mérité
les sacrifices de Thales et de Pythagore, sont devenues 'apanage des enfants de
nos jours. (Mascheroni (1828 (1797), 6)°°

Returning to the “elements,” Mascheroni aimed to explore whether the simplest possible
constructions of geometry were those involving only the ruler and compass or whether even
simpler solutions could be found with the compass alone. Mascheroni defined his approach as
determining what propositions from planar Euclidean geometry could be reached through
compass constructions. Contrary to his original quest for simplicity, he found that his
compass solutions, often reached through trial and error, could be more complicated than
those involving both a compass and a straight-edge. Mascheroni explained that his ultimate
decision to publish rested instead on the potential for exact applications in astronomical or
geographic engineering rather than having achieved greater simplicity.

As his translator, A. M. Carette (a former student of the Ecole polytechnique), observed
in his biographical preface to the second French edition, Mascheroni’s geometry of the com-
pass met with a popular reception from Bonaparte to Lagrange and Laplace to Delambre’s
1808 report on the progress of mathematics (Carette (1828), xii-xv). This recognition,
along with the multiple editions and translations, suggests that there was an appreciation
for new research related to planar elementary geometry. Though Mascheroni’s geometry
of the compass did not become an area of active research in the early nineteenth century,
its counterpart, geometry of the ruler, was adopted by Brianchon, as well as in Annales
publications (consider, among the articles we have already consulted, Pliicker (1826b), Bri-
anchon (1813), Brianchon and Gergonne (1814), Gergonne and Servois (1810), Gergonne
(1813b), Gergonne (1817b)).

The remaining texts in this category were also connected by the work of Carnot, who was
cited by the two later authors. Due to Carnot’s influence on Poncelet, Gergonne, Pliicker
and Steiner we must note several important features in his texts. In 1801 Carnot published
De la corrélation des figures de géométrie, which he expanded into Géométrie de position
in 1803. Carnot’s described his geometry as “elementary,” not because it wasn’t difficult

but because it “did not cede to analytic speculations” [ne le céde point auz spéculations

59«The domain of Geometry continues to increase by aid of these deep researches and with the new results
from finite and infinitesimal analysis, to the point that the inventions which at first had fixed the admiration
of the ancients and merited the sacrifices of Thales and Pythagoras have become the property of children in
our time.”
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analytiques] (Carnot (1803), xxx). He continued by first defining elementary geometry
as the methodical study of properties belonging to figures composed of straight lines and
circles. However, Carnot expressed dissatisfaction with this definition, which appeared like
“a collection of propositions that is very incomplete” [une collection de propositions, qui
est trés-incomplete].®’ Instead, Carnot characterized elementary geometry by as a set of

solutions to a single general problem:

Dans un systéme quelconque de lignes droites, tracés ou non dans un méme plan,
quelques-unes d’elles, ou des angles qui résultent de leur assemblage, soit entre
elles-mémes, soit entre les plans qui les contiennent, étant donnés en nombre
suffisant pour que toute la figure soit déterminée, trouver tout le reste. (ibid,
xxxiii)®!

We note that this definition makes no mention of curved lines or circles nor did it concern
finding length, area, or volume. Thus, like Mascheroni, Carnot presented new research by
limiting the bounds of elementary geometry.

Carnot proposed to solve this general problem by means of an extensive series of tables.
The first would show how many linear parts must be known in order for a “primitive”
figure to be wholly determined. Then, by “mutations” of the primitive figure, Carnot
could find tables for “correlative” figures “qui ne differe pas essentiellement de la premiére,
mais seulement par quelques modifications ou par la diversité de position des parties cor-
respondantes” (xxxiv).%2 This relationship between the corresponding parts of a proposed
“primitive” figure and its associated “correlative” figure, Carnot considered as the central
study of “Geometry of position.” Primitive figures could be transformed into correlative
figures by “insensible degrees” or “mutations,” thus possessing many of the same properties
of primitive figures, as Carnot would show through proofs and tables through the remain-
der of his text. Carnot defined various types of correlative relations, and his definition of
“direct” and “inverse” relations would be adopted by Poncelet, Gergonne, and Pliicker as
we saw in Chapter V.53

While never addressing questions of measurement, Carnot’s text was full of variables,
quantities and calculations. This use of calculation is exemplified by his solution to the

Apollonius problem, which we summarize for comparison to the solutions treated in Chapter

509G teiner’s description of systematicity in synthetic geometry bears strong resemblance to Carnot’s aim
for completeness in describing elementary geometry here. As we have seen in Chapter IV, Steiner’s citations
from 1827 indicate that he had read Carnot’s Géométrie de position by this time.

S1¢Tf in any system of straight lines, whether traced or not in the same plane, some of them, or the angles
formed by their intersections, either with each other or with the plane that contains them, are given in a
quantity sufficient to entirely determine the figure, then find all the remaining [lines or angles].”

62«1 ] that do not differ essentially from the first, but only by some modifications or by the difference in
position among corresponding parts.”

53Philippe Nabonnand and Karine Chemla respectively provide valuable analyses of generality and pure
geometry in the texts of Carnot, Poncelet, and Chasles in Nabonnand (2011b) and Chemla (1998).
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IV (390-391). Referring to an illustrated figure, Carnot assigned variables a, b, ¢ as the radii
of the three given circles, x as the radius of the desired circle, and m,n,p, q,r, s as the six
line segments defined by the respective point pairs AB, AC, BD, CD, AD, BC. By
hypothesis, Carnot knew the segments m,n,s and when one found z, the remaining three
segments could be found by addition, p = b+ x, ¢ = ¢+ x, r = a + . The problem thus
reduced to finding x. Since ABDC was a quadrilateral, Carnot could use a formula he
had derived in an earlier problem for finding the four sides and two diagonals of a given
quadrilateral given five of the six line segments:

(m2q* + ¢@>m* + n2pt + 125t + s%r?)

+(m2n2s? + m2p?r? + n2¢?r? + p2g?s?)

—(m2n2p? +m2n2q® +m2p2q? +m2@2r? +m2q2s® + m2r?s® + n2p2q® + n2p?r? +n2p?s +
n?r2s% + p?r2s? 4 ¢?r?s?) = 0.

One could rewrite this equation in terms of the above variables by substituting in the
values p=b+x, g = c+ x, r = a + x. Carnot did not provide the calculation because the
problem had been “résolu d’une maniere plus simple par des géometres de premier ordre,
tels que Viete, Newton, Euler, et que la seule synthese en fournit plusieurs solutions tres-
élégantes” (ibid, 391).5 Carnot concluded by stating that his purpose with this solution
was only to show one of many applications of the above formula.

Carnot’s mention of synthesis in the above quote suggests that he did not consider his
own solution as synthetic. Indeed, Carnot designated four different methods in geometry:
the synthetic method, the trigonometric method, analytic geometry, and the mixed method.
The synthetic or graphic method involved using the known properties of the given figures
to find the most appropriate construction, without the use of analysis. Carnot designated
descriptive geometry as part of this “graphic method” when it concerned figures on differ-
ent planes. The trigonometric method utilized relationships between angles and sides of
triangles that one could form in the given figure. The analytic method reduced all figures
to relationships between abscissa and ordinates, while angular relationships could only be
described through sine and cosine relations. Carnot’s definition of analytic geometry was
more limited than the application of algebra to geometry described above, in that it should
not include any geometric properties except those “indispensable to express the conditions
of each problem” with coordinate equations [indispensable pour l’expression des conditions
de chaque probléme] (352). Synthetic geometry was advantageous because it concerned real
and practical results that could be pictured in the imagination. Analytic geometry was
simple and uniform, but could lead to very complicated calculations.

With its use of a figure and trigonometric relations (used to derive the above formula),

Carnot considered his solution of the Apollonius problem as exemplifying the mixed method.

64“[...] resolved in a much simpler manner by geometers of the first order, such as Viete, Newton, Euler,

and as synthesis alone furnishes several very elegant solutions of it.”
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La méthode mixte consiste a employer simultanément les ressources de la géométrie
graphique, de la trigonométrie et de la géométrie analytique, pour arriver plus
facilement au résultat qu’elle veut obtenir. Si cette méthode n’a pas ’avantage
d’une certaine uniformité dans ses procédés, elle a plus de moyens pour profiter
des diverses propriétés déja connues des figures, et des simplifications acciden-

telles, qu’offre dans chaque cas particulier la nature de la question. (353)5°

Carnot’s practice of mixed methods was observed and rejected by Gergonne because of
the lack of simplicity and elegance, as noted in Chapter II (Gergonne (1817e)). Moreover,
Carnot’s frequent use of all four methods stands as a correction to Klein’s claim that Carnot
initiated the divide between analytic and synthetic methods, as we saw in Chapter I. While
Carnot criticized the “very complicated” calculations of analytic methods, he did not divide
geometry in half and frequently applied mixed methods in this text.%6 Although Carnot’s
mixed methods were not adopted as such in the work of Poncelet, Pliicker or Steiner,
Brianchon would apply them successfully in several articles, including his first published
proof of “Brianchon’s theorem” in the Journal de I’Ecole polytechnique (Brianchon (1810)).

Within his book, Mémoire sur les lignes du second ordre, Brianchon cited Carnot sur-
reptitiously as “the illustrious author of the Geometry of position” (Brianchon (1817), 6).
Carnot had described his principle of correlation as original, but Brianchon emphasized a
progressive lineage by situating his short text with a small bibliography on the historical
development of geometry of the ruler and harmonic lines. Brianchon defined geometry of
the ruler as having for its object, “les propriétés de situation des systémes de lignes droites.”
His list of predecessors began with Pappus, and extended to three present-day geometers:
Carnot, Lavit, and Servois. The limitation to ruler constructions in the plane did not pre-
clude Brianchon from invoking points at infinity. He generalized the notion of polygons to
include those with vertices at infinity, that is, with parallel adjacent sides. Nevertheless,
Brianchon’s text was intimately linked to the figure. He attended to this relationship in
careful detail, for instance by showing correlation between two figures through the use of
backward letters denoting inversely correlated points.

Chasles expressed more caution with points at infinity by associating the concept, and
that of imaginaries, with analysis: “Analitiquement parlant, deux sphéres ont une seconde
courbe d’intersection, toujours imaginaire, située dans un plan a l'infini” (Chasles (1829),

62). Chasles considered his text on second degree lines and surfaces, extracted from Nou-

65«The mixed method consists in simultaneously employing the resources of graphic geometry, of trigonom-
etry and of analytic geometry to arrive very easily at the result that one wishes to reach. If this method lacks
the advantage of a certain uniformity in its procedures, it profits greatly from different known properties of
figures, and accidental simplifications that in each particular case suggests the nature of the question.”

56Carnot’s approach to analytic geometry was also connected to his stance on negative numbers, as
described by Gert Schubring in Schubring (2005), particularly Chapter V “Le Retour du Refoulé: From the
Perspective of Mathematical Concepts”.

294



veauxr Mémoires de I’Académie Royale de Bruzelles, as pure geometry. As he explained in
his title, pure geometry extended beyond elementary geometry to include the polar trans-
formation of conics and second degree cones, general properties of second degree surfaces
of revolution, general properties of second degree cones, and the construction of lines of
curvature. Chasles was well versed in contemporary research practices and provided over
ten precise citations of recent texts and articles, a convention that appears to have been
much more common in journals than monographs. He aimed to demonstrate that pure ge-
ometry could yield many of the same results as analysis. For instance, he cited an analytic
proof from Bobillier, in order to preface his own purely geometric proof that would show
the generality of his method (38). Carnot also described his method as uniform, another
quality that typically characterized analytic geometry.

These summaries reveal a section of geometry books where new methods were actively
considered and developed. With their emphasis on a discipline in flux, these four texts
were the least like textbooks and would include the books we have examined in our case
studies, such as Poncelet’s Traité and Steiner’s Systematische Entwicklung. These authors
introduced new principles and alternative techniques. In these texts we find a precedent to
claims for novelty. Further, the emphasis lay on new methods and not new results, which

reflected that of contemporary research articles.

5.6 Mixed collections

Our final and loosest category includes four books where geometric problems, theorems, or
methods were collected. Although we have chosen to classify these texts as mixed collec-
tions, they had very little in common with each other. Paul-Marie-Gabriel Treuil’s Essais
de mathématiques, contenant quelques détails sur larithmétique, 'algebre, la géométrie et
la statique simply contained an assortment of his recent mathematical researches, including
a few problems and theorems on measuring areas and angles and ran only 73 pages (Treuil
(1819)). By contrast, Garnier’s 1810 Réciproques de la géométrie, suivies d’un recueil de
théorémes et de problémes extended to nearly 400 pages of text and figures, was the second
issue since 1807, and received favourable citations from Biot and Francfort (Garnier (1810)).
The text could serve as a companion to Garnier’s analytic geometry, as the contents in-
cluded no analytic solutions to theorems and problems involving planar figures, descriptive
geometry, and trigonometry. Garnier organized his text as a list of propositions and their
proofs, followed by theorems and problems grouped by geometric figures. This composition
perhaps reflected Garnier’s views on non-analytic geometry as oriented by particular cases
more than general method.

With a more modest scope, in Applications de la géométrie d la mesure des lignes in-

accessibles et des surfaces planes Lefevre addressed a wide assortment of problems, and
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described his “satisfying” research as “recreational,” which he further reiterated in his ded-
ication to his son. His work emphasized physical application, and the specific tools of con-
struction: “les jalons, 1’équerre, le graphometre et avec I’équiangle” (Lefevre (1827), viii).
However, Lefevre also included the theoretical side of geometry, referencing both Carnot’s
work on transversals and Mascheroni’s geometry of the compass. Even with an emphasis
on recreational problem solving, his focus on inaccessible lines addressed a common class of
geometric problems. Poncelet had been interested in similar problems in his Traité, where
he wrote a section on “Conséquences qui en résultent pour la détermination des droites, ou
des points qui appartiennent a un point, ou a une droite, supposés tous deux inaccessibles,
invisibles ou placés a I'infini” (Poncelet (1822)). Alluding to Mascheroni, Lefevre presented
multiple solutions of the same problem, but based his research exclusively on elementary
principles in order to promote its use among those “not habituated to analytic calculation.”

Gabriel Lamé’s Fxamen des méthodes serves as a fitting culmination to our own exami-
nation of a similar topic (Lamé (1818)). Like the texts of Treuil, Garnier, and Lefevre, Lamé
motivated his research by solving geometric problems. In his introduction, he explained that
the problems led to his methodological reflections, and not vice versa, although the cause
and effect might not be apparent. Although both Dupin and Hachette included both el-
ementary and analytic geometry, Lamé’s text provides a rare example of these methods
employed side-by-side. Consider his list of what he considered the most important aspect

of his work, combining analytic and descriptive geometries.

L’expression analytique de la communauté d’intersection des lieux géométriques
; la détermination complete des courbes et surfaces du second degré par la
Géométrie descriptive, lorsqu’on donne un nombre suffisant de leurs points ; la
théorie des courbes et surfaces représentées par les équations z¢ : a® +y® : b =
1, et % :a® +y® : b + 2z : ¢ = 1, sont les parties de cet Ouvrage qui me

paraissent mériter le plus attention. (Lamé (1818), v)57

Lamé’s desire to find “general principles for problem solving” resulted in new approaches to
analytic geometry. In particular, Lamé was credited with the first use of abridged notation
in this text, which greatly helped to alleviate the burden of analytic computation (Boyer
(1956), Barbin (2009)). Initially, Lamé claimed there were only two methods in geometry:
analytic and synthetic. However, Lamé explained that he did not intend these designations
to signify analytic and synthetic geometry, but instead as reverse orders of exposition or

demonstration.

87«The analytic expression of the cluster of intersections of geometric loci; the complete determination of
second degree curves and surfaces by descriptive geometry, when one has a sufficient number of their points;
the theory of curves and surfaces represented by the equations [...] and [...], are the parts of this work that
seem to merit the most attention.”
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Une solution est dite présentée synthétiquement, lorsque énoncée d’abord on en
prouve 'exactitude, soit par une méthode inverse de celle qu’a suivie 1’Analyse

pour la trouver, soit enfin par la démonstration & I'absurde. (ibid, 9)%®

He later introduced the inverse method, indirect method, and mixed method as well as
descriptive geometry, simple geometry, and the theory of transversals. The suggestion of
a continuum rather than a dichotomy of methods also appeared in the work of Carnot,
Brianchon, Chasles, Poncelet, and in the assorted subject titles of Annales articles. For all
of these geometers, problem solving motivated exploring the limits of known methods and
creating new ones. Collections of problems and theorems could thus serve to summarize past
accomplishments, provide material for teachers and students, and promote new approaches

to research.

5.7 Conclusions

Through the first third of the nineteenth century there were several possible venues for
article length publications by French geometers including Journal de [’école polytechnique
(1795-1939), Correspondance sur l’école polytechnique (1804-1815), Annales des mathéma-
tiques (1810-1832), Bulletin des sciences mathématiques (1823-1831), Journal fir die reine
und angewandte Mathematik (1826-), Correspondance mathématique et physique (1825-),
as well as publications associated with local and regional scientific academies, most promi-
nently the Académie des Sciences. As Gergonne observed, prior to the Annales article pub-
lication was limited, primarily reserved for those associated with the Ecole polytechnique
in the Journal of that school. By 1826 the situation had changed dramatically, and though
the Annales ceased publication in 1833, it was quickly supplanted by both the Journal de
Mathématiques Pures et Appliquées (1836) and the Nouvelles Annales de Mathématiques
(1842-1927).%9 The readers of textbooks and articles may have been identical, but they
were addressed as different audiences. There was certainly overlap between authors. If we
limit our comparison to the Annales, we find Stainville, Brianchon, Chasles, Kramp, Lamé,
Noél, and Garnier contributed both Annales articles and wrote books considered in our
survey.

In 1810, when Gergonne began publishing his Annales, he discussed the many functions

and advantages of a journal devoted to mathematics.

68« A solution is said to be presented synthetically when we first set out to prove its exactitude, either
through an inverse method to that which Analysis followed to find it, or through proof by contradiction.”

%9Liouville’s Journal has been studied by Verdier and Gérini (Verdier (2009a), Gérini (2010b), Gérini and
Verdier (2007)). While Delcourt has compared the Nouvelles Annales and Gergonne’s Annales in Delcourt
(2011b). Laurent Rollet and Philippe Nabonnand further examined the audience and content of the Nouvelles
Annales in Rollet and Nabonnand (2013).
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un recueil qui permette aux Géometres d’établir entre eux un commerce ou,
pour mieux dire, une sorte de communauté de vues et d’idées; un recueil qui
leur épargne les recherches dans lesquelles ils ne s’engagent que trop souvent
en pure perte, faute de savoir que déja elles ont été entreprises; un recueil qui
garantisse a chacun la priorité des résultats nouveaux auxquels il parvient; un
recueil enfin qui assure aux travaux de tous une publicité non moins honorable

pour eux qu’utile au progres de la science. (Gergonne (1810a), i-ii)™

This public exchange of new ideas aimed toward scientific progress provides a contrast to
the slow repetition characteristic of most geometry books. In general, geometry books were
written for pedagogical purposes. This was also a motivation for geometry articles, the
Journal de [’école polytechnique and Correspondance sur l’école polytechnique were both
directed toward student readers. Similarly, Gergonne introduced the Annales as above
all consecrated to “recherches qui auront pour objet d’en perfectionner et d’en simplifier
Penseignement” (ii). However, while most articles in the Annales and similar journals could
certainly be read by students or used by their instructors in creating teaching material, they
were not explicitly presented by their authors as such. Instead, the research was framed as
an end in itself, or to be used by other participants in the shaping “a community of views
and ideas.”

Without the community afforded by journal articles, books were intended to be self-
sufficient. Book authors noted in their prefaces whether any arithmetic, algebra, or addi-
tional geometry might be required in advance, and if so, occasionally cited a few authors who
might serve as preliminaries. Articles contained none of these explicit prerequisites, instead
adopting in-text references to cite particular concepts or results. Most books contained
very few in-text references, which could be explained by frequent introductory comments
denying any claim to novelty. There was such little expectation for new content, that, as
noted above, Poullet-Deslisle joked that trying to be new would appear as a “ridiculous
pretension.” In this context, the repetition of results we have seen exemplified in Chapters
II, TIT, and IV appears to have been a common practice. However, when content was re-
peated in articles, there was also the intent of introducing something else new, such as a
method or a principle. Further, despite the prevalent redundancy, we found no evidence of
opposition among textbook writers with respect to priority or potential plagiarism. Authors
primarily restricted their particular criticisms to pedagogy and order of exposition. When
new research did appear, such as in the books of Lamé, Brianchon, or Chasles, the authors

also wrote publicity-generating articles with similar content (a few examples include Lamé

704« A periodical that allows Geometers to establish a commerce among themselves or, to put it better,
a kind of community of views and ideas; a periodical that spares them from vainly engaging in research
already undertaken by others; a periodical which guarantees to each the priority of the new results that they
come across; a periodical finally, which assures everyone’s work publicity, not less honourable for them than
useful to the progress of science.”
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(1817), Brianchon and Poncelet (1820), Chasles (1828b)). This dual publication strategy
suggests that books were not perceived as a sufficient medium for introducing new geometry
to a wider audience.

Textbooks advertised their specific approaches to an audience of teachers and students
as making the content simpler, more accessible, easier to remember. The fruitfulness and
elegance ascribed to analytic geometry were described as part of the heritage of Viete,
Descartes, Newton, and Euler, more so than contemporary innovations. Chasles’ text, orig-
inally an article, stands out among the books as citing particular advantages of generality
and uniformity in his work over very contemporary proofs and solutions. As a suggestion
of the content standards between books and articles, recall that the Apollonius problem
appeared frequently in the Annales with new solutions by Gergonne by Durrande, and by
Pliicker (Gergonne (1810b), Gergonne (1814b), Gergonne (1817a), Gergonne (1827d), Dur-
rande (1820), Pliicker (1827)). The Apollonius problem also appeared in several textbooks.
Only Carnot provided an original solution and proof (Carnot (1801), 109; Carnot (1803),
390). In 1828, Didiez provided a solution without proof, although he had earlier cited an
article containing Gergonne’s solution, he did not repeat it here (Didiez (1828), 206). Gar-
nier in 1810 and Terquem in 1829 both credited Newton with the “most direct and most
central solution” (Terquem (1829), 423). Meanwhile, the solution by Newton had been com-
paratively rejected by Poncelet, Durrande, and Pliicker and roundly criticized by Gergonne
as overly complicated. These diverse approaches to the Apollonius problem exemplify the
contrasting norms of citations and attention to contemporary research.

The cost of production and limited number of potential purchasers may help to explain
why so few books appeared that weren’t textbooks, and why only textbooks were reprinted
in quick succession. Many of the well-known and widely re-published names in turn of the
century geometry—Monge, Lacroix, Legendre—wrote books almost exclusively for a student
audience. Textbooks catered to an existent market, while research books were expensive
and risked not being sold. As cheaper commodities, journal articles could afford to take
more risks. One obvious contrast between articles and books was page length.”! Likewise,
articles included fewer figures, if any, regardless of the geometric method employed, but the
author may not have always made the decision to omit textual illustrations. For instance,
in the case of Poncelet and Pliicker, we have seen how authors would present preliminary
results in an article in part to create interest in their books, as Poncelet admitted years
later and Pliicker noted in his introductions (Poncelet (1866), Pliicker (1834)). Comparing
the same results by the same authors in articles and in books, we find figures accompanied

the latter even when absent in the former. The presence of figure plates did not signify the

"IThe divergent audiences also helps to explain Gergonne’s emphasis on the length of Poncelet’s Traité
(Gergonne (1827¢)). At 416 pages, the text is only slightly longer than Bossut’s or Didiez’s texts on
elementary geometry and shorter than those by Terquem and Develey. However, if new research typically
appeared in article form, 400 pages appears quite long by comparison.
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choice of method, although we found that analytic geometry texts contained slightly fewer
figures on average than those on elementary or three-dimensional geometry. In general, these
textbooks contained geometry problems, which were solved with reference to an illustrated
figure.™

Textbooks were written for teachers to use with their students, or, less frequently, for im-
mediate student consumption. Discussions of methodology centred around the best method
for teaching. The connection to pedagogy may also explain why so few books appeared in
categories outside the standard mathematics curriculum of elementary geometry, elemen-
tary analytic geometry, and descriptive geometry. There were no courses corresponding
to the popular Annales subject headings: Géométrie de la régle, Géométrie de situation,
Géométrie transcendante, Géométrie pure, or Géométrie des courbes et surfaces. Textbook
authors framed a methodological divide between analytic, elementary and descriptive geom-
etry with respect to prerequisite mathematical knowledge and intended applications. One of
the cited advantages of elementary geometry and descriptive geometry was that no algebra
was required. Only Terquem proposed introducing geometry alongside algebra. Other-
wise, analytic geometry was the next most advanced geometry, to be learned by those who
mastered both elementary geometry and algebra, and continued to pursue mathematics.

A minority of our authors referenced synthetic geometry, and when it appeared the
definitions were heterogeneous. For several authors, analysis and synthesis only denoted
opposite orders of exposition, either from the hypothesis to the conclusion, or by assum-
ing the problem as solved and working backward to the hypothesis (Lacroix (1799), Lamé
(1817), Develey (1812), Mutel (1831)). Synthetic could also stand for an older approach to
geometry. Bossut, for instance, described the modern neglect of synthesis (Bossut (1800),
vii). Biot, similarly, referenced Newton as his only example of beautiful synthetic geome-
try. Only, Carnot and Hachette followed definitions of “synthetic” at all resembling those
suggested in our Chapter 1. Carnot provided a distinct definition for the synthetic method

of geometry in Géométrie de position.

La méthode synthétique ou graphique consiste & résoudre les questions proposés
sans le secours de ’analyse, en cerclant par les propriétés connues des figures qui
se présentent, la construction la plus propre a satisfaire aux conditions proposées.
(Carnot (1803), 351)™

Hachette viewed similar merits and limitations in the synthetic method, which he associated

with the geometry of the ancients, while analytic geometry was modern.

"The cost of production has been studied by Verdier in his thesis on Liouville’s Journal (Verdier (2009a)).
Jean and Nicole Dhombres addressed these issues from the perspective of books, and particularly textbooks
in Dhombres (1985) and Dhombres and Dhombres (1989).

"3“The synthetic or graphic method consists of resolving the proposed questions without use of analysis,
in banding together through the figure’s known properties that are presented, the most fitting construction
to satisfy the proposed givens”
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Ceux qui ont cultivé la géométrie des anciens et ’analyse moderne appliquée a
la géométrie, savent qu’on est encore loin d’obtenir, par la méthode synthétique,
les résultats qui se déduisent du calcul. Cependant cette méthode présente le
double avantage de rendre la vérité plus sensible, et de conduire, par une suite de
raisonnements, des propositions les plus simples aux plus composées. (Hachette
(1817), vii)™

The primary merit of synthetic geometry, for both Carnot and Hachette, lay in its sensible
or visual qualities and its direct connection to the geometric material. These aspects bear
resemblance to the role of the figure emphasized in Poncelet’s description of pure geometry
discussed in our Chapter II.

However, unlike Poncelet, in most books modernity was associated with the application
of algebra to geometry. This was not necessarily because geometry was perceived as stag-
nant. Dupin, who argued that “pure or rational geometry” was more sensible and applicable
to engineering, still associated analytic geometry as modern geometry. However, outside the
context of descriptive geometry, books equated elementary geometry with ancient geometry
and the elements of Euclid. As we discussed above, Carnot presented a different conception
of elementary geometry that could lead to new developments and was not subservient to
analysis. His approach reappeared in the work of Brianchon, Poncelet, Steiner and Chasles,
although not always labelled as elementary. Instead, these latter geometers, in particular
Poncelet, would emphasize the modern aspect of their research, equal to that of analytic
geometry. Despite his fame among the next generation of geometers, none of Carnot’s works
were reprinted in the nineteenth century.

If we consider the research publications of Gergonne, Poncelet, Pliicker and Steiner
within the set of texts they referenced or those cited in the historical accounts we consulted
in Chapter I, their work appears to reflect contemporary geometry. As we have seen in
Gergonne’s Annales in Chapters II, IIT and IV, new content spread quickly through re-
search articles. Polar reciprocity, radical axes, ideal chords, abridged notation, and lines
at infinity became common parlance a few years after being introduced. However, when
compared to books published during the first third of the nineteenth century, the work
of Gergonne, Poncelet, Pliicker and Steiner appears different and original. Most of the
research articles considered above could not be classified as elementary, analytic, or three-
dimensional geometries. When in 1817, Poncelet claimed that he was practicing “modern
geometry” without the use of coordinate equations, he challenged the printed standard and

the common meaning of modern geometry.

" “Those who have cultivated the geometry of the ancients and modern analysis applied to geometry know
that we are still far from obtaining, by synthetic methods, the results that are deduced through calculations.
However this method presents the double advantage of rendering the truth more sensible, and of leading, by
a series of reasonings, to the most simple propositions to the most composed.”
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Chapter 6

Conclusion

In describing their work, early nineteenth century geometers adopted comparative qual-
ities and methodologies. We began by searching for a single methodological dichotomy,
analysis versus synthesis, in the historical literature, and quickly discovered the existence
of numerous kinds of divisions. Closer examinations of these divisions in action revealed
complications, as the qualities associated with a specific method varied between different
geometers, contexts, and intended audiences. Descriptions of one individual’s method and
descriptions of that same method in general might counterbalance or even contradict each
other. Rather than methodological opposition, we found a common dedication to solv-
ing planar geometry problems and attention to visualization. Geometers collaborated by
developing and modifying new objects, principles, and techniques unhindered and even
encouraged by methodological differentiation.

In attempting to understand the methodological division between “pure” and “analytic”
geometry the arguments of Poncelet led us to focus on the role of the figure and, more
broadly, the visual and aesthetic dimension of geometry. Poncelet denoted the figure as
the central object and form of evidence in pure geometry, yet the frequent absence of an
actual figure caused us to consider why it was used at all. Early nineteenth century French
geometry textbooks almost always contained figures, which were referenced in introducing
new definitions, setting up theorems, and displaying solutions to constructive problems.
However, when the same authors republished this content in article format, it might only
include virtual figures as written descriptions. Comparing results presented with a virtual
figure or with an illustrated figure revealed the latter’s applicability to summarize at a
glance and display an imitable configuration. These qualities aided in representing an
initial constructive case of a problem’s solution as well as showing possible representations
of new definitions. In journal articles, reference to past publications (some of these with
initially illustrated figures) could replace the synoptic role of the illustrated figure, as the

image became part of the expected prerequisite knowledge. Further, meticulous descriptions

302



with lettered points, lines, and curves could amply provide a usable virtual figure to be
constructed or imagined by the reader, and this was even preferred by some geometers
when engaged in three-dimensional geometry.

The virtual figure also served geometers in extending an initial simple case of a circle
or an ellipse into more complicated and general variations. Further, with the incorporation
of ideal, imaginary, infinite, and animated objects the virtual figure maintained the visual
character of geometry in difficult or impossible to illustrate configurations. Yet, to substi-
tute the virtual figure for Poncelet’s “figure” also diminished apparent differences between
methods. The language, constructions, and descriptions of geometry remained visually
centred and widespread use of the virtual figure in any kind of geometry depended more
on the problem at hand than the chosen method. As shown in both articles and books
published during the first third of the nineteenth century, analytic geometry also contained
constructive solutions which were always accompanied by virtual or actual figures.

Poncelet had argued that within analytic geometry the figure was lost from view, often as
a result of algebraic calculations. However, Pliicker gained attention for limiting calculations
in analytic geometry, and instead focusing on the representative role of equations and form
of the coefficients. Unlike the analytic geometry found in contemporary textbooks, Pliicker
did not show a translation from a geometric figure to a coordinate equation and back again.
In this respect, within Pliicker’s work the figure was always kept in sight in the form of
coordinate equations, and not illustrations or linguistic descriptions.

During their exchange concerning the application of algebra to geometry in 1817, both
Gergonne and Poncelet agreed that the qualities of a particular problem should determine
the choice of method. Yet, as we saw in direct comparisons of different approaches, neither
of them followed this compromise in practice. Instead, when solving the same geomet-
ric problem, geometers emphasized their method in order to differentiate similar results.
While the choice of method seemed to result in amicable competition between Gergonne
and Poncelet or between Poncelet and Pliicker, these same geometers engaged in polemical
discourse over lack of acknowledgement, priority, and perceived plagiarism. Disputes about
citations and recognition also raised larger questions concerning the dissemination of math-
ematics. In an atmosphere of frequent repetition, authors debated the importance of new
forms versus new content. The importance of form became particularly acute during the
duality controversy. Poncelet argued that real innovation lay in new results, while Pliicker
and Gergonne (as well as Crelle, describing Pliicker’s contributions) assigned greater value
to form or method. Dedication to finding new results was further demonstrated by both
Poncelet and Steiner in publishing articles with select new theorems and constructions,
without initially revealing the underlying proofs. This strategy may have been to secure
priority, as their longer monographs included old results, such as the Apollonius problem,

to demonstrate the advantages of their new methods.
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With numerous geometers drawing upon the same material, each seemed to adopt his
own peculiar protocol for citing the work of others. References ranged from vaguely claim-
ing the result as “known” to specifically naming an author, text, year, and page number.
Despite self-declared lack of originality, textbooks often contained no specific citations at
all. Within articles published in later volumes of Gergonne’s Annales, geometers assumed a
comprehensive background knowledge that allowed assuming results, principles, definitions,
and even figures from past publications. The early work of Pliicker and Steiner exhib-
ited the potential disadvantage incurred by contributions from less connected locations.
When authors, often unintentionally, repeated the recent findings of their contemporaries,
offended geometers responded with varied strategies to defend their originality. From the
advantage of his editorial position, Gergonne used footnotes and other annotations to re-
mind readers of his priority. Throughout his career Poncelet employed numerous venues
to advertise complaints about insufficient citations. Pliicker relied upon the novelty of his
coordinate based methods to frame his research and offset his appropriation of recent re-
sults. Steiner adapted familiar problems into increasingly general variations with frequent
particular corollaries. When controversies emerged, they could prove both dangerous and
beneficial to participants, as illustrated by Pliicker’s role in the duality controversy.

As much as geometers repeated, they also developed new approaches. Geometers found
inspiration in divisions between pure and analytic methods. As evidenced by Poncelet and
Gergonne, by Pliicker and Poncelet, and by Steiner and Pliicker, inter-methodogical inspi-
ration helped to establish ideal objects, the line at infinity, the principle of duality, and the
projectively invariant conic section in geometric practices. When employing a new method
geometers could revisit results from recent publications without implied criticism or im-
proper appropriation, such as in the case of Lamé’s theorem. The controversy surrounding
the principle of duality brought to light Poncelet and Gergonne’s notions of how new ge-
ometry should be introduced to a broader public. Amidst their disputes, both geometers
developed particular vocabulary, used Euclidean or synthetic geometry to verify their theo-
rems, and employed visual forms to build recognition for their respective principles. Their
strategies and commentaries implied a perceived conservative audience, either reluctant or
opposed to their “modern” geometry. Within research articles their strategies succeeded, as
the resultant publicity introduced a wider group of geometers to emergent material. In par-
ticular, we saw how the “German” geometers were among the first to apply new principles
and objects in their research.

While Steiner and Pliicker were labelled as German geometers and compared in this
context within the Annales and the Bulletin, later historiography reflected (now more es-
tablished) national divisions. German and Italian authors described how geometry had
migrated from France to Germany, while French authors emphasized the independent work

of Chasles as a counterpoint to the contemporary researches of Pliicker, Steiner, Mobius, and
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von Staudt. However, this linguistic, cultural, or national division was by no means clearcut
in the early nineteenth century. The Ecole polytechnique, the school of Monge, and the
books of Carnot were claimed as common background by a wide group of geometers, some
of whom did not attend the Ecole polytechnique or study directly with Monge including
Gergonne, Pliicker and Steiner. Further, French mathematics was not necessarily defined
by shifting national borders. On the one hand, as shown through Gergonne and Poncelet’s
relationship with the Académie des Sciences, the mathematics and mathematicians of Paris
were disconnected from those in the provinces. On the other hand, French textbooks might
be written outside of France in regions that would later become part of Belgium, Switzer-
land, and Luxembourg. Returning to Steiner and Pliicker, we observed how Gergonne’s
editorial interventions introduced them to the vocabulary of French geometry, new French
developments, and references to French texts. With attention to this potential audience,
through the mid-1830’s both Steiner and Pliicker would publish frequently in French, even
when writing for Crelle’s Journal. Following the duality controversy, Poncelet also turned
to Crelle’s Journal for publishing several memoirs. Further research in comparing contem-
porary books written in German besides those of Pliicker and Steiner would offer a valuable
point of comparison and better understanding of additional publics.

Just as the division between French and German geometers, methodological differentia-
tion was dynamic and subjective. Whether attributed to pure, analytic, synthetic, rational,
ancient, modern, or mixed geometries, certain qualities were overwhelmingly admired and
others avoided. All four of our main actors described their work as elegant and simple, and
attempted to avoid particular cases (exemplified at times by individual figures) as well as
excessive calculations. Yet, each also used both individual figures and arithmetical calcula-
tions to some extent, often in combination with other more general and direct means. The
difference between methods was more a continuum than a bifurcation.

When we direct our attention to the stated reasons geometers gave for choosing one or
another geometry, we find variable rationales. Poncelet described synthetic geometry as the
particular, restricted, figure-based geometry of ancient Greece whose universal recognition
made it the appropriate format for introducing new mathematics. By contrast, Steiner val-
ued synthetic geometry because of its unified, systematic, and organic qualities. With mod-
ern pure geometry, Poncelet promoted its direct applicability among engineers and graphic
artists. Gergonne, instead, admired the philosophical importance of modern geometrical
principles independent of their value in practical situations. Pliicker described his method
as pure analytic geometry, which he found simple, effortless, and free of computation—in
direct opposition of Poncelet’s description of the same subject. Poncelet argued that the
figure made geometry evident, while Steiner found the figure could obscure an intuitive
understanding of geometric objects. Within the rare methodological commentary of these

four geometers, the decision to use one or another method was personal.
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To add to these mercurial methodological distinctions, we compared the ways in which
geometers presented themselves and their work to how they were viewed by contemporary
geometers and critics as well as the succeeding generations of students, geometers and biog-
raphers. Geometers could differentiate their personal achievements by lumping together the
works of others. So, Pliicker referred to Poncelet and Steiner as synthetic geometers, and
late nineteenth century geometers characterized the early nineteenth century as limited by
methodological opposition. At the same time, Poncelet and Steiner actively distinguished
their styles of geometry, and our case studies verify their notable differences. Similarly, early
nineteenth century geometries displayed a fluidity between methods, with Gergonne, Pon-
celet, Steiner, and Carnot finding merit in both analytic and pure or synthetic approaches.
The above generalizations perhaps reflected those who assigned the categories more than
those who fell into them.

Although research geometry remained difficult to classify, as reflected for instance in the
many subject titles applied in the Annales, our study of books on geometry suggested three
primary areas of study: elementary geometry, analytic geometry, and descriptive geometry.
The majority of these books did not reference contemporary research and we observed few
changes in content over a thirty-year period. In recognition of their new practices, geome-
ters like Poncelet and Gergonne labelled their geometry as modern. As we saw in Chapter
I, this claim to modernity extended to later geometers, who often traced the beginning of
the new projective geometry to Poncelet’s research. When introducing this modern geom-
etry, both Poncelet and Gergonne took care to connect their advances to more familiar
traditions. Poncelet claimed that the synthetic method offered a trusted form in which to
portray his ideal objects, while he grounded his principle of continuity on the use of con-
tinuity in analysis. Similarly, Gergonne explained the best way to introduce the principle
of duality was through Euclidean examples. Gergonne also criticized Poncelet for opening
his Traité with the “controversial” principle of continuity, instead of more readily accept-
able polar reciprocity and projection. The application of new methods to well-established
geometry problems also served Pliicker and Steiner in the choice of the Apollonius problem
to test their approaches and generate subsequent publicity. As Gergonne’s introduction
to Steiner’s text showed, finding solutions to old problems could benefit the community of
geometry students and teachers. Pedagogy served as an important potential use of new
geometry, thus encouraging geometers to demonstrate how their recent work connected to
an established curriculum. However, this “modern geometry” also challenged the differen-
tiation between methods as represented in geometry textbooks, which was largely based on
expected prerequisite knowledge and intended applications. From Gergonne’s use of coor-
dinate representation for elementary planar geometry problems to Poncelet and Steiner’s
general approach to an unspecified conic section to Pliicker’s abridged notation without cal-

culation, the domain of one method in geometry could shift dramatically between different
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texts and audiences. Even the quality “modern” changed meanings in different contexts.
While Poncelet and Gergonne associated positive connotations with modern geometry, later
German historians complimented early nineteenth century geometers through analogy with
Fuclid, Apollonius, and Archimedes. A single text could contain both modern and an-
cient components. Reviews of Poncelet, Gergonne, Pliicker and Steiner in the Bulletin and
Crelle’s Journal summarized the perceived new advances in methodology, terminology, and
applicability, acknowledging that these geometers recycled problems and theorems from
ancient and modern sources.

Our investigation of the methodological opposition in early nineteenth century geome-
try showed less systemic opposition than individual geometers choosing one method over
another through personal, varying preferences and perceived qualities. When antagonism
arose between persons or methods, it served as motivation for deeper study and wider de-
velopments, which in turn integrated disparate objects and practices. The combination of
repeated results and evolving forms both challenged and pushed the limits of this visually

oriented research geometry.
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Appendix A

Texts in Chapter I corpus, and
source texts

A.0.1 Twentieth Century General Histories of Mathematics:

Struik, D. (1948 (1986)). A Concise History of Mathematics. G. Bell and Sons Ltd., New
York.

CITED: Klein (1926a), Kétter (1901)

Boyer, C. B. (1956). History of Analytic Geometry. Scripta Mathematica, New York.

CITED: Chasles (1837), Clebsch (1872), Ernst (1933), Loria (1887), Darboux (1904),
Simon (1906), Carrus and Fano (1915), Schoenflies (1909), Tresse and Schoenflies
(1913), Troptke (1903)

Boyer, C. B. and Merzbach, U. C. (1968). A History of Mathematics. John Wiley
and Sons, New York.

Kline, M. (1972). Mathematical Thought from Ancient to Modern Times. Oxford Uni-
versity Press, New York.
CITED: Kotter (1901), Fano (1907), Schoenflies (1909), Cajori (1893), Coolidge (1940)
Grattan-Guinness, I. (1997). The Norton History of the Mathematical Sciences. W. W.
Norton & Company, New York.
CITED: Kotter (1901), Fano (1907), Klein (1926a)

A.0.2 Our corpus

Clebsch, A. (1872). Zum Gedachtnis an Julius Pliicker. Dieterichschen Buchhandlung,
Gottingen.
CITED BY: Loria (1887), Klein (1926a), Kotter (1901), Ernst (1933), Boyer (1956)
Dronke, A. (1871). Julius Pliicker Professor der Mathematik und Physik an der Rhein.
Friedrich-Wilhelm Universitét, Bonn.
CITED BY: Cajori (1893), Ernst (1933)
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Boyer (1956)
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CITED BY: Boyer (1956)

332



Schoenflies, A. (1909). Projektive Geometrie. Encyklopddie der mathematischen Wis-
senschaften mit Einschluss ihrer Anwendungen, 111(5):389-480.

CITED BY: Kline (1972), Tresse and Schoenflies (1913)

Tresse, A. and Schoenflies, A. (1913). Géométrie projective. Encyclopédie des sciences
mathématiques pures et appliquées, 3(2):1-143.
CITED BY: Boyer (1956)

Cajori, F. (1893). A History of Mathematics. Macmillan Co., New York.
CITED BY: Simon (1906), Boyer (1956), Kline (1972)

Tropfke, J. (1903). Geschichte der Elementar-Mathematik in systematischer Darstellung.
Veit & Comp., Leipzig.

CITED BY: Simon (1906), Coolidge (1940), Boyer (1956)

333



Appendix B

Texts in

Chapter V corpus,
organized chronologically

date author title publisher place category
1798 Gaspard Monge Géométrie descriptive Baudouin Paris three-dimensional
1799 Sylvestre Francois Lacroix Elémens de géométrie Duprat Paris clementar’
1800 (6th edition) Charles Bossut Cours de mathématiques Firmin Didot. Paris element: analytic
1800 (3rd edition) Adrien-Marie Legendre Eléments de géométrie Firmin Didot Paris elementary
1801 Lazare Carnot De la Corrélation des figures de géométrie Crapelet Paris ruler or compass
- . . s de géomét - les plans et les surfaces courk . . .
1802 (2nd edition) Sylvestre Frangois Lacroix ssals e SEOMELTIe Sur 65 prans et fes surfaces courb Duprat Paris three-dimensional
i Elémens de Géométrie descriptive
1803 Lazare Carnot Géométrie de position Duprat Paris ruler or compass
1803 (3rd edition) Sylvestre Francois Lacroix Elémens de géométrie Courcier Paris elementary
e Q : . Traité élémentaire de tri; étrie rectiligne et sphérique, . . .
1803 (3rd edition) Sylvestre Frangois Lacroix ldl, ¢ ementaire f’ TBOnoMELIe rectiigne et spherique Courcier Paris analytic
’ et d’application de I'algebre & la géométrie. !
1806 Christian Kramp Elémens de géométrie Hansen Cologne | elementary
. . . . Traité élémentaire de trigonométrie rectiligne et sphérique, o . . .
1807 (4th edition) Sylvestre Frangois Lacroix ¢ ¢ mentatre Ce \g NCLTLS Tettiene ¢ spacrique, Courcier Paris analytic
et d’application de I'algébre a la géométrie.
lication de I’Analyse a la Géométrie a I'usage
1809 (4th edition) Gaspard Monge pphes - 7 . © Vve Bernard Paris analytic
de I'Ecole Impériale Polytechnique
1809 Antoine Charles Marcelin Poullet-Deslile | Application de I'agebre a la géométrie Courcier Paris analytic
. . Réci es de la géométrie, suivies d'un recueil . . . .
1810 Jean Guillaume Garnier iprodues € fa seominte, sulvies ¢ recuel Courcier Paris mixed collections
de théoremes et de problemes
. . Théorie des courbes et des surfaces du second ordre, . . . .
1810 (2nd edition) Jean-Louis Boucharlat P - NP . Vve Courcier Paris analytic
précédée des principes fondamentaux de la géométrie analytique v
. . . Essai de géométrie analytique, appliqué z courbes N . .
1810 (4th edition) Jean-Baptiste Biot © BEOMELIC analytque, applique aux courbes J. Klostermann fils | Paris analytic
et aux surfaces du second ordre
e Nicolas-Louis de LaCaille P . PR . .
1811 (5th edition) Jootas LS ¢ ot Legons élémentaires de mathématiques Courcier Paris elementary
(Jean-Baptiste Labey)
1811 (9th edition) Sylvestre Frangois Lacroix Elémens de géométrie Vve Courcier Paris elementary
1812 (second edition) | Louis Bertrand Elémens de géométrie J. J. Paschoud Paris elementary
1812 Emmanuel Develey Elémens de géométrie Vve Courcier Paris elementary
L . . Essais de géomét - les plans et les surfaces courbes: . . . .
1812 (4th edition) Sylvestre Frangois Lacroix 5 (¢ SEOMELTIC Sur o8 plans ¢t fes surlaces courbes Vve Courcier Paris three-dimensional
! Elémens de Géométrie descriptive
1812 (9th edition) Adrien-Marie Legendre Eléments de géométrie Firmin Didot Paris clementary
. PR . . analyt;
1813 Charles Dupin Développements de géométrie Vve Courcier |
three-dimensional
. . . Traité élémentaire de tri étrie rectiligne et sphérique, . . . .
1813 (6th edition) Sylvestre Frangois Lacroix raite Eementaire ce trigonometrie rectiigne ¢t spherique Vve Courcier Paris analytic
’ et d’application de I'algebre & la géométrie. !
1813 Jacques Schwab Elémens de géométrie Hissette Nancy | elementary
. . . Essai de géométrie analytique, appliqué aux courbes . . .
1813 (5th edition) Jean-Baptiste Biot ssal de g 1é ana‘yique, appique aux courbes J. Klostermann fils | Paris analytic
et aux surfaces du second ordre
1813 Jean Guillaume Garnier Géométrie analytique, ou Application de I'algébre a la géométrie | Vve Courcier Paris analytic
1815 J. de Stainville Mélanges d’analyse algébrique et de géométrie Vve Courcier Paris analytic
1816 (2nd edition) Emmanuel Develey Elémens de géométrie Vve Courcier Paris clementary
- . Eléments de géométrie a trois dimensions. . . . alytic,
1817 Jean-Nicholas-Pierre Hachette CINCLLS o geometric & frols ¢ mensions Vve Courcier Paris anayne .
Partie synthétique et partie algébrique three-dimensional
1817 Charles Michel Potier Traité de géométrie descriptive Firmin Didot Paris three-dimensional
1817 Charles Julien Brianchon Mémoire sur les lignes du second ordre Bachelier Paris ruler or compass
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1818 Gabriel Lamé Examen des différentes méthodes employées Vve Courcier Paris | mixed collections
pour résoudre les problemes de géométrie

1819 (11th edition) | Sylvestre Frangois Lacroix Elémens de géométrie Vve Courcier Paris | clementary
Traité d’application de 'algebre a la géométrie.

1819 Antoine-André-Louis Reynaud  AppAcato 5 8 ' Vve Courcier Paris | analytic

” et de trigonométrie i
. . . Essais de mathématiques, contenant quelques détails . . . . .

1819 Paul-Marie-Gabriel Treuil . e 3ol PN N Vve Courcier Paris mixed collections
sur Varithmétique, Talgébre, la géométric et la statique

1819 Louis-Léger Vallée Traité de la géométrie descriptive Vve Courcier Paris three-dimensional

s de géométrie sur les plans et surfaces courbes:
1822 (5th edition) | Sylvestre Frangois Lacroix 8 P Bachelier Paris | three-dimensional

Elémens de Géométrie descriptive

Meélanges de mathématiques, ou Application de I'algébre

1822 Jean-Nicolas Noél (o anees Lo me ) C. Lamort analytic
i la géométrie élémentaire

1823 Joscph Adhémar Cours de géométric descriptive Chaignicau fils ainé three-dimensional

1825 Pierre Louis Marie Bourdon Application de Iagebre & la géométrie Bachelier analytic

1826 (7th edition)

Jean-Baptiste Biot

Fssai de géométrie analytique, appliqué aux courbes
es du second ordre

et aux surfe

Bachelier

analytic

1826 Augustin-Louis Cauchy Lecons sur les applications du calcul infinitésimal a la géométrie De Bure freres Paris infinitesimal calculus

1826 Alexandre Vincent Cours de géométrie élé i Bachelier Paris elementary

1827 Guillaume Henri Dufour Géométrie perspective Bachelier Paris three-dimensional

1827 (8th edition) | Sylvestre Frangois Lacroix Traité élémentaire de trigonométrie rectiligne et sphérique, Bachelier Paris | analytic
et d’application de I'algebre & la géométrie.

1827 Louis-Etienne Lefébure de Fourcy Tegons de géométrie analytique Bachelier Paris analytic

1827 A. Lefevre .Apphcaans de la géomé! a la mesure des lignes Bachelier Paris mixed collections
inaccessibles et des surfaces planes

1827 (5th edition) | G2SPard Monge Géométrie descriptive Bachelier Paris | three-dimensional

(Barnabé Brisson)
1828 Barthélémy Edouard Cousinery iéométrie perspective, ou Principes de projection polaire Carilian-Goeury Paris | three-dimensional
N N appliqués a la description des corps v

1828 N. J. Didiez Cours complet de géométrie Bachelier Paris elementary
Eléments de géométrie descriptive, a I'usage des éleves

1828 E. Duchesne qui se destinent & 'Ecole polytechnique, a I'Ecole militaire, H. Balzac Paris three-dimensional
i I'Ecole de marine

1828 Gabriel Gascheau Géométrie descriptive Bachelier Paris three-dimensional

1828 (2nd edition) | Lorenzo Mascheroni (trans. A. M. Carette) | Géométrie du compas Bachelier Paris ruler or compass

1829 Michel Chasles Recherches de géométrie pure sur les lignes et les surfaces du second degré | M. Hayez Brussels | ruler or compass
Eléments de géométrie descriptive, a I'usage des éloves

1829 (2nd edition) | E. Duchesne qui se destinent a I'Ecole polytechnique, & I'Ecole militaire, H. Balzac Paris three-dimensional
a I'Ecole de marine
Elémens d’algebre, d’arithmétique et de géométrie,

1829 (3rd edition) | Enrico Giamboni (trans. D. Roux) oit arithmétique et la géométrie se déduisent des Bachelier Paris analytic
premiéres notions de I'algébre

1520 Olry Terquem Manuel de géomélrie, ou exposition élémentaire Roret Parts | clementary,
des principes de cette science analytic

1830 (1741) Alexis Claude Clairaut Elémens de géométrie Bachelier Paris elementary

1830 (14th edition) vestre Frangois Lacroix Elémens de géométrie Bachelier Paris clementary

1830 M. H. Vernier Géométrie élémentaire & P'usage des classes L. Hachette Paris | elementary
d’humanités et des écoles primaires

1831 F. H. Francfort Essai analytique de géométrie plane Béthune Paris analytic

1831 Auguste Mutel Cours de géométrie et de trigonométrie Vve Bernard Paris elementary

1831 Claude-Lucien Bergery Géométrie des éeoles primaires P. Wittersheim Metz elementary

1832 (14th edition) | Adrien-Marie Legendre Eléments de géométrie . Remy Brussels | elementary

1832 Alexandre Meissas Cours de géométrie A. Pihan Delaforest | Paris elementary

1833 Antoine-André-Louis Reynaud Théorémes et problemes de géométrie Bachelier Par mixed collections

1835 (3rd edition)

G. F. Olivier

Géométrie usuelle

Maire-Nyon

Paris

clementary

335




Appendix C

Authors, dates (if known), and

Ecole polytechnique class

Name Dates (if known) Ecole polytechnique class
Adhémar Joseph (Alphonse) 1797-1862

Bergery Claude Lucien 1787-1863 X 1806
Bertrand Louis 1731-1812

Biot Jean Baptiste 1774-1862 X 1794
Bossut Charles 1730-1814

Boucharlat Jean Louis 1773-1848 X 1794
Bourdon Louis Pierre Marie 1779-1854 X 1796
Brianchon Charles Julien 1783-1865 X 1803
Brisson Barnabé

Carette A. M.

Carnot Lazare 1753-1823

Cauchy Augustin Louis 1789-1857 X 1805
Chasles Michel 1793-1880 X 1812
Clairaut Alexis Claude 1713-1765

Cousinery Barthélémy Edouard 1790-1851 X 1808
Lefébure de Fourcy | Louis Etienne 1785-1869 X 1803
de Stainville Nicolas Dominique Marie Janot | 1783-1828 X 1802
Develey Emmanuel 1764-1839

Didiez N. J.

Duchesne E.

Dufour Guillaume Henri 1787-1875 X 1807
Dupin Pierre Charles 1784-1873 X 1801
Francfort F. H.

Garnier Jean Guillaume 1766-1840

Gascheau Gabriel 1798-1883 X 1816

336




Name Dates (if known) | Ecole polytechnique class
Giamboni Enrico

Hachette Jean Nicolas Pierre 1769-1834

Kramp Christian 1760-1826

Labey Jean-Baptiste 1750-1825

LaCaille Nicolas-Louis de 1713-1762

Lacroix Sylvestre Francois 1765-1843

Lamé Gabriel 1795-1870 X 1814
Lefevre A

Legendre Adrien Marie 1752-1833

Mascheroni Lorenzo 1750-1800

Meissas Alexandre André (Nicolas de) | 1795-1866 X 1813
Monge Gaspard 1746-1818

Mutel Auguste 1795-1847 X 1813
Noél Jean Nicolas 1783- 1867

Olivier GF

Potier Charles Michel 1785-1855 X 1805
Poullet-Delisle | Antoine Charles 1778-1849 X 1796
Reynaud Antoine André Louis 1777-1844 X 1796
Schwab Jacques

Terquem Olry 1782-1862 X 1801
Treuil Paul Marie Gabriel 1784-1823 X 1802
Vallée Louis Léger 1784-1864 X 1800
Vernier M. H.

Vincent Alexandre 1797-1868
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Appendix D

Chapter V author’s title page
descriptions (if any)

Name Title page author description

Adhémar

Bergery Ancien éléve de I'école polytechnique, professeur a I’école d’artillerie de Metz, membre de I'académie royale de la méme ville et de
plusieurs autres sociétés savantes.

Bertrand Professeur émérite dans I’Académie de Geneve et Membre de celle de Berlin.
Membre de I'Institut de France, etc. (1810);
Membre de I'Institut de France, Adjoint du bureau des Longitudes, Professeur de physique mathématique au Collége de France,
et d’astronomie a la faculté des Sciences de Paris, Membre de la Société Philomatique de Paris, des Académies de Lucques, de Turin,
de Munich et de Wilna. (1813);

Biot Membre de ’Académie dc$ Sciences, Astronome adjoint au Bureau des Longitudes, Professeur de Physique mathématique
au Collége de France, et d’Astronomie a la Faculté des Sciences de Paris ; des Sociétés royales de Londres et d’Edimbourg ;
de I’Académie impériale de Saint-Pétersbourg ; des Académies Royales de Stockholm, Turin, Munich, [illegible], Berlin, Naples ;
Membre honoraire de 1'Université de [illegible] de I'Institution royale de Londres, de la Societé philosophique de Cambridge,
des Antiquaires d’Ecosse, de la Société pour I'avancement des Sciences naturelles de Marbourg, de la Société Helvétique des
Sciences naturelles, et de la Société Italienne des Sciences residante 4 Modéne. (1826);

Bossut Membre de 'Institut National des Sciences et des Arts, etc.

Boucharlat Licencié és-Sciences, et Répétiteur a I'Ecole Impériale Polytechnique.

Bourdon Chevalier de I'Ordre royal de la Légion-d’Honneur, Inspecteur de 1’Académie de Paris, Docteur és-Sciences, etc.

Brianchon Capitaine d’Artillerie, ancien éléeve de I’Ecole Polytechnique

Brisson Ancien Eleve de 'Ecole Polytechnique, Inspecteur divisionnaire des Ponts et Chaussées.

Carette ancien éleve de 1'école polytechnique, officier supérieur du génie, etc.

Carnot membre de I'Institut National (1801);
De I'Institut national de France, de ’Académie des Sciences, Arts et Belles-Lettres de Dijon, etc. (1803)

Cauchy Ingénieur en chef des ponts et chaussées, professeur d’analyse a I'Ecole royale polytechnique,

¥ professeur adjoint a la faculté des sciences, membre de 1’Académie des sciences, chevalier de la Legion d’honneur

Chasles

Clairaut Des Académies des Sciences de France, d’Angleterre, de Prusse, de Russie, de Bologne et d’Upsal.

Cousinery ingénieur des ponts et chaus: , ancien éleve de Iécole polytechnique

Lefébure de Fourcy

Chevalier de la Légion d’Honneur, Examinateur des Aspirans & 'Ecole royale Polytechnique,
a I'Ecole spéciale Militaire, a I'Ecole de Marine et & 'Ecole Forestiére, Docteur-és-Sciences, etc.

de Stainville

Répétiteur-Adjunct a I'Ecole royale Polytechnique.

Professeur de Mathématiques a Lausanne, membre du Conseil Académique du canton de Vaud,
membre correspondant de I’Académie Impériale des Sciences de Saint-Pétersbourg, des Sociétés de Harlem,
de Jéna, de Mantauban, de Bordeaux, de Lyon, de Besangon, de la Société économique de Saxe, etc. (1812);

Develey Professeur de Mathématiques & Lausanne, Membre correspondant de I’Académie Impériale des Sciences de Saint-Petersbourg,
des Académies Royales de Harlem et de Jena, des Sociétés de Montauban, de Bordeaux, de Lyon, de Besangon,
de la Société économique de Saxe, ete. (1816)
Didiez
Duchesne professeur de mathématiques spéciales au collége de Venddme
Dufour Lieutenant-Colonel du Génie, Membre de la Légion-d’Honneur et Secrétaire de la Société des Arts de Geneve.
Membre de ’Académie Ionienne, Associé étrager de I'Institut royal de Naples, des Académies des Sciences de Turin,
Dupin Montpellier, etc. ; Correspondant de la premiere Classe de I'Institut de France, Capitaine du Génie maritime,
Membre de la Légion-d’Honneur.
Francfort
Garnier Ancien professeur a I'Ecole polytechnique, Docteur de la Faculté des Sciences a ’Université Impériale, et Instituteur & Paris
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Name Title page author description

Giamboni professeur & Pérouse, ouvrage est traduit de l'italien par D. Roux de Genéve

Hachette Professeur adjoint de la Faculté des Sciences et de ’Ecole Normale, Membre de la Société Philomatique.
Professeur de Mathématiques et de Physique a I’Ecole de Cologne ;

Kramp des Académies d’Erford et de Rovérédo ; de la Société littéraire de Mayence ;
et de la Société minéralogique de Jéna.

Labey professeur de mathématiques pures et examinateur des pour l’ecole imperiale poytechnique

LaCaille I’Abbé de la Caille

Lacroix

Lamé éleve ingénieur au corps royal des mines

Lefevre géometre en chef du cadastre, membre de plusieurs sociétés royaux des sciences et des arts
Membre de 'Institut National (1800); membre de l'institut et de la Légion d’Honneur,

Legendre de la Société Royale de Londres, etc. (1812); Membre de I'Institut et de la Légion-d’Honneur,
de la Société Royale de Londres, etc. (1832)

Mascheroni

Meissas ancien éleve de I’école polytechnique

Monge Membre de I'Institut

Mutel capitaine d’artillerie, ancien éléve de 1’école polytechnique, auteur de la flore de dauphine
et d’un cours d’arithmétique adopté par I'université.

Noél Professeur des sciences physiques et mathématiques a l’athénée de Luxembourg,
correspondant de la société des lettres, sciences et arts, de Metz.

Olivier Bachelier ¢s-sciences, professeur de Mathématiques et d’Humanités.

Potier éleve de 1’école polytechnique

Ancien Eleve de I’Ecole Polytechnique, Ingénieur des Ponts et Chaussées,

Poullet-Delisl
OURCL-DRNSIe | professeur de Mathématiques au Lycée d’Orléans

Chevalier de la Légion-d’Honneur, Examinateur des Candidats de I’Ecole royale Polytechnique

Reynaud .
Y et de I’Ecole spéciale militaire, Docteur-és-Sciences, Membre de plusieurs Académies, etc.

Schwab

Docteur és sciences, Officier de I’Université, Membre de la Légion-d’Honneur,
Terquem Professeur aux Ecoles royales d’Artillerie, Bibliothécaire du Dépot central de 1’ Artillerie,
et Membre de I’Académie de Metz

Ancien Eleve de I'Ecole Polytechnique et de celle des Ponts et Chaussées,
Professeur de Mathématiques a I’Ecole spéciale royale militaire,

Treuil et Professeur de Sciences physiques et de Mathématiques spéciales,
au College royal de Versailles.

Vallée Ancien Eleve de I'Ecole lf’olytechnique, Ingénieur au Corps royal des Ponts et Chaussées,
Membre de la Société d’Emulation de Cambrai.

Vernier Professeur de Mathématiques au College royal de Louis-le-Grand, ancien éléve de I’Ecole normale,
Docteur-és-Sciences

Vincent Professeur de mathématiques spéciales dans I’Académie de Paris, (Collége royal de Reims),

éleve de I'ancienne école normale, licencié-es-sciences, membre de plusieurs sociétés savantes
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Appendix E

Pliicker’s interpretation of points
and lines at infinity and polar
reciprocity with homogeneous
coordinates

In Chapter III we saw that Pliicker promised to reveal the secret of duality in a later
publication through a purely analytic method and without the use of an auxiliary conic
section (Pliicker (1828¢c)). Like the case studies in Chapter IV, the 1830 article “Uber
ein neues Coordinatensystem” provides further evidence of how Pliicker adapted Poncelet’s
findings into his form of analytic geometry. This slightly later text also exemplifies Pliicker’s
particular use of coordinates to represent geometric objects, here with the introduction of
homogenous coordinates. Finally, this article shows Pliicker’s occasional application of
illustrated figures to introduce new definitions.

When Pliicker finally read Poncelet’s Traité, he studied it thoroughly and responded
with careful accreditation to the original author. At the same time, Poncelet and Pliicker
continued publishing articles on the same problems and theorems in the same journals,
and in 1828 both mathematicians began contributing to Crelle’s Journal fiir reine und
angewandte Mathematik. Also in 1828, Pliicker published the first volume of his Analytisch-
geometrische Entwicklungen. He advertised the contents with several articles in Crelle’s
Journal, excerpting and referencing his larger monograph. “Uber ein neues Coordinaten-
system” from 1829 is one such article (Pliicker (1829b)). Pliicker opened by promoting the
“Leichtigkeit” of his new coordinate system in algebraically representing the relationship
and position [Lage] between points and lines. Since his new coordinate system was inde-
pendent from magnitude considerations, Pliicker classified it as “géométrie de situation”
(keeping the French terms in his otherwise German article). As with Pliicker’s earlier coor-
dinate choices, described in Chapter II, this approach yielded immediate geometric results
from the form of the equation.

Hierhin rechne ich ferner, dass fiir die Kurven aller Ordnungen sich Gleichun-
gen ergeben, die in Beziehung auf drei Verdnderlichen (p,q,r) homogen sind;
wonach die geometrische Interpretation des Theorems tiber die homogenen Func-
tionen unmittelbar die Gleichung der Tangente und osculirender Curven fiir
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jeden gegebenen Punct der Curve liefert, u. s. w. (Pliicker (1829b), 1)}

Pliicker was explicit about the similarity between his and Poncelet’s work. He recog-
nized that despite their bases in “ganz wesentlich verschiedenen Ideen,” his general analytic
method and the method of Poncelet’s Traité yielded strikingly matching results. Pliicker
admitted that without an understanding of the underlying groundwork, one might judge
“die erste Methode als eine Periphrase, als ein Plagiat der zweiten.” In particular, Pliicker
pointed out that his paper would derive proofs of significant theorems from Poncelet’s
writings—that all points at infinity are collinear and that two concentric circles have an
imaginary double tangent at infinity [in unendlicher Entfernung einen imagindren doppel-
ten Contact].

As in many of his articles from this time period, Pliicker presented his main focus
as displaying a new method. As compared to the ordinary coordinate analysis, Pliicker
contrasted the generality, simplicity, flexibility, ease, fruitfulness, and naturalness of a ho-
mogeneous coordinate system in three variables. Any new theorems and applications were
incidental to the broader methodological goal, for the most part Pliicker rederived known
results. He would primarily reference work from his own Entwicklungen and Poncelet’s
Traité, citing both precisely by section number. Pliicker also judiciously credited Poncelet
and Gergonne for the development of polar reciprocity, which he described as the most
beautiful and most important extension of geometry in contemporary times. From other
mathematicians, Pliicker included a purportedly new proof of a theorem on the locus of lines
about a fixed point from Jakob Steiner, cited vaguely as only an earlier volume of Crelle’s
Journal. He also included a theorem on the polar of a point with respect to a proposed
directrix attributed to Etienne Bobillier, “Recherches sur les lois générales qui régissent les
courbes algébriques,” (Bobillier (1827)). Finally, Pliicker often referenced so-called known
theorems, without further source details.

Pliicker claimed that his new method afforded greater generality, and his research on
algebraic and transcendental curves of any degree was presented as original. His hints
throughout the text suggested the richness of the homogeneous coordinate system. For
instance, Pliicker concluded his introduction by sketching an analogous homogeneous treat-
ment with a coordinate tetrahedron in space.

The subsequent body of the paper was arranged in 46 numbered sections grouped under
six themes. The first theme (sections 1-12) served as an introduction, Plicker introduced
his homogeneous points and determined representation of points and straight lines. The
following themes were labelled self-explanatorily “On the theory of second order lines” (13-
35), “Theory of reciprocity” (36-40) “Coordinate transformation” (41), “General coordinate-
determination” (42-45), and “Characteristic property of curves of all degrees” (46).

To establish his new coordinate system, Pliicker began with Figure 1. None of Pliicker’s
five articles in Gergonne’s Annales had contained figures, but they were not uncommon in
his Entwicklung nor his contributions to Crelle’s Journal. That said, Pliicker’s references
to figures throughout this article were no more than labels within parentheses, and Pliicker
did not directly discuss the figure within his description of the coordinate system.

Within an ordinary coordinate system, Y AX, Pliicker formed a triangle from straight

'“Here I further think, that for for curves of all orders the given equations are homogeneous in relation
to three variables (p,q,r); for which the geometric interpretation of theorems on homogeneous functions
immediately provides the equation of tangent and osculating curves for each point on the curve, etc.”
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Figure E.1: Pliicker’s Figure 1, Crelle’s Journal Bd. 5 Hft. 1 (Pliicker (1829b))

lines OO’, OO”, O'O" in the plane. Then he defined lengths in the ordinary coordinate
system, p, q,r as the distances between any planar point M and the three vertices O, O/,
O”. With consideration of sign and position, Pliicker determined that if the point M was
in an acute triangle (as pictured in the figure) OO’O”, then one of the distances, say p
would be positive, while the other two ¢ and r would be negative. Thus Pliicker could find
coefficients satisfying the relation,

Ap™ 4 Bp" g+ Cp™r + Dp 2 + EPMT2QR 4 4+ Y gr™ + Zrm =0 (E.1)

a homogeneous equation in p, ¢,r. To simplify the three distances p, g, r, into a two coor-
dinate representation, Pliicker considered % = ¢ and % = 1. Substituting these into the
above equation, he showed

A+ B¢+ Co+ DP* + E¢ap + ... + Y™™ - Zyp™ = 0. (E.2)

Since from the above, ¢ and ¢ were both negative, for any chosen point M, the sign of these
variables would remain determined and the equation represented all possible mth order lines
in the plane. Alternatively, Pliicker showed that substituting i = % = p and % ==y
yielded all possible mth order lines represented by an equation of 2m degree.

Within either of these above systems of two coordinates, Pliicker explained that O,0",0”
would be coordinate vertices, OO’, OO”, O’'O” would be coordinate axes, and angles 0”00/,
00'0", OO"0', or abbreviated as «a, o/, a’, would be coordinate angles. Pliicker noted
the lack of exception in this presentation. If two of the coordinate axes were parallel, this
simply meant that one of the coordinate vertices would be infinitely distant and one of the
coordinate angles would be zero.

Reference to Figure 2 accompanied the following exposition.

A general straight line in Pliicker’s new three coordinate system would be of the form

2

p—+aqg+br=0, (E.3)

2When this article was republished for Pliicker’s complete works, the figures were inserted directly into
the text, rather than being located at the end of the issue. Furthermore, in the original Crelle’s Journal
publication, several of the figures were mislabelled with the wrong reference number, this was corrected in
the complete works.

342



2./ \q
I| T
§ . | T
T-i " IIII -;:.;-u

Figure E.2: Pliicker’s Figure 2, Crelle’s Journal Bd. 5 Hft. 1 (Pliicker (1829b))

or identically,
1+ap+ by =0, uv+av+bu=0. (E4)

If the straight line respectively met the coordinate lines OO”, O'O” at two points Q and
R, these points could have the respective coordinates,

1 1
So then the intersection of lines OR, O'Q at a point S would have the coordinates,
1 1
S=(pu=—=—a,v=—=->). E.6
(ke m 5 ) (E.6)

Straight lines through through a fixed point on OO’, OO” or O’O"” could be represented by
the respective linear equations,

mp + n(aq + br) = 0,mqg +n(p+br) =0,mr +n(p + aq) =0, (E.7)

where m,n would be any arbitrary indeterminate coefficients.

In the following section, Pliicker used these definitions to depict any pair of parallel
lines in the plane, which he would then apply to show that all points at infinity in a plane
were collinear, lying on a unique line at infinity. Pliicker began with OT and O'T’ as two
parallel straight lines that formed the angle w with the axis OO’ (this is pictured in Figure
2, although not referenced within this section). Then, recalling that angles « = O'O0",
o/ = O0'O" Pliicker obtained the following equations:

psin(a —w) 4+ gsinw = 0, (E.8)

for line OT and
psin(a/ —w) — rsinw = 0, (E.9)
for line O'T". Pliicker solved these for the cotangent ratio giving,

cotw = w (E.10)
psin a
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/
r —cos
psina
Using the trigonometric identity in his coordinate system, (sinacosa’ + sina/cosa =
sin(a + /) = sina”), he could substitute both right hand values from the above two
equations to find

psina” — gsina’ — rsina = 0. (E.12)

Further, Pliicker divided by p to convert these values into the two variable coordinate system

of ¢ and v,
¢sina’ +sina = sina”. (E.13)

Since equations (E.8, E.9) represented two parallel lines passing through two arbitrary
given points, their intersection on (E.13) contained a point at infinity. Moreover, the form
of (E.13) would not change for any two parallel lines through O and O’, thus that line
represented only infinitely distant points. Pliicker concluded that the linear form of the
equation showed that all infinitely distant points on a plane were collinear.

Die lineare Form dieser Gleichung zeigt, dass alle unendlich weit entfernten

Puncte einer und derselben Ebene als in gerader Linie liegend zu betrachten
sind. (ibid, 8)3

In a footnote, Pliicker referenced Poncelet’s Traité des propriétés projectives, where this
same theorem had appeared on the “Theory of Projection”:

Tous les points situés a l'infini sur un plan peuvent étre considérés idéalement,
comme distribués sur une ligne droite unique, située elle méme a l'infini sur ce
plan.?

Pliicker found very noteworthy that the theorem resulted directly from his new coordinate
system, and with a variable equation representing an “(ideal) line” (the use of parentheses is
Pliicker’s). Pliicker observed that while this theorem was the basis of Poncelet’s important
conclusions, Pliicker could now reach the same conclusions through a direct route safe
from any objection [Finwurf] derived from the linear form of the final equation. Without
explicitly criticizing Poncelet, Pliicker implied that the theorem had been objectionable
before obtaining this secure analytic foundation.

Pliicker continued this research to prove, in concordance with Poncelet’s Traité, that
two similar, concentric lines of second order would have a double contact at an infinite
distance, which would be real or ideal according to whether both curves were hyperbolas or
ellipses. To show this, Pliicker derived an equation for the infinitely distant chord of contact

3The linear form of this equation shows that all infinitely distant points in one and the same plane are
considered to be lying in a straight line.

4« A1l points situated at infinity on a plane can be ideally considered as distributed on a unique straight
line, situated itself at infinity on this plane.”

The slight difference in vocabulary is worth noting, though it could be no more than a standard translation.
Poncelet’s “a l'infini” is equated with Pliicker’s “unendlich weit entfernten”—that is, the noun becomes an
adverb. Pliicker did not use the noun Unendlichkeit within the text of this paper. However, in “Recherches
sur les surfaces algébriques de tous les degrés” (Annales de Mathématiques XIX, 1828 pp. 97-106) Plicker
included points and poles “a 'infini,” thus suggesting this may be attributed to a difference in translation
of from French to German mathematical vocabulary.
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containing the tangent points. Pliicker admitted that in the analytic treatment of second
order lines, this theorem was of “no particular importance” since one could immediately
obtain the double tangent line from the general relationships, any two general equations
of second order could be combined into a linear equation. However, the theorem had
particular significance in Poncelet’s method where it was used to derive properties of any two
doubly tangent curves from those of two concentric circles. Pliicker continued by deducing
representations of osculating curves as equations in his new coordinate system. This relied
upon the use of differentiation to determine tangent equations, followed by an examination
of coefficients.

In the following section, Pliicker switched subjects to give a very simple analytic treat-
ment of the theory of reciprocity in homogeneous coordinates. He advertised his purely
analytic theory as superior to those of Poncelet and Gergonne because it was independent
of a directrix conic. Though Pliicker had employed the well-known directrix conic version
of polar reciprocity earlier in this same article, he now presented a hypothesis that was
general a priori. Within Pliicker’s system, he defined poles and polars entirely through
their coordinate equation representation. While he described the pole of a line as easy to
construct, he did not explain how the process of construction could be carried out.

First, Pliicker considered by 4+ a¢ = 1 as any straight line and defined the point (i) =
b, » = a) as the easy to construct pole of this line. If the point (¢, ¢’) was on the straight
line then the line ¢'1) + ¢’¢ = 1 passed through (b,a) and by the above definition the pole
of this line was (¢, ¢).

Thus, Pliicker concluded that the locus for the poles of all straight lines passing through
a given point is a straight line whose pole is this point. This theorem could serve as the basis
for the theory of polar reciprocity. Besides this definition, Pliicker asserted that everything
else in the theory behaved as it had under the ordinary coordinate system. He concluded
this paper by suggesting that his theory of reciprocity in the plane with slight modifications
could be transferred to space.

The key relationship in Pliicker’s analytic geometry was that between the coordinate
equation and the geometric object. Pliicker consistently referred to the equation as repre-
senting the point, line, or locus in the plane. Despite the occasional presence of figures in
this article, Pliicker’s references to visualization pointed toward viewing the variables and
coefficients. Indeed, for Pliicker the figures function much more as supplementary illus-
trations than instructive diagrams. The secondary nature of the illustrations was further
highlighted by Pliicker (or the editor’s) frequent mislabelling, as well as the presence of
unspecified objects in a figure and the absence of figured objects in a description. The
figures were static and not manipulated through constructions. That is not to say that
Plicker did not include constructions in this paper. He described several constructions
undergone by objects in the plane, such as angles formed [bilden] by intersecting lines and
lines constructed [construiren| by continuously moving points. However, these processes did
not reference any of the accompanying figures, nor did they suggest the reader draw their
own—especially since some of the constructions were rhetorical (for instance, constructing
all the points of a polar curve) rather than practicable. As we saw in Chapter II, in his 1826
manuscript, Pliicker had described coordinate equations as representing geometric objects
such as, “un systeme de deux lignes droites, représentées séparément par les équations”
(Pliicker and Schoenflies (1904)), though not with the same consistency as here. Overall,
Pliicker’s treatment of the figure, despite the actual physical presence of figures in this
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paper, appears consistent with that in his earlier writings. On the other hand, this paper
contrasted with his earlier work through the emphasis on representing the most general
case, sometimes at the expense of requiring substantial calculation.

Whereas Pliicker had praised the particularity of analytic geometry in 1826, here he
advertised the use of homogeneous coordinates as enabling an even more general geometri-
cal method. Pliicker achieved generality in his treatment of straight lines and conics, and
further expanded the scope of his geometrical researches to include any general algebraic or
transcendental curve. However, by basing his coordinate equations upon an a priori coordi-
nate system, Pliicker restricted himself from the clever coordinate manipulation which had
characterized his earlier work. Pliicker’s repeatedly turned to a combination of trigonomet-
ric and linear relations to calculate new results. He still described this approach as simple
and independent from magnitude considerations, but he no longer advertised the freedom
from calculation in his analytic presentation.
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Appendix F

Louis Gaultier, radical circles,
axes, and centres

Louis Gaultier, often referred to by contemporaries as Gaultier de Tours, is credited with
defining the terms “radical axis” and “radical centre,” and was often referenced for these
contributions in later solutions of the Apollonius problem and other planar geometry ap-
plications (Gergonne (1814b), Durrande (1820), Poncelet and Cauchy (1820), Steiner and
Gergonne (1827), Pliicker (1827), Chasles (1828a)). In addition, Gaultier was the first au-
thor that Poncelet cited in prefacing his Traité (Poncelet (1822)). Gaultier had attended
the Ecole polytechnique and was a professor of descriptive geometry at the Conservatoire
des Arts et Métiers when he published his article, “Mémoire sur les moyens généraux de
construire graphiquement les cercles déterminées par trois conditions, et les spheres déter-
minés par quatre conditions,” in the Journal de I’Ecole polytechnique (Gaultier (1813)).
Gaultier introduced his text as providing a general solution to the problem of constructing
a circle given three conditions and constructing a sphere given four conditions. He showed
that there were 107 possible variations of the former problem, which he illustrated with a
table at the end of the article (Figure F.1).

The paper was organized into three chapters: Geometric properties of radical circles,
spheres and their series; Geometric properties of tangent circles and spheres; Tables of most
of the problems to which one can apply the principles developed in the preceding chapter
and complete discussion of three problems. While Gaultier solved the Apollonius problem
in this article, his work became known instead for his general definitions of circle and sphere
relations and not his particular results. In particular, these are referenced in the solutions
to the Apollonius problem given by Gergonne, Poncelet, and Pliicker in our Chapter IV
(Poncelet and Cauchy (1820), Steiner and Gergonne (1827), Pliicker (1827)). Thus we will
focus on Gaultier’s explanatory introduction and the first part of his first chapter, “Notions
préliminaires sur les Cercles radicaux et les Spheres radicales,” in which he defined radical
circles, the radical axis between two circles, and the radical centre between three circles.
These definitions will better illuminate the common reference source for the above three
authors and provide additional background to the new theories described in the subsequent
Bulletin review (Anonymous (1827b)).

Gaultier motivated his attention to the problem of finding a circle given three conditions
by comparison with past approaches to the Apollonius problem. He noted that the prob-
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Figure F.1: Gaultier’s table showing numerous choices of three given properties to determine
a circle using his own abbreviations (Gaultier (1813))
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lem had been solved analytically by Newton, Euler and Fusse, while the analogous sphere
problem had been solved geometrically by Fermat as well as Monge. However, Gaultier
concluded that while the earlier proofs secured the existence of these solutions the graphic
constructions provided had not been practicable and thus were unsatisfactory.

[...] mais les considérations qu’ils ont mises en usage, quoique trés-ingénieuses,
rendaient les constructions graphiques trop difficiles [...] (Gaultier (1813), 127)!

By contrast, Gaultier would provide solutions based on the “most elementary principles”
of planar and descriptive geometry that could be constructed by means of the ruler and
compass alone. Further, he asserted that these solutions would be so general that they
could even lead to imaginary solutions.

Towrmal oo Eole % bplochnigue 167" cakivr, Figes 113,214

Figure F.2: Gaultier’s illustration of solutions to the Apollonius problem (Gaultier (1813))

Gaultier’s attention to the graphic applicability of geometry extended to his own use
of illustrated figures (Figure F.2). He explained that he would often use one figure to
demonstrate several propositions, but would avoid complications by only illustrating the
parts of circles that were used in the construction. Therefore certain circles would only
appear as arcs or radii. While we have seen that numerous geometers employed this same
practice, Gaultier appears extraordinary in making his attention to figure appearance very
explicit. He even added a footnote crediting the plates to M. Hoyau, a student at the
Conservatoire.

Les Planches de ce mémoire exigeant beaucoup de précision, j’en ai confié
I’exécution a M. Hoyau, éleve du Conservatoire, qui les avait dessinées pour

1«[..] but the considerations that they make use of, although very ingenious, render the graphic con-

structions too difficult [...]”
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le mémoire manuscrit, et qui les a construites immédiatement sur le cuivre.

(ibid, 128)2

This level of consideration for his audience was perhaps a reflection of Gaultier’s teaching
position. He further guided his reader by providing textual summaries in the margins of
the page.

e 0. g g - A Pancde 1.

R

Figure F.3: Gaultier’s first sheet of figures, including illustrations of radical circles, axes,
and centres (Gaultier (1813))

Gaultier first began with consideration of a circle A, which he called the primitive circle.
With reference to Figures 1 and 2 (the plate containing these, and all subsequent, figures
is our Figure F.3), from a coplanar point o one could draw a secant or chord meeting the
circumference of A at points g and k. A radical circle was one whose radius om was the
length of the square root of og - ok, the constant product of the segments of the secant or
the chord drawn from its centre to the circumference of the primitive circle. If the point o
lay outside of circle A then the radical circle was a reciprocal radical circle and if the point
o lay within circle A then the radical circle was a simple radical circle. He considered the
two terms reciprocal and simple as species of radical circles.

After examining analogous definitions in the case of spheres, Gaultier considered Figures
4 and 5, when two given circles A and B, centred at a and b respectively, had in common
radical circles of the same species. With a few calculations based on the product of the
radical circle, he showed that the centres of the latter would all fall on the same line

2«The Plates of this memoir requiring a lot of precision, I entrusted their implementation to M. Hoyau,
a student at the Conservatory, who had drawn them for the manuscript memoir, and constructed them
immediately on copper.”
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perpendicular to the line ab. This line Gaultier designated as the radical axis of circles A
and B, or for short “axe rad. AB” (139).

He showed three different cases of locating the radical axis of two given circles. When
the circles A, B intersected at points f and g (shown in Gaultier’s Figure 4), then the line
fg would be their radical axis. When the circles A, B were tangent at a point h (shown in
Figure 5), then the radical axis would be their common tangent at the point of tangency h.
In this case, all the common radical circles would be reciprocal circles. Finally, if the circles
A, B had no common points (shown in Figure 6), either exterior circles or one enveloping
the other, then their radical axis would be exterior to both circles A and B. To construct
the radical axis in this case, one could draw an arbitrary circle Z meeting A and B at
points p,r and s, t respectively. By extending the intercepted chords pr and st, their point
of intersection u would lie on the radical axis of AB.

By revolving the circles illustrated in his Figures 4, 5, and 6 about a diameter, Gaultier
applied his definitions to spheres in space.

Gaultier’s final new definition concerned three circles A, B, C with non-collinear centres,
such as in his Figures 7 and 8. The radical axes of A, B and of A, C would intersect in a
point o. If one drew a radical circle centred at o to circle A, then it would be a radical
circle of B and a radical circle of C'. Thus, the circle would be radical to all three circles,
and Gaultier designated the point o as the unique radical centre of A, B, C. He noted that
when the three given circles were reduced to their centres, then the problem became that
of finding a circle through three given points.

Gaultier continued by investigating situations when the given circles had infinite radius
and became lines, and analogous results for spheres. He concluded his lengthy preliminary
remarks by advising his readers to exercise wisdom when applying these properties to specific
problems.

Enfin il dépend de la sagacité de celui qui veut faire usage des propriétés que
nous venons de développer, de ramener les questions aux intersections de lignes
droites et de cercles, soit directement, soit en employant les propriétés communes
aux deux nouvelles conditions qui complétent la détermination. (ibid, 170)3

The following year, Gergonne would use Gaultier’s radical axis and radical centre in his own
proof of the Apollonius problem (Gergonne (1814b), 351).

3“Finally it depends on the wisdom of those who want to make use of the properties that we have just
developed, to reduce questions of intersections of straight lines and circles, either directly, or by employing
properties common to two new conditions which completely determine it.”
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