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ASTRONOMY

PREFACE.

rilHIS book may be regarded as a second edition of a &quot;

Treatise

-- on the Mathematical Theory of the Motion of Fluids,&quot;

published in 1879, but the additions and alterations are so ex

tensive that it has been thought proper to make a change in the

title.

I have attempted to frame a connected account of the principal

theorems and methods of the science, and of such of the more

important applications as admit of being presented within a

moderate compass. It is hoped that all investigations of funda

mental importance will be found to have been given with sufficient

detail, but in matters of secondary or illustrative interest I have

often condensed the argument, or merely stated results, leaving

the full working out to the reader.

In making a selection of the subjects to be treated I have

been guided by considerations of physical interest. Long analytical

investigations, leading to results which cannot be interpreted,

have as far as possible been avoided. Considerable but, it

is hoped, not excessive space has been devoted to the theory of

waves of various kinds, and to the subject of viscosity. On the

other hand, some readers may be disappointed to find that the

theory of isolated vortices is still given much in the form in which

it was. left by the earlier researches of von Helrnholtz and Lord

Kelvin, and that little reference is made to the subsequent

investigations of J. J. Thomson, W. M. Hicks, and others, in this

field. The omission has been made with reluctance, and can be

justified only on the ground that the investigations in question

L. b
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VI PREFACE.

derive most of their interest from their bearing on kinetic theories

of matter, which seem to lie outside the province of a treatise like

the present.

I have ventured, in one important particular, to make a serious

innovation in the established notation of the subject, by reversing

the sign of the velocity-potential. This step has been taken not

without hesitation, and was only finally decided upon when I found

that it had the countenance of friends whose judgment I could

trust
;
but the physical interpretation of the function, and the

far-reaching analogy with the magnetic potential, are both so much

improved by the change that its adoption appeared to be, sooner

or later, inevitable.

I have endeavoured, throughout the book, to attribute to their

proper authors the more important steps in the development of

the subject. That this is not always an easy matter is shewn by
the fact that it has occasionally been found necessary to modify

references given in the former treatise, and generally accepted as

correct. I trust, therefore, that any errors of ascription which

remain will be viewed with indulgence. It may be well,

moreover, to warn the reader, once for all, that I have allowed

myself a free hand in dealing with the materials at my disposal,

and that the reference in the footnote must not always be taken

to imply that the method of the original author has been

closely followed in the text. I will confess, indeed, that my
ambition has been not merely to produce a text-book giving a

faithful record of the present state of the science, with its

achievements and its imperfections, but, if possible, to carry it a

step further here and there, and at all events by the due coordina

tion of results already obtained to lighten in some degree the

labours of future investigators. I shall be glad if I have at least

succeeded in conveying to my readers some of the fascination

which the subject has exerted on so long a line of distinguished

writers.

In the present subject, perhaps more than in any other depart

ment of mathematical physics, there is room for Poinsot s warning
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&quot; Gardens nous de croire qu une science soit faite quand on 1 a

reduite a des formules analytiques.&quot; I have endeavoured to make

the analytical results as intelligible as possible, by numerical

illustrations, which it is hoped will be found correct, and by the

insertion of a number of diagrams of stream-lines and other

curves, drawn to scale, and reduced by photography. Some of

these cases have, of course, been figured by previous writers, but

many are new, and in every instance the curves have been

calculated and drawn independently for the purposes of this work.

I am much indebted to various friends who have kindly taken

an interest in the book, and have helped in various ways, but who
would not care to be specially named. I cannot refrain, however,

from expressing my obligations to those who have shared in the

tedious labour of reading the proof sheets. Mr H. M. Taylor has

increased the debt I was under in respect of the former treatise by

giving me the benefit, so long as he was able, of his vigilant

criticism. On his enforced retirement his place was kindly taken

by Mr R. F. Gwyther, whose care has enabled me to correct many
errors. Mr J. Larmor has read the book throughout, and has

freely placed his great knowledge of the subject at my
disposal ;

I owe to him many valuable suggestions. Finally, I

have had the advantage, in the revision of the last chapter, of

Mr A. E. H. Love s special acquaintance with the problems there

treated.

Notwithstanding so much friendly help I cannot hope to have

escaped numerous errors, in addition to the few which have been

detected. I shall esteem myself fortunate if those which remain

should prove to relate merely to points of detail and not of

principle. In any case I shall be glad to have my attention called

to them.

HORACE LAMB.

May, 1895.
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ADDITIONS AND CORRECTIONS.

Page 109, equation (10). Lord Kelvin maintains that the type of motion here

contemplated, with a surface of discontinuity, and a mass of dead water in the rear

of the lamina, has no resemblance to anything which occurs in actual fluids ; and

that the only legitimate application of the methods of von Helmholtz and Kirchhoff

is to the case of free surfaces, as of a jet. Nature, 1. 1. , pp. 524, 549, 573, 597 (1894).

Page 111, line 20, for a = read a = 90.

,, 132, equation (4), dele u2
.

,, 156, equation (3), footnote. The author is informed that this solution

was current in Cambridge at a somewhat earlier date, and is due to Dr Ferrers.

Page 305, footnote. To the list of works here cited must now be added : Gray
and Mathews, A Treatise on Bessel Functions and their Applications to Physics,

London, 1895.

Page 376, line 22, for (g\!2irf read (S*?/X)*.

,, 381, line 10. Reference should be made to Scott Russell, Brit. Ass.

Rep., 1844, p. 369.

Page 386, equation (2). Attention has recently been called to some obser

vations of Benjamin Franklin (in a letter dated 1762) on the behaviour of surfaces

of separation of oil and water (Complete Works, 2nd ed., London, n. d., t. ii.,

p. 142). The phenomena depend for their explanation on the fact that the natural

periods of oscillation of the surface of separation of two liquids of nearly equal

density are very long compared with those of a free surface of similar extent.

Page 423, line 16, for the minimum condition above given read the con

dition that 8
(
V - T

)
= 0, or 5 (V+ K) = 0.

Page 449, footnote, for Art. 302 read Art. 303.

482, line 16, for read 0.

,, 487, footnote. The solution of the equation (1) of Art. 266 in spherical

harmonics dates from Laplace,
&quot; Sur la diminution de la dur6e du jour, par le

refroidissement de la Terre,&quot; Conn, des Terns pour VAn 1823, p. 245 (1820).

Page 491. Dele lines 918 and footnote.





HYDBODYNAMICS.

CHAPTER I.

THE EQUATIONS OF MOTION.

1. THE following investigations proceed on the assumption
that the matter with which we deal may be treated as practically

continuous and homogeneous in structure
;

i. e. we assume that

the properties of the smallest portions into which we can conceive

it to be divided are the same as those of the substance in bulk.

The fundamental property of a fluid is that it cannot be in

equilibrium in a state of stress such that the mutual action

between two adjacent parts is oblique to the common surface.

This property is the basis of Hydrostatics, and is verified by the

complete agreement of the deductions of that science with ex

periment. Very slight observation is enough, however, to convince

us that oblique stresses may exist in fluids in motion. Let us

suppose for instance that a vessel in the form of a circular

cylinder, containing water (or other liquid), is made to rotate

about its axis, which is vertical. If the motion of the vessel be

uniform, the fluid is soon found to be rotating with the vessel as

one solid body. If the vessel be now brought to rest, the motion

of the fluid continues for some time, but gradually subsides, and

at length ceases altogether ;
and it is found that during this

process the portions of fluid which are further from the axis lag

behind those which are nearer, and have their motion more

rapidly checked. These phenomena point to the existence of

mutual actions between contiguous elements which are partly

tangential to the common surface. For if the mutual action were

everywhere wholly normal, it is obvious that the moment of

momentum, about the axis of the vessel, of any portion of fluid

L. 1



2 THE EQUATIONS OF MOTION. [CHAP. I

bounded by a surface of revolution about this axis, would be

constant. We infer, moreover, that these tangential stresses are

not called into play so long as the fluid moves as a solid body, but

only whilst a change of shape of some portion of the mass is going

on, and that their tendency is to oppose this change of shape.

2. It is usual, however, in the first instance to neglect the

tangential stresses altogether. Their effect is in many practical

cases small, and independently of this, it is convenient to divide

the not inconsiderable difficulties of our subject by investigating

first the effects of purely normal stress. The further consideration

of the laws of tangential stress is accordingly deferred till

Chapter XL

If the stress exerted across any small plane area situate at a

point P of the fluid be wholly

normal, its intensity (per unit

area) is the same for all aspects

of the plane. The following proof
of this theorem is given here for

purposes of reference. Through
P draw three straight lines PA,
PB, PC mutually at right angles,

and let a plane whose direction-

cosines relatively to these lines

are I, m, n, passing infinitely close to P, meet them in A, B, C.

Let p, p1} p2 , p3 denote the intensities of the stresses* across the

faces ABC, PBG, PGA, PAB, respectively, of the tetrahedron

PABC. If A be the area of the first-mentioned face, the areas

of the others are in order /A, wA, r&A. Hence if we form the

equation of motion of the tetrahedron parallel to PA we have

PI . ZA = pi . A, where we have omitted the terms which express

the rate of change of momentum, and the component of the

extraneous forces, because they are ultimately proportional to the

mass of the tetrahedron, and therefore of the third order of

small linear quantities, whilst the terms retained are of the second.

We have then, ultimately, p=pi, and similarly p=p2
= ps ,

which

proves the theorem.

* Reckoned positive when pressures, negative when tensions. Most fluids are,

however, incapable under ordinary conditions of supporting more than an ex

ceedingly slight degree of tension, so that p is nearly always positive.
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3. The equations of motion of a fluid have been obtained in

two different forms, corresponding to the two ways in which the

problem of determining the motion of a fluid mass, acted on by
given forces and subject to given conditions, may be viewed.

We may either regard as the object of our investigations a

knowledge of the velocity, the pressure, and the density, at all

points of space occupied by the fluid, for all instants; or we

may seek to determine the history of any particle. The equations
obtained on these two plans are conveniently designated, as by
German mathematicians, the Eulerian and the Lagrangian
forms of the hydrokinetic equations, although both forms are in

reality due to Elder*.

The Eulerian Equations.

4. Let u, v, w be the components, parallel to the co-ordinate

axes, of the velocity at the point (x, y, z) at the time t. These

quantities are then functions of the independent variables x, y y z, t.

For any particular value of t they express the motion at that

instant at all points of space occupied by the fluid; whilst for

particular values of x, y, z they give the history of what goes on

at a particular place.

We shall suppose, for the most part, not only that u, v, w are

finite and continuous functions of x
} y, z, but that their space-

derivatives of the first order (du/dx, dv/dx, dw/dx, &c.) are

everywhere finite f; we shall understand by the term continuous

motion, a motion subject to these restrictions. Cases of excep

tion, if they present themselves, will require separate examination.

In continuous motion, as thus defined, the relative velocity of

*
&quot;Principes ge&quot;neraux du mouvement des fluides.&quot; Hist, de I Acad. de Berlin,

1755.
&quot; De principiis motus fluidorum.&quot; Novi Comm. Acad. Petrop. t. xiv. p. 1 (1759).

Lagrange gave three investigations of the equations of motion ; first, incidentally,

in connection with the principle of Least Action, in the Miscellanea Taurinensia,

t. ii., (1760), Oeuvres, Paris, 1867-92, t. i.; secondly in his &quot; Memoire sur la Theorie

du Mouvement des Fluides
&quot;,

Nouv. mem. de VAcad. de Berlin, 1781, Oeuvres, t. iv.;

and thirdly in the Mecanique Analytique. In this last exposition he starts with the

second form of the equations (Art. 13, below), but translates them at once into the

Eulerian notation.

t It is important to bear in mind, with a view to some later developments
under the head of Vortex Motion, that these derivatives need not be assumed to be

continuous.

12
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any two neighbouring particles P, P will always be infinitely

small, so that the line PP will always remain of the same order

of magnitude. It follows that if we imagine a small closed surface

to be drawn, surrounding P, and suppose it to move with the

fluid, it will always enclose the same matter. And any surface

whatever, which moves with the fluid, completely and permanently

separates the matter on the two sides of it.

5. The values of u
t v, w for successive values of t give as it

were a series of pictures of consecutive stages of the motion, in

which however there is no immediate means of tracing the

identity of any one particle.

To calculate the rate at which any function F (x, y, z, t) varies

for a moving particle, we remark that at the time t + St the

particle which was originally in the position (a?, y, z) is in the

position (x -f u$t, y + v$t, z 4- iu$t), so that the corresponding value

F (x + uSt, y + vSt, z + wSt, t + St)

.

doc dy dz at

If, after Stokes, we introduce the symbol D/Dt to denote a

differentiation following the motion of the fluid, the new value

of F is also expressed by F + DF/Dt . St, whence

DF dF dF dF dF
-jI -j -J- -J- ............... (1).dt dx dy dz

6. To form the dynamical equations, let p be the pressure, p
the density, X, Y, Z the components of the extraneous forces

per unit mass, at the point (x, y, z) at the time t. Let us

take an element having its centre at (x, y, z), and its edges &p,

by, Sz parallel to the rectangular co-ordinate axes. The rate at

which the ^-component of the momentum of this element is

increasing is pSac&ySzDu/Dt ,
and this must be equal to the

^-component of the forces acting on the element. Of these the

extraneous forces give p&x&ySzX. The pressure on the yz-f&ce
which is nearest the origin will be ultimately

(p \dp\dx . Sac) yz*,
* It is easily seen, by Taylor s theorem, that the mean pressure over any face

of the element dxdySz may be taken to be equal to the pressure at the centre of

that face.
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that on the opposite face

(p + ^dp/dx . Sx) SySz.

The difference of these gives a resultant dp/dx. SxtySz in the

direction of ^-positive. The pressures on the remaining faces are

perpendicular to x. We have then

pxyz^- = pSxtySz X BxBySz.

Substituting the value of Du/Dt from (1), and writing down

the symmetrical equations, we have

(2).

7. To these dynamical equations we must join, in the first

place, a certain kinematical relation between u, v, w, p, obtained

as follows.

If v be the volume of a moving element, we have, on account

of the constancy of mass,

du

di*

dv
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and similarly for the remaining edges. Since the angles of the

parallelepiped differ infinitely little from right angles, the volume

is still given, to the first order in St, by the product of the three

edges, i.e. we have

Dv .,, f, /du dv dw=
\
1 + (f +f +^nt

( \d% dy dz)

1 Z)v du dv dw

Hence (1) becomes

Dp (du dv dw\
-7^7 -r p -;

--h j--r~j- I U .................. (o).Dt r
\dx dy dz)

This is called the equation of continuity.

rp,
. du dv dw

The expression -7- + -y- + -^-
c?^

1

c?y c?5

which, as we have seen, measures the rate of increase of volume

of the fluid at the point (x, y, z\ is conveniently called the

expansion at that point.

8. Another, and now more usual, method of obtaining the

above equation is, instead of following the motion of a fluid

element, to fix the attention on an element Sxby&z of space, and

to calculate the change produced in the included mass by the

flow across the boundary. If the centre of the element be at

(#, y, z), the amount of matter which per unit time enters

it across the i/^-face nearest the origin is

and the amount which leaves it by the opposite face is

The two faces together give a gain

per unit time. Calculating in the same way the effect of the flow
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across the remaining faces, we have for the total gain of mass,

per unit time, in the space SxSySz, the formula

id. pu d.pv d. pw\ ~
5, 5.- f- + - + f &%&*.

\ dx dy dz J

Since the quantity of matter in any region can vary only in

consequence of the flow across the boundary, this must be

equal to

whence we get the equation of continuity in the form

dj&amp;gt; d^u djn d^ = () .....
dt doc dy dz

9. It remains to put in evidence the physical properties of

the fluid, so far as these affect the quantities which occur in our

equations.

In an incompressible fluid, or liquid, we have Dp/Dt - 0, in

which case the equation of continuity takes the simple form

^ +J +^ = ........................ (1).dx dy dz

It is not assumed here that the fluid is of uniform density,

though this is of course by far the most important case.

If we wished to take account of the slight compressibility of

actual liquids, we should have a relation of the form

p = K (p-p )/p ........................ (2),

or p/p
= l+p/K ........................... (3),

where tc denotes what is called the elasticity of volume.

In the case of a gas whose temperature is uniform and constant

we have the isothermal relation

where p , p are any pair of corresponding values for the tempera
ture in question.

In most cases of motion of gases, however, the temperature is

not constant, but rises and falls, for each element, as the gas is

compressed or rarefied. When the changes are so rapid that we can

ignore the gain or loss of heat by an element due to conduction

and radiation, we have the adiabatic relation
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where p and p are any pair of corresponding values for the

element considered. The constant 7 is the ratio of the two

specific heats of the gas; for atmospheric air, and some other

gases, its value is 1*408.

10. At the boundaries (if any) of the fluid, the equation of

continuity is replaced by a special surface-condition. Thus at a

fixed boundary, the velocity of the fluid perpendicular to the

surface must be zero, i.e. if I, m, n be the direction-cosines of the

normal,
lu + mv + nw = (1).

Again at a surface of discontinuity, i.e. a surface at which the

values of u, v, w change abruptly as we pass from one side to the

other, we must have

I (X - u.2) + m(vl v2) + n(w1 -w.2)
=

(2),

where the suffixes are used to distinguish the values on the two

sides. The same relation must hold at the common surface of a

fluid and a moving solid.

The general surface-condition, of which these are particular

cases, is that if F(xy y, z, t)
= be the equation of a bounding

surface, we must have at every point of it

DF/Dt = (3).

The velocity relative to the surface of a particle lying in it must

be wholly tangential (or zero), for otherwise we should have a

finite flow of fluid across it. It follows that the instantaneous

rate of variation of F for a surface-particle must be zero.

A fuller proof, given by Lord Kelvin*, is as follows. To find the

rate of motion (v) of the surface F(x, y, z, t)
= 0, normal to itself,

we write

where I, in, n are the direction-cosines of the normal at (x, y, z),

whence
dF dF

n
dF\ dF^Q

dx
H
dy

n
dz ) dt

dF dF dF _
Since 6, m, n = -j- , -j- , -7- , -r *f

c? dy a*

:;

(W. Thomson) &quot;Notes on Hydrodynamics,&quot; Camb. and Dub. Math. Journ.

Feb. 1818. Mathematical and Physical Papers, Cambridge, 1882..., t. i., p. 83.
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Pwhere R =
dxj \dy

1 d^
this gives v =

~~Ti ~di
...........................

*

At every point of the surface we must have

i&amp;gt;

= lu+ mv + mu,

which leads, on substitution of the above values of I, m, n, to the

equation (3).

The partial differential equation (3) is also satisfied by any surface

moving with the fluid. This follows at once from the meaning of the operator

DjDt. A question arises as to whether the converse necessarily holds
;

i. e.

whether a moving surface whose equation ^=0 satisfies (3) will always

consist of the same particles. Considering any such surface, let us fix our

attention on a particle P situate on it at time t. The equation (3) expresses

that the rate at which P is separating from the surface is at this instant zero
;

and it is easily seen that if the motion be continuous (according to the definition

of Art. 4), the normal velocity, relative to the moving surface F, of a particle

at an infinitesimal distance from it is of the order
,
viz. it is equal to G

where G is finite. Hence the equation of motion of the particle P relative to

the surface may be written

This shews that log increases at a finite rate, and since it is negative infinite

to begin with (when =0), it remains so throughout, i.e. remains zero for

the particle P.

The same result follows from the nature of the solution of

dF dF dF dF
, ,..

lfc
+^ +^+^= ........................... (1)

considered as a partial differential equation in F*. The subsidiary system
of ordinary differential equations is

, dx dii dz ,..
dt = = ^- = .............................. (11),u v w

in which a, y, z are regarded as functions of the independent variable t.

These are evidently the equations to find the paths of the particles, and their

integrals may be supposed put in the forms

where the arbitrary constants a, 6, c are any three quantities serving to

identify a particle; for instance they may be the initial co-ordinates. The

general solution of (i) is then found by elimination of a, 6, c between (iii) and

F=+(a,b,c) ................................. (iv),

where \^ is an arbitrary function. This shews that a particle once in the

surface F=0 remains in it throughout the motion.

*
Lagrange, Oeuvres, t. iv., p. 706.
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Equation of Energy.

11. In most cases which we shall have occasion to consider

the extraneous forces have a potential ;
viz. we have

cm cm &amp;lt;mA = ---=
,

Y ---
7 ,

/j --
7 ............ (I).

doc dy dz

The physical meaning of H is that it denotes the potential energy,

per unit mass, at the point (x, y, z\ in respect of forces acting at

a distance. It will be sufficient for the present to consider the

case where the field of extraneous force is constant with respect to

the time, i.e. dl/dt = 0. If we now multiply the equations (2) of

Art. 6 by u, v, w, in order, and add, we obtain a result which

may be written

If we multiply this by 8x81/80, and integrate over any region, we

find, since DjDt . (p 8x81/82)
= 0,

where

V = ffftlpdxdydx ...(3),

i.e. T and V denote the kinetic energy, and the potential energy
in relation to the field of extraneous force, of the fluid which at the

moment occupies the region in question. The triple integral on

the right-hand side of (2) may be transformed by a process which

will often recur in our subject. Thus, by a partial integration,

u
d dxdydz = 1 1 [pu] dydz 1 1 Ip -T- dxdydz,

where [pit] is used to indicate that the values of pu at the points

where the boundary of the region is met by a line parallel to x are

to be taken, with proper signs. If /, m, n be the direction-cosines

of the inwardly directed normal to any element 8S of this

boundary, we have 8y8z=l8S, the signs alternating at the

successive intersections referred to. We thus find that

Sf[pu] dydz = fJpuldS,
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where the integration extends over the whole bounding surface.

Transforming the remaining terms in a similar manner, we obtain

^ (T + V) = Ifp (lu + mo + nw) dS

dv

In the case of an incompressible fluid this reduces to the

form

.(5).

Since lu + mv + nw denotes the velocity of a fluid particle in the

direction of the normal, the latter integral expresses the rate at

which the pressures p$S exerted from without on the various

elements SS of the boundary are doing work. Hence the total

increase of energy, kinetic and potential, of any portion of

the liquid, is equal to the work done by the pressures on its

surface.

In particular, if the fluid be bounded on all sides by fixed

walls, we have

lu + mv + nw =

over the boundary, and therefore

T+F= const (6).

A similar interpretation can be given to the more general

equation (4), provided p be a function of p only. If we write

E = -

then E measures the work done by unit mass of the fluid against

external pressure, as it passes, under the supposed relation between

p and p, from its actual volume to some standard volume. For

example*, if the unit mass were enclosed in a cylinder with a

sliding piston of area A, then when the piston is pushed outwards

through a space &x, the work done is pA . S#, of which the factor

Ax denotes the increment of volume, i.e. of p~
l
. We may there-

* See any treatise on Thermodynamics. In the case of the adiabatic relation

we find

1

(2.6)7- 1 \P Pot
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fore call E the intrinsic energy of the fluid, per unit mass. Now

recalling the interpretation of the expression

du dv dw
dx dy dz

given in Art. 7 we see that the volume-integral in (4) measures the

rate at which the various elements of the fluid are losing intrinsic

energy by expansion* ;
it is therefore equal to DWjDt,

where W =
fffEpda;dydz, (8).

Hence
-^ (T

+ V+ W) = !
fp (lu + mv + nw) dS (9).

The total energy, which is now partly kinetic, partly potential in

relation to a constant field of force, and partly intrinsic, is therefore

increasing at a rate equal to that at which work is being done on

the boundary by pressure from without.

Impulsive Generation of Motion.

12. If at any instant impulsive forces act bodily on the

fluid, or if the boundary conditions suddenly change, a sudden

alteration in the motion may take place. The latter case may
arise, for instance, when a solid immersed in the fluid is suddenly
set in motion.

Let p be the density, u, v, w the component velocities immedi

ately before, u
,
v

,
w those immediately after the impulse, X ,

Yf

,
Z

the components of the extraneous impulsive forces per unit mass,

OT the impulsive pressure, at the point (x, y, z). The change of

momentum parallel to x of the element defined in Art. 6 is then

pxyz(u ii)\ the ^--component of the extraneous impulsive
forces is p&xy&zX ,

and the resultant impulsive pressure in the

same direction is dv/dx . Sx&y&t. Since an impulse is to be

regarded as an infinitely great force acting for an infinitely short

time (r, say), the effects of all finite forces during this interval are

neglected.

*
Otherwise,

(du

dv dw
Tx + Ty

+
-S
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Hence,

IMPULSIVE MOTION.

dl

or
,

1

Similarly,

w w= Z -7-.
p dz

(i).

These equations might also have been deduced from (2) of Art. 6, by

multiplying the latter by 8t, integrating between the limits and T, putting

r=[
T

Ydt, Z = [

T

Zdt, w= [pdt,
Jo jo Jo

and then making r vanish.

In a liquid an instantaneous change of motion can be produced

by the action of impulsive pressures only, even when no impulsive

forces act bodily on the mass. In this case we have X ,
Y

,
Z = 0,

so that

_ = _i^
p dx

V V = ----y- ,

p dy

w = ---^- .

p dz

(2).

If we differentiate these equations with respect to #, y, z,

respectively, and add, and if we further suppose the density to

be uniform, we find by Art. 9 (1) that

dV _~

The problem then, in any given case, is to determine a value of CT

satisfying this equation and the proper boundary conditions*
;
the

instantaneous change of motion is then given by (2).

*
It will appear in Chapter in. that the value of or is thus determinate, save as

to an additive constant.
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The Lagrangian Equations.

13. Let a, b, c be the initial co-ordinates of any particle of

fluid, x, y, z its co-ordinates at time t. We here consider a?, y, z as

functions of the independent variables a, 6, c, t; their values in

terms of these quantities give the whole history of every particle

of the fluid. The velocities parallel to the axes of co-ordinates of

the particle (a, 6, c) at time t are dx/dt, dyjdt, dz/dt, and the

component accelerations in the same directions are d-x/dfi, d2

y/dt
2
,

dz
zjdt

2
. Let p be the pressure and p the density in the neigh

bourhood of this particle at time t; X, Y, Z the components
of the extraneous forces per unit mass acting there. Consider

ing the motion of the mass of fluid which at time t occupies
the differential element of volume Sx&ySz, we find by the same

reasoning as in Art. 6,

d?x _ I dp~

__
dt* pdy
d*z _ 1 dp
H&~ ~^dz

These equations contain differential coefficients with respect to

oc, y, z, whereas our independent variables are a, b, c, t. To

eliminate these differential coefficients, we multiply the above

equations by dxjda, dy/da, dz/da, respectively, and add
;
a second

time by dxjdb, dy/db, dz/db, and add
;
and again a third time by

dxjdc, dy/dc, dz/dc, and add. We thus get the three equations

_ _
d? l da \&

~
da p / da p da

~

d^x \dx
(d*y v\ dy (d*z

\dz Idp- X + - Y + - z +--
+ --

c
+
pdc~

These are the Lagrangian forms of the dynamical equations.

14. To find the form which the equation of continuity

assumes in terms of our present variables, we consider the

element of fluid which originally occupied a rectangular parallel-



13-15] LAGRANGIAN EQUATIONS. 15

epiped having its centre at the point (a, b, c), and its edges

&, 56, Sc parallel to the axes. At the time t the same element

forms an oblique parallelepiped. The centre now has for its

co-ordinates x, y, z\ and the projections of the edges on the

co-ordinate axes are respectively

dx dy dz ~

j- oa
;da

db

dx

dc

db db

dc

dz
-Tdc

The volume of the parallelepiped is therefore

dx
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Let us integrate these equations with respect to t between the

limits and t. We remark that

p d?x dx , _ Vdx dxV _ [
f dx

L~dVda &quot;dtda. J.dt

f dx d*x

dadt

dxdx *

,*

where u is the initial value of the ^-component of velocity of the

particle (a, b, c). Hence if we write

we find

dx dx dy dy dz dz dy \
_1_ /

;
I -it /V .

dt da dt da dt da da

dx dx dy dy dz dz d%

dx dx dy dy dz dz dy
I &amp;lt;_

*J ^i. MSf A*i - _ ^V

dt dc dt dc dt dc dc

These three equations, together with

.(2)

and the equation of continuity, are the partial differential equa
tions to be satisfied by the five unknown quantities x

t y, z, p, % ;

p being supposed already eliminated by means of one of the rela

tions of Art. 9.

The initial conditions to be satisfied are

x =. a, y l&amp;gt;,

z = c, % = 0.

16. It is to be remarked that the quantities a, b, c need not

be restricted to mean the initial co-ordinates of a particle ; they

may be any three quantities which serve to identify a particle,

and which vary continuously from one particle to another. If

we thus generalize the meanings of a, b, c, the form of the

dynamical equations of Art. 13 is not altered
;

to find the form

which the equation of continuity assumes, let x
, yQi ZQ now denote

the initial co-ordinates of the particle to which a, b, c refer.

The initial volume of the parallelepiped, whose centre is at

* H. Weber,
&quot; Ueber eine Transformation der hydrodynamischen Gleichungen &quot;,

Crelle, t. Ixviii. (1868).
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(#o, 2/o, #0) and whose edges correspond to variations Set, &b, &c of

the parameters, a, b, c, is

ia (a, 6, c)

so that we have

d (x, y, z) _ rf(fl? , y0&amp;gt;

z ) m
p
d(a,b,c)~

po
d(a,b,c)

or, for an incompressible fluid,

d (x, y, z) d(a;Qt y0) z ) ,

d(a,b,c) d(a,b,c)

17. If we compare the two forms of the fundamental equations to which

we have been led, we notice that the Eulerian equations of motion are linear

and of the first order, whilst the Lagrangian equations are of the second order,

and also contain products of differential coefficients. In Weber s transfor

mation the latter are replaced by a system of equations of the first order, and

of the second degree. The Eulerian equation of continuity is also much

simpler than the Lagrangian, especially in the case of liquids. In these

respects, therefore, the Eulerian forms of the equations possess great ad

vantages. Again, the form in which the solution of the Eulerian equations

appears corresponds, in many cases, more nearly to what we wish to know
as to the motion of a fluid, our object being, in general, to gain a knowledge
of the state of motion of the fluid mass at any instant, rather than to trace

the career of individual particles.

On the other hand, whenever the fluid is bounded by a moving surface,

the Lagrangian method possesses certain theoretical advantages. In the

Eulerian method the functions u, v, w have no existence beyond this surface,

and hence the range of values of #, y, z for which these functions exist varies

in consequence of the motion which is itself the subject of investigation. In

the other method, on the contrary, the range of the independent variables

, 6, c is given once for all by the initial conditions *.

The difficulty, however, of integrating the Lagrangian equations has

hitherto prevented their application except in certain very special cases.

Accordingly in this treatise we deal almost exclusively with the Eulerian

forms. The simplification and integration of these in certain cases form the

subject of the following chapter.

* H. Weber, I.e.
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INTEGRATION OF THE EQUATIONS IN SPECIAL CASES.

18. IN a large and important class of cases the component
velocities u, v, w can be expressed in terms of a single function

&amp;lt;f&amp;gt;,

as follows :

d(f&amp;gt;
dd&amp;gt; dd&amp;gt; ,, xu = f t

v = -7
1
-, w = f (1).dv dy dz

Such a function is called a velocity-potential/ from its analogy
with the potential function which occurs in the theories of

Attractions, Electrostatics, &c. The general theory of the

velocity-potential is reserved for the next chapter; but we give

at once a proof of the following important theorem :

If a velocity-potential exist, at any one instant, for any
finite portion of a perfect fluid in motion under the action of

forces which have a potential, then, provided the density of the

fluid be either constant or a function of the pressure only, a

velocity-potential exists for the same portion of the fluid at all

instants before or after*.

In the equations of Art. 15, let the instant at which the

*
Lagrange,

&quot; Memoire sur la Th6orie du Mouvement des Fluides,&quot; Nouv.

mim. de VAcad. de Berlin, 1781 ; Oeuvres, t. iv. p. 714. The argument is repro

duced in the Mecanique Anatytique.

Lagrange s statement and proof were alike imperfect ;
the first rigorous demon

stration is due to Cauchy,
&quot; Memoire sur la Th6orie des Ondes,&quot; Mem. de VAcad.

roy. des Sciences, t. i. (1827) ; Oeuvres Completes, Paris, 1882..., l re
Se&quot;rie,

t. i. p. 38
;

the date of the memoir is 1815. Another proof is given by Stokes, Camb. Trans, t.

viii. (1845) (see also Math, and Pliys. Papers, Cambridge, 1880..., t. i. pp. 106, 158,

and t. ii. p. 36), together with an excellent historical and critical account of the

whole matter,
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velocity-potential $ exists be taken as the origin of time
;
we

have then
u da + v db + w dc =

c&amp;lt;/&amp;gt;
,

throughout the portion of the mass in question. Multiplying the

equations (2) of Art. 15 in order by da, db, dc, and adding,

we get

ffi^
X ~*~

dt ^ ^~dt^
Z ~ (u^a + Vodb + wodc)

= -
dx,

or, in the Eulerian notation,

udoc -f vdy + wdz = d
((/&amp;gt;

+ %) = c&, say.

Since the upper limit of t in Art. 15 (1) may be positive or negative,

this proves the theorem.

It is to be particularly noticed that this continued existence

of a velocity-potential is predicated, not of regions of space,

but of portions of matter. A portion of matter for which a

velocity-potential exists moves about and carries this property
with it, but the part of space which it originally occupied may,
in the course of time, come to be occupied by matter which

did riot originally possess the property, and which therefore

cannot have acquired it.

The class of cases in which a velocity-potential exists in

cludes all those where the motion has originated from rest under

the action of forces of the kind here supposed ;
for then we have,

initially,

u da + v db + w dc = 0,

or
&amp;lt;&amp;gt;

= const.

The restrictions under which the above theorem has been proved must
be carefully remembered. It is assumed not only that the external forces

X, F, Z, estimated at per unit mass, have a potential, but that the density

p is either uniform or a function of p only. The latter condition is violated

for example, in the case of the convection currents generated by the unequal

application of heat to a fluid ; and again, in the wave-motion of a hetero

geneous but incompressible fluid arranged originally in horizontal layers of

equal density. Another important case of exception is that of *

electro-magnetic
rotations.

19. A comparison of the formulae (1) with the equations

(2) of Art. 12 leads to a simple physical interpretation of 0.

Any actual state of motion of a liquid, for which a (single-valued)

velocity-potential exists, could be produced instantaneously from rest

22
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by the application of a properly chosen system of impulsive pressures.

This is evident from the equations cited, which shew, moreover,

that
&amp;lt;f&amp;gt;

=
tr/p + const.

;
so that w =

p&amp;lt;f&amp;gt;

4- C gives the requisite sys

tem. In the same way ^ =
p(f&amp;gt;

+ C gives the system of impulsive

pressures which would completely stop the motion. The occur

rence of an arbitrary constant in these expressions shews, what is

otherwise evident, that a pressure uniform throughout a liquid

mass produces no effect on its motion.

In the case of a gas, &amp;lt;f&amp;gt; may be interpreted as the potential

of the external impulsive forces by which the actual motion at

any instant could be produced instantaneously from rest.

A state of motion for which a velocity-potential does not exist

cannot be generated or destroyed by the action of impulsive

pressures, or of extraneous impulsive forces having a potential.

20. The existence of a velocity-potential indicates, besides,

certain kinematical properties of the motion.

A line of motion or stream-line *
is defined to be a line

drawn from point to point, so that its direction is everywhere that

of the motion of the fluid. The differential equations of the

system of such lines are

dx = dy ==
dz

U V W
&quot;

&quot; \ /

The relations (1) shew that when a velocity-potential exists the

lines of motion are everywhere perpendicular to a system of sur

faces, viz. the equipotential surfaces &amp;lt;

= const.

Again, if from the point (x, y, z) we draw a linear element Ss

in the direction (I, m, ri), the velocity resolved in this direction is

lu + mv + nw, or

_ d&amp;lt;t&amp;gt;

dx d$dy d(f&amp;gt;
dz , . , _ d(/&amp;gt;

dx ds dy ds dz ds ds

The velocity in any direction is therefore equal to the rate of

decrease of
&amp;lt;/&amp;gt;

in that direction.

Taking 8s in the direction of the normal to the surface
&amp;lt;/&amp;gt;

= const,

we see that if a series of such surfaces be drawn corresponding to

* Some writers prefer to restrict the use of the term stream-line to the case of

steady motion, as defined in Art. 22.
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equidistant values of
&amp;lt;/&amp;gt;,

the common difference being infinitely

small, the velocity at any point will be inversely proportional to the

distance between two consecutive surfaces in the neighbourhood
of the point.

Hence, if any equipotential surface intersect itself, the velocity is zero at

the intersection. The intersection of two distinct equipotential surfaces would

imply an infinite velocity.

21. Under the circumstances stated in Art. 18, the equations

of motion are at once integrable throughout that portion of the

fluid mass for which a velocity-potential exists. For in virtue

of the relations

dv _dw dw
__
du du _ dv

dz
~

dy dx dz dy dx

which are implied in (1), the equations of Art. 6 may be written

d26 du dv dw dl 1 dp s s

-T-^t + u^- + Vj- + w-j-=- j
--- f fee., &c.

dxdt dx dx dx dx p dx

These have the integral

where q denotes the resultant velocity (u
2 + v2 + w2

)*,
and F (t) is

an arbitrary function of t. It is often convenient to suppose this

arbitrary function to be incorporated in the value of
d&amp;lt;f)/dt ;

this

is permissible since, by (1), the values of u, v, w are not thereby

affected.

Our equations take a specially simple form in the case of an

incompressible fluid
;

viz. we then have

with the equation of continuity

which is the equivalent of Art. 9 (1). When, as in many cases

which we shall have to consider, the boundary conditions are

purely kinematical, the process of solution consists in finding a

function which shall satisfy (5) and the prescribed surface-con

ditions. The pressure p is then given by (4), arid is thus far
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indeterminate to the extent of an additive function of t. It

becomes determinate when the value of p at some point of the

fluid is given for all values of t.

Suppose, for example, that we have a solid or solids moving through a

liquid completely enclosed by fixed boundaries, and that it is possible (e.g. by
means of a piston) to apply an arbitrary pressure at some point of the

boundary. Whatever variations are made in the magnitude of the force ap

plied to the piston, the motion of the fluid and of the solids will be absolutely

unaffected, the pressure at all points instantaneously rising or falling by

equal amounts. Physically, the origin of the paradox (such as it is) is that

the fluid is treated as absolutely incompressible. In actual liquids changes

of pressure are propagated with very great, but not infinite, velocity.

Steady Motion.

22. When at every point the velocity is constant in magnitude
and direction, i.e. when

dt
=

^
=

^~
= (1)

everywhere, the motion is said to be steady.

In steady motion the lines of motion coincide with the paths
of the particles. For if P, Q be two consecutive points on a line

of motion, a particle which is at any instant at P is moving in the

direction of the tangent at P, and will, therefore, after an infinitely

short time arrive at Q. The motion being steady, the lines of

motion remain the same. Hence the direction of motion at Q
is along the tangent to the same line of motion, i.e. the particle

continues to describe the line.

In steady motion the equation (3) of the last Art. becomes

= II
J&amp;lt;?

2
4- constant (2).

P

The equations may however in this case be integrated to a

certain extent without assuming the existence of a velocity-

potential. For if 8s denote an element of a stream-line, we have

u = q dx/ds, &c. Substituting in the equations of motion and

remembering (1), we have
du _ cZO 1 dp

^ ds dx p dx
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with two similar equations. Multiplying these in order by

dx/ds, dy/ds, dzjds, and adding, we have

du dv dw _ cft
__

1 dp
ds ds ds ds p ds

9

or, integrating along the stream-line,

P

This is similar in form to (2), but is more general in that it

does not assume the existence of a velocity-potential. It must

however be carefully noticed that the constant of equation (2) and

the C of equation (3) have very different meanings, the former

being an absolute constant, while the latter is constant along any

particular stream-line, but may vary as we pass from one stream

line to another.

23. The theorem (3) stands in close relation to the principle

of energy. If this be assumed independently, the formula may be

deduced as follows*. Taking first the particular case of a liquid,

let us consider the portion of an infinitely narrow tube, whose

boundary follows the stream-lines, included between two cross

sections A and B, the direction of motion being from A to B. Let

p be the pressure, q the velocity, ft the potential of the external

forces, a the area of the cross section, at A, and let the values

of the same quantities at B be distinguished by accents. In each

unit of time a mass pqa at A enters the portion of the tube

considered, whilst an equal mass pq a leaves it at B. Hence

qa = q a. Again, the work done on the mass entering at A is

pqa per unit time, whilst the loss of work at B is p qa . The
former mass brings with it the energy pqa (^ q

2 + ft), whilst the

latter carries off energy to the amount pqo- (^q
2
-f ft

). The
motion being steady, the portion of the tube considered neither

gains nor loses energy on the whole, so that

pqo- + pqo- (%q
2 + ft) =p q a + pq a (%q

z + ft
).

Dividing by pqa (= pq a }, we have

* This is really a reversion to the methods of Daniel Bernoulli, Hydrodynamica,

Argeiitorati, 1738.
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or, using C in the same sense as before,

(4),

which is what the equation (3) becomes when p is constant.

To prove the corresponding formula for compressible fluids, we
remark that the fluid entering at A now brings with it, in addition

to its energies of motion and position, the intrinsic energy

-K) M?-
per unit mass. The addition of these terms to (4) gives the

equation (3).

The motion of a gas is as a rule subject to the adiabatic law

PlP =
(p/Po)

y ........................... (5),

and the equation (3) then takes the form

~i-p
= - n -^+ G .................. ()

24. The preceding equations shew that, in steady motion,

and for points along any one stream-line*, the pressure is,

ccvteris paribus, greatest where the velocity is least, and vice versa.

This statement, though opposed to popular notions, becomes

evident when we reflect that a particle passing from a place of

higher to one of lower pressure must have its motion accelerated,

and vice versd&quot;^.

It follows that in any case to which the equations of the last

Art. apply there is a limit which the velocity cannot exceed
J.

For

instance, let us suppose that we have a liquid flowing from a

reservoir where the motion may be neglected, and the pressure is

po, and that we may neglect extraneous forces. We have then, in

(4), C = PQ/P, and therefore

Now although it is found that a liquid from which all traces

* This restriction is unnecessary when a velocity-potential exists.

t Some interesting practical illustrations of this principle are given by Froude,

Nature, t. xiii., 1875.

J Cf. von Helmholtz,
&quot; Ueber discontinuirliche Fliissigkeitsbewegungen,&quot; Berl.

Monatsber., April, 1868
; Phil. Mag., Nov. 1868 ;

Gesammelte Abhandlungen, Leipzig,

1882-3, t. i., p. 146.
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of air or other dissolved gas have been eliminated can sustain a

negative pressure, or tension, of considerable magnitude, this is not

the case with fluids such as we find them under ordinary conditions.

Practically, then, the equation (7) shews that q cannot exceed

If in any case of fluid motion of which we have succeeded

in obtaining the analytical expression, we suppose the motion

to be gradually accelerated until the velocity at some point reaches

the limit here indicated, a cavity will be formed there, and the

conditions of the problem are more or less changed.

It will be shewn, in the next chapter, that in irrotational
/?/././/

motion of a liquid, whether steady or not, the place of least

pressure is always at some point of the boundary, provided the

extraneous forces have a potential II satisfying the equation

This includes, of course, the case of gravity.

The limiting velocity, when no extraneous forces act, is of course that with

which the fluid would escape from the reservoir into a vacuum. In the case

of water at atmospheric pressure it is the velocity due to the height of the

water-barometer, or about 45 feet per second.

In the general case of a fluid in which p is a given function

of p we have, putting O = in (3),

P

For a gas subject to the adiabatic law, this gives

7 -

=
;p1 (co

2 -c2

) ........................... (10),

if c,
=

(yp/p)*,
=

(dp/dp)*, denote the velocity of sound in the gas
when at pressure p and density p, and c the corresponding velocity
for gas under the conditions which obtain in the reservoir. (See

Chap, x.) Hence the limiting velocity is

or, 2-214 c
,
if 7 =1-408.
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25. We conclude this chapter with a few simple applications

of the equations.

Efflux of Liquids.

Let us take in the first instance the problem of the efflux

of a liquid from a small orifice in the walls of a vessel which

is kept filled up to a constant level, so that the motion may be

regarded as steady.

The origin being taken in the upper surface, let the axis of z

be vertical, and its positive direction downwards, so that l = gz.

If we suppose the area of the upper surface large compared with

that of the orifice, the velocity at the former may be neglected.

Hence, determining the value of C in Art. 23 (4) so that p P (the

atmospheric pressure), when z 0, we have

At the surface of the issuing jet we have p P, and therefore

9&quot;

= 20* .............................. (2),

i.e. the velocity is that due to the depth below the upper surface.

This is known as Torricellis Theorem.

We cannot however at once apply this result to calculate the

rate of efflux of the fluid, for two reasons. In the first place, the

issuing fluid must be regarded as made up of a great number of

elementary streams converging from all sides towards the orifice.

Its motion is not, therefore, throughout the area of the orifice,

everywhere perpendicular to this area, but becomes more and

more oblique as we pass from the centre to the sides. Again,
the converging motion of the elementary streams must make the

pressure at the orifice somewhat greater in the interior of the

jet than at the surface, where it is equal to the atmospheric

pressure. The velocity, therefore, in the interior of the jet will

be somewhat less than that given by (2).

Experiment shews however that the converging motion above

spoken of ceases at a short distance beyond the orifice, and that (in

the case of a circular orifice) the jet then becomes approximately

cylindrical. The ratio of the area of the section S of the jet at this

point (called the vena contracta ) to the area 8 of the orifice is called

* This result is due to D. Bernoulli, /. c. ante p. 23.
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the coefficient of contraction. If the orifice be simply a hole in

a thin wall, this coefficient is found experimentally to be about 62.

The paths of the particles at the vena contracta being nearly

straight, there is little or no variation of pressure as we pass from

the axis to the outer surface of the jet. We may therefore assume

the velocity there to be uniform throughout the section, and to have

the value given by (2), where z now denotes the depth of the vena

contracta below the surface of the liquid in the vessel. The rate

of efflux is therefore

& ........................... (3).

The calculation of the form of the issuing jet presents difficulties which

have only been overcome in a few ideal cases of motion in two dimensions. (See

Chapter iv.) It may however be shewn that the coefficient of contraction must,

in general, lie between \ and 1. To put the argument in its simplest form,

let us first take the case of liquid issuing from a vessel the pressure in which,

at a distance from the orifice, exceeds that of the external space by the

amount P, gravity being neglected. When the orifice is closed by a plate, the

resultant pressure of the fluid on the containing vessel is of course nil. If

when the plate is removed, we assume (for the moment) that the pressure on

the walls remains sensibly equal to P, there will be an unbalanced pressure

PS acting on the vessel in the direction opposite to that of the jet, and

tending to make it recoil. The equal and contrary reaction on the fluid

produces in unit time the velocity q in the mass pqS flowing through the

4 vena contracta, whence

PS=pqW ....................................... (i).

The principle of energy gives, as in Art. 23,

so that, comparing, we have S = $S. The formula (1) shews that the

pressure on the walls, especially in the neighbourhood of the orifice, will in

reality fall somewhat below the static pressure P, so that the left-hand side

of (i) is too small. The ratio S /S will therefore in general be &amp;gt;i.

In one particular case, viz. where a short cylindrical tube, projecting

inwards, is attached to the orifice, the assumption above made is sufficiently

exact, and the consequent value for the coefficient then agrees with

experiment.

The reasoning is easily modified so as to take account of gravity (or other

conservative forces). We have only to substitute for P the excess of the static

pressure at the level of the orifice over the pressure outside. The difference

of level between the orifice and the vena contracta is here neglected *.

* The above theory is due to Borda (Mem. de VAcad. des Sciences, 1766), who

also made experiments with the special form of mouth-piece referred to, and found

SJS = 1 942. It was re-discovered by Hanlon, Proc. Land. Math. Soc. t. iii. p. 4,

(1869) ; the question is further elucidated in a note appended to this paper by

Maxwell. See also Froude and J. Thomson, Proc. Glasgow Phil. Soc. t. x., (1876).
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Efflux of Oases.

26. We consider next the efflux of a gas, supposed to flow

through a small orifice from a vessel in which the pressure is

PQ and density p into a space where the pressure is plt We assume

that the motion has become steady, and that the expansion takes

place according to the adiabatic law.

If the ratio PQ/PI of the pressures inside and outside the vessel do not

exceed a certain limit, to be indicated presently, the flow will take place in

much the same manner as in the case of a liquid, and the rate of discharge

may be found by putting p =PI in Art. 24 (9), and multiplying the resulting

value of q by the area &amp;gt;S&quot; of the vena contracta. This gives for the rate of

discharge of mass

&amp;lt;

It is plain, however, that there must be a limit to the applicability of this

result; for otherwise we should be led to the paradoxical conclusion that

when
&amp;gt;!

=
(), i.e. the discharge is into a vacuum, the flow of matter is nil.

The elucidation of this point is due to Prof. Osborne Reynolds f. It is easily

found by means of Art. 24 (8), that qp is a maximum, i.e. the section of an

elementary stream is a minimum, when q
/2= dp/dp, that is, the velocity of the

stream is equal to the velocity of sound in gas of the pressure and density

which prevail there. On the adiabatic hypothesis this gives, by Art. 24 (10),

2

and therefore, since c2 oc p
y \

p (
2 \y^l p (

2 \v-i

or, if y= 1-408,

p= -634Po , j?
= 527^0 ........................... (iv).

If p be less than this value, the stream after passing the point in question,

widens out again, until it is lost at a distance in the eddies due to viscosity.

The minimum sections of the elementary streams will be situate in the

neighbourhood of the orifice, and their sum S may be called the virtual

area of the latter. The velocity of efflux, as found from (ii), is

The rate of discharge is then =qpS, where q and p have the values just

* A result equivalent to this was given by de Saint Venant and Wantzel,
Journ. de VEcole Polyt., t. xvi., p. 92 (1839).

t &quot; On the Flow of Gases,&quot; Proc. Manch. Lit. and Phil. Soc., Nov. 17, 1885 ;

Phil. Mag., March, 1876. A similar explanation was given by Hugoniot, Comptes

Rendus, June 28, July 26, and Dec. 13, 1886. I have attempted, above, to condense

the reasoning of these writers.
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found, and is therefore approximately independent* of the external pressure

pl
so long as this falls below -527jD . The physical reason of this is (as pointed

out by Reynolds) that, so long as the velocity at any point exceeds the velocity

of sound under the conditions which obtain there, no change of pressure can

be propagated backwards beyond this point so as to affect the motion further

up the stream.

These conclusions appear to be in good agreement with experimental results.

Under similar circumstances as to pressure, the velocities of efflux of

different gases are (so far as y can be assumed to have the same value for

each) proportional to the corresponding velocities of sound. Hence (as we
shall see in Chap, x.) the velocity of efflux will vary inversely, and the rate

of discharge of mass will vary directly, as the square root of the density f.

Rotating Liquid.

27. Let us next take the case of a mass of liquid rotating,

under the action of gravity only, with constant and uniform angular

velocity co about the axis of z, supposed drawn vertically upwards.

By hypothesis,

u = coy, v = cox, w = 0,

X = 0, F=0, Z=-g.
The equation of continuity is satisfied identically, and the dynamical

equations of Art. 6 become

1 dp 1 dp A 1 dp ,,&amp;lt;_ 0,2^, = _ _ ^ -tfy = ---f, = - - - - a . . ..(1).
pdx pdy* pdz

These have the common integral

^ =
%co

2

(a)
2 + y*)-gz + const............. (2).

The free surface, p = const., is therefore a paraboloid of revolution

about the axis of z, having its concavity upwards, and its latus

rectum =
. dv du

Since ^---;- =
2o&amp;gt;,

dx dy
a velocity-potential does not exist. A motion of this kind could

not therefore be generated in a perfect fluid, i.e. in one unable

to sustain tangential stress.

28. Instead of supposing the angular velocity co to be uni

form, let us suppose it to be a function of the distance r from the

* The magnitude of the ratio pjp1 will of course have some influence on the

arrangement of the streams, and consequently on the value of S.

t Cf. Graham, Phil. Trans., 1846.
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axis, and let us inquire what form must be assigned to this

function in order that a velocity-potential may exist for the

motion. We find

dv du dco
-;---^-=20) + r-r-

,

dx dy dr

and in order that this may vanish we must have o&amp;gt;r

2 =
//,,

a

constant. The velocity at any point is then =
/tt/r,

so that the

equation (2) of Art. 22 becomes

2 = const. -i ...................... (1),

if no extraneous forces act. To find the value of &amp;lt; we have

- _
dr~ rd6~ r

whence
(/&amp;gt;

= - p6 + const. = fi tan&quot;
1 -

4- const.......... (2).x

We have here an instance of a cyclic function. A function

is said to be single-valued throughout any region of space when

we can assign to every point of that region a definite value of the

function in such a way that these values shall form a continuous

system. This is not possible with the function (2) ;
for the value

of
(/&amp;gt;,

if it vary continuously, changes by
-

2-TTyu, as the point to

which it refers describes a complete circuit round the origin. The

general theory of cyclic velocity-potentials will be given in the

next chapter.

If gravity act, and if the axis of z be vertical, we must add to

(1) the term gz. The form of the free surface is therefore that

generated by the revolution of the hyperbolic curve a?z = const.

about the axis of z.

By properly fitting together the two preceding solutions we

obtain the case of Rankine s combined vortex. Thus the

motion being everywhere in coaxial circles, let us suppose the

velocity to be equal to wr from r = to r = a, and to wa?/r for

r &amp;gt; a. The corresponding forms of the free surface are then

given by
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these being continuous when r = a. The depth of the central

depression below the general level of the surface is therefore

29. To illustrate, by way of contrast, the case of external

forces not having a potential, let us suppose that a mass of liquid

filling a right circular cylinder moves from rest under the action

of the forces

the axis of z being that of the cylinder.

If we assume u -
a&amp;gt;y,

v = (a.v, w= 0, where is a function of t only, these

values satisfy the equation of continuity and the boundary conditions. The

dynamical equations become

da) n I dp--- -

dt

da&amp;gt;

nAx + ByJ
pdx*

I dv

Differentiating the first of these with respect to y, and the second with

respect to x and subtracting, we eliminate p, and find

.(ii).

The fluid therefore rotates as a whole about the axis of z with constantly

accelerated angular velocity, except in the particular case when B= B. To

find p, we substitute the value of dw/dt in (i) and integrate ;
we thus get

where 2/3



32 INTEGRATION OF THE EQUATIONS IN SPECIAL CASES. [CHAP. II

30. As a final example, we will take one suggested by the

theory of electro-magnetic rotations.

If an electric current be made to pass radially from an axial wire, through

a conducting liquid (e.g. a solution of CuS04),
to the walls of a metallic

containing cylinder, in a uniform magnetic field, the external forces will be

of the type

Assuming u= -to?/, v=
o&amp;gt;.r,

w= 0, where o&amp;gt; is a function of r and t only, we

find

d&amp;lt;0

2 _ \lX

Eliminating p, we obtain

2
dt

+r
drdt

=

The solution of this is

where F and / denote arbitrary functions. Since o) = when t= Q, we have

and therefore

^oo-^(o) x

where X is a function of t which vanishes for = 0. Substituting in (i), and

integrating, we find

Since p is essentially a single-valued function, we must have d\/dt=n, or

\=
fj.t.

Hence the fluid rotates with an angular velocity which varies

inversely as the square of the distance from the axis, and increases con

stantly with the time.

* If C denote the total flux of electricity outwards, per unit length of the axis,

and 7 the component of the magnetic force parallel to the axis, we have /*= 7(7/2717).

For the history of such experiments see Wiedemann, Lehre v. d. Elektricitat
,

t. iii.

p. 163. The above case is specially simple, in that the forces X, Y, Z, have a

potential (ft
= -

/j.
tan&quot;

1
y/x), though a cyclic one. As a rule, in electro-magnetic

rotations, the mechanical forces X, Y, Z have not a potential at all.



CHAPTER III.

IEROTATIONAL MOTION.

31. THE present chapter is devoted mainly to an exposition

of some general theorems relating to the kinds of motion already
considered in Arts. 18 21; viz. those in which udx+ vdy + wdz
is an exact differential throughout a finite mass of fluid. It is

convenient to begin with the following analysis, due to Stokes*,
of the motion of a fluid element in the most general case.

The component velocities at the point (x, y, z) being u, v, w, the

relative velocities at an infinitely near point (x + x, y + y, z + z) are

If we write

du du= -7- x+ -y- y -

dx dy

dv dv
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Hence the motion of a small element having the point (x, y, z)

for its centre may be conceived as made up of three parts.

The first part, whose components are u, v, w, is a motion of

translation of the element as a whole.

The second part, expressed by the first three terms on the

right-hand sides of the equations (2), is a motion such that every

point is moving in the direction of the normal to that quadric
of the system

ax2 + 6y
2 + cz2 + 2/yz + 2#zx + 2/ixy = const (3),

on which it lies. If we refer these quadrics to their principal axes,

the corresponding parts of the velocities parallel to these axes will be

u = aV, v = 6 y ,
w = c z (4),

if a x 2 + 6 y 2 + c z /2 = const.

is what (3) becomes by the transformation. The formulae (4) express

that the length of every line in the element parallel to x is being

elongated at the (positive or negative) rate a, whilst lines parallel

to y and z are being similarly elongated at the rates b and c

respectively. Such a motion is called one of pure strain and the

principal axes of the quadrics (3) are called the axes of the strain.

The last two terms on the right-hand sides of the equations (2)

express a rotation of the element as a whole about an instan

taneous axis; the component angular velocities of the rotation

being rj,

This analysis may be illustrated by the so-called laminar motion of a

liquid in which
u= 2py, v=0, w= 0,

so that a, b, c, /, g, |, ,7
=

0, h= p, =-/*.

If A represent a rectangular fluid element bounded by planes parallel to

the co-ordinate planes, then B represents the change produced in this in a

short time by the strain, and C that due to the strain plus the rotation.
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It is easily seen that the above resolution of the motion is

unique. If we assume that the motion relative to the point

(x, y, z) can be made up of a strain and a rotation in which the

axes and coefficients of the strain and the axis and angular

velocity of the rotation are arbitrary, then calculating the relative

velocities u, v, w, we get expressions similar to those on the right-

hand sides of (2), but with arbitrary values of a, b, c,f, g, h, f, 77, f.

Equating coefficients of x, y, z, however, we find that a, b, c, &c.

must have respectively the same values as before. Hence the direc

tions of the axes of the strain, the rates of extension or contraction

along them, and the axis and the angular velocity of rotation, at

any point of the fluid, depend only on the state of relative motion

at that point, and not on the position of the axes of reference.

When throughout a finite portion of a fluid mass we have

f, 77, f all zero, the relative motion of any element of that portion
consists of a pure strain only, and is called irrotational/

32. The value of the integral

f(udx + vdy + wdz),

[f dx dy dz\ 7or I (u -j- + v -/- + w -y- }ds,J\ds ds ds J

taken along any line ABCD, is called* the flow of the fluid

from A to D along that line. We shall denote it for shortness by
I (ABCD).

If A and D coincide, so that the line forms a closed curve, or

circuit, the value of the integral is called the circulation in that

circuit. We denote it by I (ABCA). If in either case the inte

gration be taken in the opposite direction, the signs of dx/ds,

dy/ds, dzjds will be reversed, so that we have

I(AD) = -I(DA), and I(ABCA) = - I (ACBA).
It is also plain that

/ (ABCD) = I (AB) + / (BC) + / (CD).

Let us calculate the circulation in an infinitely small circuit

surrounding the point (x, y, z). If (x + x, y + y, z + z) be a

point on the circuit, we have, by Art. 31 (2),

uox + vdy + wdz = Jd (ax
2 + 6y

2 + cz2 + 2/yz + 2#zx + 2/zxy)

+ ? (ydz - zdy) + 77 (zdx - xdz) + f (xdy
-
ydx). . .(I).

*
Sir W. Thomson, &quot;On Vortex Motion.&quot; Edin. Trans., t. xxv. (1869).

32
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Hence, integrating round a small closed circuit,

f(udx + vdy + vrdz)
= ZI(jd* - zdy) + 7?/(zdx

- xdz) + /(xdy - jdx). . .(2).

The coefficients of f, ?;, f in this expression are double the pro

jections of the area of the circuit on the co-ordinate planes, these

projections being reckoned positive or negative according to the

direction of the integrations. In order to have a clear under

standing on this point, we shall in this book suppose that the

axes of co-ordinates form a right-handed system ;
thus if the axes

of x and y point E. and N. respectively, that of z will point ver

tically upwards*. Now let &S be the area of the circuit, and let

I, m, n be
.

the direction-cosines of the normal to &S drawn in the

direction which is related to that in which the circulation round

the circuit is estimated, in the manner typified by a right-handed

screwf. The formula (2) then shews that the circulation in the

circuit is given by
2(J*tiwf+n{&amp;gt;8 ....(3),

or, twice the product of the area of the circuit into the component

angular velocity of the fluid about the normal.

33. Any finite surface may be divided, by a double series

of lines crossing ft, into infinitely small elements. The sum
of the circulations round the boundaries of these elements, taken

all in the same sense, is equal to the circulation round the origi
nal boundary of the surface (supposed for the moment to consist

of a single closed curve). For, in the sum in question, the flow

along each side common to two elements comes in twice, once
for each element, but with opposite signs, and therefore disap-

*
Maxwell, Proc. Lond. Math. Soc., t. iii., pp. 279, 280.

t See Maxwell, Electricity and Magnetism, Oxford, 1873, Art. 23.
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pears from the result. There remain then only the flows along
those sides which are parts of the original boundary ;

whence the

truth of the above statement.

Expressing this analytically we have, by (3),

j(udx + vdy + wdz) = 2 // (1% + mrj + n) dS (4),

or, substituting the values of f, 77, f from Art. 31,

j(udx + vdy + wdz)

fdw dv\ fdu dw\ fdv du\] ia /rx *
-J--T- )

+m \j---j~ )+ n (j--j- n ds (5 ) ;

\dy dzj \dz dscj \dx dyj)

where the single-integral is taken along the bounding curve,

and the double-integral over the surface. In these formula

the quantities I, m, n are the direction-cosines of the normal

drawn always on one side of the surface, which we may term the

positive side
;
the direction of integration in the second member

is then that in which a man walking on the surface, on the

positive side of it, and close to the edge, must proceed so as to

have the surface always on his left hand.

The theorem (4) or (5) may evidently be extended to a surface

whose boundary consists of two or more closed curves, provided
the integration in the first member be taken round each of

these in the proper direction, according to the rule iust given.

-//I-

Thus, if the surface-integral in (5) extend over the shaded portion
of the annexed figure, the directions in which the circulations

in the several parts of the boundary are to be taken are shewn by
* This theorem is attributed by Maxwell to Stokes, Smith s Prize Examination

Papers for 1854. The first published proof appears to have been given by Hankel,
Zur allgem. Theorie der Beweguny der Fliissigkeiten, Gottingen, 1861, p. 35. That

given above is due to Lord Kelvin, I.e. ante p. 35. See also Thomson and Tait, Natu

ral Philosophy, Art. 190 (j), and Maxwell, Electricity and Magnetism, Art. 24.
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the arrows, the positive side of the surface being that which faces

the reader.

The value of the surface-integral taken over a closed surface is

zero.

It should be noticed that (5) is a theorem of pure mathe

matics, and is true whatever functions u, v, w may be of x, y, z,

provided only they be continuous over the surface*.

34. The rest of this chapter is devoted to a study of the

kinematical properties of irrotational motion in general, as defined

by the equations

f=o, 77=0, r=o.

The existence and properties of the velocity-potential in the

various cases that may arise will appear as consequences of this

definition.

The physical importance of the subject rests on the fact that

if the motion of any portion of a fluid mass be irrotational at any
one instant it will under certain very general conditions continue

to be irrotational. Practically, as will be seen, this has already

been established by Lagrange s theorem, proved in Art. 18, but

the importance of the matter warrants a repetition of the investi

gation, in the Eulerian notation, in the form originally given by
Lord Kelvin -f\

Consider first any terminated line AB drawn in the fluid, and

suppose every point of this line to move always with the velocity

of the fluid at that point. Let us calculate the rate at which the

flow along this line, from A to B, is increasing. If Sx, Sy, z be

the projections on the co-ordinate axes of an element of the line,

D Diis DSx
we have

Dt (u^ =
^Dt^ ^ U

^t
Now DSxjDt, the rate at which 8x is increasing in consequence of

the motion of the fluid, is equal to the difference of the velocities

parallel to x at its two ends, i.e. to &u
;
and the value of DujDt is

given in Art. 6. Hence, and by similar considerations, we find, if

p be a function of p only, and if the extraneous forces X, Y, Z
have a potential H,

-r\

y- (uSas + v8y + wBz) = SH + uSu + v$v + wSw.
-L/ij p

*
It is not necessary that their differential coefficients should be continuous,

t I.e. ante p. 35.
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Integrating along the line, from A to B, we get

~r\ rB rdr) ~~\ -B

-jr- I (udx + vdij + wdz) = I O + ^q
2

\ (1),
UtJA L -&amp;gt; P _U

or, the rate at which the flow from A to B is increasing is equal

to the excess of the value which fdp/p l + ^q
2 has at B over

that which it has at A. This theorem comprehends the whole

of the dynamics of a perfect fluid. For instance, equations (2) of

Art. 15 may be derived from it by taking as the line AB the in

finitely short line whose projections were originally 8a, 86, Sc,

and equating separately to zero the coefficients of these in

finitesimals.

If H be single-valued, the expression within brackets on the

right-hand side of (1) is a single-valued function of a, y, z.

Hence if the integration on the left-hand be taken round a closed

curve, so that B coincides with A, we have

gr
I (udx + vdy + wdz) = (2),

or, the circulation in any circuit moving with the fluid does not

alter with the time.

It follows that if the motion of any portion of a fluid mass be

initially irrotational it will always retain this property ;
for other

wise the circulation in every infinitely small circuit would not

continue to be zero, as it is initially, by virtue of Art. 33 (4).

35. Considering now any region occupied by irrotationally-

moving fluid, we see from Art. 33 (4) that the circulation is zero

in every circuit which can be filled up by a continuous surface

lying wholly in the region, or which is in other words capable of

being contracted to a point without passing out of the region.

Such a circuit is said to be reducible.

Again, let us consider two paths ACB, ADB, connecting two

points A, B of the region, and such that either may by con

tinuous variation be made to coincide with the other, without ever

passing out of the region. Such paths are called mutually
reconcileable. Since the circuit AGEDA is reducible, we have

I (ACBDA) = 0, or since I(BDA) = - 1 (ADB),

i.e. the flow is the same along any two reconcileable paths.
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A region such that all paths joining any two points of it are

mutually reconcileable is said to be simply-connected. Such a

region is that enclosed within a sphere, or that included between

two concentric spheres. In what follows, as far as Art. 46, we con

template only simply-connected regions.

36. The irrotational motion of a fluid within a simply-con
nected region is characterized by the existence of a single-valued

velocity-potential. Let us denote by &amp;lt;/&amp;gt;

the flow to a variable

point P from some fixed point A } viz.

rp

&amp;lt;/&amp;gt;

=
I (udx 4- vdy + wdz) (1).
J A

The value of $ has been shewn to be independent of the path

along which the integration is effected, provided it lie wholly
within the region. Hence

&amp;lt;/&amp;gt;

is a single-valued function of the

position of P
;

let us suppose it expressed in terms of the co

ordinates (#, y, z) of that point. By displacing P through an

infinitely short space parallel to each of the axes of co-ordinates

in succession, we find

dcf) d(f) d&amp;lt;j&amp;gt;

,_.

i.e.
(f&amp;gt;

is a velocity-potential, according to the definition of Art. 18.

The substitution of any other point B for A, as the lower limit

in (1), simply adds an arbitrary constant to the value of
&amp;lt;,

viz. the

flow from A to B. The original definition of &amp;lt; in Art. 18, and the

physical interpretation in Art. 1 9, alike leave the function indeter

minate to the extent of an additive constant.

As we follow the course of any line of motion the value of
&amp;lt;/&amp;gt;

continually decreases
;
hence in a simply-connected region the

lines of motion cannot form closed curves.

37. The function &amp;lt; with which we have here to do is, together
with its first differential coefficients, by the nature of the case,

finite, continuous, and single-valued at all points of the region
considered. In the case of incompressible fluids, which we now

proceed to consider more particularly, &amp;lt;/&amp;gt;

must also satisfy the

equation of continuity, (5) of Art. 21, or as we shall in future

write it, for shortness,
V2

4&amp;gt;

= o (i),
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at every point of the region. Hence &amp;lt; is now subject to mathe

matical conditions identical with those satisfied by the potential of

masses attracting or repelling according to the law of the inverse

square of the distance, at all points external to such masses
;
so

that many of the results proved in the theories of Attractions,

Electrostatics, Magnetism, and the Steady Flow of Heat, have also

a hydrodynamical application. We proceed to develope those

which are most important from this point of view.

In any case of motion of an incompressible fluid the surface-

integral of the normal velocity taken over any surface, open or

closed, is conveniently called the flux across that surface. It is

of course equal to the volume of fluid crossing the surface per unit

time.

When the motion is irrotational, the flux is given by

d(j&amp;gt; 7C/
7 ao,
dn

where SS is an element of the surface, and Bn an element of the

normal to it, drawn in the proper direction. In any region ,

occupied wholly by liquid, the total flux across the boundary /is /
^&quot;

J\ 3 &t /, v

zero, i.e. ^

the element Sn of the normal being drawn always on one side (say

inwards), and the integration extending over the whole boundary.
This may be regarded as a generalized form of the equation of

continuity (1).

The lines of motion drawn through the various points of an

infinitesimal circuit define a tube, which may be called a tube of

flow. The product of the velocity (q) into the cross-section
(&amp;lt;r, say)

is the same at all points of such a tube.

We may, if we choose, regard the whole space occupied by the

fluid as made up of tubes of flow, and suppose the size of the tubes

so adjusted that the product qa- is the same for each. The flux

across any surface is then proportional to the number of tubes

which cross it. If the surface be closed, the equation (2) ex

presses the fact that as many tubes cross the surface inwards as

outwards. Hence a line of motion cannot begin or end at a point
of the fluid.
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38. The function
&amp;lt;f&amp;gt;

cannot be a maximum or minimum at a

point in the interior of the fluid
; for, if it were, we should have

d^/dn everywhere positive, or everywhere negative, over a small

closed surface surrounding the point in question. Either of these

suppositions is inconsistent with (2).

Further, the absolute value of the velocity cannot be a maximum
at a point in the interior of the fluid. For let the axis of x be taken

parallel to the direction of the velocity at any point P. The equa
tion (1), and therefore also the equation (2), is satisfied if we write

d(f&amp;gt;/dx
for

(f&amp;gt;.

The above argument then shews that
d&amp;lt;p/dx

cannot

be a maximum or a minimum at P. Hence there must be some

point in the immediate neighbourhood of P for which
d(f&amp;gt;/dx

has

a numerically greater value, and therefore a fortiori, for which

is numerically greater than dcfr/dx, i.e. the velocity of the fluid at

some neighbouring point is greater than at P*.

On the other hand, the velocity may be a minimum at some point of the

fluid. The simplest case is that of a zero velocity ; see, for example, the figure

of Art. 69, below.

39. Let us apply (2) to the boundary of a finite spherical

portion of the liquid. If r denote the distance of any point from

the centre of the sphere, Stzr the elementary solid angle subtended

at the centre by an element 88 of the surface, we have

dcj)/dn
=

dfyjdr,

and BS = r*Svr. Omitting the factor r2
, (2) becomes

!!.. dr

or
dr

Since l/4tir.ff$dar or l/4?rr
2

.//&amp;lt;/&amp;gt;

dS measures the mean value of

$ over the surface of the sphere, (3) shews that this mean value is

independent of the radius. It is therefore the same for any sphere,

concentric with the former one, which can be made to coincide

* This theorem was enunciated, in another connection, by Lord Kelvin, Phil.

May., Oct. 1850; Reprint of Papers on Electrostatics, tfc., London, 1872, Art. 665.

The above demonstration is due to Kirchhoff, Vorlesnngen iiber mathematische

Pliysik, Mechanik, Leipzig, 1876, p. 186. For another proof see Art. 44 below.
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with it by gradual variation of the radius, without ever passing
out of the region occupied by the irrotationally moving liquid.

We may therefore suppose the sphere contracted to a point, and so

obtain a simple proof of the theorem, first given by Gauss in his

memoir* on the theory of Attractions, that the mean value of
(f&amp;gt;

over any spherical surface throughout the interior of which (1)

is satisfied, is equal to its value at the centre.

The theorem, proved in Art. 38, that
(f&amp;gt;

cannot be a maximum
or a minimum at a point in the interior of the fluid, is an obvious

consequence of the above.

The above proof appears to be due, in principle, to Frost f. Another

demonstration, somewhat different in form, has been given by Lord RayleighJ.
The equation (1), being linear, will be satisfied by the arithmetic mean of any
number of separate solutions ^, &amp;lt; 2 ,

&amp;lt;

3 ,....
Let us suppose an infinite number

of systems of rectangular axes to be arranged uniformly about any point P as

origin, and let
&amp;lt;p11 &amp;lt;

2 ,
&amp;lt;

3 ,... be the velocity-potentials of motions which are

the same with respect to these systems as the original motion $ is with

respect to the system x, y, z. In this case the arithmetic mean (0, say) of the

functions
1?

&amp;lt;

2 ,
&amp;lt;/&amp;gt;3 ,,.. will be a function of r, the distance from P, only.

Expressing that in the motion (if any) represented by $, the flux across any

spherical surface which can be contracted to a point, without passing out of

the region occupied by the fluid, would be zero, we have

dr~
or = const.

Again, let us suppose that the region occupied by the irrota-

tionally moving fluid is periphractic/ i.e. that it is limited

internally by one or more closed surfaces, and let us apply (2) to

the space included between one (or more) of these internal

boundaries, and a spherical surface completely enclosing it and

lying wholly in the fluid. If 4&amp;gt;7rM denote the total flux into

this region, across the internal boundary, we find, with the

same notation as before,

jjdr^
311

* &quot;

Allgemeine Lehrsiitze, u. s.
w.,&quot;

Eesultate aus den Beobachtungen des mag~
netischen Vereins, 1839 ; Werke, Gottingen, 187080, t. v., p. 199.

t Quarterly Journal of Mathematics, t. xii. (1873).

Messenger of Mathematics, t. vii., p. 69 (1878).
See Maxwell, Electricity and Magnetism, Arts. 18, 22. A region is said to be

aperiphractic when every closed surface drawn in it can be contracted to a point
without passing out of the region.
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the surface-integral extending over the sphere only. This may be

written

1 d , M

j

That is, the mean value of
(/&amp;gt;

over any spherical surface drawn

under the above-mentioned conditions is equal to M/r + C, where

r is the radius, M an absolute constant, and C a quantity which is

independent of the radius but may vary with the position of the

centre *.

If however the original region throughout which the irrotational

motion holds be unlimited externally, and if the first derivative (and
therefore all the higher derivatives) of

(f&amp;gt;

vanish at infinity, then G
is the same for all spherical surfaces enclosing the whole of the

internal boundaries. For if such a sphere be displaced parallel

to #-f, without alteration of size, the rate at which C varies in

consequence of this displacement is, by (4), equal to the mean
value of d(f)/dx over the surface. Since d$/dx vanishes at infinity,

we can by taking the sphere large enough make the latter mean

value as small as we please. Hence C is not altered by a displace

ment of the centre of the sphere parallel to x. In the same way
we see that G is not altered by a displacement parallel to y or z

;

i.e. it is absolutely constant.

If the internal boundaries of the region considered be such

that the total flux across them is zero, e.g. if they be the surfaces

of solids, or of portions of incompressible fluid whose motion is

rotational, we have M= 0, so that the mean value of &amp;lt; over any

spherical surface enclosing them all is the same.

40. (a) If
&amp;lt;/&amp;gt;

be constant over the boundary of any simply-
connected region occupied by liquid moving irrotationally, it has

the same constant value throughout the interior of that region.

For if not constant it would necessarily have a maximum or a

minimum value at some point of the region.

*
It is understood, of course, that the spherical surfaces to which this statement

applies are reconcileable with one another, in a sense analogous to that of Art. 35.

f Kirchhoff, Mechanik, p. 191.



39-40] CONDITIONS OF DETERMINATENESS. 45

Otherwise : we have seen in Arts. 36, 37 that the lines of

motion cannot begin or end at any point of the region, and that they

cannot form closed curves lying wholly within it. They must

therefore traverse the region, beginning and ending on its bound

ary. In our case however this is impossible, for such a line always

proceeds from places where &amp;lt; is greater to places where it is less.

Hence there can be no motion, i.e.

_ - -
^~ 3y Tz~

and therefore
&amp;lt;f&amp;gt;

is constant and equal to its value at the boundary.

(ft) Again, if d(f)/dn be zero at every point of the boundary of

such a region as is above described, $ will be constant throughout

the interior. For the condition
d(f&amp;gt;/dn

=
expresses that no lines

of motion enter or leave the region, but that they are all contained

within it. This is however, as we have seen, inconsistent with

the other conditions which the lines must conform to. Hence, as

before, there can be no motion, and
&amp;lt;/&amp;gt;

is constant.

This theorem may be otherwise stated as follows : no con-
j

tinuous irrotational motion of a liquid can take place in a 1

simply-connected region bounded entirely by fixed rigid walls.

(7) Again, let the boundary of the region considered consist

partly of surfaces S over which
&amp;lt;/&amp;gt;

has a given constant value, and

partly of other surfaces 5) over which
d&amp;lt;p/dn

= 0. By the previous

argument, no lines of motion can pass from one point to another

of 8, and none can cross 2. Hence no such lines exist; &amp;lt; is

therefore constant as before, and equal to its value at 8.

It follows from these theorems that the irrotational motion of a

liquid in a simply-connected region is determinate when either the

value of
&amp;lt;/&amp;gt;,

or the value of the inward normal velocity d&amp;lt;j&amp;gt;/dn,

is

prescribed at all points of the boundary, or (again) when the value

of
&amp;lt;j)

is given over part of the boundary, and the value of
d&amp;lt;f&amp;gt;/dn

over the remainder. For if fa, &amp;lt;.2 be the velocity-potentials of

two motions each of which satisfies the prescribed boundary-

conditions, in any one of these cases, the function
&amp;lt;f&amp;gt;

1
&amp;lt;f&amp;gt;

2

satisfies the condition (a) or (ft) or (7) of the present Article,

and must therefore be constant throughout the region.
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41. A class of cases of great importance, but not strictly in

cluded in the scope of the foregoing theorems, occurs when the

region occupied by the irrotationally moving liquid extends to

infinity, but is bounded internally by one or more closed surfaces.

We assume, for the present, that this region is simply-connected,
and that &amp;lt; is therefore single-valued.

If $ be constant over the internal boundary of the region, and

tend everywhere to the same constant value at an infinite distance

from the internal boundary, it is constant throughout the region.

For otherwise &amp;lt; would be a maximum or a minimum at some

point.

We infer, exactly as in Art. 40, that if &amp;lt; be given arbitrarily

over the internal boundary, and have a given constant value at

infinity, its value is everywhere determinate.

Of more importance in our present subject is the theorem

that, if the normal velocity be zero at every point of the internal

boundary, and if the fluid be at rest at infinity, then
&amp;lt;f&amp;gt;

is every
where constant. We cannot however infer this at once from the

proof of the corresponding theorem in Art. 40. It is true that we

may suppose the region limited externally by an infinitely large

surface at every point of which
d&amp;lt;f&amp;gt;/dn

is infinitely small
;
but it is

conceivable that the integral ffd^/dn . dS, taken over a portion of

this surface, might still be finite, in which case the investigation

referred to would fail. We proceed therefore as follows.

Since the velocity tends to the limit zero at an infinite

distance from the internal boundary ($, say), it must be possible

to draw a closed surface S, completely enclosing 8, beyond which

the velocity is everywhere less than a certain value e, which

value may, by making 2 large enough, be made as small as we

please. Now in any direction from 8 let us take a point P at such

a distance beyond 2 that the solid angle which S subtends at it is

infinitely small
;
and with P as centre let us describe two spheres,

one just excluding, the other just including 8. We shall prove
that the mean value of &amp;lt; over each of these spheres is, within

an infinitely small amount, the same. For if Q, Q be points of

these spheres on a common radius PQQ ,
then if Q, Q fall within

S the corresponding values of
&amp;lt;f&amp;gt; may differ by a finite amount

;

but since the portion of either spherical surface which falls within

2 is an infinitely small fraction of the whole, no finite difference
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in the mean values can arise from this cause. On the other hand,

when Q, Q fall without 2, the corresponding values of &amp;lt; cannot

differ by so much as e . QQ ,
for e is by definition a superior limit

to the rate of variation of 0. Hence, the mean values of
(/&amp;gt;

over

the two spherical surfaces must differ by less than e . QQ . Since

QQ is finite, whilst e may by taking 2 large enough be made as

small as we please, the difference of the mean values may, by

taking P sufficiently distant, be made infinitely small.

Now we have seen in Art. 39, that the mean value of
&amp;lt;f&amp;gt;

over

the inner sphere is equal to its value at P, and that the mean
value over the outer sphere is (since M = 0) equal to a constant

quantity C. Hence, ultimately, the value of
cf&amp;gt;

at infinity tends

everywhere to the constant value C.

The same result holds even if the normal velocity be not

zero over the internal boundary; for in the theorem of Art. 39

M is divided by r, which is in our case infinite.

It follows that if dfyfdn = at all points of the internal

boundary, and if the fluid be at rest at infinity, it must be every
where at rest. For no lines of motion can begin or end on the

internal boundary. Hence such lines, if they existed, must come

from an infinite distance, traverse the region occupied by the

fluid, and pass off again to infinity ;
i.e. they must form infinitely

long courses between places where
(/&amp;gt;

has, within an infinitely

small amount, the same value C, which is impossible.

The theorem that, if the fluid be at rest at infinity, the motion

is determinate when the value of
d(f&amp;gt;/dn

is given over the in

ternal boundary, follows by the same argument as in Art. 40.

Greens Theorem.

42. In treatises on Electrostatics, &c., many important pro

perties of the potential are usually proved by means of a certain

theorem due to Green. Of these the most important from our

present point of view have already been given; but as the

theorem in question leads, amongst other things, to a useful

expression for the kinetic energy in any case of irrotational

motion, some account of it will properly find a place here.

Let U, V, W be any three functions which are finite, con

tinuous, and single-valued at all points of a connected region
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completely bounded by one or more closed surfaces 8
,
let SS be

an element of any one of these surfaces, and I, m, n the direction-

cosines of the normals to it drawn inwards. We shall prove in the

first place that

where the triple-integral is taken throughout the region, and the

double-integral over its boundary.

If we conceive a series of surfaces drawn so as to divide the

region into any number of separate parts, the integral

Jf(lU+mV+nW)dS .................. (2),

taken over the original boundary, is equal to the sum of the

similar integrals each taken over the whole boundary of one of

these parts. For, for every element So- of a dividing surface,

we have, in the integrals corresponding to the parts lying on

the two sides of this surface, elements (IU + mV+nW)S&amp;lt;r,

and (TU+ m V+ n W) Scr, respectively. But the normals to

which Z, m, n, and /
,
m

,
n refer being drawn inwards in each

case, we have I = I, m = m, n = n
;
so that, in forming the

sum of the integrals spoken of, the elements due to the dividing

surfaces disappear, and we have left only those due to the original

boundary of the region.

Now let us suppose the dividing surfaces to consist of three

systems of planes, drawn at infinitesimal intervals, parallel to

yz, zx, xy, respectively. If #, y, z be the co-ordinates of the

centre of one of the rectangular spaces thus formed, and

&B, %, $z the lengths of its edges, the part of the integral

(2) due to the 7/^-face nearest the origin is

and that due to the opposite face is

The sum of these is dUjdx. xyz. Calculating in the same

way the parts of the integral due to the remaining pairs of faces,

we get for the final result

_/dU dV fr

\ dx dy dz
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Hence (1) simply expresses the fact that the surface-integral (2),

taken over the boundary of the region, is equal to the sum of the

similar integrals taken over the boundaries of the elementary

spaces of which we have supposed it built up.

The interpretation of this result when U, F, W denote the

component velocities of a continuous substance is obvious. In the

particular case of irrotational motion we obtain

(3),

where $n denotes an element of the inwardly-directed normal to

the surface S.

Again, if we put U, V, W =
pu, pv, pw, respectively, we

reproduce in substance the investigation of Art. 8.

Another useful result is obtained by putting U, V, W
=

u(f&amp;gt;, V(f), wtf), respectively, where u, v, w satisfy the relation

du dv dw _ _

dx dy dz
~

throughout the region, and make

lu + mv + nw =

over the boundary. We find

The function $ is here merely restricted to be finite, single-valued,

and continuous, and to have its first differential coefficients finite,

throughout the region.

43. Now let $, &amp;lt;/&amp;gt;

be any two functions which, together with

their first derivatives, are finite, continuous, and single-valued

throughout the region considered
;
and let us put

ir.V.F.*tf,:

:

i..#*.r dx ^
dy

r dz

respectively, so that

Substituting in (1) we find

+|f+ff&amp;gt;**
(5)
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By interchanging &amp;lt;j)

and &amp;lt; we obtain

f f_i&amp;gt; &amp;lt;ty j a f f/W d$ d&amp;lt;

t&amp;gt; d&amp;lt;t&amp;gt; d&amp;lt;/&amp;gt;

d
&amp;lt;t&amp;gt;

\ 777
\\&amp;lt;i&amp;gt; -j

dS=- I I j2-
j + -J^-T^+T^ - J- \dxdydz

JJ^ dn JJJ\dx dx dy dy dz dz )

-Jf!&amp;lt;t&amp;gt; V*&amp;lt;f&amp;gt;dxdydz
..................... (6).

Equations (5) and (6) together constitute Green s theorem*.

44. If $, &amp;lt;p

be the velocity-potentials of two distinct modes

of irrotational motion of a liquid, so that

v^ = o, vy = o ........................ (i),

we obtain tf &quot;* ^ .................. (2)

If we recall the physical interpretation of the velocity-potential,

given in Art. 19, then, regarding the motion as generated in each

case impulsively from rest, we recognize this equation as a

particular case of the dynamical theorem that

where pr, qr and pr t qr are generalized components of impulse and

velocity, in any two possible motions of a systemf.

Again, in Art. 43 (6) let
&amp;lt;/&amp;gt;

=
&amp;lt;,

and let
&amp;lt;f&amp;gt;

be the velocity-

potential of a liquid. We obtain

[[[ \ /cty\
a

(d&amp;lt;l&amp;gt;\* , fd&amp;lt;l&amp;gt;\*\j
, , ff .&amp;lt;tyjo

III M j I +? + j I \dxdydz = 6 ~d8 ...... (3).
JJJ \\dxj \dy) \dz&amp;gt;} J ]

^ dn

To interpret this we multiply both sides by ^ p. Then

on the right-hand side
d^&amp;gt;/dn

denotes the normal velocity of

the fluid inwards, whilst
p&amp;lt;f&amp;gt;

is, by Art. 19, the impulsive pres

sure necessary to generate the motion. It is a proposition in

Dynamics J that the work done by an impulse is measured by the

product of the impulse into half the sum of the initial and final

velocities, resolved in the direction of the impulse, of the point to

which it is applied. Hence the right-hand side of (3), when

modified as described, expresses the work done by the system of

impulsive pressures which, applied to the surface S, would

generate the actual motion; whilst the left-hand side gives
the kinetic energy of this motion. The formula asserts that

* G. Green, Essay on Electricity and Magnetism, Nottingham, 1828, Art. 3.

Mathematical Papers (ed. Ferrers), Cambridge, 1871, p. 23.

t Thomson and Tait, Natural Philosophy, Art. 313, equation (11).

I Thomson and Tait, Natural Philosophy, Art. 308.
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these two quantities are equal. Hence if T denote the total

kinetic energy of the liquid, we have the very important result

-j^dS (4).

If in (3), in place of
&amp;lt;/&amp;gt;,

we write
d&amp;lt;f)/dx,

which will of course satisfy
=

Q, and apply the resulting theorem to the region included within a

spherical surface of radius r having any point (#, y, z) as centre, then with the

same notation as in Art. 39, we have

d
(&amp;lt;kt&amp;gt;\ 7~

-T- (-=-*- dS
dx dn dx

1 &amp;lt;i

d [f *j [f du jo f
2 r T I I

u d =
I / u -j- dS = -

I I

dr J J J J dr J JM
Hence, writing q

2=

Since this latter expression is essentially positive, the mean value of q
2
,
taken

over a sphere having any given point as centre, increases with the radius of

the sphere. Hence q cannot be a maximum at any point of the fluid, as was

proved otherwise in Art. 38.

Moreover, recalling the formula for the pressure in any case of irrotational

motion of a liquid, viz.

we infer that, provided the potential Q. of the external forces satisfy the

condition

V2Q= ....................................... (iii),

the mean value of p over a sphere described with any point in the interior of

the fluid as centre will diminish as the radius increases. The place of least

pressure will therefore be somewhere on the boundary of the fluid. This has

a bearing on the point discussed in Art. 24.

45. In this connection we may note a remarkable theorem

discovered by Lord Kelvin*, and afterwards generalized by him
into an universal property of dynamical systems started impulsively
from rest under prescribed velocity-conditions -f-.

The irrotational motion of a liquid occupying a simply-con
nected region has less kinetic energy than any other motion

consistent with the same normal motion of the boundary.
*

(W. Thomson) &quot;On the Vis-Viva of a Liquid in Motion,&quot; Carrib. and Dub.

Math. Journ., 1849; Mathematical and Physical Papers, t. i., p. 10.7.

t Thomson and Tait, Natural Philosophy, Art. 312.

42
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Let T be the kinetic energy of the irrotational motion to which

the velocity-potential &amp;lt; refers, and T^ that of another motion

given by

where, in virtue of the equation of continuity, and the prescribed

boundary-condition, we must have

duo dv dw _
dx dy dz

throughout the region, and

luQ + mv&amp;lt;) + nw =

over the boundary. Further let us write

T^kpfffW + vf + wfidxdydz ............ (6).

We find

Since the last integral vanishes, by Art. 42 (4), we have

T, = T+T .......................... (7),

which proves the theorem.

46. We shall require to know, hereafter, the form assumed by
the expression (4) for the kinetic energy when the fluid extends

to infinity and is at rest there, being limited internally by one or

more closed surfaces S. Let us suppose a large closed surface S
described so as to enclose the whole of S. The energy of the fluid

included between 8 and 2 is

where the integration in the first term extends over S, that in the

second over S. Since we have by the equation of continuity

(8) may be written

-0)^ ......... (9),

where C may be any constant, but is here supposed to be the

constant value to which (&amp;gt; was shewn in Art. 39 to tend at an
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infinite distance from 8. Now the whole region occupied by the

fluid may be supposed made up of tubes of flow, each of which

must pass either from one point of the internal boundary to

another, or from that boundary to infinity. Hence the value of

the integral

JJ dn

taken over any surface, open or closed, finite or infinite, drawn

within the region, must be finite. Hence ultimately, when 2) is

taken infinitely large and infinitely distant all round from 8, the

second term of (9) vanishes, and we have

j)/77 I / / JL S~1\ M^P 7 r/ /-I f\\21 = O 11(9 0) -r^ttO (lv),
JJ an

where the integration extends over the internal boundary only.

If the total flux across the internal boundary be zero, we have

Jids-o,.. dn
so that (10) becomes

simply.

On Multiply-connected Regions.

47. Before discussing the properties of irrotational motion in

multiply-connected regions we must examine more in detail the

nature and classification of such regions. In the following synopsis

of this branch of the geometry of position we recapitulate for the

sake of completeness one or two definitions already given.

We consider any connected region of space, enclosed by bound

aries. A region is connected when it is possible to pass from

any one point of it to any other by an infinity of paths, each of

which lies wholly in the region.

Any two such paths, or any two circuits, which can by continu

ous variation be made to coincide without ever passing out of the

region, are said to be mutually reconcileable. Any circuit which

can be contracted to a point without passing out of the region is

said to be reducible. Two reconcileable paths, combined, form a

reducible circuit. If two paths or two circuits be reconcileable, it
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must be possible to connect them by a continuous surface, which

lies wholly within the region, and of which they form the complete

boundary ;
and conversely.

It is further convenient to distinguish between simple and

multiple irreducible circuits. A multiple circuit is one which

can by continuous variation be made to appear, in whole or in

part, as the repetition of another circuit a certain number of times.

A simple circuit is one with which this is not possible.

A barrier/ or diaphragm, is a surface drawn across the

region, and limited by the line or lines in which it meets the

boundary. Hence a barrier is necessarily a connected surface, and

cannot consist of two or more detached portions.

A simply-connected region is one such that all paths joining

any two points of it are reconcileable, or such that all circuits

drawn within it are reducible.

A doubly-connected region is one such that two irreconcileable

paths, and no more, can be drawn between any two points A, B of

it; viz. any other path joining AB is reconcileable with one of

these, or with a combination of the two taken each a certain

number of times. In other words, the region is such that one

(simple) irreducible circuit can be drawn in it, whilst all other

circuits are either reconcileable with this (repeated, if necessary),

or are reducible. As an example of a doubly-connected region we

may take that enclosed by the surface of an anchor-ring, or that

external to such a ring and extending to infinity.

Generally, a region such that n irreconcileable paths, and no

more, can be drawn between any two points of it, or such that n 1

(simple) irreducible and irreconcileable circuits, and no more, can

be drawn in it, is said to be n-ply-connected.

The shaded portion of the figure on p. 37 is a triply-con

nected space of two dimensions.

It may be shewn that the above definition of an /^-ply-connected

space is self-consistent. In such simple cases as n 2, n = 3, this

is sufficiently evident without demonstration.

48. Let us suppose, now, that we have an ?i-ply-connected

region, with n 1 simple independent irreducible circuits drawn

in it. It is possible to draw a barrier meeting any one of these
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circuits in one point only, and not meeting any of the n 2

remaining circuits. A barrier drawn in this manner does not

destroy the continuity of the region, for the interrupted circuit

remains as a path leading round from one side to the other. The

order of connection of the region is however diminished by unity ;

for every circuit drawn in the modified region must be reconcileable

with one or more of the n 2 circuits riot met by the barrier.

A second barrier, drawn in the same manner, will reduce the

order of connection again by one, and so on
;
so that by drawing

n I barriers we can reduce the region to a simply-connected one.

A simply-connected region is divided by a barrier into two

separate parts ;
for otherwise it would be possible to pass from a

point on one side the barrier to an adjacent point on the other side

by a path lying wholly within the region, which path would in the

original region form an irreducible circuit.

Hence in an n-ply-connected region it is possible to draw u 1

barriers, and no more, without destroying the continuity of the

region. This property is sometimes adopted as the definition of

an n-ply-connected space.

Irrotational Motion in Multiply-connected Spaces.

49. The circulation is the same in any two reconcileable

circuits AEGA, A B CA drawn in a region occupied by fluid

moving irrotationally. For the two circuits may be connected by
a continuous surface lying wholly within the region ;

and if we

apply the theorem of Art. 33 to this surface, we have, remembering
the rule as to the direction of integration round the boundary,

/ (ABCA) + 1 (A CB A )
= 0,

or / (ABCA) = I (A B CA
}.

If a circuit ABCA be reconcileable with two or more circuits

A B C A
, A&quot;B&quot;C&quot;A&quot;, &c., combined, we can connect all these

circuits by a continuous surface which lies wholly within the

region, and of which they form the complete boundary. Hence

/ (ABCA) + 1 (A C B A ) + 1
(A&quot;C&quot;B&quot;A&quot;)

+ &c. = 0,

or / (ABCA) = I (A B C A ) + 1
(A&quot;B&quot;C&quot;A&quot;)

+ &c.
;

i.e. the circulation in any circuit is equal to the sum of the
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circulations in the several members of any set of circuits with

which it is reconcileable.

Let the order of connection of the region be ^ + 1, so that

n independent simple irreducible circuits a1} a^,...an can be

drawn in it; and let the circulations in these be tcl} K^,...Kn ,

respectively. The sign of any K will of course depend on the

direction of integration round the corresponding circuit
;
let the

direction in which K is estimated be called the positive direction

in the circuit. The value of the circulation in any other circuit

can now be found at once. For the given circuit is necessarily

reconcileable with some combination of the circuits alt a2 ,...an ;

say with j taken pl times, a2 taken p.2 times and so on, where of

course any p is negative when the corresponding circuit is taken

in the negative direction. The required circulation then is

p1/c1 +pzK,i +...+pnien (1).

Since any two paths joining two points A, B of the region

together form a circuit, it follows that the values of the flow in

the two paths differ by a quantity of the form (1), where, of

course, in particular cases some or all of the p s may be zero.

50. Let us denote by &amp;lt; the flow to a variable point P from a

fixed point A, viz.
rp

$ = 1 (udx + vdy + wdz) (2).
J A.

So long as the path of integration from A to P is not specified,

&amp;lt;/&amp;gt;

is indeterminate to the extent of a quantity of the form (1).

If however n barriers be drawn in the manner explained in

Art. 48, so as to reduce the region to a simply-connected one,

and if the path of integration in (2) be restricted to lie within

the region as thus modified (i.e. it is not to cross any of the

barriers), then
&amp;lt;/&amp;gt;

becomes a single-valued function, as in Art. 36.

It is continuous throughout the modified region, but its values

at two adjacent points on opposite sides of a barrier differ by
+ K. To derive the value of

(f&amp;gt;

when the integration is taken along

any path in the unmodified region we must subtract the quantity

(1), where any p denotes the number of times this path crosses

the corresponding barrier. A crossing in the positive direction of

the circuits interrupted by the barrier is here counted as positive,

a crossing in the opposite direction as negative.
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By displacing P through an infinitely short space parallel to

each of the co-ordinate axes in succession, we find

d6 dd&amp;gt; d(j)
u = î

r
)

= y- , w = --f- ;

dx dy dz

so that
&amp;lt;j&amp;gt;

satisfies the definition of a velocity-potential (Art. 18).

It is now however a many-valued or cyclic function
;

i. e. it is not

possible to assign to every point of the original region a unique
and definite value of $, such values forming a continuous system.

On the contrary, whenever P describes an irreducible circuit,
&amp;lt;j&amp;gt;

will not, in general, return to its original value, but will differ from

it by a quantity of the form (1). The quantities Klt /c2 ,...fcn ,
which

specify the amounts by which &amp;lt; decreases as P describes the several

independent circuits of the region, may be called the cyclic con

stants of
&amp;lt;/&amp;gt;.

It is an immediate consequence of the circulation-theorem of

Art. 34 that under the conditions there presupposed the cyclic

constants do not alter with the time. The necessity for these

conditions is exemplified in the problem of Art. 30, where the

potential of the extraneous forces is itself a cyclic function.

The foregoing theory may be illustrated by the case of Art. 28 (2), where

the region (as limited by the exclusion of the origin, where the formula

would give an infinite velocity) is doubly-connected ;
since we can connect

any two points A, B of it by two irre-

concileable paths passing on opposite
sides of the axis of z, e.g. ACB, ADB in

the figure. The portion of the plane zx

for which x is positive may be taken as

a barrier, and the region is thus made

simply-connected. The circulation in

any circuit meeting this barrier once

only, e.g. in ACBDA, is j^ p/r. rd0, or 2?r/i. That in any circuit not meeting

the barrier is zero. In the modified region may be put equal to a single-
valued function, viz. pd t

but its value on the positive side of the barrier is

zero, that at an adjacent point on the negative side is -2w/i.

More complex illustrations of irrotational motion in multiply-connected
spaces will present themselves in the next chapter.

51. Before proceeding further we may briefly indicate a some
what different method of presenting the above theory.

Starting from the existence of a velocity-potential as the characteristic of

the class of motions which we propose to study, and adopting the second
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definition of an n+ I -ply-connected region, indicated in Art. 48, we remark

that in a simply-connected region every equipotential surface must either be a

closed surface, or else form a barrier dividing the region into two separate

parts. Hence, supposing the whole system of such surfaces drawn, we see

that if a closed curve cross any given equipotential surface once it must cross

it again, and in the opposite direction. Hence, corresponding to any element

of the curve, included between two consecutive equipotential surfaces, we have

a second element such that the flow along it, being equal to the difference

between the corresponding values of $, is equal and opposite to that along

the former
;
so that the circulation in the whole circuit is zero.

If however the region be multiply-connected, an equipotential surface may
form a barrier without dividing it into two separate parts. Let as many
such surfaces be drawn as it is possible to draw without destroying the

continuity of the region. The number of these cannot, by definition, be

greater than n. Every other equipotential surface which is not closed will

be reconcileable (in an obvious sense) with one or more of these barriers. A
curve drawn from one side of a barrier round to the other, without meeting any
of the remaining barriers, will cross every equipotential surface reconcileable

with the first barrier an odd number of times, and every other equipotential

surface an even number of times. Hence the circulation in the circuit thus

formed will not vanish, and &amp;lt; will be a cyclic function.

In the method adopted above we have based the whole theory on the

equations
dw dv_ du dw_ dv du

dy dz dz dx dx dy
&quot;

and have deduced the existence and properties of the velocity-potential in the

various cases as necessary consequences of these. In fact, Arts. 35, 36, and

49, 50 may be regarded as a treatise on the integration of this system of

differential equations.

The integration of (i), when we have, on the right-hand side, instead of

zero, known functions of ^, y, 2, will be treated in Chapter vn.

52. Proceeding now, as in Art. 37, to the particular case of

an incompressible fluid, we remark that whether
&amp;lt;/&amp;gt;

be cyclic or not,

its first derivatives
d&amp;lt;f&amp;gt;jdx, dfyjdy, d^/dz, and therefore all the

higher derivatives, are essentially single-valued functions, so that

c/&amp;gt;

will still satisfy the equation of continuity

v^ = o (i),
or the equivalent form

where the surface-integration extends over the whole boundary of

any portion of the fluid.
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The theorem (a) of Art. 40, viz. that $ must be constant

throughout the interior of any region at every point of which (1)

is satisfied, if it be constant over the boundary, still holds when

the region is multiply-connected. For
c/&amp;gt;, being constant over the

boundary, is necessarily single-valued.

The remaining theorems of Art. 40, being based on the assump
tion that the stream-lines cannot form closed curves, will require

modification. We must introduce the additional condition that

the circulation is to be zero in each circuit of the region.

Removing this restriction, we have the theorem that the

irrotational motion of a liquid occupying an n-ply-connected region

is determinate when the normal velocity at every point of the

boundary is prescribed, as well as the values of the circulations in

each of the n independent and irreducible circuits which can be

drawn in the region. For if $lt
&amp;lt;p.

2 be the (cyclic) velocity-poten

tials of two motions satisfying the above conditions, then
&amp;lt;f&amp;gt;

=
fa &amp;lt;/&amp;gt;

2

is a single-valued function which satisfies (1) at every point of

the region, and makes
d(f&amp;gt;/d)i

= at every point of the boundary.

Hence by Art. 40,
(f&amp;gt;

is constant, and the motions determined by

&amp;lt;/&amp;gt;!

and
&amp;lt;p.

2 are identical.

The theory of multiple connectivity seems to have been first developed by
Riemarm* for spaces of two dimensions, a propos of his researches on the

theory of functions of a complex variable, in which connection also cyclic

functions, satisfying the equation

through multiply-connected regions, present themselves.

The bearing of the theory on Hydrodynamics, and the existence in certain

cases of many-valued velocity-potentials were first pointed out by von Helm-

holtzf. The subject of cyclic irrotational motion in multiply-connected regions

was afterwards taken up and fully investigated by Lord Kelvin in the paper
on vortex-motion already referred to J.

*
Grundlagen flir eine allgemeine Theorie der Functional einer veranderlichen

complexen Grosse, Gottingen, 1851; Mathematische WerJce, Leipzig, 1876, p. 3;

&quot;Lehrsatze aus der Analysis Situs,&quot; Grelle, t. liv. (1857) ; Werke, p. 84.

t Crelle, t. lv., 1858.

J See also Kirchhoff, &quot;Ueber die Krafte welche zwei unendlich diinne starre

Einge in einer Fliissigkeit scheinbar auf einander ausiiben konnen,&quot; Crelle, t. Ixxi.

(1869); Ges.AWi.,^. 404.
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Lord Kelvins Extension of Greens Theorem.

53. It was assumed in the proof of Green s Theorem that $
and &amp;lt; were both single-valued functions. If either be a cyclic

function, as may be the case when the region to which the inte

grations in Art. 43 refer is multiply-connected, the statement of the

theorem must be modified. Let us suppose, for instance, that &amp;lt;

is cyclic ;
the surface-integral on the left-hand side of Art. 43 (5),

and the second volume-integral on the right-hand side, are then

indeterminate, on account of the indeterminateness in the value of

(f&amp;gt;

itself. To remove this indeterminateness, let the barriers neces

sary to reduce the region to a simply-connected one be drawn, as

explained in Art. 48. We may now suppose (f&amp;gt;

to be continuous

and single-valued throughout the region thus modified; and the

equation referred to will then hold, provided the two sides of each

barrier be reckoned as part of the boundary of the region, and

therefore included in the surface-integral on the left-hand side.

Let So-j be an element of one of the barriers, /cx the cyclic constant

corresponding to that barrier, dfy jdn the rate of variation of &amp;lt; in

the positive direction of the normal to So^. Since, in the parts

of the surface-integral due to the two sides of 8&amp;lt;rlt
d&amp;lt;p /dn is to be

taken with opposite signs, whilst the value of
&amp;lt;j&amp;gt;

on the positive

side exceeds that on the negative side by KI} we get finally for the

element of the integral due to 8al) the value ^d^/dn.B^.
Hence Art. 43 (5) becomes, in the altered circumstances,

-
l d^ + Ki AT, + &c.

dn JJ dn

+ d$ d&amp;lt;l&amp;gt;

\
dx

dx dx dy dy dz dz )

. ............ (1);

where the surface-integrations indicated on the left-hand side

extend, the first over the original boundary of the region only,

and the rest over the several barriers. The coefficient of any K is

evidently minus the total flux across the corresponding barrier,

in a motion of which $ is the velocity-potential. The values of
&amp;lt;/&amp;gt;

in the first and last terms of the equation are to be assigned in

the manner indicated in Art. 50.
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If
(/&amp;gt;

also be a cyclic function, having the cyclic constants

AC/, #3 , &c., then Art. 43 (6) becomes in the same way

++
dx dy dy dz dz

(2).

Eqiiations (1) and (2) together constitute Lord Kelvin s extension

of Green s theorem.

54. Tf 0, $ are both velocity-potentials of a liquid, we have

V*(t&amp;gt;

=
0, V 2

&amp;lt; =:0 ..................... (3),

and therefore

To obtain a physical interpretation of this theorem it is

necessary to explain in the first place a method, imagined by Lord

Kelvin, of generating any given cyclic irrotational motion of a liquid

in a multiply-connected space.

Let us suppose the fluid to be enclosed in a perfectly smooth

and flexible membrane occupying the position of the boundary.

Further, let n barriers be drawn, as in Art. 48, so as to convert the

region into a simply-connected one, and let their places be occupied

by similar membranes, infinitely thin, and destitute of inertia. The

fluid being initially at rest, let each element of the first-mentioned

membrane be suddenly moved inwards with the given (positive or

negative) normal velocity d&amp;lt;f&amp;gt;/dn,
whilst uniform impulsive pres

sures Kip, K2p,...Knp are simultaneously applied to the negative

sides of the respective barrier-membranes. The motion generated
will be characterized by the following properties. It will be

irrotational, being generated from rest; the normal velocity at

every point of the original boundary will have the prescribed

value
;
the values of the impulsive pressure at two adjacent points

on opposite sides of a membrane will differ by the corresponding
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value of Kp, and the values of the velocity-potential will therefore

differ by the corresponding value of tc
; finally, the motion on one

side of a barrier will be continuous with that on the other. To

prove the last statement we remark, first, that the velocities

normal to the barrier at two adjacent points on opposite sides of it

are the same, being each equal to the normal velocity of the

adjacent portion of the membrane. Again, if P, Q be two consecu

tive points on a barrier, and if the corresponding values of
&amp;lt;/&amp;gt;

be on

the positive side
&amp;lt;p
p ,

&amp;lt;f)Q ,
and on the negative side

&amp;lt;/&amp;gt;
p ,

&amp;lt;j&amp;gt; qt
we have

and therefore
&amp;lt;f&amp;gt; Q &amp;lt;f&amp;gt;p

=
&amp;lt;/&amp;gt; Q &amp;lt;/&amp;gt;

,,,

. *., if PQ = &, d&amp;lt;j)/ds

= dp/ds.

Hence the tangential velocities at two adjacent points on

opposite sides of the barrier also agree. If then we suppose the

barrier-membranes to be liquefied immediately after the impulse,

we obtain the irrotational motion in question.

The physical interpretation of (4), when multiplied by p,

now follows as in Art. 44. The values of p/c are additional com

ponents of momentum, and those of ffd(j)/dn. dcr, the fluxes

through the various apertures of the region, are the corresponding

generalized velocities.

55. If in (2) we put &amp;lt;f&amp;gt; &amp;lt;f&amp;gt;,

and suppose &amp;lt; to be the velocity-

potential of an incompressible fluid, we find

The last member of this formula has a simple interpretation in terms

of the artificial method of generating cyclic irrotational motion just

explained. The first term has already been recognized as equal
to twice the work done by the impulsive pressure p(f) applied to

every part of the original boundary of the fluid. Again, p^ is the

impulsive pressure applied, in the positive direction, to the in

finitely thin massless membrane by which the place of the first

barrier was supposed to be occupied ;
so that the expression

dA.
-^ rfo-,

-*//
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denotes the work done by the impulsive forces applied to that

membrane
;
and so on. Hence (5) expresses the fact that the

energy of the motion is equal to the work done by the whole

system of impulsive forces by which we may suppose it generated.

In applying (5) to the case where the fluid extends to

infinity and is at rest there, we may replace the first term of

the third member by

-C)dS..................... (6),

where the integration extends over the internal boundary only.

The proof is the same as in Art. 46. When the total flux across

this boundary is zero, this reduces to

f(^ d
&amp;lt;t&amp;gt;

&quot;

jJfaK

The minimum theorem of Lord Kelvin, given in Art. 45, may
now be extended as follows :

The irrotational motion of a liquid in a multiply-connected

region has less kinetic energy than any other motion consistent

with the same normal motion of the boundary and the same value

of the total flux through each of the several independent channels

of the region.

The proof is left to the reader.

Sources and Sinks.

56. The analogy with the theories of Electrostatics, the

Steady Flow of Heat, &c., may be carried further by means of the

conception of sources and sinks.

A c

simple source is a point from which fluid is imagined to

flow out uniformly in all directions. If the total flux outwards

across a small closed surface surrounding the point be 4nrin*, then

m is called the strength of the source. A negative source is

called a sink. The continued existence of a source or a sink

would postulate of course a continual creation or annihilation of

fluid at the point in question.

* The factor 4?r is introduced to keep up the analogy referred to.
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The velocity-potential at any point P, due to a simple source,

in a liquid at rest at infinity, is

$ = m/r (1),

where r denotes the distance of P from the source. For this gives

a radial flow from the point, and if 8S, = r^vr, be an element of a

spherical surface having its centre at the surface, we have

-^- dS = 47nft,
dr

a constant, so that the equation of continuity is satisfied, and the

flux outwards has the value appropriate to the strength of the

source.

A combination of two equal and opposite sources + m
,
at a

distance 8s apart, where, in the limit, 8s is taken to be infinitely

small, and mf infinitely great, but so that the product m 8s is finite

and equal to p (say), is called a double source of strength /A, and

the line 8s, considered as drawn in the direction from m to + m ,

is called its axis.

To find the velocity-potential at any point (x, y, z) due to a

double source ft situate at (# , y ,
z \ and having its axis in the

direction (I, m, n), we remark that,/ being any continuous function,

f(af + 18s, y + m8s, z + n8s) -f(x, y ,
z )

ultimately. Hence, putting /(a/, y , z) = m /r, where

r = {(x
- xj + (y- yj + (z

- /) }*,

ni /, d d d\ I
we find

&amp;lt;t&amp;gt;

= ^l- + m- + n^- ............... (2),

d d d\l
+ m-r +n-j- - ............... (3),dx dy dz) r

where, in the latter form, S- denotes the angle which the line r,

considered as drawn from (x, y , z) to (x, y, z}, makes with the

axis
(I, m, n).

We might proceed, in a similar manner (see Art. 83), to build

up sources of higher degrees of complexity, but the above is

sufficient for our immediate purpose.
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Finally, we may imagine simple or double sources, instead of

existing at isolated points, to be distributed continuously over

lines, surfaces, or volumes.

57. We can now prove that any continuous acyclic irro-

tational motion of a liquid mass may be regarded as due

to a certain distribution of simple and double sources over

the boundary.

This depends on the theorem, proved in Art. 44, that if
&amp;lt;&amp;gt;,

&amp;lt; be

any two functions which satisfy V 2

c/&amp;gt;

= 0, V-(/&amp;gt;

=
0, and are finite,

continuous, and single-valued throughout any region, then

where the integration extends over the whole boundary. In the

present application, we take
c/&amp;gt;

to be the velocity-potential of the

motion in question, and put &amp;lt;/&amp;gt;

=
1/r, the reciprocal of the distance

of any point of the fluid from a fixed point P.

We will first suppose that P is in the space occupied by the

fluid. Since
&amp;lt;j&amp;gt;

then becomes infinite at P, it is necessary to ex

clude this point from the region to which the formula (5) applies ;

this may be done by describing a small spherical surface about P
as centre. If we now suppose 82 to refer to this surface, and 8$

to the original boundary, the formula gives

//*+//***

At the surface 2 we have d/dn (l/r)
=

1/r
2

;
hence if we put

82 = r^dix, and finally make r = 0, the first integral on the left-

hand becomes =
4rir&amp;lt;l&amp;gt;P ,

where
&amp;lt;/&amp;gt;
p denotes the value of &amp;lt; at P,

whilst the first integral on the right vanishes. Hence

l

[/,(!) ......... (7).
?r J j

r dn \r J

This gives the value of &amp;lt; at any point P of the fluid in terms

of the values of &amp;lt; and dfyjdn at the boundary. Comparing with

the formula? (1) and (2) we see that the first term is the velocity-

L.
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potential due to a surface distribution of simple sources, with a

density 1/4-Tr .
d(f&amp;gt;/dn per unit area, whilst the second term is the

velocity-potential of a distribution of double sources, with axes

normal to the surface, the density being 1/4-Tr . &amp;lt;.

When the fluid extends to infinity and is at rest there, the

surface-integrals in (7) may, on a certain understanding, be taken

to refer to the internal boundary alone. To see this, we may take

as external boundary an infinite sphere having the point P as

centre. The corresponding part of the first integral in (7)

vanishes, whilst that of the second is equal to G, the constant

value to which, as we have seen in Art. 41,
(f&amp;gt;

tends at infinity.

It is convenient, for facility of statement, to suppose (7=0;
this is legitimate since we may always add an arbitrary con

stant to &amp;lt;.

When the point P is external to the fluid, &amp;lt; is finite through
out the original region, and the formula (5) gives at once

o ds + ds ......... (8),
47rJJ r dn 4t7rJJ

^
dn\rj

where, again, in the case of a liquid extending to infinity, and at

rest there, the terms due to the infinite part of the boundary may
be omitted.

58. The distribution expressed by (7) can, further, be re

placed by one of simple sources only, or of double sources only,

over the boundary.

Let
&amp;lt;f&amp;gt;

be the velocity-potential of the fluid occupying a certain

region, and let
(/&amp;gt;

now denote the velocity-potential of any possible

acyclic irrotational motion through the rest of infinite space, with

the condition that
&amp;lt;/&amp;gt;,

or &amp;lt;

,
as the case may be, vanishes at infinity.

Then, if the point P be internal to the first region, and therefore

external to the second, we have

47rJJ r dn 4m ]]
^ dn

(9),

o ,

4?r Jj r dn 4-TrJJ
^ dn

where $n, &n denote elements of the normal to dS, drawn inwards
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to the first and second regions respectively, so that d/dn = d/dn.

By addition, we have

dn J 4?r JJ^ dn

The function
&amp;lt;/&amp;gt;

will be determined by the surface-values of
&amp;lt;j&amp;gt;

or
d(j&amp;gt; /dri, which are as yet at our disposal.

Let us in the first place make
(/&amp;gt;

=
&amp;lt;f&amp;gt;.

The tangential velocities

on the two sides of the boundary are then continuous, but the

normal velocities are discontinuous. To assist the ideas, we may
imagine a fluid to fill infinite space, and to be divided into two

portions by an infinitely thin vacuous sheet within which an

impulsive pressure p$&amp;gt;

is applied, so as to generate the given
motion from rest. The last term of (10) disappears, so that

Mr8 (11) &amp;gt;

that is, the motion (on either side) is that due to a surface-distri

bution of simple sources, of density

1 (d$
d&amp;lt;f&amp;gt;

\*

4-7T \dn dn J

Secondly, we may suppose that dfi/dn = d&amp;lt;f&amp;gt;/dn.
This gives

continuous normal velocity, but discontinuous tangential velocity,

over the original boundary. The motion may in this case be

imagined to be generated by giving the prescribed normal velocity
-

d(f&amp;gt;/dn
to every point of an infinitely thin membrane coincident in

position with the boundary. The first term of (10) now vanishes,

and we have

shewing that the motion on either side may be conceived as due

to a surface-distribution of double sources, with density

It is obvious that cyclic irrotational motion of a liquid cannot be re

produced by any arrangement of simple sources. It is easily seen, however,
that it may be represented by a certain distribution of double sources over

* This investigation was first given by Green, from the point of view of Electro

statics
;

I.e. ante p. 50.

52
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the boundary, together with a uniform distribution of double sources over

each of the barriers necessary to render the region occupied by the fluid

simply- Connected.
In fact, with the same notation as in Art. 53, we find

//&amp;lt;*- i *+ Hi ^H
where $ is the single-valued velocity-potential which obtains in the modified

region, and $ is the velocity-potential of the acyclic motion which is generated
in the external space when the proper normal velocity

- d$/dn is given to each

element dS of a membrane coincident in position with the original boundary.

Another mode of representing the irrotational motion of a

liquid, whether cyclic or not, will present itself in the chapter on

Vortex Motion.



CHAPTER IV.

MOTION OF A LIQUID IN TWO DIMENSIONS.

59. IF the velocities u, v be functions of x, y only, whilst w
is zero, the motion takes place in a series of planes parallel to xy,

and is the same in each of these planes. The investigation of the

motion of a liquid under these circumstances is characterized by
certain analytical peculiarities; and the solutions of several pro

blems of great interest are readily obtained.

Since the whole motion is known when we know that in the

plane 2 = 0, we may confine our attention to that plane. When
we speak of points and lines drawn in it, we shall understand

them to represent respectively the straight lines parallel to the

axis of 2, and the cylindrical surfaces having their generating

lines parallel to the axis of 2, of which they are the traces.

By the flux across any curve we shall understand the volume

of fluid which in unit time crosses that portion of the cylindrical

surface, having the curve as base, which is included between the

planes z = 0, z = 1.

Let A, P be any two points in the plane xy. The flux across

any two lines joining AP is the same, provided they can be

reconciled without passing out of the region occupied by the

moving liquid ;
for otherwise the space included between these

two lines would be gaining or losing matter. Hence if A be

fixed, and P variable, the flux across any line AP is a function

of the position of P. Let -^ be this function
;
more precisely, let

^r denote the flux across AP from right to left,
as regards an

observer placed on the curve, and looking along it from A in the

direction of P. Analytically, if I, m be the direction-cosines of the
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normal (drawn to the left) to any element Ss of the curve, we

have
rP

= 1 (lu + mv)ds (1).
J A

If the region occupied by the liquid be aperiphractic (see p. 43),

ty is necessarily a single-valued function, but in periphractic regions
the value of ty may depend on the nature of the path AP.
For spaces of two dimensions, however, periphraxy and multiple-

connectivity become the same thing, so that the properties of ^,
when it is a many-valued function, in relation to the nature of

the region occupied by the moving liquid, may be inferred from

Art. 50, where we have discussed the same question with regard
to $. The cyclic constants of ty, when the region is peri

phractic, are the values of the flux across the closed curves

forming the several parts of the internal boundary.

A change, say from A to B, of the point from which
&amp;gt;/r

is

reckoned has merely the effect of adding a constant, viz. the flux

across a line BA, to the value of ^ ;
so that we may, if we

please, regard ty as indeterminate to the extent of an additive

constant.

If P move about in such a manner that the value of ^ does

not alter, it will trace out a curve such that no fluid anywhere
crosses it, i.e. a stream-line. Hence the curves ^ = const, are the

stream-lines, and
i/r

is called the stream-function.

If P receive an infinitesimal displacement PQ (= %) parallel

to y, the increment of
A/T

is the flux across PQ from right to left,

i.e. &\/r
= u. PQ, or

u **
........................... (2).

dy

Again, displacing P parallel to x
t
we find in the same way

The existence of a function ty related to u and v in this manner

might also have been inferred from the form which the equation of

continuity takes in this case, viz.

J + ^ = () ....... (4),dx dy
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which is the analytical condition that udy vdx should be an

exact differential*.

The foregoing considerations apply whether the motion be

rotational or irrotational. The formulse for the component angular

velocities, given in Art. 31, become

f=o, 77=0, rtiVi
V fi *Y

so that in irrotational motion we have

$H|r c
2

-\/r
...

~d^
+w =

(&amp;gt;

60. In what follows we confine ourselves to the case of

irrotational motion, which is, as we have already seen, character

ized by the existence, in addition, of a velocity-potential &amp;lt;/&amp;gt;,

connected with u, v by the relations

u = -^ v--^ m
dx

dy&quot;

and, since we are considering the motion of incompressible fluids

only, satisfying the equation of continuity

dtf
+
~df

=

The theory of the function $, and the relation between its

properties and the nature of the two-dimensional space through
which the irrotational motion holds, may be readily inferred

from the corresponding theorems in three dimensions proved in

the last chapter. The alterations, whether of enunciation or of

proof, which are requisite to adapt these to the case of two

dimensions are for the most part purely verbal.

An exception, which we will briefly examine, occurs however in the case

of the theorem of Art. 39 and of those which depend on it.

If 8s be an element of the boundary of any portion of the plane xy which

is occupied wholly by moving liquid, and if 8n be an element of the normal to

8s drawn inwards, we have, by Art. 37,

* The function ^ was first introduced in this way by Lagrange, Nouv. mem. de

VAccid. de Berlin, 1781 ; Oeuvres, t. iv., p. 720. The kinematical interpretation

is due to Rankine,
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the integration extending round the whole boundary. If this boundary be a

circle, and if r, 6 be polar co-ordinates referred to the centre P of this circle

as origin, the last equation may be written

- or

1 ft*
Hence the integral ^- I

2n J o

i.e. the mean-value of $ over a circle of centre P, and radius r, is independent
of the value of r, and therefore remains unaltered when r is diminished

without limit, in which case it becomes the value of &amp;lt; at P.

If the region occupied by the fluid be periphractic, and if we apply (i) to

the space enclosed between one of the internal boundaries and a circle with

centre P and radius r surrounding this boundary, and lying wholly in the

fluid, we have
/&quot;27T /~7/4&amp;gt;

.(ii);

where the integration in the first member extends over the circle only, and

TTM denotes the flux into the region across the internal boundary. Hence

d 1 **,, M
V;

which gives on integration

i.e. the mean value of
&amp;lt;/&amp;gt;

over a circle with centre P and radius r is equal to

-M log r+ 6
y

,
where C is independent of r but may vary with the position of P.

This formula holds of course only so far as the circle embraces the same

internal boundary, and lies itself wholly in the fluid.

If the region be unlimited externally, and if the circle embrace the whole

of the internal boundaries, and if further the velocity be everywhere zero at

infinity, then C is an absolute constant
;
as is seen by reasoning similar to

that of Art. 41. It may then be shewn that the value of at a very great
distance r from the internal boundary tends to the value -

J/log r+ C. In the

particular case of M=0 the limit to which &amp;lt; tends at infinity is finite; in

all other cases it is infinite, and of the opposite sign to M. We infer, as before,

that there is only one single-valued function $ which 1 satisfies the equation

(2) at every point of the plane xy external to a given system of closed curves,

2 makes the value of
d&amp;lt;p/dn, equal to an arbitrarily given quantity at every

point of these curves, and 3 has its first differential coefficients all zero at

infinity.

If we imagine point-sources, of the type explained in Art. 56, to be distri

buted uniformly along the axis of z, it is readily found that the velocity at a

distance r from this axis will be in the direction of r, and equal to m/r, where

m is a certain constant. This arrangement constitutes what may be called a
1

line-source, and its velocity-potential may be taken to be

= m log r (iv).
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The reader who is interested in the matter will have no difficulty in working

out a theory of two-dimensional sources and sinks, similar to that of Arts.

5658 *.

61. The kinetic energy T of a portion of fluid bounded by a

cylindrical surface whose generating lines are parallel to the axis

of z
y
and by two planes perpendicular to the axis of z at unit dis

tance apart, is given by the formula

where the surface-integral is taken over the portion of the

plane xy cut off by the cylindrical surface, and the line-integral

round the boundary of this portion. Since

the formula (1) may be written

2!T=p#ety ........................ (2),

the integration being carried in the positive direction round the

boundary.

If we attempt by a process similar to that of Art. 46 to calculate the

energy in the case where the region extends to infinity, we find that its value

is infinite, except when the total flux outwards (2rJO is zero. For if we

introduce a circle of great radius r as the external boundary of the portion

of the plane xy considered, we find that the corresponding part of the

integral on the right-hand side of (I) tends, as r increases, to the value

rrpM(Mlogr- C\ and is therefore ultimately infinite. The only exception is

when M= 0, in which case we may suppose the line-integral in (1) to extend

over the internal boundary only.

If the cylindrical part of the boundary consist of two or more

separate portions one of which embraces all the rest, the enclosed

region is multiply-connected, and the equation (1) needs a correc

tion, which may be applied exactly as in Art. 55.

62. The functions &amp;lt; and ^ are connected by the relations

d(f&amp;gt; _ dty d(f) _ d^r , .

doc dy dy dx

These are the conditions that
(fr
+ iifr,

where i stands for V~l&amp;gt;

should be a function of the complex variable x + iy. For if

* This subject has been treated very fully by C. Neumann, Ueber das logarith-

misclie und Newton sche Potential, Leipzig, 1877.
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) ..................... (2),

we have
^(&amp;lt;

+ fy) = if (x + iy)
= i

-jt(&amp;lt;l&amp;gt;

+ ty) ...... (3),

whence, equating separately the real and the imaginary parts, we
obtain (1).

Hence any assumption of the form (2) gives a possible case of

irrotational motion. The curves
(f&amp;gt;

= const, are the curves of equal

velocity-potential, and the curves ty
= const, are the stream-lines.

Since, by (].),

d(t&amp;gt; djr d(f&amp;gt; dty _
dx dx dy dy

we see that these two systems of curves cut one another at right

angles, as already proved. Since the relations (1) are unaltered

when we write ty for
&amp;lt;/&amp;gt;,

and
&amp;lt;f&amp;gt;

for
-v/r,

we may, if we choose, look

upon the curves
*fr
= const, as the equipotential curves, and the

curves &amp;lt;

= const, as the stream-lines
;
so that every assumption of

the kind indicated gives us two possible cases of irrotational motion.

For shortness, we shall through the rest of this Chapter follow

the usual notation of the Theory of Functions, and write

z = x+iy.............................. (4),

W =
&amp;lt;f&amp;gt;

+ l
\fr

........................... (5).

At the present date the reader may be assumed to be in possession of at

all events the elements of the theory referred to*. We may, however, briefly

recall a few fundamental points which are of special importance in the hydro-

dynamical applications of the subject.

The complex variable x+ iy may be represented, after Argand and Gauss,

by a vector drawn from the origin to the point (& , y). The result of adding
two complex expressions is represented by the geometric sum of the corre

sponding vectors. Regarded as a multiplying operator, a complex expression

a+ ib has the effect of increasing the length of a vector in the ratio r : 1, and

of simultaneously turning it through an angle 6, where r = (a
2+ 62

)*,
and

The fundamental property of & function of a complex variable is that it

has a definite differential coefficient with respect to that variable. If 0, \//-

denote any functions whatever of x and y, then corresponding to every value

of x-\-iy there must be one or more definite values of
(f) + i\^; but the ratio

of the differential of this function to that of x-\-iy^ viz.

*
See, for example, Forsyth, Ttieory of Function*, Cambridge, 1898, cc. i., ii.
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depends in general on the ratio 8x : y. The condition that it should be the

same for all values of this ratio is

j^j
ay dy

which is equivalent to (1) above. This property may therefore be taken, after

Kiemann, as the definition of a function of the complex variable x+iy\ viz.

such a function must have, for every assigned value of the variable, not only
a definite value or system of values, but also for each of these values a definite

differential coefficient. The advantage of this definition is that it is quite

independent of the existence of an analytical expression for the function.

Now, w being any function of s
t
we have, corresponding to any point

P of the plane xy (which we may call the plane of the variable z), one or

more definite values of w. Let us choose any one of these, and denote it

by a point P of which 0, &amp;gt;//

are the rectangular co-ordinates in a second

plane (the plane of the function w). If P trace out any curve in the plane
of z, P will trace out a corresponding curve in the plane of w. By mapping
out the correspondence between the positions of P and P

,
we may exhibit

graphically all the properties of the function w.

Let now Q be a point infinitely near to P, and let Q be the corresponding

point infinitely near to P . We may denote PQ by z, PQ by 8w. The
vector P Q may be obtained from the vector PQ by multiplying it by the

differential coefficient dw/dz, whose value is by definition dependent only on

the position of P, and not on the direction of the element dz or PQ. The effect

of this operator dw/dz is to increase the length of PQ in some definite ratio, and
to turn it through some definite angle. Hence, in the transition from the plane
of z to that of w, all the infinitesimal vectors drawn from the point P have

their lengths altered in the same ratio, and are turned through the same angle.

Any angle in the plane of z is therefore equal to the corresponding angle in

the plane of w, and any infinitely small figure in the one plane is similar to

the corresponding figure in the other. In other words, corresponding figures

in the planes of z and w are similar in their infinitely small parts.
For instance, in the plane of w the straight lines = const., ^ = const.,

where the constants have assigned to them a series of values in arithmetical

progression, the common difference being infinitesimal and the same in each

case, form two systems of straight lines at right angles, dividing the plane into

infinitely small squares. Hence in the plane xy the corresponding curves

&amp;lt;f&amp;gt;

= const., \js
=

const., the values of the constants being assigned as before,

cut one another at right angles (as has already been proved otherwise) and

divide the plane into a series of infinitely small squares.

Conversely, if $, \//&amp;gt;

be any two functions of #, y such that the curves

0=we, \//-
=

?if, where is infinitesimal, and m, n are any integers, divide the

plane xy into elementary squares, it is evident geometrically that

dx_ dy dx _ dy

d$
=

d$ djr^+df

If we take the upper signs, these are the conditions that x+iy should be a
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function of
(f&amp;gt;

+ i\js.
The case of the lower signs is reduced to this by re

versing the sign of
-v/r.

Hence the equation (2) contains the complete solution

of the problem of orthomorphic projection from one plane to another*.

The similarity of corresponding infinitely small portions of the planes w
and z breaks down at points where the differential coefficient dwldz is zero or

infinite. Since

j-sMs ..............................

the corresponding value of the velocity, in the hydrodynamical application, is

zero or infinite.

A uniform or single-valued function is one which returns to its

original value whenever the representative point completes a closed circuit

in the plane xy. All other functions are said to be multiform, or many-

valued. A simple case of a multiform function is that of A If we put

s=x+ iy
= r (cos + * sin 0),

we have z*=

Hence when P describes a closed circuit surrounding the origin, 6 increases

by 2?r, and the function 5 does not return to its former value, the sign being
reversed. A repetition of the circuit restores the original value.

A point (such as the origin in this example), at which two or more values

of the function coincide, is called a branch-point. In the hydrodynamical

application branch-points cannot occur in the interior of the space occupied

by the fluid. They may however occur on the boundary, since the function

will then be uniform throughout the region considered.

Many-valued functions of another kind, which may conveniently be

distinguished as cyclic, present themselves, in the Theory of Functions, as

integrals with a variable upper limit. It is easily shewn that the value of

the integral

taken round the boundary of any portion of the plane xy throughout which

/ (z), and its derivative / (z\ are finite, is zero. This follows from the two-

dimensional form of Stokes s Theorem, proved in Art. 33, viz.

the restrictions as to the values of P, Q being as there stated. If we put

P=f (z\ Q= if (z\ the result follows, since

Hence the value of the integral (iii), taken from a fixed point A to a variable

point P, is the same for all paths which can be reconciled with one another

without crossing points for which the above conditions are violated.

*
Lagrange,

&quot; Sur la construction des cartes geographiques,&quot; Nouv. mem. de

VAcad. de Berlin, 1779 ; Oeuvres, t. iv., p. 636.
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Points of the plane xy at which the conditions in question break down may
be isolated by drawing a small closed curve round each. The rest of the plane

is a multiply-connected region, and the value of the integral from ^1 to P
becomes a cyclic function of the position of P, as in Art. 50.

In the hydrodynamical applications, the integral (iii), considered as a

function of the upper limit, is taken to be equal to
&amp;lt;f)+i\js.

If we denote

any cyclic constant of this function by K + IH, then K denotes the circulation

in the corresponding circuit, and p. the flux across it outwards.

As a simple example we may take the logarithmic function, considered as

denned by the equation

(v).

Since z~ l is infinite at the origin, this point must be isolated, e.g. by drawing

a small circle about it as centre. If we put

we have

so that the value of (v) taken round the circle is

Hence, in the simply-connected region external to the circle, the function (v)

is many-valued, the cyclic constant being
- 27rt.

In the theory referred to, the exponential function is defined as the inverse

function of (v), viz. if w= logz, we have ew =z. It follows that ew is periodic,

the period being 2^ . The correspondence between the planes of z and w
is illustrated by the annexed diagram. The circle of radius unity, described

about the origin as centre, in the upper figure, corresponds over and over

again to lengths 2;r on the imaginary axis of w, whilst the inner and outer

portions of the radial line = correspond to a system of lines parallel to
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the real axis of w, drawn on the negative and positive sides, respectively*.

The reader should examine these statements, as we shall have repeated occasion

to use this transformation.

63. We can now proceed to some applications of the foregoing-

theory.

First let us assume w = Azn
,

A being real. Introducing polar co-ordinates r, 0, we have

&amp;lt;p

= Arn cos n0, \

^ = Arn smn0 j

*

The following cases may be noticed.

1. If ?i = l, the stream-lines are a system of straight lines

parallel to x
t
and the equipotential curves are a similar system

parallel to y. In this case any corresponding figures in the planes

of w and z are similar, whether they be finite or infinitesimal.

2. If n = 2, the curves
(/&amp;gt;

= const, are a system of rectangular

hyperbolas having the axes of co-ordinates as their principal axes,

and the curves
-\Jr
= const, are a similar system, having the co

ordinate axes as asymptotes. The lines 6 = 0, \ IT are parts of

the same stream-line ty
= 0, so that we may take the positive parts

of the axes of #, y as fixed boundaries, and thus obtain the case of

a fluid in motion in the angle between two perpendicular walls.

3. If n = 1, we get two systems of circles touching the

axes of co-ordinates at the origin. Since now
&amp;lt;p

= A/r.cos 0, the

velocity at the origin is infinite
;
we must therefore suppose the

region to which our formulas apply to be limited internally by a

closed curve.

4. If n = 2, each system of curves is composed of a double

system of lemniscates. The axes of the system &amp;lt;

= const, coincide

with x or y ;
those of the system -fy

= const, bisect the angles be

tween these axes.

5. By properly choosing the value of n we get a case of

irrotational motion in which the boundary is composed of two

rigid walls inclined at any angle a. The equation of the stream

lines being
rn sin nO = const (2),

*
It should be remarked that no attempt has been made to observe the same

scale in corresponding figures, in this or in other examples, to be given later.
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we see that the lines = 0, 6 = irjn are parts of the same stream

line. Hence if we put n = TT/, we obtain the required solution in

the form

-
ft -ft

(
f&amp;gt;

= Ara
cos

) ^ = Ara sm ............... (3).

The component velocities along and perpendicular to r, are

A IT
a&quot;

1 ^
JJ A TT a

1 1*6A-r cos ,
and A -r sin

;

a a a a

and are therefore zero, finite, or infinite at the origin, according as

a. is less than, equal to, or greater than TT.

64. We take next some cases of cyclic functions.

1. The assumption
W= /JL\OgZ ........................... (1)

gives &amp;lt;

= -^logr, ^ = -^0 ..................... (2).

The velocity at a distance r from the origin is fi/r }
this point

must therefore be isolated by drawing a small closed curve

round it.

If we take the radii 6 const, as the stream-lines we get the

case of a (two-dimensional) source at the origin. (See Art. 60.)

If the circles r = const, be taken as stream-lines we get the

case of Art. 28
;
the motion is now cyclic, the circulation in any

circuit embracing the origin being 2
7r/i. C

J ~/

2. Let us take *

(3).

If we denote by r1} r2 the distances of any point in the plane xy
from the points (+ a, 0), and by lt 62 ,

the angles which these

distances make with positive direction of the axis of #, we have

z a = r^ty z 4- a = r2e^2
,

whence
&amp;lt;/&amp;gt;

= -//,logn/r2 ,
-&amp;gt;|r

= -
/z (6^

-
2) ............ (4).

The curves
&amp;lt;/&amp;gt;

= const., ty const, form two orthogonal systems of

coaxal circles.
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Either of these systems may be taken as the equipotential

curves, and the other system will then form the stream-lines.

In either case the velocity at the points (+ a, 0) will be infinite.

If these points be accordingly isolated by drawing closed curves

round them, the rest of the plane xy becomes a triply-connected

region.

If the circles 1 2
= const, be taken as the stream-lines we

have the case of a source and a sink, of equal intensities, situate

at the points ( a, 0). If a is diminished indefinitely, whilst fia

remains finite, we reproduce the assumption of Art. 63, 3, which

therefore corresponds to the case of a double line-source at the

origin. (See the first diagram of Art. 68.)

If, on the other hand, we take the circles r^rz const, as the

stream-lines we get a case of cyclic motion, viz. the circulation in

any circuit embracing the first (only) of the above points is STT/J,,

that in a circuit embracing the second is ZTT/JL ;
whilst that in a

circuit embracing both is zero. This example will have additional

interest for us when we come to treat of Rectilinear Vortices.
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65. If w be a function of z, it follows at once from the defini

tion of Art. 62 that z is a function of w. The latter form of

assumption is sometimes more convenient analytically than the

former.

The relations (1) of Art. 62 are then replaced by

dxdy dx dy
d&amp;lt;f&amp;gt;

dr }

d^

dw dd&amp;gt; .dty
Also since -=- = ?~ + i I-

dz dx dx

, dz \ \ in .v
we have

dw u iv q \q q.

where q is the resultant velocity at (x, y). Hence if we write

and imagine the properties of the function f to be exhibited

graphically in the manner already explained, the vector drawn

from the origin to any point in the plane of f will agree

in direction with, and be in magnitude the reciprocal of, the

velocity at the corresponding point of the plane of z.

Again, since l/q is the modulus of dzjdw, i.e. of
dx/d(f&amp;gt;

+
idyjd&amp;lt;}&amp;gt;,

we have

which may, by (1), be put into the equivalent forms

f

W.
\ttyy wcp u^ n^r uy&amp;gt;

The last formula, viz.

simply expresses the fact that corresponding elementary areas in

the planes of z and w are in the ratio of the square of the modulus

of dz/dw to unity.

I, 6
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66. The following examples of this are important.

1. Assume z = ccoshw (1),

or x = c cosh
&amp;lt;/&amp;gt;

cos 1

y = c sinh
(/&amp;gt;

sin -

The curves $ = const, are the ellipses

__
-|

and the curves
&amp;gt;/r

= const, are the hyperbolas

(2).

(3),

a?&quot;

c2 cos2
c

2 sin2
= 1

these conies having the common foci ( c, 0).

Since at the foci we have = 0, ty
= HTT, n being some integer,

we see by (2) o~the preceding Art. that the velocity there

is infinite. If the hyperbolas be taken as the stream-lines, the

portions of the axis of a; which lie outside the points (+ c, 0) may
be taken as rigid boundaries. We obtain in this manner the case
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of a liquid flowing from one side to the other of a thin plane

partition, through an aperture of breadth 2c
;
the velocity at the

edges is however infinite.

If the ellipses be taken as the stream-lines we get the case of

a liquid circulating round an elliptic cylinder, or, as an extreme

case, round a rigid lamina whose section is the line joining the foci

( e, 0).

At an infinite distance from the origin (/&amp;gt;

is infinite, of the

order log r, where r is the radius vector
;
and the velocity is

infinitely small of the order 1/r.

2. Let z = w + ew .................
&amp;lt;

......... (5),

X =
(f)
+ 6* COS

l/r, y = ty -f 6* sill
i/r

............ (6).Or

The stream-line
i/r
= coincides with the axis of x. Again the

portion of the line y= r
rr between x = GO and x = 1, considered

as a line bent back on itself, forms the stream-line i|r
= TT

;
viz. as

$ decreases from -f- oo through to oo
,
x increases from oc to

1 and then decreases to oo again. Similarly for the stream

line
i|r
=

TJ-.

62
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Since f = dz\dw = 1 e* cos
i/r

ie* sin
-$-,

it appears that for large negative values of &amp;lt; the velocity is

in the direction of ^-negative, and equal to unity, whilst for large

positive values it is zero.

The above formulae therefore express the motion of a liquid

flowing into a canal bounded by two thin parallel walls from an

open space. At the ends of the walls we have
(f&amp;gt;

=
0, ty

=
TT, and

therefore f= 0, i.e. the velocity is infinite. The direction of the

flow will be reversed if we change the sign of w in (5). The forms

of the stream-lines, drawn, as in all similar cases in this chapter,

for equidistant values of ty, are shewn in the figure*.

67. A very general formula for the functions
&amp;lt;, ^ may be

obtained as follows. It may be shewn that if a function f (z) be

finite, continuous, and single-valued, and have its first derivative

finite, at all points of a space included between two concentric

circles about the origin, its value at any point of this space can be

expanded in the form

f(z) = A Q + A 1z + A ss? + ... -f B^-1 + B,z~
2 + (1).

If the above conditions be satisfied at all points within a circle

having the origin as centre, we retain only the ascending series
;

if at all points without such a circle, the descending series, with

the addition of the constant A
,
is sufficient. If the conditions be

fulfilled for all points of the plane xy without exception, f(z) can

be no other than a constant A .

Putting f(z) = &amp;lt;t&amp;gt;

+ fy, introducing polar co-ordinates, and

writing the complex constants A
n&amp;gt;
B

n&amp;gt;
in the forms Pn + iQn ,

Rn + iSn , respectively, we obtain

= P + T,r
n
(Pn cos n0 - Qn sin n&) + ^r~n

(En cos nO+ 8nsmnO)\
^ = Q + 2&amp;gt;

w
(Qw cos n& + Pn sin nd) + ^r~n

(Sn cosn0-Rnsmn0))
(2).

These formula? are convenient in treating problems where we

have the value of $, or of
d&amp;lt;j&amp;gt;/dn, given over the circular boun

daries. This value may be expanded for each boundary in a series

of sines and cosines of multiples of 6, by Fourier s theorem. The

series thus found must be equivalent to those obtained from (2);

whence, equating separately coefficients of sin n6 and cos 116, we

obtain four systems of linear equations to determine Pn , Qn ,
Rn ,

Sn .

* This example was given by von Helmholtz, Perl. Monatsber., April 23, 1868;

Phil Mag., Nov. 1868; Ges. Abh., t. i., p. 154.
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68. As an example let us take the case of an infinitely long

circular cylinder of radius a moving with velocity u perpendicular

to its length, in an infinite mass of liquid which is at rest at infinity.

Let the origin be taken in the axis of the cylinder, and the

axes of x, y in a plane perpendicular to its length. Further let

the axis of x be in the direction of the velocity u. The motion,

having originated from rest, will necessarily be irrotational, and

&amp;lt; will be single-valued. Also, since
fd&amp;lt;p/dn

. ds, taken round the

section of the cylinder, is zero, ty is also single-valued (Art. 59),

so that the formulae (2) apply. Moreover, since
d(f&amp;gt;/dn

is given at

every point of the internal boundary of the fluid, viz.

-~ = u cos 6, for r a ..................... (3),
CLi

and since the fluid is at rest at infinity, the problem is determinate,

by Art. 41. These conditions give Pn = 0, Qn = 0, and

u cos = ^ narn
~l

(Rn cos nO + 8n sin nO),

which can be satisfied only by making Rt
= ua2

,
and all the other

coefficients zero. The complete solution is therefore

(f&amp;gt;=

-- cos 0, -\/r
= -- sin ............... (4).

The stream-lines ^r
= const, are circles, as shewn on the next page.

The kinetic energy of the liquid is given by the formula (2) of

Art. 61, viz.

sauV P*cos2 6 d6 = m u2
......... (5),

Jo

if m
,
= 7ra2

p, be the mass of fluid displaced by unit length of the

cylinder. This result shews that the whole effect of the presence
of the fluid may be represented by an addition m to the inertia

of the cylinder. Thus, in the case of rectilinear motion, if we have

an extraneous force X acting on the cylinder, the equation of

energy gives

(imu
2 + im u-) = Xu,

or (m +no-X ..................... (6),

where m represents the mass of the cylinder.
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Writing this in the form

du v , dum
dt
=x - m ^

we learn that the pressure of the fluid is equivalent to a force

m du/dt in the direction of motion. This vanishes when u is

constant.

The above result may of course be verified by direct calculation. The

pressure is given by the formula

where we have omitted the term due to the extraneous forces (if any) acting on

the fluid, the effect of which can be found by the rules of Hydrostatics. The

term dfyjdt here expresses the rate at which is increasing at a fixed point

of space, whereas the value of
&amp;lt;/&amp;gt;

in (4) is referred to an origin which is in

motion with the velocity u. In consequence of this the value of r for any
fixed point is increasing at the rate u cos 0, and that of 6 at the rate

U/r . sin Q. Hence we must put

d&amp;lt;t&amp;gt;

du. a2
..

d(f&amp;gt;
u sin 6 d$ dn a2 u*a2

-j-= -j-
- COS - U COS -~ + - -=-77 COS0+-.. COS 20.

dt dt r dr r dd dt r r2
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Since, also,
2 = U2a4

/r
4
,
the pressure at any point of the cylindrical surface

The resultant force on unit length of the cylinder is evidently parallel to

the initial line 6=
;

to find its amount we multiply by - add . cos 6 and

integrate with respect to & between the limits 0_ and TT. The result is _.

m dvi/dt, as before.

If in the above example we impress on the fluid and the

cylinder a velocity u we have the case of a current flowing

with the general velocity u past a fixed cylindrical obstacle.

Adding to
&amp;lt;f)

and
*fy

the terms ur cos 6 and ur sin 6, respectively,

we get

If no extraneous forces act, and if u be constant, the resultant force

on the cylinder is zero.

69. To render the formula (1) of Art. 67 capable of repre

senting any case of irrotational motion in the space between two

concentric circles, we must add to the right-hand side the term

4 log* (1).
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If A = P + iQ, the corresponding terms in $, ty are

Plogr-Qd, P0 + Q\ogr (2),

respectively. The meaning of these terms is evident from Art. 64
;

viz. 2?rP, the cyclic constant of
A/T,

is the flux across the inner

(or outer) circle
;
and 2?rQ, the cyclic constant of

&amp;lt;,
is the circu

lation in any circuit embracing the origin.

For example, returning to the problem of the last Art., let us

suppose that in addition to the motion produced by the cylinder

we have an independent circulation round it, the cyclic constant

being K. The boundary-condition is then satisfied by

&amp;lt;=uj 0030-^0 (3).

The effect of the cyclic motion, superposed on that due to the

cylinder, will be to augment the velocity on one side, and to

dimmish (and, it may be, to reverse) it on the other. Hence

when the cylinder moves in a straight line with constant velocity,

there will be a diminished pressure on one side, and an increased

pressure on the other, so that a constraining force must be applied
at right angles to the direction of motion.



69] CYLINDER WITH CIRCULATION. 89

The figure shews the lines of flow. At a distance from the origin they

approximate to the form of concentric circles, the disturbance due to the

cylinder becoming small in comparison with the cyclic motion. When, as in

the case represented, u&amp;gt;K/2ira, there is a point of zero velocity in the fluid.

The stream-line system has the same configuration in all cases, the only effect

of a change in the value of u being to alter the scale, relative to the diameter

of the cylinder.

To calculate the effect of the fluid pressures on the cylinder when moving
in any manner we write

where % is the angle which the direction of motion makes with the axis of x.

In the formula for the pressure [Art. 68 (i)] we must put, for r=a,

and ^2

The resultant force on the cylinder is found to be made up of a component

in the direction of motion, and a component

.................................... (v),

at right angles, where m. = npa
2 as before. Hence if P, Q denote the

components of the extraneous forces, if any, in the directions of the tangent
and the normal to the path, respectively, the equations of motion of the

cylinder are

(vi).

If there be no extraneous forces, u is constant, and writing
where R is the radius of curvature of the path, we find

(vii).

The path is therefore a circle, described in the direction of the cyclic motion*.

* Lord Rayleigh,
&quot; On the Irregular Flight of a Tennis Ball,&quot; Megs, of Math.,

t. vii. (1878); Greeiihill, ibid., t. ix., p. 113 (1880).
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If X, y be the rectangular co-ordinates of the axis of the cylinder, the

equations (vi) are equivalent to

)x=-*py+.n
Kp + rJ&quot;

where Jf, Y are the components of the extraneous forces. To find the effect

of a constant force, we may put

,
F=0........................... (ix).

The solution then is

X= a+ a cos (nt+ e),

g
&amp;gt;

provided n= Kp/(m +m ) .................................... (xi).

This shews that the path is a trochoid, described with a mean velocity g /n

perpendicular to x*. It is remarkable that the cylinder has on the whole

no progressive motion in the direction of the extraneous force.

70. The formula (1) of Art. 67, as amended by the addition of

the term A log z
t may readily be generalized so as to apply to any

case of irrotational motion in a region with circular boundaries,

one of which encloses all the rest. In fact, corresponding to each

internal boundary we have a series of the form

where c,
= a + ib say, refers to the centre, and the coefficients

A, A lt A 2} ... are in general complex quantities. The difficulty

however of determining these coefficients so as to satisfy given

boundary conditions is now so great as to render this method of

very limited application.

Indeed the determination of the irrotational motion of a liquid

subject to given boundary conditions is a problem whose exact

solution can be effected by direct processes in only a very few

cases f. Most of the cases for which we know the solution have
*

Greenhill, I.e.

t A very powerful method of transformation, applicable to cases where the

boundaries of the fluid consist of fixed plane walls, has however been deve

loped by Schwarz
(&quot;

Ueber einige Abbildungsaufgaben,&quot; Crelle, t. Ixx., Gesam-

melte Abhandlungen, Berlin, 1890, t. ii., p. 65), Christoffel
(&quot;

Sul problema delle

temperature stazionarie e la rappresentazione di una data superficie,&quot; Annali di

Matematica, Serie n., t. i.
, p. 89), and Kirchhoff

(&quot;
Zur Theorie des Conden-

sators,&quot; Berl. Monatsber., March 15, 1877; Ges. Abh., p. 101). Many of the

solutions which can be thus obtained are of great interest in the mathematically

cognate subjects of Electrostatics, Heat-Conduction, &c. See for example, J. J.

Thomson, Recent Researches in Electricity and Magnetism, Oxford, 1893, c. iii.
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been obtained by an inverse process ;
viz. instead of trying to find

a solution of the equation V2
&amp;lt;

= or V 2

-\Jr
= 0, satisfying given

boundary conditions, we take some known solution of the differen

tial equations and enquire what boundary conditions it can be

made to satisfy. Examples of this method have already been

given in Arts. 63, 64, and we may carry it further in the following

two important cases of the general problem in two dimensions.

71. CASE I. The boundary of the fluid consists of a rigid

cylindrical surface which is in motion with velocity u in a

direction perpendicular to its length.

Let us take as axis of x the direction of this velocity u, and

let Bs be an element of the section of the surface by the plane xy.

Then at all points of this section the velocity of the fluid in

the direction of the normal, which is denoted by d-fr/ds, must be

equal to the velocity of the boundary normal to itself, or udyjds.

Integrating along the section, we have

T/T
= My + const (1).

If we take any admissible form of
i/r,

this equation defines a

system of curves each of which would by its motion parallel to

x give rise to the stream-lines ^r
= const. * We give a few

examples.

1. If we choose for ^r the form uy, (1) is satisfied

identically for all forms of the boundary. Hence the fluid

contained within a cylinder of any shape which has a motion

of translation only may move as a solid body. If, further, the

cylindrical space occupied by the fluid be simply-connected, this is

the only kind of motion possible. This is otherwise evident from

Art. 40
;
for the motion of the fluid and the solid as one mass

evidently satisfies all the conditions, and is therefore the only
solution which the problem admits of.

2. Let
-v/r
= A jr . sin 6

;
then (1) becomes

A

sin 6 = - u r sin 6 + const (2).

In this system of curves is included a circle of radius a, provided
*

Cf. Kankine, &quot;On Plane Water-Lines in Two Dimensions,&quot; Phil. Trans.,

1864, where the method is applied to obtain curves resembling the lines of ships.
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A /a
= - ua. Hence the motion produced in an infinite mass of

liquid by a circular cylinder moving through it with velocity u

perpendicular to its length, is given by
11 r/

2

* = - sintf (3),

which agrees with Art. 68.

3. Let us introduce the elliptic co-ordinates f, rj, connected

with x, y by the relation

x + iy
= c cosh (f + iy) (4),

or X G cosh f cos rj,

y = c sinh f sin rj j

(cf. Art. 66), where f may be supposed to range from to oo
,
and

rj from to 2-7T. If we now put

+ ty = (V-tf+*,)........................ (6),

where G is some real constant, we have

i|r
= - Ce~t sin

rj ........................ (7),

so that (1) becomes

Ce~% sin 77
= uc sinh

{
sin T; 4- const.

In this system of curves is included the ellipse whose parameter

fo is determined by

If a, b be the semi-axes of this ellipse we have

,
6 = csinhf ,

xl. r 7.

so that (7 =-r = u6
a 6

Hence the formula

fsin7; .................. (8)

gives the motion of an infinite mass of liquid produced by an

elliptic cylinder of semi-axes a, b, moving parallel to the greater
axis with velocity u.

That the above formulae make the velocity zero at infinity

appears from the consideration that, when f is large, S% and S?/

are of the same order as e^Sf or etBrj, so that d^r/dx, d-^rfdy are of

the order e~ 2^ or 1/r
2
, ultimately, where r denotes the distance of

any point from the axis of the cylinder.

If the motion of the cylinder were parallel to the minor axis

the formula would be
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The stream-lines are in each case the same for all confucal

elliptic forms of the cylinder, so that the formulae hold even when
the section reduces to the straight line joining the foci. In this

case (9) becomes

A|T
= vc e~ cos ?; (10),

which would give the motion produced by an infinitely long
lamina of breadth 2c moving broadside on in an infinite mass of

liquid. Since however this solution makes the velocity infinite at

the edges, it is subject to the practical limitation already indicated

in several instances*.

* This investigation was given in the Quart. Journ. of Math., i. xiv. (1875).

Results equivalent to (8), (9) had however been obtained, in a different manner, by

Beltrami,
&quot; Sui principii fondamentali dell idrodinamica razionale,&quot; Mem. dell

Accad. delle Scienze di Bologna, 1873, p. 394.
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The kinetic energy of the fluid is given by

2T= p Ud^
J o

........................ (11),

where b is the half-breadth of the cylinder perpendicular to the

direction of motion.

If the units of length and time be properly chosen we may write

f%
whence

f*^(i+
These formula) are convenient for tracing the curves = const., ^ = const.,

which are figured on the preceding page.

By superposition of the results (8) and (9) we obtain, for the case of an

elliptic cylinder having a motion of translation whose components are u, V,

^= -
(^T V e~^ (u6 sin

77

- va cos
7?) ..................... (i).

To find the motion relative to the cylinder we must add to this the expression

vy - vx c (u sinh sin
rj

- v cosh cos q) ............... (ii).

For example, the stream-function for a current impinging at an angle of 45

on a plane lamina whose edges are at x=c is

V^=
-

-TO 9oc sintl
(
cos

*)

~ sin ri ........................
(&quot;*)

where q is the velocity at infinity. This immediately verifies, for it makes

^ = for =
0, and gives

for =oo. The stream-lines for this case are shewn in the annexed figure

(turned through 45 for convenience). This will serve to illustrate some
results to be obtained later in Chap, vi,



71-72] RELATIVE STREAM-LINES. 95

If we trace the course of the stream-line ^ = from &amp;lt;=+oc to
&amp;lt;

= - oo
,

we find that it consists in the first place of the hyperbolic arc TJ^^TT, meeting
the lamina at right angles ;

it then divides into two portions, following the

faces of the lamina, which finally re-unite and are continued as the hyperbolic

arc
17
=

|-
IT. The points where the hyperbolic arcs abut on the lamina are

points of zero velocity, and therefore of maximum pressure. It is plain that the

fluid pressures on the lamina are equivalent to a couple tending to set it broad

side on to the stream
;
and it is easily found that the moment of this couple,

per unit length, is ^irpq^c
2

. Compare Art. 121.

72. CASE II. The boundary of the fluid consists of a rigid

cylindrical surface rotating with angular velocity w about an axis

parallel to its length.

Taking the origin in the axis of rotation, and the axes of x, y
in a perpendicular plane, then, with the same notation as before,

d-fy/ds will be equal to the normal component of the velocity of the

boundary, or

d^lr dr
7 = wr -j- ,

ds ds

if r denote the radius vector from the origin. Integrating we

have, at all points of the boundary,

i/r
=

o&amp;gt; r2 + const......................... (1 ).

If we assume any possible form of ty, this will give us the

equation of a series of curves, each of which would, by rotation

round the origin, produce the system of stream-lines determined

by t-

As examples we may take the following :

1. If we assume

&amp;lt;^=Ar*co$20=.A(x-y*) .................. (2),

the equation (1) becomes

(iw
- A)x* + (Jo) + A) y

z =C,

which, for any given value of A, represents a system of similar

conies. That this system may include the ellipse

a? y
1

_
^~*&amp;gt;

aa1

we must have
(Jo&amp;gt; A) a2 =

(\u&amp;gt;
+ A)^,

a2 - b2

4 -*:?**.

Hence f =
k&quot;&amp;gt;

(^ - f) ............... (3),
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gives the motion of a liquid contained within a hollow elliptic

cylinder whose semi-axes are a, b, produced by the rotation of the

cylinder about its axis with angular velocity o&amp;gt;. The arrangement
of the stream-lines ty

= const, is given in the figure on p. 99.

The corresponding formula for
(f&amp;gt;

is

The kinetic energy of the fluid, per unit length of the cylinder,

is given by

(

dy) j

-dxdy = 1-^- x ^6 . . .(5).

This is less than if the fluid were to rotate with the boundary, as

one rigid mass, in the ratio of

/a2 -fry

U+&v
to unity. We have here an illustration of Lord Kelvin s minimum

theorem, proved in Art. 45.

2. Let us assume

i/r
= Ar3 cos 30 = A (x

3

3xy-\

The equation (1) of the boundary then becomes

A (x
3

3#2/
2

) \w (a? + 7/
2

)
= C (6).

We may choose the constants so that the straight line x = a shall

form part of the boundary. The conditions for this are

Aa3 -
i&amp;lt;wft

2 = C, 3Aa +
\G&amp;gt;

= 0.

Substituting the values of A, C hence derived in (6), we have

x3 a3

Sxy~ -\- 3a (a? a~ + 2/

2

)
= 0.

Dividing out by x a, we get

or x + 2a = + \/3 . y.

The rest of the boundary consists therefore of two straight lines

passing through the point ( 2a, 0), and inclined at angles of 30

to the axis of x.
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We have thus obtained the formulae for the motion of the

fluid contained within a vessel in the form of an equilateral prism,

when the latter is rotating with angular velocity w about an axis

parallel to its length arid passing through the centre of its section
;

viz. we have

^ = -
J
- ? cos 30,

(/&amp;gt;

= -r3
sin3&amp;lt;9 ............ (7),

Ct (t

where 2 /v/3a is the length of a side of the prism.

The problem of fluid motion in a rotating cylindrical case is to a certain

extent mathematically identical with that of the torsion of a uniform rod or

bar*. The above examples are mere adaptations of two of de Saint-Tenant s

solutions of the latter problem.

3. In the case of a liquid contained in a rotating cylinder
whose section is a circular sector of radius a and angle 2a, the

axis of rotation passing through the centre, we may assume

COS 26 /
?A(2+l,7r/2a ^0

c^ + 2^+1
(a)

C S (2U + l)
2S-

-&amp;lt;

8
&amp;gt;

the middle radius being taken as initial line. For this makes

ty
=

^cor
2 for 6= a, and the constants A^n+i can be determined

by Fourier s method so as to make
-x/r
= Jwa

2 for r = a. We
find

w + 1)7r
_ 4a

-
(^Fl)^

+
(IT-n^+lSI

......... (9).

The conjugate expression for &amp;lt; is

sin 26 .
/ r\(2n+Diry2 . 7J-0/ r

(a

where A 2n+l has the value (9).

The kinetic energy is given by

a

(11),

* See Thomson and Tait, Natural Philosophy, Art. 704, et seq.

t This problem was first solved by Stokes, &quot;On the Critical Values of the

Sums of Periodic Series,&quot; Camb. Trans., t. viii. (1847), Math. andPhys. Papers, t. i.,

p. 305. See also papers by Hicks and Greenhill, Mess, of Math., t. viii., pp. 42, 89,

and t. x., p. 83.

L. 7
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where &amp;lt; a denotes the value of &amp;lt; for =
a, the value of

cUf&amp;gt;/dn

being zero over the circular part of the boundary.

The case of the semicircle a = JTT will be of use to us later.

We then have

l 2

2n-I
and therefore 191

-j
USIA/ ^ JU _L ^ X

)a T(lT = Z 7; ~fT ^rt T c* T^T &quot;T ^

_ 7T
2

1 &quot;

7T

Hence*

2 x iwpw a2
...... (13).

This is less than if the fluid were solidified, in the ratio of &quot;6212

to 1. See Art. 45.

4. With the same notation of elliptic coordinates as in

Art. 71, 3, let us assume

(j&amp;gt;+i^
= Cie-^+ir ..................... (14).

Since #2 + y
z

c
2

(cosh 2f + cos 2?;),

the equation (1) becomes

Ce~^ cos 2?; Jwc
2

(cosh 2f + cos 2??)
= const.

This system of curves includes the ellipse whose parameter
is

, provided

or, using the values of a, b already given,

a = Jo,(a + 6)
2
,

so that -^
=

J&&amp;gt; (a + b)~ e~^ cos 2?;,
&quot;|

^ = J B (a + 6)
a e-2

*sin2i7. J

At a great distance from the origin the velocity is of the

order
1/Y&quot;.

*
Greenhill, I c,
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The above formulae therefore give the motion of an infinite

mass of liquid, otherwise at rest, produced by the rotation of

an elliptic cylinder about its axis with angular velocity &&amp;gt;*. The

diagram shews the stream-lines both inside arid outside a rigid

elliptical cylindrical case rotating about its axis.

The kinetic energy of the external fluid is given by

0* ........................... (16).

It is remarkable that this is the same for all confocal elliptic

forms of the section of the cylinder.

Combining these results with those of Arts. 66, 71 we find that if an elliptic

cylinder be moving with velocities u, v parallel to the principal axes of its

cross-section, and rotating with angular velocity o&amp;gt;,

and if (further) the fluid

be circulating irrotationally round it, the cyclic constant being K, then the

stream-function relative to the aforesaid axes is

(Mb sin
TJ

- va cos^+Jco (a + b}*e~^ cos 2r) + -
.

*
Quart. Journ. Math., t. xiv. (1875) ;

see also Beltrami, 1. c. ante p. 93.

72
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Discontinuous Motions.

73. We have, in the preceding pages, had several instances of

the flow of a liquid round a sharp projecting edge, and it appeared
in each case that the velocity there was infinite. This is indeed a

necessary consequence of the assumed irrotational character of the

motion, whether the fluid be incompressible or not, as may be

seen by considering the configuration of the equipotential surfaces

(which meet the boundary at right angles) in the immediate

neighbourhood.

The occurrence of infinite values of the velocity may be

avoided by supposing the edge to be slightly rounded, but even

then the velocity near the edge will much exceed that which

obtains at a distance great in comparison with the radius of

curvature.

In order that the motion of a fluid may conform to such

conditions, it is necessary that the pressure at a distance should

greatly exceed that at the edge. This excess of pressure is

demanded by the inertia of the fluid, which cannot be guided
round a sharp curve, in opposition to centrifugal force, except by
a distribution of pressure increasing with a very rapid gradient

outwards.

Hence unless the pressure at a distance be very great, the

maintenance of the motion in question would require a negative

pressure at the corner, such as fluids under ordinary conditions

are unable to sustain.

To put the matter in as definite a form as possible, let us

imagine the following case. Let us suppose that a straight tube,

whose length is large compared with the diameter, is fixed in the

middle of a large closed vessel filled with frictionless liquid, and

that this tube contains, at a distance from the ends, a sliding

plug, or piston, P, which can be moved in any required manner by
extraneous forces applied to it. The thickness of the walls of

the tube is supposed to be small in comparison with the diameter;

and the edges, at the two ends, to be rounded off, so that there are

no sharp angles. Let us further suppose that at some point of the

walls of the vessel there is a lateral tube, with a piston Q, by
means of which the pressure in the interior can be adjusted at will.
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Everything being at rest to begin with, let a slowly increasing

velocity be communicated to the plug P, so that (for simplicity)

the motion at any instant may be regarded as approximately

steady. At first, provided a sufficient force be applied to Q, a

continuous motion of the kind indicated in the diagram on p. 83

will be produced in the fluid, there being in fact only one type of

motion consistent with the conditions of the question. As the

acceleration of the piston P proceeds, the pressure on Q may
become enormous, even with very moderate velocities of P, and if

Q be allowed to yield, an annular cavity will be formed at each end

of the tube.

The further course of the motion in such a case has not

yet been worked out from a theoretical stand-point. In actual

liquids the problem is modified by viscosity, which prevents any

slipping of the fluid immediately in contact with the tube, and

must further exercise a considerable influence on such rapid
differential motions of the fluid as are here in question.

As a matter of fact, the observed motions of fluids are often

found to deviate very widely from the types shewn in our dia

grams. In such a case as we have just described, the fluid issuing

from the mouth of the tube does not immediately spread out in

all directions, but forms, at all events for some distance, a more or

sb compact stream, bounded on all sides by fluid nearly at rest.
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A familiar instance is the smoke-laden stream of gas issuing from

a chimney.

74. Leaving aside the question of the manner in which the

motion is established, von Helmholtz* and Kirchhofff have

endeavoured to construct types of steady motion of a frictionless

liquid, in two dimensions, which shall resemble more closely what

is observed in such cases as we have referred to. In the problems
to be considered, there is either a free surface or (what comes to

the same thing) a surface of discontinuity along which the moving

liquid is in contact with other fluid at rest. In either case, the

physical condition to be satisfied at this surface is that the

pressure must be the same at all points of it
;

this implies, in

virtue of the steady motion, and in the absence of extraneous

forces, that the velocity must also be uniform along this surface.

The most general method we possess of treating problems of

this class is based on the properties of the function % introduced

in Art. 65. In the cases we shall discuss, the moving fluid is

supposed bounded by stream-lines which consist partly of straight

walls, and partly of lines along which the resultant velocity (q)

is constant. For convenience, we may in the first instance suppose
the units of length and time to be so adjusted that this constant

velocity is equal to unity. Then in the plane of the function

the lines for which q = 1 are represented by arcs of a circle

of unit radius, having the origin as centre, and the straight

walls (since the direction of the flow along each is constant) by
radial lines drawn outwards from the circumference. The points

where these lines meet the circle correspond to the points where

the bounding stream-lines change their character.

Consider, next, the function log f. In the plane of this

function the circular arcs for which q
= I become transformed into

portions of the imaginary axis, and the radial lines into lines

parallel to the real axis. It remains then to frame an assumption
of the form

log?=/(M;)
such that the now rectilinear boundaries shall correspond, in the

*
I. c. ante p. 24.

t &quot;Zur Theorie freier Fliissigkeitsstrahlen,&quot; Crelle, t. Ixx. (1869), Ges. Abh.,

p. 416; see also Mechanik, cc. xxi., xxii. Considerable additions to the subject

have been recently made by Michell, &quot;On the Theory of Free Stream Lines,
1

Phil. Trans., A., 1890.
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plane of w, to straight lines
i/r
= constant. There are further

conditions of correspondence between special points, one on the

boundary, and one in the interior, of each area, which render the

problem determinate. These will be specified, so far as is neces

sary, as occasion arises. The problem thus presented is a particular

case of that solved by Schwarz, in the paper already cited. His

method consists in the conformal representation of each area in

turn on a half-plane*; we shall find that, in such simple cases as

we shall have occasion to consider, this can be effected by the

successive use of transformations already studied, and figured, in

these pages.

When the correspondence between the planes of f and w has

been established, the connection between z and w is to be found,

by integration, from the relation dzjdw = f. The arbitrary con

stant which appears in the result is due to the arbitrary position

of the origin in the plane of z.

75. We take first the case of fluid escaping from a large

vessel by a straight canal projecting inwards
&quot;f.

This is the two-

dimensional form of Borda s mouthpiece, referred to in Art. 25.

-I

A

-I

A X

The figure shews the forms of the boundaries in the planes of

* See Forsyth, Theory of Functions, c. xx.

t This problem was first solved by von Helmholtz, /. c. ante p. 24.
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z, f, w, and of two subsidiary variables z1} z.2 *. A reference to

the diagram on p. 77 will shew that the relation

zl
= xl + iy,

=
log f ( 1 )

transforms the boundaries in the plane of into the axis of #,

from (oo , 0) to the origin, the axis of yl from the origin to (0, 2?r),

and the line y1 27r from (0,
-

2?r) to (oo ,

-
2?r), respectively.

If we now put
22
= #2 + iy*

= cosh fa (2),

these boundaries become the portions of the axis of #2 for which

#2 &amp;gt; 1, 1 &amp;gt; #2 &amp;gt; 3, and a?2 &amp;lt; 1, respectively ;
see Art. 66, 1. It

remains to transform the figure so that the positive and negative

portions of the axis of xz shall correspond respectively to the two

bounding stream-lines, and that the point z2 =Q (marked / in the

figure) shall correspond to w oo . All these conditions are satis

fied by the assumption
w = log*2 (3),

(see Art. 62), provided the two bounding stream -lines be taken

to be ty
= 0, T/T

= TT respectively. In other words the final

breadth of the stream (where q-=l) is taken to be equal to TT.

This is equivalent to imposing a further relation between the units

of length and time, in addition to that already adopted in Art. 74,

so that these units are now, in any given case, determinate. An

arbitrary constant might be added to (3) ;
the equation, as it

stands, makes the edge A of the canal correspond to w = 0.

Eliminating zlt z.2 ,
we get f* + f~* = 2ew

, whence, finally,

? = - 1 + 2^ + 2^(^-1)* (4).

The free portion of the stream-line
\/r
= is that forwhich f is complex

and therefore
&amp;lt;/&amp;gt;

&amp;lt; 0. To trace its form we remark that along it we
have dty/ds

= q = 1, and therefore &amp;lt;&amp;gt;= $, the arc being measured

from the edge of the canal. Also f = dx/ds + idy/ds. Hence

das/ds
= - 1 + 2e~26

, dy/ds
= - 2e~s

(1
- e~-s

)* (5),

or, integrating,

x = 1 - s - e~-s
, y = -\TT +e~s (l- e~-s

)* + sin&quot;
1 e~s

. . . (6),

the constants of integration being so chosen as to make the origin
of (as, y) coincide with the point A of the first figure. For s = oo

,

* The heavy lines represent rigid boundaries, and the fine continuous lines the

free surfaces. Corresponding points in the various figures are indicated by the

same letters.
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we have y = JTT, which shews that, on our scale, the total breadth

of the canal is 2?r. The coefficient of contraction is therefore J,

in accordance with Borda s theory.

If we put docjds
= cos 0, and therefore s = log sec %0, we get

# = sin 2 10 -log sec J0, y = -%0 + sin0 (7),

by means of which the curve in question is easily traced.

Line of Symmetry.

76. The solution for the case of fluid issuing from a large
vessel by an aperture in a plane wall is analytically very similar.

The successive steps of the transformation, viz.

^1
=

logf, #3 = cosh #! ,
w = log, (1),

Z,-loff 5

A T A

-I



] 06 MOTION OF A LIQUID IN TWO DIMENSIONS. [CHAP. IV

are sufficiently illustrated by the figures. We thus get

or ? = ew + (e
aw
-l)* (2).

For the free stream-line starting from the edge A of the aperture

we have
t|r 0,

&amp;lt;/&amp;gt;

&amp;lt; 0, whence

dxjds = e~-\ dyfds = (1 e~*
M

)

or x=l-e~s
, y = (l-e-

M
)*-i 1 gi ?r

the origin being taken at the point A. If we put dx/ds = cos 6,

these may be written

x = 2 sin- ^0, y = sin 6 log tan
(J TT -f i 0) (o).

Line of Symmetry.

When 5 = x
,
we have & = 1

;
and therefore, since on our scale

the final breadth of the stream is TT, the total width of the aperture
is represented by TT+ 2; i.e. the coefficient of contraction is

7T/(7T + 2),
= 611.

* This example was given by Kirchhoff (I.e. ], and discussed more fully by Lord

Rayleigh,
&quot; Notes on Hydrodynamics,&quot; Phil. May., December 187G.
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77. The next example is of importance in the theory of the

resistance of fluids. We suppose that a steady stream impinges

directly on a fixed plane lamina, behind which is a region of dead

water bounded on each side by a surface of discontinuity.

The middle stream-line, after meeting the lamina at right

angles, branches off into two parts, which follow the lamina to the

edges, and thence the surfaces of discontinuity. Let this be the

line
-\/r
= 0, and let us further suppose that at the point of

divergence we have &amp;lt;

= 0. The forms of the boundaries in the

planes of z
t f, w are shewn in the figures. The region occupied

i

by the moving fluid corresponds to the whole of the plane of

w, which must be regarded however as bounded internally by
the two sides of the line ^ = 0,

(f&amp;gt;

&amp;lt; 0.

As in Art. 76, the transformations

zl
=

log f,

z = cosh #

give us as boundaries the segments of the axis y.2
= made by the

points a?2
= + 1. The further assumption

*-- (2),

converts these into segments of the negative portion of the axis

2/3
= 0, taken twice. The boundaries now correspond to those of

the plane w, except that to w = Q corresponds 3
= oo, and con

versely. The transformation is therefore completed by putting

w = zrl

(3).

Hence, finally, f=
(

-
I)

+
(

- I -
1)*

(4).
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For
i/r
= 0, and 0&amp;gt;&amp;lt;/-l,is

real
;
this corresponds to the portion

CA of the stream-line. To find the breadth I of the lamina on

the scale of our formulae, we have, putting $ = -&amp;lt;/&amp;gt;
,

For the free portion AI of the stream-line, we have
(f&amp;gt;

&amp;lt; 1, and

therefore, putting $ = 1 s,

Hence, taking the origin at the centre of the lamina,

x = ITT + 2 (1 + *)*, y = [5 (1+ )}*
-

log {** + (1 + *

or, putting s tan2
^,

^ = ITT + 2 sec 0, y = tan sec 6 -
log tan (JTT + J0) (7).

Line of Symmetry.

The excess of pressure at any point on the anterior face of the

lamina is, by Art. 24 (7),

the constant being chosen so as to make this vanish at the surface

of discontinuity. To find the resulting force on the lamina we
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must multiply by dx and integrate between the proper limits.

Thus since, at the face of the lamina,

we find

(9).

This result has been obtained on the supposition of special

units of length and time, or (if we choose so to regard the matter)
of a special value (unity) of the general stream-velocity, and a

special value (4 + IT) of the breadth of the lamina. It is evident

from Art. 24 (7), and from the obvious geometrical similarity of

the motion in all cases, that the resultant pressure (P , say)

will vary directly as the square of the general velocity of the

stream, and as the breadth of the Jamina, so that for an arbitrary

velocity q ,
and an arbitrary breadth I, the above result becomes

P= ^-pqjl (10)*,

or {
&quot;

78. If the stream be oblique to the lamina, making an angle a,

say, with its plane, the problem is altered in the manner indicated

in the figures.

/

^

The first two steps of the transformation are the same as before, viz.

*
Kirchhoff, 1. c. ante p. 102

;
Lord Rayleigh,

&quot; On the Resistance of Fluids,&quot;

Phil. Mag., Dec. 1876.
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and we note that for the point I which represents the parts of the stream-line

\I/
= Q for which &amp;lt;= oc

,
we now have

= e~* (7r
~

a)
,

z
l
= -

(IT
-

a) ?
,

z.
2
= - COS a.

The remaining step is then given by

+ COSa)
2=--,

leading to

Along the surface of the lamina we have \^
= and real, so that the

corresponding values of &amp;lt; range between the limits given by

(
-

)

V W cosa= 1.

The resultant pressure is to be found as in Art. 77 from the formula

-^
rf 1 1 /3 cos a
If we put - cos a= --

,

05 0-cosa

the limits of /3 are 1, and the above expression becomes

The relation between A- and /3 for any point of the lamina is given by

-^4
j
(1
-

13 cos + sin (!
-

sin

the origin being chosen so that x shall have equal and opposite values when

j3= 1, i.e. it is taken at the centre of the lamina. The breadth is therefore,

on the scale of our formulae,

4+rrsina
(iV).

sin a

We infer from (ii) and (iv) that the resultant pressure (P )
on a lamina of

breadth I,
inclined at an angle a to the general direction of a stream of

velocity ,
will be

* The solution was carried thus far by Kirchhoff (Crelle, I. c. ) ;
the subsequent

discussion is taken substantially from the paper by Lord Rayleigh.
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To find the centre of pressure we take moments about the origin. Thus

the remaining terms under the integral sign being odd functions of /3 and

therefore contributing nothing to the final result. The value of the last

integral is |TT, so that the moment

3 cos a

smd a
P X t A

4 sin 4 a

The first factor represents the total pressure ;
the abscissa x of the centre of

pressure is therefore given by the second, or in terms of the breadth,

(vi).

This shews that the point in question is on the up-stream side of the

centre. As a decreases from ^n to 0, x increases from to ^l. Hence if

the lamina be free to turn about an axis in its plane coincident with the

medial line, or parallel to this line at a distance of not more than ^ of the

breadth, the stable position will be that in which it is broadside on to the

stream.

In the following table, derived from Lord Rayleigh s paper, the column I

gives the excess of pressure on the anterior face, in terms of its value when
a= 0; whilst columns II and III give respectively the distances of the centre

of pressure, and of the point where the stream divides, from the middle point
of the lamina, expressed as fractions of the total breadth.

a
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79. An interesting variation of the problem of Art. 77 has

been discussed by Bobyleff*. A stream is supposed to impinge

symmetrically on a bent lamina whose section consists of two

equal straight lines forming an angle.

If 2a be the angle, measured on the down-stream side, the boundaries of

the plane of can be transformed, so as to have the same shape as in the

Art. cited, by the assumption

f-CTs

provided C and n be determined so as to make = 1 when =--e~
l( *&quot;~a

\ and

( = - l when = e~{ (^+al
. This gives

The problem is thus reduced to the former case, viz. we have

Hence for \^
=

0, and
0&amp;gt;$&amp;gt; 1, we have, putting 0= as before,

q

The subsequent integrations are facilitated by putting q= t^\ whence

4t

/!

i Frvn 1

.l^-inThus

We have here used the formulae

P r*

J -A

+9*--*+*i+j*
where

Since q
=

d&amp;lt;f&amp;gt; /ds, where 8s is an element of a stream-line, the breadth of

either half of the lamina is given by (iii), viz. it is

1+ ?-&quot; +^
* Journal of the Russian Physico -Chemical Society, t. xiii. (1881) ;

Wiedemann s

Bciblntter, t. vi., p. 103.
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The definite integral which occurs in this expression can be calculated from

the formula

Tx+J*(i-i*)-i*(i-i*) (vi )&amp;gt;

i:

where *() = d/dt.\ogU(t) 9
is the function introduced and tabulated by

Gauss*

The normal pressure on either half is, by the method of Art. 77,

rifl*

dt

sin ^nrr

2a2

^
?r sin a

The resultant pressure in the direction of the stream is therefore

4a2

Hence, for any arbitrary velocity qQ of the stream, and any breadth b of

either half of the lamina, the resultant pressure is

.(viii),

where L stands for the numerical quantity (v).

For a= TT, we have L 2 + 577, leading to the same result as in Art. 77(10).

In the following table, taken (with a slight modification) from Bobyleff s

paper, the second column gives the ratio P/P of the resultant pressure to

a
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that experienced by a plane strip of the same area. This ratio is a maximum
when a= 100, about, the lamina being then concave on the up-stream side.

In the third column the ratio of P to the distance (26 sin a) between the

edges of the lamina is compared with ^PSo
2

- For values of a nearly equal

to 180, this ratio tends to the value unity, as we should expect, since the

fluid within the acute angle is then nearly at rest, and the pressure-excess

therefore practically equal to |p^
2

- The last column gives the ratio of the

resultant pressure to that experienced by a plane strip of breadth 26 sin a.

80. One remark, applicable to several of the foregoing

investigations, ought not to be omitted here. It will appear at a

later stage in our subject that surfaces of discontinuity are,

as a rule, highly unstable. This instability may, however, be

mitigated by viscosity ;
moreover it is possible, as urged by

Lord Rayleigh, that in any case it may not seriously affect the

character of the motion within some distance of the points on the

rigid boundary at which the surfaces in question have their

origin.

Flow in a Curved Stratum.

81. The theory developed in Arts. 59, 60, may be readily

extended to the two-dimensional motion of a curved stratum of

liquid, whose thickness is small compared with the radii of

curvature. This question has been discussed, from the point of

view of electric conduction, by Boltzmann*, Kirchhofff, T6pler,
and others.

As in Art. 59, we take a fixed point A, and a variable point P,
on the surface defining the form of the stratum, and denote by -fy

the flux across any curve AP drawn on this surface. Then ty is a

function of the position of P, and by displacing P in any direction

through a small distance 8s, we find that the flux across the

element Bs is given by d^r/ds . 8,9. The velocity perpendicular to

this element will be ty/h&s, where h is the thickness of the

stratum, not assumed as yet to be uniform.

If, further, the motion be irrotational, we shall have in addition

a velocity-potential (/&amp;gt;,

and the equipotential curves &amp;lt;

= const, will

cut the stream-lines ty
= const, at right angles.

* Wiener Sitzungsberichte, t. lii., p. 214 (1865).

t Berl. Monatsler., July 19, 1875 ; Gen. Abh., p. 56.

Pogg. Ann., t. clx., p. 375 (1877).
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In the case of uniform thickness, to which we now proceed, it

is convenient to write ^ for -fr/h,
so that the velocity perpendicular

to an element &s is now given indifferently by d-^/ds and dcfr/dn,

Sn being an element drawn at right angles to 8s in the proper
direction. The further relations are then exactly as in the plane

problem ;
in particular the curves &amp;lt;

= const., ty
= const., drawn for

a series of values in arithmetic progression, the common difference

being infinitely small and the same in each case, will divide the

surface into elementary squares. For, by the orthogonal property,

the elementary spaces in question are rectangles, and if 8^, 8s2 be

elements of a stream-line and an equipotential line, respectively,

forming the sides of one of these rectangles, we have d^jr/ds2

=
d&amp;lt;f&amp;gt;/ds

l) whence Bs1
= Ss.2 ,

since by construction S^ = 8&amp;lt;.

Any problem of irrotational motion in a curved stratum (of

uniform thickness) is therefore reduced by orthomorphic projection

to the corresponding problem in piano. Thus for a spherical

surface we may use, among an infinity of other methods, that

of stereographic projection. As a simple example of this, we may
take the case of a stratum of uniform depth covering the surface of

a sphere with the exception of two circular islands (which may be

of any size and in any relative position). It is evident that the

only (two-dimensional) irrotational motion which can take place

in the doubly-connected space occupied by the fluid is one in

which the fluid circulates in opposite directions round the two

islands, the cyclic constant being the same in each case. Since

circles project into circles, the plane problem is that solved in

Art. 64, 2, viz. the stream-lines are a system of coaxal circles with

real limiting points (A, B, say), and the equipotential lines are

the orthogonal system passing through A, B. Returning to the

sphere, it follows from well-known theorems of stereographic pro

jection that the stream-lines (including the contours of the two

islands) are the circles in which the surface is cut by a system of

planes passing through a fixed line, viz. the intersection of the

tangent planes at the points corresponding to A and B, whilst

the equipotential lines are the circles in which the sphere is cut

by planes passing through these points*.

* This example is given by Kirchhoff, in the electrical interpretation, the

problem considered being the distribution of current in a uniform spherical

conducting sheet, the electrodes being situate at any two points A, B of the surface.

82
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In any case of transformation by orthomorphic projection,

whether the motion be irrotational or not, the velocity (dtyjdn) is

transformed in the inverse ratio of a linear element, and therefore

the kinetic energies of the portions of the fluid occupying corre

sponding areas are equal (provided, of course, the density and

the thickness be the same). In the same way the circulation

(fd^/dn.ds) in any circuit is unaltered by projection.



CHAPTER V.

IRROTATIONAL MOTION OF A LIQUID : PROBLEMS IN

THREE DIMENSIONS.

82. OF the methods available for obtaining solutions of the

equation
V2

4&amp;gt;

= .............................. (1),

in three dimensions, the most important is that of Spherical

Harmonics. This is especially suitable when the boundary condi

tions have relation to spherical or nearly spherical surfaces.

For a full account of this method we must refer to the special

treatises*, but as the subject is very extensive, and has been

treated from different points of view, it may be worth while to

give a slight sketch, without formal proofs, or with mere indica

tions of proofs, of such parts of it as are most important for our

present purpose.

It is easily seen that since the operator V 2 is homogeneous
with respect to #, y, z&amp;gt;

the part of
&amp;lt;/&amp;gt;

which is of any specified

algebraic degree must satisfy (1) separately. Any such homo

geneous solution of (1) is called a solid harmonic of the algebraic

degree in question. If &amp;lt; n be a solid harmonic of degree n, then

if we write

(2),

*
Todhunter, Functions of Laplace, &c.

y Cambridge, 1875. Ferrers, Spherical

Harmonics, Cambridge, 1877. Heine, Handbiich tier Knyelfunctionen, 2nd ed.,

Berlin, 1878. Thomson and Tait, Natural Philosophy, 2nd ed., Cambridge, 1879,

t. i., pp. 171218.
For the history of the subject see Todhunter, History of the Theories of Attrac

tion, &amp;lt;#c., Cambridge, 1873, t. ii.
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Sn will be a function of the direction (only) in which the point

(x, y, z) lies with respect to the origin ;
in other words, a function

of the position of the point in which the radius vector meets a

unit sphere described with the origin as centre. It is therefore

called a surface-harmonic of order n.

To any solid harmonic
(j&amp;gt;
n of degree n corresponds another of

degree nI, obtained by division by r2n+l
;

i.e.
&amp;lt;/&amp;gt;

= r~zn
~l

^&amp;gt;
n is

also a solution of (1). Thus, corresponding to any surface har

monic Sn ,
we have the two solid harmonics rnSn and r~n

~ l8n .

83. The most important case is when n is integral, and when

the surface-harmonic Sn is further restricted to be finite over the

unit sphere. In the form in which the theory (for this case) is

presented by Thomson and Tait, and by Maxwell*, the primary
solution of (1) is

&amp;lt;t&amp;gt;-*

= A/r (3).

This represents as we have seen (Art. 56) the velocity-potential

due to a point-source at the origin. Since (1) is still satisfied

when
&amp;lt;j)

is differentiated with respect to x, y, or z
t
we derive a

solution

IV /4\
dx^

&quot;&quot;

dy^
&quot;

dz) r
&quot;

This is the velocity-potential of a double-source at the origin,

having its axis in the direction (I, m, n}. The process can be

continued, and the general type of solid harmonic obtainable in

this way is

dn 1

, d j d d d
where -^ = 18 ,- + ms

-r + ns -j- ,

dris dx dy dz

ls ,
ms ,

ns being arbitrary direction-cosines.

This may be regarded as the velocity-potential of a certain

configuration of simple sources about the origin, the dimensions

of this system being small compared with r. To construct this

system we premise that from any given system of sources we may

*
Electricity and Magnetism, c. ix.
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derive a system of higher order by first displacing it through a

space ^h s in the direction (18 ,
ms ,

ns),
and then superposing the

reversed system, supposed displaced from its original position

through a space ^hs in the opposite direction. Thus, beginning
with the case of a simple source at the origin, a first application

of the above process gives us two sources + , 0_ equidistant from

the origin, in opposite directions. The same process applied to the

system +) 0_ gives us four sources + + ,
0_ + , 0+_, at the

corners of a parallelogram. The next step gives us eight sources at

the corners of a parallelepiped, and so on. The velocity-potential,

at a distance, due to an arrangement of 2n sources obtained in

this way, will be given by (5), where A = m hji,z ...hn ,
m! being the

strength of the original source at 0. The formula becomes exact,

for all distances r, when hly h^...hn are diminished, and m in

creased, indefinitely, but so that A is finite.

The surface-harmonic corresponding to (5) is given by

(6),,, ,

dh1 dh.2...dhn r

and the complementary solid harmonic by

^ .................. (7).

By the method of inversion *, applied to the above configura

tion of sources, it may be shewn that the solid harmonic (7) of

positive degree n may be regarded as the velocity-potential due

to a certain arrangement of 2n simple sources at infinity.

The lines drawn from the origin in the various directions

(h, ms ,
n s) are called the axes of the solid harmonic (5) or (7),

and the points in which these lines meet the unit sphere are

called the poles of the surface harmonic 8n . The formula (5)

involves 2n + 1 arbitrary constants, viz. the angular co-ordinates

(two for each) of the n poles, and the factor A. It can be shewn

that this expression is equivalent to the most general form of

surface-harmonic which is of integral order n and finite over the

unit sphere f.

*
Explained by Thomson and Tait, Natural Philosophy, Art. 515.

t Sylvester, Phil. Mag., Oct. 1876.
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84. In the original investigation of Laplace*, the equation
V 2 = is first expressed in terms of spherical polar coordinates

r, 6, a), where

x = r cos #, y = r sin 9 cos
&&amp;gt;,

z = r sin 6 sin &&amp;gt;.

The simplest way of effecting the transformation is to apply
the theorem of Art. 37 (2) to the surface of a volume-element

r$0 . r sin #&&amp;gt; . 8r. Thus the difference of flux across the two

faces perpendicular to r is

-..
dr \dr

Similarly for the two faces perpendicular to the meridian
(&&amp;gt;= const.)

we find

d d() ...

and for the two faces perpendicular to a parallel of latitude

(6 = const.)

sin 6da)

Hence, by addition,

. a d ! ^d6\ d ( .

ad&amp;lt;f)\ ,

1
&&amp;lt;j&amp;gt; ,t v

sin -y- (r
2
^- + -77; I sm - + -.

7, -^ =
. . .(1).

dr \ dr) dB \ dOJ sm da?

This might of course have been derived from Art. 82 (1) by the

usual method of change of independent variables.

If we now assume that
&amp;lt;f&amp;gt;

is homogeneous, of degree ?i, and put

we obtain

1 d / . ~dSn\ 1 d~Sn
d
d0

n\ 1 d~Sn

}
+

sin&quot;* ^
which is the general differential equation of spherical surface-

harmonics. Since the product n (n + 1) is unchanged in value

when we write n 1 for n, it appears that

= r-n-i n

will also be a solution of (1), as already stated.

* &quot; Th^orie de 1 attraction des sph6roides et de la figure des planetes,&quot; Mem.

de VAcad. roy. des Sciences, 1782; Oeuvres Completes, Paris, 1878..., t. x., p. 341
;

Mecanique Celeste, Livre 2mc
, c. ii.



84-85] SPHERICAL HARMONICS. 121

85. In the case of symmetry about the axis of x, the term

d2Sn/dco
2

disappears, and putting cos 6 = p, we get

the differential equation of zonal harmonics*. This equation,

containing only terms of two different dimensions in
//,,

is adapted
for integration by series. We thus obtain

;i
=
^{

1 _ H^^ +(- 2l( + lK +
3)^_^J

The series which here present themselves are of the kind

called hypergeometric ;
viz. if we write, after Gauss

-f*,

.....
1.2.8.7.7+1.7+2

we have

Sn = AF(- n,
i + in,

1 ^) + ^^(J- - f/i, 1 + \n, f , A6
2
)...(4).

The series (3) is of course essentially convergent when x lies between

and 1
;
but when ^=1 it is convergent if, and only if

y-a-/3&amp;gt;0.

In this case we have

F(n 8 ^ n1 (a ^ ^ 1)=

where n (z) is in Gauss s notation the equivalent of Euler s r (+!)

The degree of divergence of the series (3) when

y-a-/3&amp;lt;0,

as x approaches the value 1, is given by the theorem

F(o, fty, ^ =(1-^^^(7-0, y-8, y, x)

* So called by Thomson and Tait, because the nodal lines (Sn= 0) divide the

unit sphere into parallel belts.

t I.e. ante p. 113.

Forsyth, Differential Equations, London, 1885, c. vi.
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Since the latter series will now be convergent when #= 1, we see that

#(****)
becomes divergent as (1 x}^~

a~^
;

more precisely, for values of x infinitely nearly equal to unity, we have

* (to PI y,*)

ultimately.

For the critical case where y
- a - 8 =0,

we may have recourse to the formula

^ (a, fty, X)- (a+1,

which, with (ii), gives in the case supposed

y, *)-(l~.)r? . ^(y-a, y-0,

The last factor is now convergent when x=\, so that ^(o, 8, y, a;) is

ultimately divergent as log (! #) More precisely we have, for values of x

near this limit,

86. Of the two series which occur in the general expression

Art. 85 (2) of a zonal harmonic, the former terminates when n is

an even, and the latter when n is an odd integer. For other

values of n both series are essentially convergent for values of
/u,

between + 1, but since in each case we have 7 a /3 = 0, they

diverge at the limits fi=l, becoming infinite as log(l //r).

It follows that the terminating series corresponding to integral

values of n are the only zonal surface-harmonics which are finite

over the unit sphere. If we reverse the series we find that both

these cases (n even, and n odd,) are included in the formula

1 - 8 - 6
-&amp;lt;

2 -1
&amp;gt;

2.4.(2n-l)(2)l-3)

* For n even this corresponds to A =
(
-

)
n ~J-

,
B =

;
whilst for n

2i 4 . . . 7Z-

odd we have 4 = 0, B = (
-

)*&amp;lt;-i&amp;gt;

^
See Heine .

* [ - PP- 12
&amp;gt;

147 -
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where the constant factor has been adjusted so as to make
Pn fa) = 1 for

//,
= !. The formula may also be written

1 rJn

p&amp;lt;^=^-vn
...............

&amp;lt;

2
&amp;gt;*

The series (1) may otherwise be obtained by development of

Art. 83 (6), which in the case of the zonal harmonic assumes the

form

As particular cases of (2) we have

The function Pn (p} was first introduced into analysis by

Legendref as the coefficient of hn in the expansion of

(1
- 2ph + h*)-*.

The connection of this with our present point of view is that if

&amp;lt;/&amp;gt;

be the velocity-potential of a unit source on the axis of x at

a distance c from the origin, we have, on Legendre s definition,

for values of r less than c,

=
(C

3 _
2/icr + r2

)~i

Each term in this expansion must separately satisfy V2 = 0, and

therefore the coefficient Pn must be a solution of Art. 85 (1).

Since Pn is obviously finite for all values of
/it,

and becomes equal
to unity for /*

=
1, it must be identical with (1).

For values of r greater than c, the corresponding expansion is

* The functions P
1 ,P.2 ,...P7 have been tabulated by Glaisher, for values of

/j.

at intervals of -01, Brit. Ass. Reports, 1879.

+ &quot; Sur 1 attraction des spheroides homogenes,&quot; Mem. des Savans Etrangers, t. x.,

1785.
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We can hence deduce expressions, which will be useful to us

later, for the velocity-potential due to a double-source of unit

strength, situate on the axis of a? at a distance c from the origin,

and having its axis pointing from the origin. This is evidently

equal to dcfr/dc, where
&amp;lt;/&amp;gt;

has either of the above forms; so that

the required potential is, for r &amp;lt; c,

and for r &amp;gt; c,

The remaining solution of Art. 85 (1), in the case of n integral,
can be put into the more compact form*

where

This function Qn (yu,) is sometimes called the zonal harmonic of

the second kind.

Thus

-
3/t) log

}

+ -

2 4 n
* This is equivalent to Art. 84 (4) with, for n even, A = 0, B = (

-
)i .&quot; ;

1 . o. ..(/I 1;

whilst for n odd we have ^^(-)^(+D
2 -

tl &quot;^

n ~ 1
-

,
B = 0. See Heine, t. i.,

pp. 141, 147.
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87. When we abandon the restriction as to symmetry about

the axis of x, we may suppose 8n ,
if a finite and single-valued

function of
&&amp;gt;,

to be expanded in a series of terms varying as cos so)

and sin sw respectively. If this expansion is to apply to the whole

sphere (i.e. from o&amp;gt;
= to o&amp;gt;

=
2?r), we may further (by Fourier s

theorem) suppose the values of s to be integral. The differential

equation satisfied by any such term is

If we put

this takes the form

which is suitable for integration by series. We thus obtain

(n-s-2)(n-s)(n+s+l)(n+s+3) 4

1.2.3.4 M

1.2.3,4.5
_

&quot;-&quot;

the factor cos sa&amp;gt; or sin sea being for the moment omitted. In the

hypergeometric notation this may be written

J5- iw, 1 + J* + iw, f , p?)} ...... (3).

These expressions converge when p? &amp;lt; 1, but since in each

case we have

the series become infinite as (1 p?}~
8 at the limits //,= + 1, unless

they terminate*. The former series terminates when n s is an

even, and the latter when it is an odd integer. By reversing the

* Lord Rayleigh, Theory of Sound, London, 1877, Art. 338.
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series we can express both these finite solutions by the single

formula

-----
4

2 . 4 . (2n
-

1) (2n
-

3)

On comparison with Art. 86 (1) we find that

.(4).

That this is a solution of (1) may of course be verified indepen

dently.

Collecting our results we learn that a surface-harmonic which

is finite over the unit sphere is necessarily of integral order, and is

further expressible, if n denote the order, in the form

Sn = A Pn O) + 2 S

S^(A S cos 50) + Bs sin sa&amp;gt;)
Tn*

(/a)... (6),

containing 2n + 1 arbitrary constants. The terms of this involving

&amp;lt;w are called tesseral harmonics, with the exception of the last

two, which are given by the formula

(1 fj?y*
n
(A n cos no) + Bn sin nco),

and are called sectorial harmonics
;
the names being suggested

by the forms of the compartments into which the unit sphere is

divided by the nodal lines 8n = 0.

The formula for the tesseral harmonic of rank s may be

obtained otherwise from the general expression (6) of Art. 83

by making n s out of the n poles of the harmonic coincide at

the point 6 = of the sphere, and distributing the remaining s

poles evenly round the equatorial circle Q = \ir.

The remaining solution of (1), in the case of n integral may be

put in the form

Sn = (A s cos so) + B8 sin sco) Uns
(/i) ............ (7),

where Z7W
-
(/,)

=
(1
-^^ .................. (8)*.

This is sometimes called a tesseral harmonic of the second kind.

* A table of the functions Qn (/j.), Un*
(/*),

for various values of n and s, has been

given by Bryan, Proc. Camb. Phil. Soc., t. vi., p. 297.
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88. Two surface-harmonics S, S are said to be conjugate when

ffSS dv = (1),

where SOT is an element of surface of the unit sphere, and the

integration extends over this sphere.

It may be shewn that any two surface-harmonics, of different

orders, which are finite over the unit sphere, are conjugate, and also

that the 2n + 1 harmonics of any given order n, of the zonal, tes-

seral, and sectorial types specified in Arts. 86, 87 are all mutually

conjugate. It will appear, later, that the conjugate property is

of great importance in the physical applications of the subject.

Since SOT = sin 6&6$a) =
S//.Sa&amp;gt;,

we have, as particular cases of

this theorem,

f Pm (M)&amp;lt;^
=

(2),

(3),

and I Tm*
(LL) . Tn*

(/x) dp = (4),
J -i

provided m, n are unequal.

For m n, it may be shewn that

i 9

Finally, we may quote the theorem that any arbitrary
function of the position of a point on the unit sphere can be

expanded in a series of surface-harmonics, obtained by giving n
all integral values from to oo

,
in Art. 87 (6). The formulae (5)

and (6) are useful in determining the coefficients in this expansion.
For the analytical proof of the theorem we must refer to the

special treatises
;
the physical grounds for assuming the possibility

of this and other similar expansions will appear, incidentally, in

connection with various problems.

89. As a first application of the foregoing theory let us

suppose that an arbitrary distribution of impulsive pressure is

applied to the surface of a spherical mass of fluid initially at rest.

*
Ferrers, p. 86.
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This is equivalent to prescribing an arbitrary value of
&amp;lt;f&amp;gt;

over the

surface
;
the value of &amp;lt; in the interior is thence determinate,

by Art. 40. To find it, we may suppose the given surface value

to be expanded, in accordance with the theorem quoted in Art. 88,

in a series of surface-harmonics of integral order, thus

= S + S1 + flf3 +...+ Sn + .................. (1).

The required value is then

&amp;lt;j,

= Sa+
r
-S,+

r~X2 +...+
r

^Sn + ............ (2),

for this satisfies V 2

&amp;lt;/&amp;gt;=0,
and assumes the prescribed form (1)

when r a, the radius of the sphere.

The corresponding solution for the case of a prescribed value

of
(f&amp;gt;

over the surface of a spherical cavity in an infinite mass of

liquid initially at rest is evidently

a a* a3 an+l

Combining these two results we get the case of an infinite

mass of fluid whose continuity is interrupted by an infinitely thin

vacuous stratum, of spherical form, within which an arbitrary

impulsive pressure is applied. The values (2) and (3) of
&amp;lt;j&amp;gt;

are of

course continuous at the stratum, but the values of the normal

velocity are discontinuous, viz. we have, for the internal fluid,

and for the external fluid

g = -2( + !)/.

The motion, whether internal or external, is therefore that due

to a distribution of simple sources with surface-density

.......................
4?r a

over the sphere. See Art. 58.

90. Let us next suppose that, instead of the impulsive

pressure, it is the normal velocity which is prescribed over the

spherical surface; thus

............... (l),
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the term of zero order being necessarily absent, since we must

have

on account of the constancy of volume of the included mass.

The value of
&amp;lt;/&amp;gt;

for the internal space is of the form

MSn + ......... (3),

for this is finite and continuous, and satisfies V 2
&amp;lt;

=
0, and the

constants can be determined so as to make
d(f&amp;gt;/dr

assume the

given surface-value (1); viz. we have nAn a
n~l = \. The required

solution is therefore

The corresponding solution for the external space is found in

like manner to be

The two solutions, taken together, give the motion produced
in an infinite mass of liquid which is divided into two portions

by a thin spherical membrane, when a prescribed normal velocity is

given to every point of the membrane, subject to the condition (2).

The value of
cf&amp;gt; changes from aSn/n to aZSn/(n +1),

as we cross the membrane, so that the tangential velocity is now

discontinuous. The motion, whether inside or outside, is that

due to a double-sheet of density

See Art. 58.

The kinetic energy of the internal fluid is given by the

formula (4) of Art. 44, viz.

*r ............ (6),

the parts of the integral which involve products of surface-

harmonics of different orders disappearing in virtue of the

conjugate property of Art. 88.

L. 9
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For the external fluid we have

*dK ...... (7).

91. A particular, but very important, case of the problem of

the preceding Article is that of the motion of a solid sphere in an

infinite mass of liquid which is at rest at infinity. If we take

the origin at the centre of the sphere, and the axis of x in the

direction of motion, the normal velocity at the surface is

u%/r, = u cos 0, where u is the velocity of the centre. Hence

the conditions to determine
(/&amp;gt;

are (1) that we must have V 2
&amp;lt;

=

everywhere, (2) that the space-derivatives of $ must vanish at

infinity, and (3) that at the surface of the sphere (r
=

a), we must

have

.. ..(1).dr

The form of this suggests at once the zonal harmonic of the first

order
;
we therefore assume

,
d 1 , cos 6

$ = ^-T- - = -A r .

ax r r-

The condition (1) gives 2A/a? = u, so that the required solution

is $ = Jucos0 ..................... (2)*.

It appears on comparison with Art. 56 (4) that the motion of

the fluid is the same as would be produced by a double-source of

strength -Jua
3
,
situate at the centre of the sphere. For the forms

of the stream-lines see p. 137.

To find the energy of the fluid motion we have

T cos2
. 27ra sin d . add

(3),

if m =
f7r/oa

3
. It appears, exactly as in Art. 68, that the effect of

the fluid pressure is equivalent simply to an addition to the inertia

*
Stokes,

&quot; On some cases of Fluid Motion,&quot; Camb. Trans, t. viii. (1843) ;

Math, and Pliys. Papers, t. i., p. 41.

Dirichlet,
&quot; Ueber einige Falle in welchen sich die Bewegung eines festen Korpers

in einem incompressibeln fliissigen Medium theoretisch bestimmen liisst,&quot; Berl.

Monatsber., 1852.
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of the solid, the amount of the increase being now half the mass

of the fluid displaced*.

Thus in the case of rectilinear motion of the sphere, if no

external forces act on the fluid, the resultant pressure is equiva

lent to a force

in the direction of motion, vanishing when u is constant. Hence

if the sphere be set in motion and left to itself, it will continue to

move in a straight line with constant velocity.

The behaviour of a solid projected in an actual fluid is of

course quite different
;
a continual application of force is necessary

to maintain the motion, and if this be not supplied the solid is

gradually brought to rest. It must be remembered however, in

making this comparison, that in a perfect fluid there is no

dissipation of energy, and that if, further, the fluid be incompres

sible, the solid cannot lose its kinetic energy by transfer to the

fluid, since, as we have seen in Chapter in., the motion of the

fluid is entirely determined by that of the solid, and therefore

ceases with it.

If we wish to verify the preceding results by direct calculation from the

formula

we must remember, as in Art. 68, that the origin is in motion, and that the

values of r and 6 for a fixed point of space are therefore increasing at the

rates - u cos 6, and u sin 0/rt respectively. We thus find, for r= a,

(ii).

The last three terms are the same for surface-elements in the positions 6 and

TT- 6
;
so that, when u is constant, the pressures on the various elements of the

anterior half of the sphere are balanced by equal pressures on the correspond

ing elements of the posterior half. But when the motion of the sphere is

being accelerated there is an excess of pressure on the anterior, and a defect of

pressure on the posterior half. The reverse holds when the motion is being
retarded. The resultant effect in the direction of motion is

%7ra sin 6 . ad6 .p cos 0,
o

which is readily found to be equal to - ^npa
3
du/dt, as before.

*
Green, &quot;On the Vibration of Pendulums in Fluid Media,&quot; Edin. Trans.,

1833
; Math. Papers, p. 322. Stokes, I c.

92
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92. The same method can be applied to find the motion

produced in a liquid contained between a solid sphere and a fixed

concentric spherical boundary, when the sphere is moving with

given velocity u.

The centre of the sphere being taken as origin, it is evident,

since the space occupied by the fluid is limited both externally

and internally, that solid harmonics of both positive and negative

degrees are admissible; they are in fact required, in order to

satisfy the boundary conditions, which are

d$/dr = u cos 0,

for r = a, the radius of the sphere, and

d&amp;lt;j&amp;gt;jdr

= 0,

for r = b, the radius of the external boundary, the axis of x being
as before in the direction of motion.

We therefore assume

and the conditions in question give

whence A = r. -u, B = J -u (2).
t&amp;gt;

3 a3 bB a3

The kinetic energy of the fluid motion is given by

Wmt-ollt^dS,

the integration extending over the inner spherical surface, since

at the outer we have d^jdr = 0. We thus obtain

where m stands for fTrpa
3
,
as before. It appears that the effective

addition to the inertia of the sphere is now

*
Stokes, 7. c. ante p. 130.
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As b diminishes from oo to a, this increases continually from

to oo
,
in accordance with Lord Kelvin s minimum theorem (Art. 45).

In other words, the introduction of a rigid spherical partition in an

infinite mass of liquid acts as a constraint increasing the kinetic

energy for a given velocity, and so virtually increasing the inertia

of the system.

93. In all cases where the motion of a liquid takes place in a

series of planes passing through a common line, and is the same in

each such plane, there exists a stream-function analogous in some

of its properties to the two-dimensional stream-function of the

last Chapter. If in any plane through the axis of symmetry we

take two points A and P, of which A is arbitrary, but fixed, while

P is variable, then considering the annular surface generated by

any line AP, it is plain that the flux across this surface is a

function of the position of P. Denoting this function by 27n|r,

and taking the axis of x to coincide with that of symmetry, we

may say that ^r is a function of x and w, where x is the abscissa of

P, and w, = (y^ + z2

)^, is its distance from the axis. The curves

i|r
= const, are evidently stream-lines.

If P be a point infinitely near to P in a meridian plane, it

follows from the above definition that the velocity normal to PP
is equal to

27TOT.PP&quot;

whence, taking PP parallel first to -or and then to x,

1 e 1 e

J~ .................. (1),dx

where u and u are the components of fluid velocity in the directions

of x and -BT respectively, the convention as to sign being similar to

that of Art. 59.

These kinematical relations may also be inferred from the

form which the equation of continuity takes under the present

circumstances. If we express that the total flux into the annular

space generated by the revolution of an elementary rectangle
is zero, we find

ST = 0,
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which shews that tzru . dx vru . diz

is an exact differential. Denoting this by d^jr we obtain the

relations (1)*.

So far the motion has not been assumed to be irrotational
;

the condition that it should be so is

dv du

dx dtp

which leads to

The differential equation of
(f&amp;gt;

is obtained by writing

dd&amp;gt; dd&amp;gt;

u = -p- ,
v =

dx d^

in (2), viz. it is *+* + ?. 1=0 (4).

It appears that the functions
&amp;lt;/&amp;gt;

and
i/r

are not now (as they were

in Art. 62) interchangeable. They are, indeed, of different dimen

sions.

The kinetic energy of the liquid contained in any region

bounded by surfaces of revolution about the axis is given by

**--&amp;lt;
--&amp;lt;//*

(5),

Bs denoting an element of the meridian section of the bounding
surfaces, and the integration extending round the various parts of

this section, in the proper directions. Compare Art. 61.

* The stream-function for the case of symmetry about an axis was introduced

in this manner by Stokes, &quot;On the Steady Motion of Incompressible Fluids,&quot;

Canib. Trans., t. vii. (1842) ; Math, and Phys. Papers, t. i., p. 14. Its analytical

theory has been treated very fully by Sampson, &quot;On Stokes Current-Function,&quot;

Phil. Trans. A., 1891.
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94. The velocity-potential due to a unit source at the origin
is

* = l/r.............................. (1).

The flux through any closed curve is in this case numerically equal
to the solid angle which the curve subtends at the origin. Hence
for a circle with Ox as axis, whose radius subtends an angle 6 at 0,

we have, attending to the sign,

Omittin the constant term we have

f = -=5r (2).r dx

The solutions corresponding to any number of simple sources

situate at various points of the axis of x may evidently be super

posed ;
thus for the double-source

, _ d 1 _ cos 6

dx r r2 ^

i i
uTT Tjf&quot; Sin&quot; (j

we have ^r = . = =
r r

And, generally, to the zonal solid harmonic of degree -?i 1,

viz. to

( r
corresponds ^ = A - - (6)*

dxn+l

A more general formula, applicable to harmonics of any

degree, fractional or not, may be obtained as follows. Using
spherical polar coordinates r, 0, the component velocities along
r, and perpendicular to r in the plane of the meridian, are

found by making the linear element PP of Art. 93 coincide

successively with rSO and 8r, respectively, viz. they are

r sin 6 rdO r sin 6 dr

*
Stefan,

&quot; Ueber die Kraftlinieii eines um erne Axe symmetrischen Feldes,&quot;

Wied. Ann., t. xvii. (1882).
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Hence in the case of irrotational motion we have

smM0~ dr dr~ M
Thus if $ = rnSn.............................. (9),

where Sn is any surface-harmonic symmetrical about the axis, we

have, putting //,
= cos 6,

d* _ nrn+iS
d_- rn Q _.^ d8

d^~
*n dr~ ^ }

d^

The latter equation gives

which must necessarily also satisfy the former; this is readily

verified by means of Art. 85 (1).

Thus in the case of the zonal harmonic Pn ,
we have as

corresponding values

and * = r PB Gt), * =- &quot;(l -tf ...... (12),

of which the latter must be equivalent to (5) and (6). The same

relations hold of course with regard to the zonal harmonic of the

second kind, Qn .

95. We saw in Art. 91 that the motion produced by a solid

sphere in an infinite mass of liquid was that due to a double-

source at the centre. Comparing the formula? there given with

Art. 94 (4), it appears that the stream-function due to the

sphere is

^ = -iU -sin2
........................ (1).

The forms of the stream-lines corresponding to a number of equidistant

values of \jf
are shewn on the opposite page. The stream-lines relative to the

sphere are figured in the diagram near the end of Chapter vii.
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Again, the stream-function due to two double-sources having
their axes oppositely directed along the axis of x

t
will be of the

form

where rly r.2 denote the distances of any point from the positions,

P! and P2 , say, of the two sources. At the stream-surface i/r
=

we have
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i.e. the surface is a sphere in relation to which P1 and P2 are

inverse points. If be the centre of this sphere, and a its radius,

we readily find

.................. (3).

This sphere may evidently be taken as a fixed boundary to the

fluid on either side, and we thus obtain the motion due to a

double-source (or say to an infinitely small sphere moving along

Ox) in presence of a fixed spherical boundary. The disturbance

of the stream-lines by the fixed sphere is that due to a double-

source of the opposite sign placed at the inverse point, the ratio

of the strengths being given by (3)*. This fictitious double-

source may be called the image of the original one.

96. Rankine employed -f-
a method similar to that of Art. 71

to discover forms of solids of revolution which will by motion

parallel to their axes generate in a surrounding liquid any given

type of irrotational motion symmetrical about an axis.

The velocity of the solid being u, and 8s denoting an element

of the meridian, the normal velocity at any point of the surface is

udvr/ds, and that of the fluid in contact is given by d^/^ds.

Equating these and integrating along the meridian, we have

v/r
= - lutzr 2 + const...................... (1).

If in this we substitute any value of ^ satisfying Art. 93 (3), we
obtain the equation of the meridian curves of a series of solids,

each of which would by its motion parallel to x give rise to

the given system of stream-lines.

In this way we may readily verify the solution already obtained

for the sphere ; thus, assuming

+ = Au*/r* ........................... (2),

we find that (1) is satisfied for r = a, provided

A = -ua* .......................... (3),

which agrees with Art. 95 (1).

* This result was given by Stokes,
&quot; On the Resistance of a Fluid to Two Oscil

lating Spheres,&quot; Brit. Ass. Report, 1847 ;
Math, and Plnjs. Papers, t. i., p. 230.

t &quot;On the Mathematical Theory of Stream-Lines, especially those with Four

Foci and upwards,&quot; Phil. Trans. 1871, p. 267.



95-97] RANKINE S METHOD. 139

97. The motion of a liquid bounded by two spherical surfaces

can be found by successive approximations in certain cases. For

two solid spheres moving in the line of centres the solution is

greatly facilitated by the result given at the end of Art. 95, as to

the image of a double-source in a fixed sphere.

Let A, B be the centres, and let u be the velocity of A towards B, u that

of B towards A. Also, P being any point, let AP= r
t
BP= r

,
FAB=6,

PBA = & . The velocity-potential will be of the form

U&amp;lt; + U &amp;lt; (i),

where the functions and &amp;lt; arc to be determined by the conditions that

V2 =
0, v2

&amp;lt;

=
(ii),

throughout the fluid
;

that their space-derivatives vanish at infinity ;

and that

( ,... N=-0 ...... , .................... (m),

over the surface of A, whilst

over the surface of B. It is evident that
&amp;lt;p

is the value of the velocity-

potential when A moves with unit velocity towards /?, while B is at rest
;
and

similarly for
&amp;lt;$&amp;gt;

.

To find dj, we remark that if B were absent the motion of the fluid would

be that due to a certain double-source at A having its axis in the direction

AB. The theorem of Art. 95 shews that we may satisfy the condition of zero

normal velocity over the surface of B by introducing a double-source, viz. the

image of that at A in the sphere B. This image is at fflJ the inverse

point of A with respect to the sphere B ;
its axis coincides with AB, and its

strength /^ is given by

where
/*,
=a3

,
is that of the original source at A. The resultant motion due

to the two sources at A and H
l

will however violate the condition to be
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satisfied at the surface of the sphere J, and in order to neutralize the normal

velocity at this surface, due to Hlt we must superpose a double-source at H%,

the image of H^ in the sphere A. This will introduce a normal velocity at the

surface of B, which may again be neutralized by adding the image of H2
in 2?,

and so on. If p,^ ju2 , /*... be the strengths of the successive images, and

fit /2/3 &quot; then* distances from A, we have, if AB=c,

(V),

and so on, the law of formation being now obvious. The images continually

diminish in intensity, and this very rapidly if the radius of either sphere is

small compared with the shortest distance between the two surfaces.

The formula for the kinetic energy is

provided

where the suffixes indicate over which sphere the integration is to be effected.

The equality of the two forms of Jf follows from Green s Theorem (Art. 44.)

The value of near the surface of ^1 can be written down at once from the

results (6) and (7) of Art. 86, viz. we have

the remaining terms, involving zonal harmonics of higher orders, being omitted,

as they will disappear in the subsequent surface-integration, in virtue of the

conjugate property of Art. 88. Hence, putting d(f&amp;gt;/dn= cos$, we find with

the help of (v)

afibGa363

1+3 -o&amp;gt;,+3 --,

It appears that the inertia of the sphere A is in all cases increased by the

presence of a fixed sphere B. Compare Art. 92.
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The value ofN may be written down from symmetry, viz. it is

*-)

141

where

and so on.

To calculate M we require the value of near the surface of the sphere A \

this is due to double-sources //, p,/, p2 &amp;gt; Psi-- a^ distances c, cf^ c
/&quot;2 ,

c-/3 ,
... from A, where

(xii),

and so on. This gives, for points near the surface of .4

&amp;lt;

/
)/=

C/^i + /*s + /*B + .2^

Hence

L
CT3&3 6&6 I^( /̂)3V/3^37 2̂T(^^

When the ratios a/c and 6/c are both small we have

approximately.

(xv),*

* To this degree of approximation these results may also be obtained by the

method of the next Art.
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If a, but not necessarily 6, is small compared with the shortest distance

between the spherical surfaces, we have

approximately. By putting c b + k, and then making I= oo
,
we get the

formula for a sphere moving perpendicularly to a fixed plane wall at a

distance h, viz.

tf ........................ (xvii),

a result due to Stokes.

This also follows from (vi) and (xv), by putting b= a, u = U, c=2k, in which

case the plane which bisects AB at right angles is evidently a plane of

symmetry, and may therefore be taken as a fixed boundary to the fluid on

either side.

98. When the spheres are moving at right angles to the line

of centres the problem is more difficult; we shall therefore content

ourselves with the first steps in the approximation, referring, for a

more complete treatment, to the papers cited below.

Let the spheres be moving with velocities v, v in parallel directions at

right angles to A, B, and let
?*, $, o&amp;gt; and /, 6

,
be two systems of spherical

polar coordinates having their origins at A and B respectively, and their polar

axes in the directions of the velocities v, v . As before the velocity-potential

will be of the form

with the surface conditions

and
f,

= 0, f=-cos ,for/=i.

If the sphere B were absent the velocity-potential due to unit velocity of

A would be

Since r cos B=r cos 6
,
the value of this in the neighbourhood of B will be

approximately. The normal velocity due to this will be cancelled by the

addition of the term
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which, in the neighbourhood of A becomes equal to

,
363

J 6-rcos&amp;lt;9,

nearly. To rectify the normal velocity at the surface of A
,
we add the term

T
a663 cos d

s -jT ~^-

Stopping at this point, and collecting our results, we have, over the surface

of A,

and at the surface of Z?,

Hence if we denote by P, $, R the coefficients in the expression for the

kinetic energy, viz.

r r -,7j. / .T7,s\ \

we have P

/ J

The case of a sphere moving parallel to a fixed plane boundary, at a

distance A, is obtained by putting b = a, v= v
,
c= 2A, and halving the conse

quent value of T
;
thus

This result, which was also given by Stokes, may be compared with that of

Art. 97 (xvii)*.

99. Another interesting problem is to calculate the kinetic

energy of any given irrotational motion in a cyclic space bounded

by fixed walls, as disturbed by a solid sphere moving in any
manner, it being supposed that the radius of the sphere is small

* For a fuller analytical treatment of the problem of the motion of two spheres

we refer to the following papers : W. M. Hicks,
&quot; On the Motion of Two Spheres in

a Fluid,&quot; Phil. Trans., 1880, p. 455; E. A. Herman, &quot; Cn the Motion of Two

Spheres in Fluid,&quot; Quart. Journ. Math., t. xxii. (1887). See also C. Neumann,

Hydrodynamische Untersuchungen, Leipzig, 1883.
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in comparison with the distance from it of the nearest portion of

the original boundary.

Let be the velocity-potential of the motion when the sphere is absent,

and Kj, K
2 ,,..

the circulations in the various circuits. The kinetic energy of

the original motion is therefore given by Art. 55 (5), viz.

where the integrations extend over the various barriers, drawn as in Art. 48.

If we denote by + $ the velocity-potential in presence of the sphere, and

by T the energy of the actual motion, we have

the cyclic constants of $ being zero. The integration in the first term may
be confined to the surface of the sphere, since we have

d&amp;lt;f)/dn
= and

d(f&amp;gt; /dn=
over the original boundary. Now, by Art. 54 (4),

so that (ii) reduces to

_ ~ I I ^ (9A j_^ /7^ _ / / A ~5?
cfoi

Let us now take the centre of the sphere as origin. Let a be the radius of

the sphere, and u, v, W the components of its velocity in the directions of the

coordinate axes
; further, let w

,
v

,
WQ be the component velocities of the fluid

at the position of the centre, when the sphere is absent. Hence, in the

neighbourhood of the sphere, we have, approximately

where the coefficients A, B, C are to be determined by the condition that

for r= a. This gives

Again, -2-^- !?= (%+ u) + -(^o+ v) + -
(^ +w) (

v
^)&amp;gt;

when r=a. Hence, substituting from (iv), (v), and (vi), in
(iii), and re

membering that SJx*dS= %a
2

. 4-rra
2

, jjyzdS=Ot &c., &c.,

we find
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The dynamical consequences of the formula (vii) will be considered more

fully in Art. 140
;
but in the meantime we may note that if the sphere be

held at rest, so that u, V, W= 0, it experiences a force tending to diminish the

energy of the system, and therefore urging it in the direction in which the

square of the (undisturbed) fluid velocity, w
2+V+w

o
2

&amp;gt;

most rapidly increases*.

Hence, by Art. 38, the sphere, if left to itself, cannot be in stable equilibrium

at any point in the interior of the fluid mass.

Ellipsoidal Harmonics.

100. The method of Spherical Harmonics can also be adapted
to the solution of the equation

V^ = .............................. (1),

under boundary-conditions having relation to ellipsoids of revo

lution f.

Beginning with the case where the ellipsoids are prolate, we

write

y OT cos a), z = tar sin co, ......... (2).

where -OT = k sin 6 sinh TJ
= k (1

-
ffi (f

2 -
1)*.

The surfaces f = const., //,
= const., are confocal ellipsoids, and

hyperboloids of two sheets, respectively, the common foci being the

points (+ k, 0, 0). The value of f may range from 1 to oo
, whilst

//,
lies between + 1. The coordinates

//-, f, co form an orthogonal

system, and the values of the linear elements SsM , Ss^, sw described

by the point (x, y, z) when /*,, f, co separately vary, are respectively,

.
7=

I)* Bto .................. (3).

To express (1) in terms of our new variables we equate to zero

the total flux across the walls of a volume element ds^ds^ds^,
and obtain

d
fdd&amp;gt;

* * \ * d /dd&amp;gt; . . \ ^ d /d6 . . \ .

j
-~ 08f$8m OM+ jvl j 0*0* }& + -T- 1 -T- ^S,SsA Ba&amp;gt;

= 0,
d/A\d% J d\ds{ &quot;J d&\d8m V
* Sir W. Thomson,

&quot; On the Motion of Eigid Solids in a Liquid &c.,&quot; Phil.

Mag. , May, 1873.

t Heine, &quot;Ueber einige Aufgaben, welche auf partielle Differentialgleichungen

fiihren,&quot; Crelle, t. xxvi., p. 185 (1843); Kugelfunktionen, t. ii., Art. 38. See also

Ferrers, Spherical Harmonics, c. vi.

L. 10
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or, on substitution from (3),

This may also be written

101. If &amp;lt; be a finite function of
//,

and to from /z
= 1 to

//,
= + 1 and from o&amp;gt;

= to w = 2?r, it may be expanded in a series

of surface harmonics of integral orders, of the types given by Art.

87 (6), where the coefficients are functions of f ;
and it appears on

substitution in (4) that each term of the expansion must satisfy

the equation separately. Taking first the case of the zonal har

monic, we write

&amp;lt;t&amp;gt;

= Pn(fi).Z........................... (5),

and on substitution we find, in virtue of Art. 85 (1),

(6),

which is of the same form as the equation referred to. We thus

obtain the solutions

* = Pn(/).Pn(?) ........................ (7),

and
tf&amp;gt;

= PG*).Q(?) ........................ (8),

where

rn \

i L. i . \ &quot;

i
- / \ i

*- / if n g

1.3. ..(2/1+1) I&quot; 2(2?z + 3)

~*
~t&amp;gt; A. /Si i O\ /O ~i K\ y +

The solution (7) is finite when f=l, and is therefore adapted
to the space within an ellipsoid of revolution

;
whilst (8) is infinite

for f=l, but vanishes for f=oo, and is appropriate to the

*
Ferrers, c. v.

; Todhunter, c. vi.; Forsyth, Differential Equations, Arts. 9699.
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external region. As particular cases of the formula (9) we
note

The definite-integral form of Qn shews that

(10),

where the accents indicate differentiations with respect to f.

The corresponding expressions for the stream-function are

readily found
; thus, from the definition of Art. 93,

&amp;lt;ty

=s _]L_&amp;lt;ty &amp;lt;ty__d

dsf -& ds^ ds^~^ds^
...............

whence

Thus, in the case of (7), we have

whence

The same result will follow of course from the second of equations

(12).

In the same way, the stream-function corresponding to (8) is

102. We can apply this to the case of an ovary ellipsoid

moving parallel to its axis in an infinite mass of liquid. The

elliptic coordinates must be chosen so that the ellipsoid in question

102
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is a member of the confocal family, say that for which f= -

Comparing with Art. 100 (2) we see that if a, c be the polar and

equatorial radii, and e the eccentricity of the meridian section we

must have

The surface condition is given by Art. 96 (1), viz. we must

have

^ = -iu&2 (l-^2

)(f
2

-l) + const............. (1),

for = f - Hence putting n= 1 in Art. 101 (14), and introducing

an arbitrary multiplier A, we have

- ...... (2),

with the condition

bo
~

1 - e
2 2e

3
1

The corresponding formula for the velocity-potential is

(4).

The kinetic energy, and thence the inertia-coefficient due to

the fluid, may be readily calculated, if required, by the formula (5)

of Art. 93.

103. Leaving the case of symmetry, the solutions of V 2

$ =
when $ is a tesseral or sectorial harmonic in

/j,
and w are found by

a similar method to be of the types

where, as in Art. 87,

Tns

(M) = (1 ffi
s

/; (3),x/x * / rt i S \ f*



102-103] MOTION OF AN OVARY ELLIPSOID. 149

whilst (to avoid imaginaries) we write

and 0.*

It may be shewn that

As examples we may take the case of an ovary ellipsoid

moving parallel to an equatorial axis, say that of y, or rotating

about this axis.

In the former case, the surface-condition is

d(f) _ dy

dt
= v

d?

for = f ,
where v is the velocity of translation, or

This is satisfied by putting n = l, 5 = 1, in (2), viz.

the constant A being given by

In the case of rotation about Oy, if q be the angular velocity,

we must have

d&amp;lt;t&amp;gt; f doc dz\
_L ft I f ff I

.74* *i ^ J 4-
^ J* &amp;gt;

for?=f or = ^q ./.(l-^sino, (10).
a b Vbo */*

Putting n = 2, 5 = 1, in the formula (2) we find

^ = Af. (1
- /)* (?

2 -
1)1

{f
flogjy

- 3 -^j sin ... (11),

-4 being determined by comparison with (10).
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104. When the ellipsoid is of the oblate or
&quot;

planetary&quot;

form, the appropriate coordinates are given by

x = k cos 6 sinh 77
=

&/*f, ]

?/
= -57 cos

,
z = w sin

a&amp;gt;,

\ (1).

where w = k sin cosh rj
= k(I

-
/x,

2

)* (f
2 + 1)*. j

Here f may range from to oo (or, in some applications from

oo through to + oo
),

whilst
//,

lies between + 1. The quadrics

f= const., ft
= const, are planetary ellipsoids, and hyperboloids of

revolution of one sheet, all having the common focal circle x = 0,

& = k. As limiting forms we have the ellipsoid f = 0, which

coincides with the portion of the plane x = for which cr &amp;lt; k, and

the hyperboloid ^ = coinciding with the remaining portion of

this plane.

With the same notation as before we find

l)^co .................. (2),

so that the equation of continuity becomes, by an investigation

similar to that of Art. 100,

or

d

This is of the same form as Art. 100 (4), with if in place of f,

and the same correspondence will of course run through the

subsequent formulaB.

In the case of symmetry about the axis we have the solutions

= Pn G*)..pn (f) ..................... (4),

and
&amp;lt;f

= PM 0*).gn (f) ..................... (5),

where
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and qn (?)

=
(-)&quot;

[P.
(?) cot- r- ^TT^P-. (?) +3^1)^- (?)

-
}

1.3. 5. ,.(2n + l) 1
s

2(2n+3)

+ &quot;

~~2~.4(2n+3)(2n+5)
^

* ~
&quot;|

^*

the latter expansion being however convergent only when ?&amp;gt;1.

As before, the solution (4) is appropriate to the region included

within an ellipsoid of the family f= const., and (5) to the external

space.

We note that

As particular cases of the formula (7) we have

?, or)
= cot- r,

The formulae for the stream-function corresponding to (4) and

(5) are

and

105. The simplest case of Art. 104 (5) is when n = 0, viz.

(^^cot-1

^........................... (1),

where f is supposed to range from oo to + oo . The formula

(10) of the last Art. then assumes an indeterminate form, but we

find by the method of Art. 101,

(2).

* The reader may easily adapt the demonstrations cited in Art. 101 to the

present case.
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This solution represents the flow of a liquid through a circular

aperture in an infinite plane wall, viz. the aperture is the portion

of the plane yz for which or &amp;lt; k. The velocity at any point of the

aperture (f
=

0) is

_ !_ cty _ A
~vd~ (#--BJ

a

)*

since, over the aperture, kfjb
=

(&
2 ^ 2

)i The velocity is therefore

infinite at the edge. Compare Art. 66, 1.

Again, the motion due to a planetary ellipsoid (f=?o) moving
with velocity u parallel to its axis in an infinite mass of liquid is

given by
(3),

-cot-^

where A=-ku + \j~j - cot-1 U -

IbO + -1-
j

Denoting the polar and equatorial radii by a and c, we have

so that the eccentricity e of the meridian section is

=(?. +!)-.

In terms of these quantities

(5).

The forms of the lines of motion, for equidistant values of
o/r,

are shewn on the opposite page.

The most interesting case is that of the circular disk, for

which e = 1, and A =
2uc/?r. The value (3) of

cf&amp;gt;

for the two sides

of the disk becomes equal to Ap, or ^.(1 r
2

/c
2

)*, and the

normal velocity + u. Hence the formula (4) of Art. 44 gives

=-2p [
Jo

.................................... (6).

The effective addition to the inertia of the disk is therefore

2/7T (= 6365) times the mass of a spherical portion of the fluid, of

the same radius.
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X X

106. The solutions of the equation Art. 104 (3) in tesseral

harmonics are

and

where

and

(3),
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These functions possess the property

S f S ,,, S/ _/ V+l
1 /K\- -- -T ......... m-

For the motion of a planetary ellipsoid (f= f ) parallel to the

axis of y we have w = 1, s = 1, as before, and thence

(6),

with A determined by the condition

for f= f ,
v denoting the velocity of the solid. This gives

^k/V? .

2
^ -** Si--** (7 &amp;gt;-

In the case of the disk (f
=

0), we have A = 0, as we should

expect.

Again, for a planetary ellipsoid rotating about the axis of y
with angular velocity q, we have, putting n = 2, s= 1,

= Afi(l
-
n*)*(p + 1)* 3f cot- 1 ?- 3 +

^
sin a) ...... (8),

with the surface condition

(9).

For the circular disk (f =
0) this gives

|7r^ = -^2q ..................... (10).

At the two surfaces of the disk we have

/i
2

)^ sin w, = + kq (1
-

yu,

2

)i sin &&amp;gt;,

and substituting in the formula

we obtain 2T= Jf^.q8
..................... (11).
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107. In questions relating to ellipsoids with three unequal
axes we may use the method of Lamp s Functions*, or, as they
are now often called, Ellipsoidal Harmonics. Without attempting
a complete account of this, we will investigate some solutions of

the equation
V2

&amp;lt;

= .............................. (1),

in ellipsoidal coordinates, which are analogous to spherical

harmonics of the first and second orders, with a view to their

hydrodynamical applications. It is convenient to begin with the

motion of a liquid contained in an ellipsoidal envelope, which can

be treated at once by Cartesian methods.

Thus when the envelope is in motion parallel to the axis of x

with velocity u, the enclosed fluid moves as a solid, and the velocity-

potential is simply (f&amp;gt;

ux.

Next let us suppose that the envelope is rotating about a

principal axis (say that of x) with angular velocity p. The

equation of the surface being

the surface condition is

x
&amp;lt;f&amp;gt; y d4&amp;gt;

z

a8 dx
~

62

dy
~

c?

We therefore assume &amp;lt;

= Ayzt
which is evidently a solution of (1),

and obtain

,

Hence, if the centre be moving with a velocity whose com-

*
See, for example, Ferrers, Spherical Harmonics, c. vi.; W. D. Niven, &quot;On

Ellipsoidal Harmonics,&quot; Phil. Trans., 1891, A.



J56 PROBLEMS IN THREE DIMENSIONS. [CHAP. V

ponents are u, v, w and if p, q, r be the angular velocities about

the principal axes, we have by superposition

62 - c2
c
2 - a? a2 - b2

d&amp;gt;
= ux vy vrz r,

--
r p yz

- -- - qzx--r rxii
62 + c

2 c2 + a2 ^ a2 + 62
&quot;

........................(3)*

We may also include the case where the envelope is changing
its form as well as position, but so as to remain ellipsoidal. If the

axes are changing at the rates a, b, c, respectively, the general

boundary condition, Art. 10 (3), becomes

a + + ,c + + + =
a3 b3

c
3 a2 dx b 2

dy c
2 dz

which is satisfied by

The equation (1) requires that

a b c

which is in fact the condition which must be satisfied by the

changing ellipsoidal surface in order that the enclosed volume

(^jrabc) may be constant.

108. The solutions of the corresponding problems for an

infinite mass of fluid bounded internally by an ellipsoid involve

the use of a special sj^stem of orthogonal curvilinear coordinates.

If x, y, z be functions of three parameters X, /A, v, such that the

surfaces

X = const., /ji
= const., v = const (1)

are mutually orthogonal at their intersections, and if we write

* This result appears to have been obtained independently by Beltrami,

Bjerknes, and Maxwell, in 1873. See Hicks, &quot;Report on Recent Progress in

Hydrodynamics,&quot; Brit. Ass. Rep., 1882.

t Bjerknes,
&quot;

Verallgemeinerung des Problems von den Bewegungen, welche in

einer ruhenden unelastischen Fliissigkeit die Bewegung eines Ellipsoids hervor-

bringt,&quot; Gottinger Nachrichten, 1873.
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the direction-cosines of the normals to the three surfaces which

pass through (a?, y; z) will be

i7 ) &quot;27 fl/2 ^/ r \ /

tt/Lt ttyL6 a/JL

, c?^c , c?y , dz

dv dv dv

respectively. It easily follows that the lengths of linear elements

drawn in the directions of these normals will be

respectively.

Hence if
&amp;lt;/&amp;gt;

be the velocity-potential of any fluid motion, the

total flux into the rectangular space included between the six

surfaces X }\, /* 3/i, y y will be

d
( d&amp;lt;j&amp;gt;

v &v\ ^ ,

d /, c^6 81; S\\
j,

d fj d&amp;lt;f&amp;gt;- - - X + -- A 2 -r^ .
-

. -r- 6/z + --

It appears from Art. 42 (3) that the same flux is expressed by
V 2

&amp;lt; multiplied by the volume of the space, i.e. by
Hence

d

Equating this to zero, we obtain the general equation of continuity
in orthogonal coordinates, of which particular cases have already
been investigated in Arts. 84, 100, 104.

* The above method was given in a paper by W. Thomson, &quot; On the Equations
of Motion of Heat referred to Curvilinear Coordinates,&quot; Camb. Math. Journ., t. iv.

(1843) ; Math, and Pfo/s. Papers, t. i., p. 25. Reference may also be made to

Jacobi,
&quot; Ueber eine particulare Losung der partiellen Differentialgleichung ......

,&quot;

Crelle, t. xxxvi, (1847), Gesammelte Werke, Berlin, 1881..., t. ii., p. 198.

The transformation of
v&quot;0

t general orthogonal coordinates was first effected

by Lam6, &quot; Sur les lois de 1 equilibre du fluide eth6r^,&quot; Journ. de VEcole Polyt.,

t. xiv., (1834). See also Lemons sur les Coordonnees Curvilignes, Paris, 1859, p. 22.
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109. In the applications to which we now proceed the triple

orthogonal system consists of the confocal quadrics

a2
-i- 8

^
62

4- c2 + 6
-1 =

(1),

whose properties are explained in books on Solid Geometry.

Through any given point (x, y, z) there pass three surfaces of the

system, corresponding to the three roots of (1), considered as a cubic

in 0. If (as we shall for the most part suppose) a &amp;gt; b &amp;gt; c, one of

these roots (X, say) will lie between oo and c
2

,
another

(/JL)
be

tween c2 and 62
,
and the third (v) between 62 and a2

. The

surfaces X, /JL,
v are therefore ellipsoids, hyperboloids of one sheet,

and hyperboloids of two sheets, respectively.

It follows immediately from this definition of X, p, v, that

a2 + 6 62 + c
2 +

identically, for all values of 6. Hence multiplying by a2 +6, and

afterwards putting # = a2
,
we obtain the first of the following

equations :

(a
2 + X)(a

2 + ^)(a
2 + z.) ,

(6
2 -c 2

)(6
2 -a2

)

(c
2 + X) (c

2 + ft) (c
2 + v)

(c
2 -a2

)(c
2 -62

)

.(3).

These give

dx

d\ * a2 + X d\ 2
62 + X

and thence, in the notation of Art. 108 (2),

(4),

X)&quot; (c
2 + X)

2 (5).

If we differentiate (2) with respect to 6 and afterwards put 6 = X,

we deduce the first of the following three relations :
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^2 =4

.(6)*.

, 2 _ .

0,

The remaining relations of the sets (3) and (6) have been

written down from symmetry.

Substituting in Art. 108 (4), we find

4 (i.
-
X)

+ (X
-

/t) [(a
2

I

............... (7)t-

110. The particular solutions of the transformed equation
V 2

&amp;lt;/&amp;gt;

= which first present themselves are those in which
&amp;lt;/&amp;gt;

is a

function of one (only) of the variables X, ^, v. Thus &amp;lt; may be a

function of X alone, provided

(a
2 + X)* (6

2
4- X)* (c

2 + X)* d&amp;lt;/dX
= const.,

whence

if .................. (2),

being chosen so asthe additive constant which attaches to

to make vanish for X = oo .

In this solution, which corresponds to
&amp;lt;f&amp;gt;

= A/r in spherical

harmonics, the equipotential surfaces are the confocal ellipsoids,

and the motion in the space external to any one of these (say that

for which X = 0) is that due to a certain arrangement of simple

sources over it. The velocity at any point is given by the formula

*
It will be noticed that hlt h 2 ,

h3 are double the perpendiculars from the origin

on the tangent planes to the three quadrics X, /x, v.

t Cf. Lame,
&quot; Sur les surfaces isothermes dans les corps solides homogenes en

6quilibre de temperature,&quot; Liouville, t. ii., (1837).
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At a great distance from the origin the ellipsoids X become

spheres of radius X*, and the velocity is therefore ultimately equal

to 2(7/r
2

,
where r denotes the distance from the origin. Over any

particular equipotential surface X, the velocity varies as the

perpendicular from the centre on the tangent plane.

To find the distribution of sources over the surface X = which

would produce the actual motion in the external space, we

substitute for
&amp;lt;j&amp;gt;

the value (1), in the formula (11) of Art. 58, and

for &amp;lt; (which refers to the internal space) the constant value

The formula referred to then gives, for the surface-density of the

required distribution,

The solution (1) may also be interpreted as representing the

motion due to a change in dimensions of the ellipsoid, such that

the ellipsoid remains similar to itself, and retains the directions of

its axes unchanged in space. If we put

a/a 6/6
=

c/c,
= k, say,

the surface-condition Art. 107 (4) becomes

d(f&amp;gt;/dn
= JMj,

which is identical with (3), if we put C =

A particular case of (5) is where the sources are distributed

over the elliptic disk for which X = c
2

,
and therefore z1 = 0. This

is important in Electrostatics, but a more interesting application

from the present point of view is to the flow through an elliptic

aperture, viz. if the plane xy be occupied by a thin rigid partition

with the exception of the part included by the ellipse

we have, putting c = in the previous formula,
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where the upper limit is the positive root of

and the negative or the positive sign is to be taken according as the

point for which $ is required lies on the positive or the negative side

of the plane xy. The two values of
(f&amp;gt;

are continuous at the aperture,

where X = 0. As before, the velocity at a great distance is equal to

2A /r*, nearly. For points in the aperture the velocity may be

found immediately from (6) and (7) ;
thus we may put

approximately, since \ is small, whence

dt_2A (
x- .

~

This becomes infinite, as we should expect, at the edge. The

particular case of a circular aperture has already been solved

otherwise in Art. 105.

111. We proceed to investigate the solution of V2
&amp;lt;

= 0, finite

at infinity, which corresponds, for the space external to the ellipsoid,

to the solution
&amp;lt;/&amp;gt;

= x for the internal space. Following the analogy
of spherical harmonics we may assume for trial

&amp;lt;}&amp;gt;=*x
.............................. (i).

which gives V 2

^ + --^=0 ........................ (2),X d/X

and inquire whether this can be satisfied by making ^ equal
to some function of X only. On this supposition we shall have, by
Art. 108 (3),

and therefore, by Art. 109 (4), (6),

xdx (\

L. 11
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On substitution from Art. 109 (7) the equation (2) becomes

x = -
(Jf + X) (# + X) ,

which may be written

whence y= -
5 ..(3),

the arbitrary constant which presents itself in the second integra

tion being chosen as before so as to make % vanish at infinity.

The solution contained in (1) and (3) enables us to find the

motion of a liquid, at rest at infinity, produced by the translation

of a solid ellipsoid through it, parallel to a principal axis. The

notation being as before, and the ellipsoid

being supposed in motion parallel to x with velocity u, the surface-

condition is

dct&amp;gt;ld\

= -udx/d\, for X = ..................(5).

Let us write, for shortness,

, r
00 d\ , r

00 d\
7
r d\

a = abc
/ 2 . ^ s~A &amp;gt; ^&amp;lt;&amp;gt;

= abc
fiA . -i\ A 7o

= ooe -. . A
J o (a

2 + X) A J o (o + X) A J (c- -f X) A
.............. (6),

where A =
}(a

2 + X) (6
2 + X) (c

2 + X)}*............... (7).

It will be noticed that these quantities , &&amp;gt; 70 are pure
numerics.

The conditions of our problem are now satisfied by

M~3
Pr Vlded

that is C =-a6
-u ........................... (9).
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The corresponding solution when the ellipsoid moves parallel

to y or z can be written down from symmetry, and by superposition
we derive the case where the ellipsoid has any motion of translation

whatever*.

At a great distance from the origin, the formula (8) becomes

equivalent to

which is the velocity-potential of a double source at the origin, of

strength J C, or

fabcu/(2
-

o).

Compare Art. 91.

The kinetic energy of the fluid is given by

where I is the cosine of the angle which the normal to the surface

makes with the axis of x. The latter integral is equal to the

volume of the ellipsoid, whence

.................. (11).

The inertia-coefficient is therefore equal to the fraction /(2 o^)

of the mass displaced by the solid. For the case of the sphere

(a=b = c) we find a =
J ;

this makes the fraction equal to J, in agree
ment with Art. 91. If we put b = c, we get the case of an ellipsoid

of revolution, including (for a = 0) that of a circular disk. The

identification with the results obtained by the methods of Arts.

102, 103, 105, 106 for these cases may be left to the reader.

112. We next inquire whether the equation V 2

$ = can

be satisfied by

* This problem was first solved by Green, &quot;Kesearches on the Vibration of

Pendulums in Fluid Media,&quot; Trans. R. 8. Edin., 1833, Math. Papers, p. 315. The

investigation is much shortened if we assume at once from the Theory of Attrac

tions that (8) is a solution of v2
&amp;lt;

= 0, being in fact (save as to a constant factor)

the ^-component of the attraction of a homogeneous ellipsoid on an external

point.

112
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where % is a function of X only. This requires

V .

X +I&+?^ = 0.. .(2).*
ydy z dz

Now, from Art. 109 (4), (6),

= ----
y dy z dz

l

\y d\ z d\) d\

X)/ 1 1 \dx
a

On substitution in (2) we find, by Art. 109 (7),

log
{(*

+
&amp;lt;*
+ X).

Whence =

the second constant of integration being chosen as before.

For a rigid ellipsoid rotating about the axis of x with angular

velocity p, the surface-condition is

d(j&amp;gt;/d\
=

ipzdyldX. ^ydz\d\ ............... (4),

for X 0. Assuming

we find that the surface-condition (4) is satisfied, provided

/!
,

1\ 7o -/8.

This expression dififers only by a factor from

where is the gravitation-potential of a uniform solid ellipsoid at an external

point (a-, y, z). Since v2
fi = it easily follows that the above is also a solution of

the equation ^&amp;lt;p
= Q.
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The formulae for the cases of rotation about y or z can be written

down from symmetry*.

The formula for the kinetic energy is

if (I, m, n) denote the direction-cosines of the normal to the

ellipsoid. The latter integral

=
fff(y

2 - z*) dxdydz = (6
8 - c

2

) . f Tra&c.

Hence we find

S P P &quot;

The two remaining types of ellipsoidal harmonic of the second order, finite

at the origin, are given by the expression

where 6 is either root of 111
(ii),

this being the condition that (i) should satisfy v2 = 0.

The method of obtaining the corresponding solutions for the external

space is explained in the treatise of Ferrers. These solutions would enable us

to express the motion produced in a surrounding liquid by variations in the

lengths of the axes of an ellipsoid, subject to the condition of no variation of

volume
= .............................. (iii).

We have already found, in Art. 110, the solution for the case where the

ellipsoid expands (or contracts) remaining similar to itself
;
so that by super

position we could obtain the case of an internal boundary changing its

position and dimensions in any manner whatever, subject only to the con

dition of remaining ellipsoidal. This extension of the results arrived at

by Green and Clebsch was first treated, though in a different manner from

that here indicated, by Bjerknest.

* The solution contained in (5) and (6) is due to Clebsch, &quot;Ueber die Bewegung
eines Ellipsoides in einer tropfbaren Fliissigkeit,&quot; Crelle, it. Iii., liii. (1856 7).

t 1. c. ante p. 156.
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113. The investigations of this chapter relate almost entirely

to the case of spherical or ellipsoidal boundaries. It will be under

stood that solutions of the equation V 2 = can be carried out, on

lines more or less similar, which are appropriate to other forms of

boundary. The surface which comes next in interest, from the

point of view of the present subject, is that of an anchor-ring,

or torus
;
this problem has been very ably treated, by distinct

methods, by Hicks*, and Dyson -f-. We may also refer to the

analytically remarkable problem of the spherical bowl, which has

been investigated by Basset
J.

*
&quot;On Toroidal Functions,&quot; Phil. Trans., 1881.

t &quot;On the Potential of an Anchor-Ring,&quot; Phil. Trans., 1893.

J
&quot; On the Potential of an Electrified Spherical Bowl, &c.,&quot; Proc. Lond. Math.

Soc., t. xvi. (1885).



CHAPTER VI.

ON THE MOTION OF SOLIDS THROUGH A LIQUID :

DYNAMICAL THEORY.

114. IN this Chapter it is proposed to study the very

interesting dynamical problem furnished by the motion of one

or more solids in a liquid. The development of this subject is due

mainly to Thomson and Tait* and to Kirchhofff. The cardinal

feature of the methods followed by these writers consists in this,

that the solids and the fluid are treated as forming one dynamical

system, and thus the troublesome calculation of the effect of the

fluid pressures on the surfaces of the solids is avoided.

We begin with the case of a single solid moving through an

infinite mass of liquid, and we shall suppose in the first instance

that the motion of the fluid is entirely due to that of the solid,

and is therefore irrotational and acyclic. Some special cases of

this problem have been treated incidentally in the foregoing pages,

and it appeared that the whole effect of the fluid might be

represented by an increase in the inertia of the solid. The same

result will be found to hold in general, provided we use the term

inertia in a somewhat extended sense.

Under the circumstances supposed, the motion of the fluid is

characterized by the existence of a single-valued velocity-potential

&amp;lt;/&amp;gt;

which, besides satisfying the equation of continuity

v^ = o .............................. (i),

* Natural Philosophy, Art. 320.

t &quot; Ueber die Bewegung eines Rotationskorpers in einer Flussigkeit,&quot; Crelle,

t. Ixxi. (1869); Ges. Abh., p. 376; Mechanik, c. xix.
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fulfils the following conditions : (1) the value of -
d(f)/dn, where Sn

denotes as usual an element of the normal at any point of the

surface of the solid, drawn on the side of the fluid, must be equal

to the velocity of the surface at that point normal to itself, and

(2) the differential coefficients
d&amp;lt;f)/d%, dfyjdy, dfyjdz must vanish at

an infinite distance, in every direction, from the solid. The latter

condition is rendered necessary by the consideration that a finite

velocity at infinity would imply an infinite kinetic energy, which

could not be generated by finite forces acting for a finite time on

the solid. It is also the condition to which we are led by supposing
the fluid to be enclosed within a fixed vessel infinitely large and

infinitely distant, all round, from the moving body. For on this

supposition the space occupied by the fluid may be conceived as

made up of tubes of flow which begin and end on the surface of

the solid, so that the total flux across any area, finite or infinite,

drawn in the fluid must be finite, and therefore the velocity at

infinity zero.

It has been shewn in Arts. 40, 41, that under the above con

ditions the motion of the fluid is determinate.

115. In the further study of the problem it is convenient to

follow the method introduced by Euler in the dynamics of rigid

bodies, and to adopt a system of rectangular axes Ox, Oy, Oz fixed

in the body, and moving with it. If the motion of the body at

any instant be defined by the angular velocities p, q, r about, and

the translational velocities u, v, w of the origin parallel to, the

instantaneous positions of these axes, we may write, after

Kirchhoff,

qto+rxt ............ (2),

where, as will appear immediately, &amp;lt;f)
1}

(f&amp;gt;.
2 , &amp;lt;f)s , ^15 %2

&amp;gt; %3 &re certain

functions of a, y, z determined solely by the configuration of

the surface of the solid, relative to the coordinate axes. In fact,

if I, m, n denote the direction- cosines of the normal, drawn

towards the fluid, at any point of this surface, the kinematical

surface-condition is

= I (u + qz ry) + m(v + rx pz) + n (w +py qx),
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whence, substituting the value (2) of
&amp;lt;,

we find

d&
p= = ny mz
dn

_ _: m, -
j

v
- = Iz - nx

dn dn .(3).

- -= It,
-

-. IIUtAJ V l

dn dn

Since these functions must also satisfy (i), and have their deri

vatives zero at infinity, they are completely determinate, by
Art. 41*.

116. Now whatever the motion of the solid and fluid at any

instant, it might have been generated instantaneously from rest by
a properly adjusted impulsive wrench applied to the solid. This

wrench is in fact that which would be required to counteract the

impulsive pressures p$ on the surface, and, in addition, to generate

the actual momentum of the solid. It is called by Lord Kelvin

the impulse of the system at the moment under consideration.

It is to be noted that the impulse, as thus defined, cannot be

asserted to be equivalent to the total momentum of the system,

which is indeed in the present problem indeterminate. We

proceed to shew however that the impulse varies, in consequence

of extraneous forces acting on the solid, in exactly the same way as

the momentum of a finite dynamical system.

Let us in the first instance consider any actual motion of a

solid, from time to time tlt under any given forces applied to it,

in ^ finite mass of liquid enclosed by a fixed envelope of any form.

Let us imagine the motion to have been generated from rest,

previously to the time
, by forces (whether gradual or impulsive)

applied to the solid, and to be arrested, in like manner, by
forces applied to the solid after the time ^. Since the momentum
of the system is null both at the beginning and at the end of this

process, the time-integrals of the forces applied to the solid, to

gether with the time-integral of the pressures exerted on the fluid

* For the particular case of an ellipsoidal surface, their values may be written

down from the results of Arts. Ill, 112.
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by the envelope, must form an equilibrating system. The effect of

these latter pressures may be calculated from the formula

A pressure uniform over the envelope has no resultant effect;

hence, since
&amp;lt;f&amp;gt;

is constant at the beginning and end, the only
effective part of the integral pressure fpdt is given by the term

-tpffdt ........................... (2).

Let us now revert to the original form of our problem, and

suppose the containing envelope to be infinitely large, and in

finitely distant in every direction from the moving solid. It is

easily seen by considering the arrangement of the tubes of flow

(Art. 37) that the fluid velocity q at a great distance r from an

origin in the neighbourhood of the solid will ultimately be, at

most*, of the order 1/r
2
,
and the integral pressure (2) therefore of

the order 1/r
4
. Since the surface-elements of the envelope are of

the order r$-ar, where OT is an elementary solid angle, the force-

and couple-resultants of the integral pressure (2) will now both

be null. The same statement therefore holds with regard to the

time-integral of the forces applied to the solid.

If we imagine the motion to have been started instantaneously
at time tQ ,

and to be arrested instantaneously at time tlt the result

at which we have arrived may be stated as follows :

The impulse of the motion (in Lord Kelvin s sense) at time

j differs from the impulse at time t by the time-integral of the

extraneous forces acting on the solid during the interval ^ f.

It will be noticed that the above reasoning is substantially

unaltered when the single solid is replaced by a group of solids,

which may moreover be flexible instead of rigid, and even

when these solids are replaced by portions of fluid moving

rotatiorially.

117. To express the above result analytically, let f, 77, f, X, //-,
v

be the components of the force- and couple-constituents of the

* It is really of the order 1/r
3 when, as in the case considered, the total flux

outwards is zero.

t Sir W. Thomson, I.e. ante p. 35. The form of the argument given above was

kindly suggested to the author by Mr Larmor.
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impulse ;
and let X, Y, Z, L, M, N designate in the same manner

the system of extraneous forces. The whole variation of

? t
?7&amp;gt; ? \ P&amp;gt; v, due partly to the motion of the axes to which

these quantities are referred, and partly to the action of the

extraneous forces, is then given by the formulae

- -

-

...(!)*.

For at time t + &t the moving axes make with their positions

at time t angles whose cosines are

(1, rSt, -q&t), (-rSt, 1, ptt), (qtt,
-

pSt, 1),

respectively. Hence, resolving parallel to the new position of the

axis of x,

+ gf = f + n . rSt - . qSt + XSt.

Again, taking moments about the new position of Ox, and re

membering that has been displaced through spaces u&t, v&t,

parallel to the axes, we find

\ + &V. = \ 4- 77 . wSt - f . v8t + p . rSt - v . qSt + LSt.

These, with the similar results which can be written down from

symmetry, give the equations (1).

When no extraneous forces act, we verify at once that these

equations have the integrals

^ const.,)
}

? = const.
J

which express that the magnitudes of the force- and couple-

resultants of the impulse are constant.

*
Cf. Hayward, &quot; On a Direct Method of Estimating Velocities, Accelerations,

and all similar Quantities, with respect to Axes moveable in any manner in space.&quot;

Cainb. Trans., t. x. (1856).
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118. It remains to express , 77, X, /z, v in terms of

*, v, w, p, q, r. In the first place let T denote the kinetic energy
of the fluid, so that

2T = -p\U^-dS (1),

where the integration extends over the surface of the moving
solid. Substituting the value of

&amp;lt;f&amp;gt;,

from Art. 115 (2), we get

2T = Aw3 + &quot;Bv
2 + Cw2 + 2A vw -*-

2&quot;B wu + 2C uv

+ 2q (I* u 4- M u +N w)

+ m&quot;v + N&quot;w) ........................... (2),

where the 21 coefficients A, B, C, &c. are certain constants

determined by the form and position of the surface relative to the

coordinate axes. Thus, for example,

= p II (f)2
ndS = p 1 1

(3),

- mz) dS

the transformations depending on Art. 115 (3) and on a particular

case of Green s Theorem (Art. 44 (2)). These expressions for

the coefficients were given by Kirchhoff.

The actual values of the coefficients in the expression for 2T have been

found in the preceding chapter for the case of the ellipsoid, viz. we have

from Arts. Ill, 112

P-I_ (
- c r(yo

* la /w ^2N i /;^2 i .
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with similar expressions for B, C, Q, R. The remaining coefficients, as will

appear presently, in this case all vanish. We note that

so that if
a&amp;gt;b&amp;gt;c,

then A&amp;lt;B&amp;lt;0,
as might have been anticipated.

The formulae for an ellipsoid of revolution may be deduced by putting

& = c; they may also be obtained independently by the method of Arts. 101-

106. Thus for a circular disk (
=

0, b= c) we have

P=o, 5 &quot;

The kinetic energy, Tl say, of the solid alone is given by an

expression of the form

X
= m

4- 2m {p (@w yv) + q (ju aw) + r (av ftu)} ...... (4).

Hence the total energy T + Tl ,
of the system, which we shall

denote by T, is given by an expression of the same general form as

(2), say

2T= AU? + Btf + Cw* + ZA vw + 2Rwu +

+ Ppa + Qq* + Rr* + ZP qr + ZQ rp + ZRpq

+ 2p (Lu + Mv + Nw)

+ N&quot;w) .............................. (5),

where the coefficients are printed in uniform type, although six of

them have of course the same values as in (4).

119. The values of the several components of the impulse in

terms of the velocities u, v, w, p, q, r can now be found by a well-

known dynamical method *. Let a system of indefinitely great forces

(X, Y, Z, L, M, N) act for an indefinitely short time r on the solid,

so as to change the impulse from (f, 77, f, X, /u,, v) to

(f + Af, 77 + AT;, f+Af, X + AX, yu + Ayu, v -f Ai/&amp;gt;.

* See Thomson and Tait, Natural Philosophy, Art. 313, or Maxwell, Electricity

and Magnetism, Part iv. ,
c. v,
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The work done by the force X is

[

T

Xudt,

which lies between

Uil Xdi and u
\ Xdt,

Jo Ji

where #, and u2 are the greatest and least values of u during the

time r, i.e. it lies between u^Af and 2 Af. If we now introduce the

supposition that Af, A?/, Af, AX, A//,, Ai/ are infinitely small, ^ and

u2 are each equal to u, and the work done is wAf. In the same

way we may calculate the work done by the remaining forces

and couples. The total result must be equal to the increment of

the kinetic energy, whence

aw op c?

Now if the velocities be all altered in any given ratio, the

impulses will be altered in the same ratio. If then we take

Aw _ Afl _ Aw _ Ap _ A&amp;lt;? _ Ar _ ,

u v w p q r

it will follow that

A| = A^_A? = AX = A/A =^ = ^
f V

&quot;&quot;

? X
&quot;

/t z/

Substituting in (11), we find

dT
+

du

T
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Since the variations AM, Av, Aw, Ap, Ag, Ar are all independent,

this gives the required formula?

dT dT dT

dT dT
(3).

It may be noted that since 17, f, . . . are linear functions of

u, v, w, ..., the latter quantities may also be expressed as linear

functions of the former, and thence T may be regarded as a homo

geneous quadratic function of f, ??, f, X, //,,
ZA When expressed in

this manner we may denote it by T . The equation (1) then

gives at once

uk. -f-

= dr

whence

dT A dT r dT
,

dT A d.-
7
-

AT; + -TU A? + jT- ^X +1T~ A/*+ &quot;^

a?; af aX tt/A a
A&quot;,

dT

dT

v =
dr

dT
dv

(4),

formulaB which are in a sense reciprocal to (3).

We can utilize this last result to obtain another integral of the

equations of motion, in the case where no extraneous forces act, in

addition to those obtained in Art. 117. Thus

dt d\ dt*

d\

which vanishes identically, by Art. 117 (1). Hence we have the

equation of energy
(5).

120. If in the formula (3) we put, in the notation of Art. 118,

it is known from the dynamics of rigid bodies that the terms in T :

represent the linear and angular momentum of the solid by itself.
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Hence the remaining terms, involving T, must represent the

system of impulsive pressures exerted by the surface of the solid on

the fluid, in the supposed instantaneous generation of the motion

from rest.

This is easily verified. For example, the ^-component of the

above system of impulsive pressures is

= Au + C v + &quot;B w + lip + L g -f Ii&quot;r

_dT
du (6),

by the formulae of Arts. 115, 118. In the same way, the moment

of the impulsive pressures about Ox is

I*u

dT
dp

-f Nw + Pp + R # + QV

.(7).

121. The equations of motion may now be written
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If in these we write T T + Tl5 and separate the terms due to

T and T1 respectively, we obtain expressions for the forces exerted

on the moving solid by the pressure of the surrounding fluid
;
thus

the total component (X, say) of the fluid pressure parallel to x is

d dT dT dTX = -
-T: -T- + r j

-
Q j- (2),

dt du dv * dw

and the moment (L) of the same pressures about x is

_d_dT_ dT _ dT dT _ JT
dt dp dv dw dq dr

For example, if the solid be constrained to move with a constant

velocity (u} v, w), without rotation, we have

X = 0, Y =
0, Z = 0,

dT dT _,, dT dT dT dT
Jj = W . V -r

,
M = U

-j
W -j ,

N = V , U -.-

dv dw dw du au dv

where 2T = A*t2 + Bt&amp;gt;

2 + Cw2 + 2A vw + 2BW -f 2C uv.

Hence the fluid pressures reduce to a couple, which moreover

vanishes if

dT dT dT
-j : u = -j : v = -j- :w,du dv dw

i.e. provided the velocity (u, v, w) be in the direction of one of the

principal axes of the ellipsoid

A#2 +
&quot;By*

+ Cz2 + ZAfyz + VB zx + ZG xy = const.. . .(5).

Hence, as was first pointed out by Kirchhoff, there are, for any
solid, three mutually perpendicular directions of permanent trans

lation
;
that is to say, if the solid be set in motion parallel to one

ofthese directions, without rotation, and left to itself, it will continue

so to move. It is evident that these directions are determined

solely by the configuration of the surface of the body. It must be

observed however that the impulse necessary to produce one of

* The forms of these expressions being known, it is not difficult to verify them

by direct calculation from the pressure-equation, Art. 21 (4). See a paper
&quot; On the

Forces experienced by a Solid moving through a Liquid,&quot; Quart. Journ. Math.,
t. xix. (1883).

L. 12



178 MOTION OF SOLIDS THROUGH A LIQUID. [CHAP. VI

these permanent translations does not in general reduce to a single

force
;
thus if the axes of coordinates be chosen, for simplicity,

parallel to the three directions in question, so that A
,
B

,
C = 0,

we have, corresponding to the motion u alone,

f = 4a, i)
=

0, =0,

\ = Lu, /JL
L u, v = L&quot;uy

so that the impulse consists of a wrench of pitch L/A.

With the same choice of axes, the components of the couple

which is the equivalent of the fluid pressures on the solid, in the

case of a uniform translation (u, v, w), are

L = (B - C) vw, M = (C - A) wu, N = (A - B) uv. . .(6).

Hence if in the ellipsoid

A 2 + B?/
2 + Cz2 = const (7),

we draw a radius-vector r in the direction of the velocity (u, v, w)
and erect the perpendicular h from the centre on the tangent

plane at the extremity of r, the plane of the couple is that

of h and r, its magnitude is proportional to sin (h, r)/h, and its

tendency is to turn the solid in the direction from h to r. Thus if

the direction of (u, v, w) differs but slightly from that of the axis of

x, the tendency of the couple is to diminish the deviation when A
is the greatest, and to increase it when A is the least, of the

three quantities A, B, C, whilst if A is intermediate to B and C
the tendency depends on the position of r relative to the circular

sections of the above ellipsoid. It appears then that of the three

permanent translations one only is thoroughly stable, viz. that

corresponding to the greatest of the three coefficients A, B, C.

For example, the only stable direction of motion of an ellipsoid

is that of its least axis; see Art. 118*.

122. The above, although the simplest, are not the only

steady motions of which the body is capable, under the action

of no external forces. The instantaneous motion of the body at

any instant consists, by a well-known theorem of Kinematics, of a

* The physical cause of this tendency of a flat-shaped body to set itself

broadside-on to the relative motion is clearly indicated in the diagram on p. 94.

A number of interesting practical illustrations are given by Thomson and Tait,

Art. 325.
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twist about a certain screw; and the condition that this motion

should be permanent is that it should not affect the configuration

of the impulse (which is fixed in space) relatively to the body.

This requires that the axes of the screw and of the corresponding

impulsive wrench should coincide. Since the general equations

of a straight line involve four independent constants, this gives four

linear relations to be satisfied by the five ratios u : v : w : p : q : r.

There exists then for every body, under the circumstances here

considered, a singly-infinite system of possible steady motions.

Of these the next in importance to the three motions of permanent
translation are those in which the impulse reduces to a couple. The equa
tions (1) of Art. 117 are satisfied by , 77, =0, and X, /u,

v constant, provided

*/P= P-l
(l
= v/r, =, say........................... (i).

If the axes of coordinates have the special directions referred to in the

preceding Art., the conditions
, 77,

=0 give us at once w, v, w in terms

of p, q, r, viz.

* (Lp + L q+ L&quot;r)IA,\

v=-(Mp +M q + M&quot;r)/B\ .......................... (ii).

w= - (Np+N q +N&quot;r)/C )

Substituting these values in the expressions for X, p, v obtained from Art.

119 (3), we find

. &amp;lt;tfe dQ dQ
X=

dp
^ =^ &quot;

=^ ........................... (
m

)&amp;gt;

where 26 (p, q, r)
=%?2+

&amp;lt;%

2
-fHr2+ Vfflqr+ ZQ&rp+2Rpq ......... (iv) ;

the coefficients in this expression being determined by formulae of the types

L L&quot; M M&quot; N N&quot;

&quot;

~A ~^r ~c~

These formulae hold for any case in which the force-constituent of the impulse
is zero. Introducing the conditions (i) of steady motion, the ratios p : q : r

are to be determined from the three equations

The form of these shews that the line whose direction-ratios are p : q : r

must be parallel to one of the principal axes of the ellipsoid

0(.r, y, 2)
= const............................... (vii).

122
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There are therefore three permanent screw-motions such that the correspond

ing impulsive wrench in each case reduces to a couple only. The axes of

these three screws are mutually at right angles, but do not in general

intersect.

It may now be shewn that in all cases where the impulse reduces to a

couple only, the motion can be completely determined. It is convenient,

retaining the same directions of the axes as before, to change the origin.

Now the origin may be transferred to any point (#, ?/, z) by writing

u + ry-qz, v+pz-rx, w+ qx-py,

for u, v, w respectively. The coefficient of vr in the expression for the kinetic

energy, Art. 118 (7), becomes -J3&+M&quot;, that of wq becomes Cx+N ,
and so

on. Hence if we take

M&quot; N . N

the coefficients in the transformed expression for 2T will satisfy the relations

M&quot;/B=N /C, N/C=L&quot;/A, L /A =M/B................ (ix).

If we denote the values of these pairs of equal quantities by a, /3, y re

spectively, the formulae (ii) may now be written

d d* d*
u=-j-, v=--r-. w= =- ..................... (x),

dp dq dr

where 2* (p, q, r)
=
j p2+

-^ f+ -^
r2+ Zaqr+ Z$rp+ Zypq ...... (xi).

The motion of the body at any instant may be conceived as made up of two

parts ;
viz. a motion of translation equal to that of the origin, and one of

rotation about an instantaneous axis passing through the origin. Since

} rj,
=Q the latter part is to be determined by the equations

d\ da dv .

-dr
r

-i&quot; di
=

p&quot;~
r^

arf-**
which express that the vector (X, /u, v) is constant in magnitude and has a fixed

direction in space. Substituting from (iii),

d de_ de de
dt dp dq dr

d de de de

d^de_ de_ de
dt dr~ q

dp
P
dq

(xii).

These are identical in form with the equations of motion of a rigid body
about a fixed point, so that we may make use of Poinsot s well-known solution

of the latter problem. The angular motion of the body is therefore obtained

by making the ellipsoid (vii), which is fixed in the body, roll on the plane

\x -\- p.y + vz = const.
,
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which is fixed in space, with an angular velocity proportional to the length 01
of the radius vector drawn from the origin to the point of contact /. The

representation of the actual motion is then completed by impressing on the

whole system of rolling ellipsoid and plane a velocity of translation whose

components are given by (x). This velocity is in the direction of the

normal OM to the tangent plane of the quadric

*(# y&amp;gt; z)=-e3
................................. (xiii),

at the point P where 01 meets it, and is equal to

angular velocity of body

When 01 does not meet the quadric (xiii), but the conjugate quadric obtained

by changing the sign of e, the sense of the velocity (xiv) is reversed *.

123. The problem of the integration of the equations of

motion of a solid in the general case has engaged the attention of

several mathematicians, but, as might be anticipated from the

complexity of the question, the meaning of the results is not

easily grasped.

In what follows we shall in the first place inquire what

simplifications occur in the formula for the kinetic energy, for

special classes of solids, and then proceed to investigate one or

two particular problems of considerable interest which can be

treated without difficult mathematics.

1. If the solid has a plane of symmetry, as regards both its

form and the distribution of matter in its interior, then, taking this

plane as that of
soy,

it is evident that the energy of the motion is

unaltered if we reverse the signs of w, p, q, the motion being

exactly similar in the two cases. This requires that A
,
B

,
P

, Q ,

L, M, L ,
M

,
N&quot; should vanish. One of the directions of perma

nent translation is then parallel to z. The three screws of Art. 122

are now pure rotations
;
the axis of one of them is parallel to z

;

the axes of the other two are at right angles in the plane xy, but

do not in general intersect the first.

2. If the body have a second plane of symmetry, at right

angles to the former one, let this be taken as the plane of zx.

We find, in the same way, that in this case the coefficients

* The substance of this Art. is taken from a paper,
&quot; On the Free Motion of a

Solid through an Infinite Mass of Liquid,&quot; Proc. Lond. Math. oc., t. viii. (1877).

Similar results were obtained independently by Craig,
&quot; The Motion of a Solid in a

Fluid,&quot; Amer. Journ. of Math., t. ii. (1879).
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C&quot;,
R

, N, L&quot; also must vanish, so that the expression for 2T
assumes the form

2T = Au? + BV* + GW*

r ........................... (1).

The directions of permanent translation are now parallel to the

three axes of coordinates. The axis of x is the axis of one of the

permanent screws (now pure rotations) of Art. 122, and those of

the other two intersect it at right angles (being parallel to y and s

respectively), though not necessarily in the same point.

3. If the body have a third plane of symmetry, viz. that of

yz, at right angles to the two former ones, we have

(2).

The axes of coordinates are in the directions of the three perma
nent translations

; they are also the axes of the three permanent
screw-motions (now pure rotations) of Art. 122.

4. If, further, the solid be one of revolution, about %, say, the

value (1) of 2T must be unaltered when we write v, q, w, r for

w, r, v, q, respectively; for this is merely equivalent to turning the

axes of y, z through a right angle. Hence we must have B = C,

Q = R, M&quot; N . If we further transfer the origin to the point

denned by Art. 122 (viii) we have M&quot; =N t Hence we must have

and 2T = An? + B (v
2 +O

(3).

The same reduction obtains in some other cases, for example
when the solid is a right prism whose section is any regular

polygon*. This is seen at once from the consideration that, the

axis of x coinciding with the axis of the prism, it is impossible to

assign any uniquely symmetrical directions to the axes of y and z.

* See Larmor, &quot;On Hydrokinetic Symmetry,&quot; Quart. Journ. Math., t. xx.

(1885).
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5. If, in the last case, the form of the solid be similarly

related to each of the coordinate planes (for example a sphere, or a

cube), the expression (3) takes the form

2T =
A(&amp;lt;u? + v* + w2

) + P(p2 + q* + r
*) ...............(4).

This again may be extended, for a like reason, to other cases,

for example any regular polyhedron. Such a body is practically

for the present purpose isotropic, and its motion will be exactly

that of a sphere under similar conditions.

6. We may next consider another class of cases. Let us

suppose that the body has a sort of skew symmetry about a certain

axis (say that of x), viz. that it is identical with itself turned

through two right angles about this axis, but has not necessarily a

plane of symmetry*. The expression for 2T must be unaltered

when we change the signs of v, w, q, r, so that the coefficients

B
t &amp;lt;7, Q ,

R
, M, N, L ,

L&quot; must all vanish. We have then

2T= An? + Bv* + Cw2 + 2A vw

+ Qq* + Rr* + ZP qr

+ 2g (M v + N w)

+ Zr(M&quot;v + N&quot;w) ........................ (5).

The axis of x is one of the directions of permanent translation
;

and is also the axis of one of the three screws of Art. 122, the pitch

being L/A. The axes of the two remaining screws intersect it

at right angles, but not in general in the same point.

7. If, further, the body be identical with itself turned through
one right angle about the above axis, the expression (5) must be

unaltered when v, q, w, r are written for w, r, v, q, respectively.

This requires that B =C, A = 0, Q = R, P =0, M =
N&quot;,

N M&quot;. If further we transfer the origin to the point chosen

in Art. 122 we must have N = M&quot;
,
and therefore N = 0, M&quot; = 0.

Hence (5) reduces to

q + wr) ........................... (6).f
* A two-bladed screw-propeller of a ship is an example of a body of this kind.

t This result admits of the same kind of generalization as (3), e.g. it applies to

a body shaped like a screw-propeller with three symmetrically-disposed blades.
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The form of this expression is unaltered when the axes of y, z

are turned in their own plane through any angle. The body is

therefore said to possess helicoidal symmetry about the axis of as.

8. If the body possess the same properties of skew symmetry
about an axis intersecting the former one at right angles, we

must evidently have

-f 2L (pu + qv + rw) ..................... (7).

Any direction is now one of permanent translation, and any line

drawn through the origin is the axis of a screw of the kind con

sidered in Art. 122, of pitch -L/A. The form of (7) is unaltered

by any change in the directions of the axes of coordinates. The

solid is therefore in this case said to be helicoidally isotropic.

124. For the case of a solid of revolution, or of any other form

to which the formula

.(1)

applies, the complete integration of the equations of motion was

effected by Kirchhoff* in terms of elliptic functions.

The particular case where the solid moves without rotation

about its axis, and with this axis always in one plane, admits of

very simple treatment ), and the results are very interesting.

If the fixed plane in question be that of xy we have p, q, w = 0,

so that the equations of motion, Art. 121 (1), reduce to

A du D D dv .A -j-
= rBv, B-j-= rAu,

dt dt
,

Let x, y be the coordinates of the moving origin relative to

fixed axes in the plane (ocy) in which the axis of the solid moves,

*
I.e. ante p. 167.

t See Thomson and Tait, Natural Philosophy, Art. 322; and Greenhill, &quot;On

the Motion of a Cylinder through a Frictionless Liquid under no Forces,&quot; Mess, of

Hath., t. ix. (1880).



123-124] MOTION OF A SOLID OF REVOLUTION. 185

the axis of x coinciding with the line of the resultant impulse

(/, say) of the motion
;
and let 6 be the angle which the line Ox

(fixed in the solid) makes with x. We have then

Au = Icoa0, Bv = -Isin0, r=6.

The first two of equations (2) merely express the fixity of the

direction of the impulse in space ;
the third gives

sin&amp;lt;9cos&amp;lt;9
= .................. (3).

We may suppose, without loss of generality, that A &amp;gt; B. If

we write 20 = S-, (3) becomes

which is the equation of motion of the common pendulum. Hence

the angular motion of the body is that of a quadrantal

pendulum, i.e. a body whose motion follows the same law in

regard to a quadrant as the ordinary pendulum does in regard to

a half-circumference. When has been determined from (3) and

the initial conditions, x, y are to be found from the equations

x = u cos v sin = r cos2 6 + ^ sin2
0,

= (:l~]sin0cos0 = -?6

the latter of which gives

y = |0 (6),

as is otherwise obvious, the additive constant being zero since the

axis of x is taken to be coincident with, and not merely parallel

to, the line of the impulse /.

Let us first suppose that the body makes complete revolutions,

in which case the first integral of (3) is of the form

2 =
o&amp;gt;

2

(1
- &2 sin2

0) (7),

A-B I*
where fc

2 =
-r-D?y 2 W

Hence, reckoning t from the position
= 0, we have
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in the usual notation of elliptic integrals. If we eliminate t

between (5) and (9), and then integrate with respect to 0,

we find

-^F*ft
(10),

the origin of x being taken to correspond to the position
= 0.

The path can then be traced, in any particular case, by means of

Legendre s Tables. See the curve marked I in the figure.

If, on the other hand, the solid does not make a complete

revolution, but oscillates through an angle a on each side of the

position 6 = 0, the proper form of the first integral of (3) is

frs.rffl-E^ ; (11),
\ sin2

aj

where

If we put

this gives

whence

sur a = ABQ ft)
2

A-B
sin 6 sin a sin -

(12).

sin2 a

siu a
(13).

Transforming to ^r as independent variable, in (5), and integrating,

we find

x =
-g-

sin a . .F(sin a, ^r)
-

-y^cosec
a . #(sin a, yfr

Qco
y = j-

cos
&amp;gt;|r

The path of the point is here a sinuous curve crossing the line

of the impulse at intervals of time equal to a half-period of the

angular motion. This is illustrated by the curves III and IV of the

figure.

There remains a critical case between the two preceding, where

the solid just makes a half-revolution, 6 having as asymptotic
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limits the two values + JTT. This case may be obtained by putting
k = 1 in (7), or a = ^TT in (11) ;

and we find

6 = co cos 6 ................................. (15),

(16),

(17).
0(0

y= *-COS0

See the curve II of the figure*.

It is to be observed that the above investigation is not restricted

to the case of a solid of revolution
;

it applies equally well to the

case of a body with two perpendicular planes of symmetry, moving

parallel to one of these planes, provided the origin be properly

chosen. If the plane in question be that of a?y, then on transferring

the origin to the point (M&quot;/B, 0, 0) the last term in the formula

(1) of Art. 123 disappears, and the equations of motion take the

form (2) above. On the other hand, if the motion be parallel to

zx we must transfer the origin to the point ( N /C, 0, 0).

The results of this Article, with the accompanying diagrams,
serve to exemplify the statements made near the end of Art. 121.

Thus the curve IV illustrates, with exaggerated amplitude, the

case of a slightly disturbed stable steady motion parallel to an

axis of permanent translation. The case of a slightly disturbed

unstable steady motion would be represented by a curve con

tiguous to II, on one side or the other, according to the nature of

the disturbance.

125. The mere question of the stability of the motion of a

body parallel to an axis of symmetry may of course be more simply
treated by approximate methods. Thus, in the case of a body

* In order to bring out the peculiar features of the motion, the curves have

been drawn for the somewhat extreme case of A = 5B. In the case of an infinitely

thin disk, without inertia of its own, we should have A/B = cc; the curves would

then have cusps where they meet the axis of y. It appears from (5) that x has

always the same sign, so that loops cannot occur in any case.

In the various cases figured the body is projected always with the same impulse,

but with different degrees of rotation. In the curve I, the maximum angular

velocity is */2 times what it is in the critical case II
;
whilst the curves III and

IV represent oscillations of amplitude 45 and 18 respectively.
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with three planes of symmetry, as in Art. 123, 3, slightly dis

turbed from a state of steady motion parallel to x, we find,

writing u = u + u
,
and assuming u

t v, w, p, q, r to be all small,

...(1).

D d2v
A (A-B) AHence B

~j-
+ A ^

-
u&amp;lt;?v

= 0,

with a similar equation for r, and

with a similar equation for q. The motion is therefore stable only
when A is the greatest of the three quantities A, B, C.

It is evident from ordinary Dynamics that the stability of a

body moving parallel to an axis of symmetry will be increased, or

its instability (as the case may be) will be diminished, by

communicating to it a rotation about this axis. This question

has been examined by Greenhill*.

Thus in the case of a solid of revolution slightly disturbed from a state of

motion in which u and p are constant, while the remaining velocities are

zero, if we neglect squares and products of small quantities, the first and

fourth of equations (1) of Art. 121 give

du/dt=0, dp/dt= 0,

whence u-= u
, p=pQ ........................... (i),

say, where UQ , p are constants. The remaining equations then take, on

substitution from Art. 123 (3), the forms

&quot;Fluid Motion between Confocal Elliptic Cylinders, &c.,&quot; Quart. Journ.

Math., t. xvi. (1879).
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If we assume that v, w, q, r vary as e
?A

*,
and eliminate their ratios, we find

O ......... (iv).

The condition that the roots of this should be real is that

should be positive. This is always satisfied when
A&amp;gt;B, and can be satisfied

in any case by giving a sufficiently great value to pQ .

This example illustrates the steadiness of flight which is given to an

elongated projectile by rifling.

126. In the investigation of Art. 122 the term steady was

used to characterize modes of motion in which the instantaneous

screw preserved a constant relation to the moving solid. In the

case of a solid of revolution, however, we may conveniently use the

term in a somewhat wider sense, extending it to motions in which

the velocities of translation and rotation are constant in magnitude,
and make constant angles with the axis of symmetry and with

each other, although their relation to particles of the solid not on

the axis may continually vary.

The conditions to be satisfied in this case are most easily obtained from

the equations of motion of Art. 121, which become, on substitution from

Art. 123 (3),

...... (i).

It appears that p is in any case constant, and that q
2+ r2 will also be constant

provided
vfa=w/r, =k, say .................... . ............ (ii).

This makes du/dt= 0, and

const.

It follows that k will also be constant; and it only remains to satisfy the

equations
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which will be consistent provided

whence ulp=kBPI{AQ-WB(A-B}} ........................ (iii).

Hence there are an infinite number of possible modes of steady motion, of the

kind above defined. In each of these the instantaneous axis of rotation and

the direction of translation of the origin are in one plane with the axis of the

solid. It is easily seen that the origin describes a helix about the resultant

axis of the impulse.

These results are due to Kirchhoff.

127. The only case of a body possessing helicoidal property,

where simple results can be obtained, is that of the isotropic

helicoid defined by Art. 123 (7). Let be the centre of the

body, and let us take as axes of coordinates at any instant, a line

Ox, parallel to the axis of the impulse, a line Oy drawn outwards

from this axis, and a line Oz perpendicular to the plane of the

two former. If / and G denote the force- and couple-constituents

of the impulse, we have

Au + Lp = f = /, Pp + La = \=G,

Aw + Lr = = 0, Pr + Lw = v = I

where OT denotes the distance of from the axis of the impulse.

Since AP L 2
4= 0, the second and fifth of these equations

shew that = 0, q = 0. Hence w is constant throughout the

motion, and the remaining quantities are constant
;
in particular

u = (IF-GL)l(AP-L*\\
w = -^ILI(AP-D) }

The origin therefore describes a helix about the axis of the

impulse, of pitch

G/I-P/L.

This example is due to Lord Kelvin*.

*
I.e. ante p. 176. It is there pointed out that a solid of the kind here in

question may be constructed by attaching vanes to a sphere, at the middle points of

twelve quadrantal arcs drawn so as to divide the surface into octants. The vanes

are to be perpendicular to the surface, and are to be inclined at angles of 45 to the

respective arcs.

For some further investigations in this field see a paper by Miss Fawcett,
&quot; On

the Motion of Solids in a Liquid,&quot; Quart. Journ. Math., t. xxvi. (1893).
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128. Before leaving this part of the subject we remark that

the preceding theory applies, with obvious modifications, to the

acyclic motion of a liquid occupying a cavity in a moving solid. If

the origin be taken at the centre of inertia of the liquid, the

formula for the kinetic energy of the fluid motion is of the type

2T = m (u* + v* + w2

)

+ Pp- + Qg
2 + Rr2 + VP qr + 2Q rp + 2Hpq ...... (1).

For the kinetic energy is equal to that of the whole fluid mass

(m), supposed concentrated at the centre of mass and moving
with this point, together with the kinetic energy of the motion

relative to the centre of mass. The latter part of the energy is

easily proved by the method of Arts. 115, 118 to be a homo

geneous quadratic function of p, q, r.

Hence the fluid may be replaced by a solid of the same

mass, having the same centre of inertia, provided the principal

axes and moments of inertia be properly assigned.

The values of the coefficients in (1), for the case of an ellipsoidal cavity,

may be calculated from Art. 107. Thus, if the axes of #, y, z coincide with

the principal axes of the ellipsoid, we find

P =0, Q =
0, R = 0.

Case of a Perforated Solid.

129. If the moving solid have one or more apertures or per

forations, so that the space external to it is multiply-connected,
the fluid may have a motion independent of that of the solid, viz.

a cyclic motion in which the circulations in the several irreducible

circuits which can be drawn through the apertures may have any

given constant values. We will briefly indicate how the foregoing
methods may be adapted to this case.

Let K, K, #&quot;,... be the circulations in the various circuits, and

let So-, So-
, So-&quot;,... be elements of the corresponding barriers,

drawn as in Art. 48. Further, let I, m, n denote direction-cosines

of the normal, drawn towards the fluid, at any point of the surface

of the solid, or drawn on the positive side at any point of a barrier.

The velocity-potential is then of the form
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where

&amp;lt;/&amp;gt;

= ufa + vfa + tufa+pxi + qx* , n ,

The functions fa, fa, fa, %1; %2 , ^3 are determined by the same
conditions as in Art. 115. To determine co, we have the condi

tions : (1) that it must satisfy V 2
o&amp;gt;
= at all points of the fluid

;

(2) that its derivatives must vanish at infinity; (3) that dco/dn=Q
at the surface of the solid

;
and (4) that w must be a cyclic function,

diminishing by unity whenever the point to which it refers com

pletes a circuit cutting the first barrier once only in the positive

direction, and recovering its original value whenever the point

completes a circuit not cutting this barrier. It appears from

Art. 52 that these conditions determine o&amp;gt; save as to an additive

constant. In like manner the remaining functions to
, a&amp;gt;&quot;,

... are

determined.

By the formula (5) of Art. 55, twice the kinetic energy of the

fluid is equal to

* - ...... (2).

Since the cyclic constants of are zero, we have, by Art. 54 (4),

which vanishes, since dfa/dn
= at the surface of the solid.

Hence (2) reduces to

- ...... (3).

Substituting the values of
(/&amp;gt;, fa from (1), we find that the kinetic

energy of the fluid is equal to

T + #.............................. (4),

where T is a homogeneous quadratic function of u, v, w, p, q, r of

the form defined by Art. 118 (2), (3), and

2K = (K, K) K2 + (V, K) K 2 + . . . + 2 (K, K) KK + ......... (5),

L. 13
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where, for example,

day

The identity of the two forms of (K, K ) follows from Art. 54 (4).

Hence the total energy of fluid and solid is given by
T= + K)

........................ (7),

where is a homogeneous quadratic function of u, v, w, p, q, r

of the same form as Art. 118 (5), and K is defined by (5) and

(6) above.

130. The impulse of the motion now consists partly of

impulsive forces applied to the solid, and partly of impulsive

pressures pK,pK,pic&quot;... applied uniformly (as explained in Art. 54)

over the several membranes which are supposed for a moment to

occupy the positions of the barriers. Let us denote by fl3 %, f1}

Xls fa, Vi the components of the extraneous impulse applied to the

solid. Expressing that the ^-component of the momentum of the

solid is equal to the similar component of the total impulse acting
on it, we have

(1).

where, as before, Tx denotes the kinetic energy of the solid, and T
that part of the energy of the fluid which is independent of the

cyclic motion. Again, considering the angular momentum of the

solid about the axis of a?,

= X, - p
jj

(&amp;lt;/&amp;gt;

+
&amp;lt;/, ) (ny

- mz) dS



129-130] COMPONENTS OF IMPULSE. 195

Hence, since ffi,
= T + T15 we have

. d [[ dfaja , [[ ,d&amp;lt;h
,~

fi
= -

7
- - PK oj y- dS - OK CD ,T- dS - . . .

,du JJ dn JJ dn

By virtue of Lord Kelvin s extension of Green s theorem, al

ready referred to, these may be written in the alternative forms

Adding to these the terms due to the impulsive pressures

applied to the barriers, we have, finally, for the components of the

total impulse of the motion,

d
1

ME, dx= , + x
, y^ ~j i-^o. v ~~j

op c?g dr

where, for example,

It is evident that the constants f , 770, ?o&amp;gt;
X

, MOJ ^o are the

components of the impulse of the cyclic fluid motion which

remains when the solid is, by forces applied to it alone, brought

to rest.

By the argument of Art. 116, the total impulse is subject to

the same laws as the momentum of a finite dynamical system.

Hence the equations of motion of the solid are obtained by substi

tuting from (5) in the equations (1) of Art. 117*.

* This conclusion may be verified by direct calculation from the pressure-

formula of Art. 21
;
see Bryan,

&quot;

Hydrodynamical Proof of the Equations of Motion

of a Perforated Solid, ......
,&quot;

Phil. May., May, 1893.

132
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131. As a simple example we may take the case of an annular

solid of revolution. If the axis of x coincide with that of the ring,

we see by reasoning of the same kind as in Art. 123, 4 that if

the situation of the origin on this axis be properly chosen we

may write

_l_ (if lA 1/-2 /I \
-r \K, KJK \j.

Hence f = J.w +
&amp;gt; y = Bv, %=Bw,]

Substituting in the equations of Art. 117, we find dp/dt=Q, or

p = const., as is obviously the case. Let us suppose that the ring
is slightly disturbed from a state of motion in which v, w, p, q, r

are zero, i.e. a state of steady motion parallel to the axis. In

the beginning of the disturbed motion v, w, p, q, r will be small

quantities whose products we may neglect. The first of the

equations referred to then gives du/dt = 0, or u = const., and the

remaining equations become

...(3).

Eliminating r, we find

Exactly the same equation is satisfied by w. It is therefore

necessary and sufficient for stability that the coefficient of v on the

right-hand side of (4) should be negative ;
and the time of a small

oscillation, in the case of disturbed stable motion, is

11

(5).

We may also notice another case of steady motion of the ring, viz. where

the impulse reduces to a couple about a diameter. It is easily seen that the

equations of motion are satisfied by , 17, , X, p= 0, and v constant
;
in which

case

u=
Q/A, r= const.

* Sir W. Thomson, 1. c. ante p. 176.
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The ring then rotates about an axis in the plane yz parallel to that of 2, at a

distance u/r from it.

For further investigations on the motion of a ring we refer to papers by
Basset*, who has discussed in detail various cases where the axis moves in

one plane, and Miss Fawcettf.

Equations of Motion in Generalized Coordinates.

132. When we have more than one moving solid, or when the

fluid is bounded, wholly or in part, by fixed walls, we may have

recourse to Lagrange s method of generalized coordinates. This

was first applied to hydrodynamical problems by Thomson and

Tait.

In any dynamical system whatever, if f, rj, % be the Cartesian

coordinates at time t of any particle ra, and X, Y, Z be the com

ponents of the total force acting on it, we have of course

m% = X, 77177= F, m% = Z.................. (1).

Now let f-f- Af, 77 + AT;, f + Af be the coordinates of the same

particle in any arbitrary motion of the system differing infinitely

little from the actual motion, and let us form the equation

= S (JrA? + FAT; + Z&) ...... (2),

where the summation 2 embraces all the particles of the system.

This follows at once from the equations (1), and includes these, on

account of the arbitrary character of the variations Af, A?;, Af.

Its chief advantages, however, consist in the extensive elimination

of internal forces which, by imposing suitable restrictions on the

values of A, A?;, Af we are able to effect, and in the facilities

which it affords for transformation of coordinates.

If we multiply (2) by $t and integrate between the limits t

and ti t
then since

*
&quot;On the Motion of a Ring in an Infinite Liquid,&quot; Proc. Camb. Phil. Soc.,

t. vi. (1887).

t 1. c. ante p. 191.

Natural Philosophy (1st ed.), Oxford, 1867, Art. 331.
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we find

p&M (jAf + rjAT; + A f)l
- f 2m (fAf + ^Ar) + ?A) eft

f 2 (XA + FAT; + A?) (ft.

./*

If we put, as usual,

s

)
..................... (3),

this may be written

T + 2 (ZAf + FAr; +

(4).

If we now introduce the condition that in the varied motion

the initial and final positions (at times and ^) shall be respec

tively the same for each particle as in the actual motion, the

quantities Af, AT;, Af vanish at both limits, and the above

equation reduces to

= ...... (5).

This formula is especially valuable in the case of a system
whose freedom is limited more or less by constraints. If

the variations Af, AT;, Af be such as are consistent with these

constraints, some of the internal forces of the system disappear as

a rule from the sum

for example, all the internal reactions between the particles of a

rigid body, and (as we shall prove presently) the mutual pressures
between the elements of an incompressible perfect fluid.

In the case of a * conservative system, we have

(6),

where V is the potential energy, and the equation (5) takes the

form

(7)*.

*
Sir W. E, Hamilton,

&quot; Oil a General Method in Dynamics,&quot; Phil. Trans.

1834, 1835.
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133. In the systems ordinarily considered in books on Dyna
mics, the position of every particle at any instant is completely
determined by the values of certain independent variables or

generalized coordinates ft, ft, ,
so that

The kinetic energy can then be expressed as a homogeneous

quadratic function of the generalized velocity-components

ft, ft,..., thus

2T=Anq1
* + A 22&+... + 2A l2ql q2 + ............ (9),

where, for example,

vAn = 2m T- + - +
&amp;gt;

Wft/ Uft/ )^ + ##l-^ -, T^ 7 7 f &amp;gt;

dql dq2 dql dqz )

The quantities A llt A w ,..., A M ,... are called the inertia-coeffi

cients of the system ; they are, of course, in general functions of

the coordinates ft, ^2, .......

Again, we have

2X*Af+FAi7 + A?)=Q1Ag
r

1 + e2A0a + ...... (11),

where, for example,

(12).% dft dq

The quantities Qlt Q2) ... are called the generalised components of

force. In the case of a conservative system we have

If X
,
F

,
Z be the components of impulsive force by which the actual

motion of the particle m could be produced instantaneously from rest, we

have of course

m|=Jr, w/7=r , mC=Z ........................ (i),

and therefore
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Now, from (8) and (10),

by (9). Again

S(X A+rtoi +Z &Q = Ql

t

*ql + Qj*qs + ............... (iv),

where, for example,

l i

It is evident, on comparison with (12), that $/, $2 ,.. are the time-

integrals of Qlt Q2 ,... taken over the infinitely short duration of the impulse,

in other words they are the generalized components of the impulse. Equating
the right-hand sides of (iii) and (v) we have, on account of the independence
of the variations A^, A&amp;lt;?2v?

dT dT
a ft&amp;lt;

The quantities
dT dT

are therefore called the generalized components of momentum of the system,

they are usually denoted by the symbols pl , p2 ,.... Since T is, by (9), a

homogeneous quadratic function of qlt q2 ,..., it follows that

In terms of the generalized coordinates q1} q.2) ... the equation

(5) becomes

[
tl

{&T+Q1bql + Q,bq9 + ...}dt
= ......... (14),

Jto

where

A ^ dT ^ dT A . dT A dT . ,1C.

^T=^r A&amp;lt;7!+ ^.-Ag2 + ... + -7- Ag^ T-Aft-f ... (15).
dq, dq, dq, dq2

Hence, by a partial integration, and remembering that, by hypo

thesis, Ag1? A^2 ,... all vanish at the limits t
,
tl} we find

dT dT \ . ddT dT

......... (16).

Since the values of A^, A^,... within the limits of integration
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are still arbitrary, their coefficients must separately vanish. We
thus obtain Lagrange s equations

dT
dt

(17)*

134. Proceeding now to the hydrodynamical problem, let

&amp;lt;?i % be a system of generalised coordinates which serve to

specify the configuration of the solids. We will suppose, for the

present, that the motion of the fluid is entirely due to that of the

solids, and is therefore irrotational and acyclic.

In this case the velocity-potential at any instant will be of the

form

(1),

where
&amp;lt;j&amp;gt;

lt
&amp;lt;f&amp;gt;

2) ... are determined in a manner analogous to that of

Art. 115. The formula for the kinetic energy of the fluid is then

... + 2A]2g1 g2 + ......... (2),

where, for example,

the integrations extending over the instantaneous positions of the

bounding surfaces of the fluid. The identity of the two forms of

A12 follows from Green s Theorem. The coefficients An ,
A12 ,. . . will,

of course, be in general functions of the coordinates qlt q.2) ....

* The above sketch is introduced with the view of rendering more intelligible

the hydrodynamical investigations which follow. Lagrange s proof, directly from

the variational equation of Art. 132 (2), is reproduced in most treatises on

Dynamics. Another proof, by direct transformation of coordinates, not involving

the method of variations, was given in the first instance by Hamilton, Phil. Trans.

1835, p. 96 ; the same method was employed by Jacobi, Vorlesungen iiber Dynamik

(ed. Clebsch), Berlin, 1864, p. 64, Werke, Supplementband, p. 64; by.Bertrand in the

notes to his edition of the Mecanique Analytique, Paris, 1853 ; and more recently by
Thomson and Tait, Natural Philosophy, (2nd ed.) Art. 318.



202 MOTION OF SOLIDS THROUGH A LIQUID. [CHAP. VI

If we add to (2) twice the kinetic energy, T l ,
of the solids

themselves, we get an expression of the same form, with altered

coefficients, say

2T=An q1

* + A z,&+... + 2A
l

.2q1 q,+ (4).

It remains to shew that the equations of motion of the solids

can be obtained by substituting this value of T in the Lagrangian

equations, Art. 133 (17). We cannot assume this without further

consideration, for the positions of the various particles of the

fluid are evidently not determined by the instantaneous values

&amp;lt;/i&amp;gt; q-2)--
of the coordinates of the solids.

Going back to the general formula

/;
dt

1*i

(5),

let us suppose that in the varied motion, to which the symbol A
refers, the solids undergo no change of size or shape, and that -the

fluid remains incompressible, and has, at the boundaries, the same

displacement in the direction of the normal as the solids with

which it is in contact. It is known that under these conditions

the terms due to the internal forces of the solids will disappear

from the sum

The terms due to the mutual pressures of the fluid elements are

equivalent to

or
jjp

(JA + m^ + A{) dS +fffp (^f +

where the former integral extends over the bounding surfaces,

1, 7ii, n denoting the direction-cosines of the normal, drawn towards

the fluid. The volume-integral vanishes by the condition of

incompressibility,

| |

dx dy dz

The surface-integral vanishes at a fixed boundary, where
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and in the case of a moving solid it is cancelled by the terms due
to the pressure exerted by the fluid on the solid. Hence the

symbols X, Y, Z may be taken to refer only to the extraneous

forces acting on the system, and we may write

......... (6),

where Qlt Q2 ,... now denote the generalized components of ex

traneous force.

We have still to consider the right-hand side of (5). Let us

suppose that in the arbitrarily varied motion the initial and final

positions of the solids are respectively the same as in the actual

motion. For every particle of the solids we shall then have

Af=0, A77 = 0, A? = 0,

at both limits, but the same will not hold as a rule with regard to

the particles of the fluid. The corresponding part of the sum

will however vanish
;

viz. we have

^^ S I 7 t
*/ I 7 fc-

v ay dz

=
pff(t&amp;gt; (l^ + m&Tj + jiAJ) dflf

of which the second term vanishes by the condition of incom-

pressibility, and the first term vanishes at the limits and tl}

since we then have, by hypothesis,

at the surfaces of the solids. Hence, under the above conditions,

the right-hand side of (5) vanishes, and therefore

....}ftd ............ (7).

The varied motion of the fluid has still a high degree of

generality. We will now farther limit it by supposing that

whilst the solids are, by suitable forces applied to them, made to

execute an arbitrary motion, subject to the conditions that Ag 1}
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Ag2,...=0 for t = tQ and t = tl} the fluid is left to take its own
course in consequence of this. The varied motion of the fluid

will now be irrotational, and therefore T+AT will be the same

function of the varied coordinates q + Ag, and the varied velocities

q + Ag, that T is of q and q. Hence we may write, in (7),

dT . . dT . dT . dT . /o\*.

The derivation of the Lagrangian equations then follows

exactly as before.

It is a simple consequence of Lagrange s equations, thus established for

the present case, that the generalized components of the impulse by which

the actual motion at any instant could be generated instantaneously from

rest are

dT dT
1 2&quot;&quot;

If we put 7T=T + T1 ,
we infer that the terms

dT dTW d&~
must represent the impulsive pressures which would be exerted by the solids

on the fluid in contact with them.

This may be verified as follows. If A, Ar/, A denote arbitrary variations

subject only to the condition of incompressibility, and to the condition that

the fluid is to remain in contact with the solids, it is found as above that,

considering the fluid only,

(i).

Now by the kinematical condition to be satisfied at the surface, we have

jA + mAi7 +wA=- jk A?1
_ Jb

Ag ,

2
_ ............... (ii),

\AjJlt (.If ll

and therefore

^
dn

2+ ---)A2 i

dT

by (1), (2), (3) above. This proves the statement.

With the help of equation (iii) the reader may easily construct a proof of

Lagrange s equations, for the present case, analogous to that usually given in

text-books of Dynamics.
* This investigation is amplified from Kirchhoff, I.e. ante p. 167.
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135. As a first application of the foregoing theory we may
take an example given by Thomson and Tait, where a sphere is

supposed to move in a liquid which is limited only by an infinite

plane wall.

Taking, for brevity, the case where the centre moves in a

plane perpendicular to that of the wall, let us specify its position

at time t by rectangular coordinates x, y in this plane, of which y
denotes the distance from the wall. We have

(1),

where A and B are functions of y only, it being plain that the

term xy cannot occur, since the energy must remain unaltered

when the sign of x is reversed. The values of A, B can be

written down from the results of Arts. 97, 98, viz. if in denote the

mass of the sphere, and a its radius, we have

(2),

U

approximately, if y be great in comparison with a.

The equations of motion give

d

(3),

where X, Y are the components of extraneous force, supposed to

act on the sphere in a line through the centre.

If there be no extraneous force, and if the sphere be projected
in a direction normal to the wall, we have x = 0, and

Eif
1 = const............................ (4).

Since B diminishes as y increases, the sphere experiences an

acceleration from the wall.

Again, if the sphere be constrained to move in a line parallel to

the wall, we have y = 0, and the necessary constraining force is

Since dA/dy is negative, the sphere appears to be attracted by the
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wall. The reason of this is easily seen by reducing the problem to

one of steady motion. The fluid velocity will evidently be greater,
and the pressure, therefore, will be less, on the side of the sphere
next the wall than on the further side

;
see Art. 24.

The above investigation will also apply to the case of two

spheres projected in an unlimited mass of fluid, in such a way
that the plane y = is a plane of symmetry as regards the motion.

136. Let us next take the case of two spheres moving in the

line of centres.

The kinematical part of this problem has been treated in Art. 97. If we
now denote by #, y the distances of the centres A, B from some fixed origin
in the line joining them, we have

*
.............................. (i),

where the coefficients Z, J/, N are functions of c, y - x. Hence the equations
of motion are

. . dJ\r .

dr

where Jf, Y are the forces acting on the spheres along the line of centres. If

the radii
,
b are both small compared with c, we have, by Art. 97 (xv),

keeping only the most important terms,

...(iii)

approximately, where m, m are the masses of the two spheres. Hence to

this order of approximation

dL dM a3 &3 dN
-jf 0. -7 = OTTO T~ , y- = 0.
dc dc c4 dc

If each sphere be constrained to move with constant velocity, the force

which must be applied to A to maintain its motion is

dM . dM .

This tends towards B, and depends only on the velocity of B. The spheres

therefore appear to repel one another
;
and it is to be noticed that the apparent

forces are not equal and opposite unless x= y.

Again, if each sphere make small periodic oscillations about a mean

position, the period being the same for each, the mean values of the first terms

in (ii) will be zero, and the spheres therefore will appear to act on one another

with forces equal to
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where \y] denotes the mean value of xy. If #, y differ in phase by less than a

quarter-period, this force is one of repulsion, if by more than a quarter-period

it is one of attraction.

Next, let B perform small periodic oscillations, while A is held at rest. The

mean force which must be applied to A to prevent it from moving is

where [y
2
]
denotes the mean square of the velocity of B. To the above order of

approximation dNjdc is zero, but ori reference to Art. 97 (xv) we find that

the most important term in it is -
127rpa

3
&/c

r
,
so that the force exerted on

A is attractive, and equal to

This result comes under a general principle enunciated by Lord Kelvin.

If we have two bodies immersed in a fluid, one of which (A) performs small

vibrations while the other (B) is held at rest, the fluid velocity at the surface

of B will on the whole be greater on the side nearer A than on that which is

more remote. Hence the average pressure on the former side will be less

than that on the latter, so that B will experience on the whole an attraction

towards A. As practical illustrations of this principle we may cite the

apparent attraction of a delicately-suspended card by a vibrating tuning-fork,
and other similar phenomena studied experimentally by Guthrie* and

explained in the above manner by Lord Kelvin f.

Modification of Lagranges Equations in the case of

Cyclic Motion.

137. We return to the investigation of Art. 134, with the

view of adapting it to the case where the fluid has cyclic irrota-

tional motion through channels in the moving solids, or (it may be)
in an enclosing vessel, independently of the motion of the solids

themselves.

If K, K, K&quot;, ..., be the circulations in the various independent
circuits which can be drawn in the space occupied by the fluid, the

velocity-potential will now be of the form

+ o,

where =&&+&&+ ........................ (1),
*

&quot;On Approach caused by Vibration,&quot; Proc. Roy. Soc., t. xix., (1869); Phil.

Mag. , Nov. 1870.

t Reprint of Papers on Electrostatics, &c., Art. 741. For references to further

investigations, both experimental and theoretical, by Bjerknes and others on the

mutual influence of oscillating spheres in a fluid, see Hicks, &quot;Beport on Eecent
Researches in Hydrodynamics,&quot; Brit. Ass. Rep., 1882, pp. 52...; Winkelmann,
Handbuch der Physik, Breslau, 1891..., t. i., p. 435.
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the functions
&amp;lt;j&amp;gt;

19 fa, ..., being determined by the same conditions

as in Art. 134, and

&amp;lt;/&amp;gt;

= KO) + reV + ........................ (2),

&), &)
,
...

, being cyclic velocity-potentials determined as in Art. 129.

Let us imagine barrier-surfaces to be drawn across the several

channels. In the case of channels in a containing vessel we shall

suppose these ideal surfaces to be fixed in space, and in the case of

channels in a moving solid we shall suppose them to be fixed

relatively to the solid. Let us denote by # , , -., the portions

of the fluxes across these barriers which are due to the cyclic motion

alone, and which would therefore remain if the solids were held at

rest in their instantaneous positions, so that, for example,

*--//
*=- &amp;lt;* ^ -

where So-, Scr
,
... are elements of the several barriers. The total

fluxes across the respective barriers will be denoted by % + % &amp;gt;

% + %o &amp;gt;

. . .
,
so that %, % ,

. . . would be the surface-integrals of the

normal velocity of the fluid relative to the barriers, if the motion of

the fluid were entirely due to that of the solids, and therefore

acyclic.

The expression of Art. 55 for twice the kinetic energy of the

fluid becomes, in our present notation,

This reduces, exactly as in Art. 129, to the sum of two homogene
ous quadratic functions of q1} q%, ...

,
and of K, K, ..., respectively*.

Thus the kinetic energy of the fluid is equal to

T + #.............................. (5),

with 2T = An^2 + A22 2
2 + . . . + 2A12g1g2 + ......... (6),

and 2K =
(rc, K)^ + (K ) K) ^ + . . . + 2 (*, K )KK + ...... (7),

where, for example,

An example of this reduction is furnished by the calculation of Art. 99.
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and (,)= -,? AT,

dn&quot;&quot;
}

It is evident that K is the energy of the cyclic motion which

remains when the solids are maintained at rest in the configuration

(qly q,, ...) We note that, by (3), (7), and (9),

dK dK

.................. (11).

If we add to (5) the kinetic energy of the solids themselves, we
obtain for the total kinetic energy of the system an expression of

the form

T=1S, + K........................... (12),

where 2 = A u q,
2 +

A?&amp;gt;q&amp;lt;?
+ ... + ZA^q, + ......... (13),

the coefficients being in general functions of qlt q2) .......

To obtain the equations of motion we have recourse as before

to the formula

2 Xb+ FAT + A dt

......... (14).

The only new feature is in the treatment of the expression on

the right-hand side. By the usual method of partial integration
we find

dxdydz

+ p f
|(JAf

+ mAri + Af) dff+pK I

|(

...............(15),

where /, m, ?? are the direction-cosines of the normal to any
element 8S of a bounding surface, drawn towards the fluid, or

L. 14
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(as the case may be) of the normal to a barrier, drawn in the

direction in which the circulation is estimated.

Let us now suppose that the slightly varied motion, to which

A refers, is arbitrary as regards the solids, except only that the

initial and final configurations are to be the same as in the actual

motion, whilst the fluid is free to take its own course in accordance

with the motion of the solids. On this supposition we shall have,

both at time t and at time tlt

for the fluid in contact with an element SS of the surface of a

solid, and, at the barriers,

The right-hand side of (14) therefore reduces, under the present

suppositions, to
r

~\t t

L*4 (x+ xo) + PIC A (x
f + XQ ) + ..

.J
,

and the equation may be put into the form

{
AT- p*A (X + %o)

- PK A (x
f

+ ft )
- ...

+ QiA ?1 + Q aA?a +...}d* = ...... (16)*,

which now takes the place of Art. 134 (7).

Since the variation A does not affect the cyclic constants

K, K, ..., we have by (11),

and therefore, by (12),

...}&amp;lt;fc

= ...... (17).

It is easily seen that x , x ,
... are linear functions of qlf q.2 , ...,

say

%= MI + O-&+ -..}

^
/ =

1

/

g 1 + aL/g,+ ... I .................. (18),

where the coefficients are in general functions of qlt q.2 ,
Ifwe write

* Cf. Larmor, &quot; On the Direct Application of the Principle of Least Action to

the Dynamics of Solid and Fluid Systems,&quot; Proc. Lond. Math. Soc., t. xv. (1884).
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for shortness, & =
p/c^ + p/e a/ + . . . \

h/V+... } (19),

J

the formula (17) becomes

(20).

Selecting the terms in A^, A^ from the expression to be

integrated, we have

i 7 2 y-
!

^ % &quot;&quot;dft dql

Hence by a partial integration, remembering that A^, A^2 ,
...

vanish at both limits, and equating to zero the coefficients of

Aga , A&amp;lt;/o,...
which remain under the integral sign, we obtain

the first of the following symmetrical system of equations :

d d& d& dK
T* ^-^ + (1,2)^., + (1,3)^+... + j-
dt dq l dq l dql

d d& d& dK

d df& d1

. dK
It d ~d + (3 1} + (3 2) + +

We have here introduced the notation

(r}S)
= d
/s - d^ (22),
dqr dqs

and it is important to notice that (r, s)
=

(s, r).

138. The foregoing investigation has been adopted as leading

directly, and in conformity with our previous work, to the desired

result
;
but it may be worth while to give another treatment of

the question, which will bring out more fully the connection with

the theory of gyrostatic systems, and the method of ignoration
of coordinates.

* These equations were first given in a paper by Sir W. Thomson, &quot;On the

Motion of Rigid Solids in a Liquid circulating irrotationally through perforations
in them or in a Fixed Solid,&quot; Phil. Mag. , May 1873. See also C. Neumann, Hydro-

dynamische Untersuchungen (1883).

142
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It will be necessary to modify, to some extent, our previous

notation. Let us now denote by %, %, %&quot;,
. . . the total fluxes

relative to the several barriers of the region, which we shall as

before regard as ideal surfaces fixed relatively to the solid surfaces

on which they abut
;
and let %, % ,

^&quot;,
... be the time-integrals

of these fluxes, reckoned each from an arbitrary epoch. We
shall shew, in the first place, that the Lagrangian equations

(Art. 133 (1*7)) will still hold in the case of cyclic motion, provided
these quantities ^, ^ , % ,

. . . are treated as additional generalized
coordinates of the system.

Let qlt q2) ... be, as before, the system of generalized coordi

nates which specify the positions of the moving solids. The
motion of the fluid at any instant is completely determined by
the values of the velocities q}) q.2) ..., and of the fluxes

X&amp;gt; X&amp;gt;
-&amp;gt;

as

above defined. For if there were two types of irrotational motion

consistent with these values, then, in the motion which is the

difference of these, the bounding surfaces, and therefore also the

barriers, would be at rest, and the flux across each barrier would

be zero. The formula (5) of Art. 55 shews that the kinetic energy
of such a motion would be zero, and the velocity therefore every
where null.

It follows that the velocity-potential (4&amp;gt;, say) of the fluid

motion can be expressed in the form

..-+%+%V+ ............ (1),

where
&amp;lt;/&amp;gt;

1? for example, is the velocity-potential of the motion

corresponding to

which we have just seen to be determinate.

The kinetic energy of the fluid is given by the expression

Substituting the value of &amp;lt;I&amp;gt; from (1), and adding the energy of

motion of the solids, we see that the total kinetic energy of the

system (T, say) is a homogeneous quadratic function of the quan
tities qlt fa, ...,%,%,..., with coefficients which are functions of

qlf q,, ..., only.
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We now recur to the formula (4) of Art. 132. The variations

Af, A?;, A f being subject to the condition of incompressibility, the

part of the sum

Sm(|Af+ iJAi|-fAS) (3)

which is due to the fluid is, in the present notation,

M
mAT; + 7iA f) dS

where the surface-integral extends over the bounding surfaces

of the fluid, and the symbols K, K
,
... denote as usual the cyclic

constants of the actual motion. We will now suppose that

the varied motion of the solids is subject to the condition that

A&amp;lt;/15 Ag2 ,
... = 0, at both limits ( and ^), that the varied motion

of the fluid is irrotational and consistent with the motion of the

solids, and that the (varied) circulations are adjusted so as to make

A%, AX ,
. . . also vanish at the limits. Under these circumstances

the right-hand side of the formula cited is zero, and we have

{AT+ 2 (ZAf + FAT; + ZAJ)} = ............ (5).

If we assume that the extraneous forces do on the whole no

work when the boundary of the fluid is at rest, whatever relative

displacements be given to the parts of the fluid, the generalized

components of force corresponding to the coordinates %, % ,... will

be zero, and the formula may be written

r
i

J to

(6) &amp;lt;

where

A* A- A
dT

&(
dl

A* A&quot;

dq dq.z
&quot;

dq : dq2 dx dx
+ (7).

139. If we now follow out the process indicated at the end of

Art. 133, we arrive at the equations of motion for the present

case, in the forms

d_dT__dT_ Q d_dT _dT _
dtdqi dq1 dtdq2 dq.2

d^dT _ d_dT^
dtdx dtdx

&quot;&quot;
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Equations of this type present themselves in various problems
of ordinary Dynamics, e.g. in questions relating to gyrostats, where

the coordinates %,% , ,
whose absolute values do not affect the

kinetic and potential energies of the system, are the angular

coordinates of the gyrostats relative to their frames. The general

theory of systems of this kind has been treated independently by
Routh* and by Thomson and Tait-)-. It may be put, briefly, as

follows.

We obtain from (1), by integration,

(2),

where, in the language of the general theory, C, C
,

... are the

constant momenta corresponding to the coordinates %, % ,
____

In the hydrodynamical problem, they are equal to p, prc ,
. . .

,
as

will be shewn later, but we retain for the present the more

general notation.

Let us write

S = T-Cx -ffx - ..................... (3).

The equations (2) when written in full, determine %, % ,. as

linear functions of C, C ,
... and

&amp;lt;j,, q.2)
...

,
and by substitution in

(3) we can express as a quadratic function of q1} q2 , ...,C,G .....

On this supposition we have, performing the arbitrary variation A
on both sides of (3), and omitting terms which cancel, by (2),

d d d

where, for brevity, only one term of each kind is exhibited.

Hence
d = dT d = dT_

dq\ dq dq.2 dq.2

d dT d dT
.(5).

d = . d = .,

dO~ X dCf
X&amp;gt;

* On the Stability of a given State of Motion (Adams Prize Essay), London, 1877.

t Natural Philosophy, 2nd edition, Art. 319 (1879).

See also von Helmholtz, &quot;Principien der Statik monocyclischer Systeme,&quot; Crelle,

t. xcvii. (1884).
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Hence the equations (1) now take the form

d d d

__ (6)*,

dt dq.2

from which the velocities ^, ^ &amp;gt;

... corresponding to the ignored
coordinates %, % ,

have been eliminated.

In the particular case where

0=0, C = 0,...,

these equations are of the ordinary Lagrangian form, being now

equal to T, with the velocities ^, ; ,
... eliminated by means of the

relations

dT df

dx
0&amp;gt; *r

so that is now a homogeneous quadratic function of qlt q.2 ,....

Cf. Art. 134 (4).

In the general case we proceed as follows. If we substitute in

(3) from the last line of (5) we obtain

Now, remembering the composition of
,
we may write, for a

moment
&amp;lt;H)=:&amp;lt;H)

2)0 + &amp;lt;H)

1)1 +@0)2
..................... (8),

where
2j0

is a homogeneous quadratic function of q L , &amp;lt;&amp;gt;,...,

without C, C ,...j &amp;lt;H)

lfl
is a bilinear function of these two sets

of quantities; and
0)2

is a homogeneous quadratic function

of C, C ,..., without q L&amp;gt; q.,,
.... Substituting in (7), we find

T=e
a&amp;gt;0

-
0&amp;gt;3

........................ (9),

or, to return to our previous notation,

T=1& + K ........................... (10),

where *& and K are homogeneous quadratic functions of qlt q.,,
...

*
Eouth, I, c.
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and of C, C ,..., respectively. Hence (8) may be written in the

form

where j3lf /32 ,
... are linear functions of C, C , ..., say

.(12).

The meaning of the coefficients a1) 2 &amp;gt; ,
a

i&amp;gt; s &amp;gt;

&amp;gt;

aPPears fr m
the last line of (5), viz. we have

dK

dK .(13).

Compare Art. 137 (18).

If we now substitute from (11) in the equations (6) we obtain

the general equations of motion of a gyrostatic system/ in the form

d

dt

d

dt dq

d^d
dt dq3

dql

T*^-^+X2,l)*

dq3

(I,2)g2 +(l,

+ (2,

(3,2)&amp;lt;72

dK

dK
dq2

dK

where
dq.

(14)*,

.(15).

The equations (21) of Art. 137 are a particular case of these. To complete
the identification it remains to shew that, in the hydrodynamical application,

C= PK, C = PK ,..,, (i).

For this purpose we may imagine that in the instantaneous generation of

the actual motion from rest, the positions of the various barriers are

occupied for a moment by membranes to which uniform impulsive pressures

pK, pKj . . . are applied as in Art. 54, whilst impulsive forces are simultaneously

applied to the respective solids, whose force and couple resultants are

equal and opposite to those of the pressures f. In this way we obtain a

system of generalized components of impulsive force, corresponding to the

* These equations were obtained, in a different manner, by Thomson and Tait,

?. c. ante p. 214.

t Sir W. Thomson, I c. ante p. 211.
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coordinates ^, ^ , ..., viz. the virtual moment of this system is zero for any

infinitely small displacements of the solids, so long as x, /, ... do not vary.

We may imagine, for example, that the impulses are communicated to the

membranes by some mechanism attached to the solids and reacting on these*.

Denoting these components by X, X , ..., and considering an arbitrary variation

of x, x ,
... only, we easily find, by an adaptation of the method employed near

the end of Art. 134, that

dT dT

whence the results (i) follow.

The same thing may be proved otherwise as follows. From the equations

(2) and (1) of Art. 138, we find

dT /d$ da&amp;gt; d& da
,

d dco

da&amp;gt;

since v2
&amp;lt;w

= 0. The conditions by which o&amp;gt; is determined are that it is the

value of * when

i.e. o) is the velocity-potential of a motion in which the boundaries, and

therefore also the barriers, are fixed, whilst

Hence the right-hand side of (iii) reduces to px, as was to be proved.

140. A simple application of the equations (21) of Art. 137

is to the case of a sphere moving through a liquid which circulates

irrotationally through apertures in a fixed solid.

If the radius (a, say) of the sphere be small compared with its least

distance from the fixed boundary, then C? the kinetic energy of the system
when the motion of the fluid is acyclic, is given by Art. 91, viz.

2C=m(X-2
+?/

2+i2
) .............................. (i),

where m now denotes the mass of the sphere together with half that of the

fluid displaced by it, and #, y, s are the Cartesian coordinates of the centre.

And by the investigation of Art. 99, or more simply by a direct calculation,

we have, for the energy of the cyclic motion by itself,

2/i= const. -27rpa
3
(w

2 + ?/
2 +w2

) ..................... (ii).

Again the coefficients alf a.,, a3
of Art. 137 (18) denote the fluxes across

the first barrier, when the sphere moves with unit velocity parallel to x, y, z,

respectively. If we denote by O the flux across this barrier due to a unit

simple-source at (#, y, z\ then remembering the equivalence of a moving

sphere to a double-source (Art. 91), we have

a^fyPdQldx, a2
= a*da/dy, a3

= %a?dl/dz ............... (iii),

*
Burton, Phil. Mag., May, 1893.
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so that the quantities denoted by (2, 3), (3, 1), (1, 2) in Art. 137 (21) vanish

identically. The equations therefore reduce in the present case to

.._ dW .._ dW_ .. dW
dx dv

*
dz

where
W=7rpa?(t&amp;lt;;*+ v2+ iv

2
) .............................. (v),

and A
, F, Z are the components of extraneous force applied to the sphere.

By an easy generalization it is seen that the equations (iv) must apply to

any case where the liquid is in steady (irrotational) motion except in so far as

it is disturbed by the motion of the small sphere. It is not difficult, moreover,

to establish the equations by direct calculation of the pressures exerted on the

sphere by the fluid.

When Jf, F, Z=0, the sphere tends to move towards places where the

undisturbed velocity of the fluid is greatest.

For example, in the case of cyclic motion round a tixed circular cylinder

(Arts. 28, 64), the fluid velocity varies inversely as the distance from the axis.

The sphere will therefore move as if under the action of a force towards this

axis varying inversely as the cube of the distance. The projection of its path

on a plane perpendicular to the axis will therefore be a Cotes spiral*.

141. If in the equations (21) of Art. 137 we put (ji=0,

^2=0,..., we obtain the generalized components of force which are

required in order to maintain the solids at rest, viz.

o - dK a - dK myi ~% ys
-dfc

&quot;&quot;

We are not dependent, of course, for this result, on the

somewhat intricate investigation which precedes. If the solids

be guided from rest in the configuration (ql} q2 ,...) to rest in the

configuration (ql -\-^.qlt q.2 + Aq2 ,...), the work done on them

is ultimately equal to

which must therefore be equal to the increment &.K of the kinetic

energy. This gives at once the equations (1).

The forces representing the pressures of the fluid on the

solids (at rest) are obtained by reversing the sign in (1), viz.

they are

_ dK _dK
dq, dq.2

The solids tend therefore to move so that the kinetic energy
of the cyclic motion diminishes.

*
Sir W. Thomson, I.e. ante p. 211.
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It appears from Art. 137 (10), that under the present circum

stances the fluxes through the respective apertures are given by

dK . dK

By solving these equations, the circulations K, # ,... can be ex

pressed as linear functions of ^ , ; ,
....

If these values of K, K, ...be substituted in K we obtain

a homogeneous quadratic function of ^ , ^ ,
When so ex

pressed, the kinetic energy of the cyclic motion may be denoted

by T . We have then, exactly as in Art. 119,

T,+ K=2K = p*x&amp;gt;

+ pic x;+ ..................... (4),

so that if, for the moment, the symbol A be used to indicate

a perfectly general variation of these functions, we have

dT
() A dT . dTn ,

dT
,- . AXO + , . A + ... + y Aft +
d%o dxo dq, dq2

dK A dK . dK A dK A+ A* + ---A* + ...+ i-Aft + ,- A^ + ...

d/c d/c dqt dq.,

Omitting terms which cancel by (3), and equating coefficients

of the variations A^ , A^(/, ..., A^, A^,..., which form an inde

pendent system, we find

and

Hence the generalized components (2) of the pressures exerted by
the fluid on the solids when held at rest may also be expressed in

the forms

dT dT
f

.

dqi
&amp;gt;

1fc&amp;gt;-

It will be shewn in Art. 152 that the energy K of the cyclic fluid

motion is proportional to the energy of a system of electric current-sheets

coincident with the surfaces of the fixed solids, the current-lines being

orthogonal to the stream-lines of the fluid.
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The electromagnetic forces between conductors carrying these currents

are proportional* to the expressions (2) with the signs reversed. Hence in

the hydrodynamical problem the forces on the solids are opposite to those

which obtain in the electrical analogue. In the particular case where the

fixed solids reduce to infinitely thin cores, round which the fluid circulates,

the current-sheets in question are practically equivalent to a system of

electric currents flowing in the cores, regarded as wires, with strengths *, *
,
...

respectively. For example, two thin circular rings, having a common axis,

will repel or attract one another according as the fluid circulates in the

same or in opposite directions through themf. This might have been

foreseen of course from the principle of Art. 24.

Another interesting case is that of a number of open tubes, so narrow as

not sensibly to impede the motion of the fluid outside them. If flow be

established through the tubes, then as regards the external space the extremi

ties will act as sources and sinks. The energy due to any distribution of

positive or negative sources mlt m2 ,
... is given, so far as it depends on the

relative configuration of these, by the integral

taken over a number of small closed surfaces surrounding mlt
w2 ,

... respec

tively. If
1?

&amp;lt;

2 ,
... be the velocity-potentials due to the several sources, the

part of this expression which is due to the simultaneous presence of m1} m2
is

which is by Green s Theorem equal to

. dd&amp;gt; 9 Try .....

d&amp;gt;, /
2 dS (m).1 dn

Since the surface-integral of
d&amp;lt;f&amp;gt;2/dn is zero over each of the closed surfaces

except that surrounding w2 ,
we may ultimately confine the integration to the

latter, and so obtain

Since the value of
(f) 1

at m 2
is mjr12 ,

where r
12

denotes the distance between

wij and ?n
2 ,
we obtain, for the part of the kinetic energy which varies with the

relative positions of the sources, the expression

*
Maxwell, Electricity and Magnetism, Art. 573.

t The theorem of this paragraph was given by Kirchhofi, 1. c. ante p. 59. See

also Sir W. Thomson, &quot;On the Forces experienced by Solids immersed m a Moving

Liquid,&quot; Proc. R. S. Edin., 1870; Reprint, Art. xli.
;
and Boltzmann,

&quot; Ueber die

Druckkrafte welche auf Hinge wirksam sind die in bewegte Fliissigkeit tauchen,&quot;

Crelle, t. Ixxiii. (1871).
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The quantities mx ,
w2 ,

... are in the present problem equal to l/4?r times

the fluxes
, xo j

across the sections of the respective tubes, so that (v)

corresponds to the form T of the kinetic energy. The force apparently ex

erted by wij on w2 , tending to increase r
12 ,

is therefore, by (8),

d

Hence two sources of like sign attract, and two of unlike sign repel, with

forces varying inversely as the square of the distance*. This result, again,

is easily seen to be in accordance with general principles. It also follows,

independently, from the electric analogy, the tubes corresponding to Ampere s

solenoids.

We here take leave of this somewhat difficult part of our

subject. To avoid the suspicion of vagueness which sometimes

attaches to the use of generalized coordinates/ an attempt has

been made in this Chapter to make the treatment as definite as

possible, even at some sacrifice of generality in the results. There

can be no doubt, for example, that with proper interpretations the

equations of Art. 137 will apply to the case of flexible bodies

surrounded by an irrotationally moving fluid, and even to cases of

isolated vortices (see Chap, vn.), but the justification of such

applications belongs rather to general Dynamics-)-.

*
Sir W. Thomson, Reprint, Art. xli.

t For further investigations bearing on the subject of this Chapter see J. Purser,

&quot;On the Applicability of Lagrange s Equations in certain Cases of Fluid Motion,&quot;

Phil. Mag., Nov. 1878
; Larmor, I.e. ante p. 210 ; Basset, Hydrodynamics, Cam

bridge, 1888, c. viii.



CHAPTER VII.

VORTEX MOTION.

142. OUR investigations have thus far been confined for the

most part to the case of irrotational motion. We now proceed to

the study of rotational or vortex motion. This subject was first

investigated by von Helmholtz*; other and simpler proofs of some

of his theorems were afterwards given by Lord Kelvin in the paper
on vortex motion already cited in Chapter ill.

We shall, throughout this Chapter, use the symbols f, 77, f to

denote, as in Chap, in., the components of the instantaneous

angular velocity of a fluid element, viz.

dw dv\ du dw . dv du\ .

A line drawn from point to point so that its direction is every

where that of the instantaneous axis of rotation of the fluid is

called a vortex-line/ The differential equations of the system of

vortex -lines are

dx _dy _dz ,,..

~~f^ ~~T ........................ \ )
V ?

If through every point of a small closed curve we draw the

corresponding vortex-line, \ve obtain a tube, which we call a

*
&quot;Ueber Integrate der hydrodynamischen Gleichungen welche den Wirbel-

bewegungen entsprechen,&quot; Crelle, t. lv. (1858); Ges. Alh., t. i., p. 101.
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vortex-tube. The fluid contained within such a tube constitutes

what is called a vortex-filament/ or simply a vortex.

Let ABC, A B C be any two circuits drawn on the surface of a

vortex-tube and embracing it, and let AA be a connecting line

also drawn on the surface. Let us apply the theorem of Art. 33 to

the circuit ABCAA C B A A and the part of the surface of the

tube bounded by it. Since 1% + mi] + n% is zero at every point of

this surface, the line-integral

j(ndx + vdy -f wdz),

taken round the circuit, must vanish; i.e. in the notation of

Art. 32

/ (ABCA) + I(AA) + I(A C BA) + I(A A} = Q,

which reduces to

= I(AB C A).

Hence the circulation is the same in all circuits embracing the

same vortex-tube.

Again, it appears from Art. 32 that the circulation round the

boundary of any cross- section of the tube, made normal to its

length, is
2&&amp;gt;cr,

where co,
= (f

2 + rf + f
2

)*,
is the angular velocity of

the fluid, and a the infinitely small area of the section.

Combining these results we see that the product of the angular

velocity into the cross- section is the same at all points of a vortex.

This product is conveniently termed the strength of the vortex.

The foregoing proof is due to Lord Kelvin
;
the theorem itself was first

given by von Helmholtz, as a deduction from the relation
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which follows at once from the values of
, ?/, given by (1). In fact, writing

in Art. 42 (1), & 77,
for U, V, W, respectively, we find

S}(l +mq+nQdS=0 (ii),

where the integration extends over any closed surface lying wholly in the

fluid. Applying this to the closed surface formed by two cross-sections of a

vortex-tube and the portion of the tube intercepted between them, we find

o)
1
o-

1
= a)2

o-
2 ,

where o)l5 a&amp;gt;2 denote the angular velocities at the sections a-lt &amp;lt;r

2 ,

respectively.

Lord Kelvin s proof shews that the theorem is true even when
, 17,

are

discontinuous (in which case there may be an abrupt bend at some point of a

vortex), provided only that u, v, w are continuous.

An important consequence of the above theorem is that a

vortex-line cannot begin or end at any point in the interior of

the fluid. Any vortex-lines which exist must either form closed

curves, or else traverse the fluid, beginning and ending on its

boundaries. Compare Art. 37.

The theorem of Art. 33 (4) may now be enunciated as follows :

The circulation in any circuit is equal to twice the sum of the

strengths of all the vortices which it embraces.

143. It was proved in Art. 34 that, in a perfect fluid whose

density is either uniform or a function of the pressure only, and

which is subject to extraneous forces having a single-valued

potential, the circulation in any circuit moving with the fluid is

constant.

Applying this theorem to a circuit embracing a vortex-tube we

find that the strength of any vortex is constant.

If we take at any instant a surface composed wholly of vortex-

lines, the circulation in any circuit drawn on it is zero, by Art. 33,

for we have 1% + mr) + n = at every point of the surface. The

preceding article shews that if the surface be now supposed to

move with the fluid, the circulation will always be zero in any
circuit drawn on it, and therefore the surface will always consist

of vortex-lines. Again, considering two such surfaces, it is plain

that their intersection must always be a vortex-line, whence

we derive the theorem that the vortex-lines move with the

fluid.

This remarkable theorem was first given by von Helmholtz for

the case of liquids ;
the preceding proof, by Lord Kelvin, shews

that it holds for all fluids subject to the conditions above stated.
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One or two independent proofs of the theorem may be briefly indicated.

Of these perhaps the most conclusive is based upon a slight generalization
of some equations given originally by Cauchy in his great memoir on Waves*,
and employed by him to demonstrate Lagrange s velocity-potential theorem.

The equations (2) of Art. 15, yield, on elimination of the function x by
cross-differentiation,

du dy _ du dx dv dy dv d}/ dw dz dw dz _ dwQ dvQ~ + ~ +~~~ = ~

(where u, v, w have been written in place of dx/dt, dy/dt, dzfdt^ respectively),
with two symmetrical equations. If in these equations we replace the

differential coefficients of u, v, w with respect to a, b, c, by their values in

terms of differential coefficients of the same quantities with respect to
,v, y, z,

we obtain

d(a, 6) d(a, 6)

If we multiply these by dxfda, dxjdb, dxldc, in order, and add, then, taking
account of the Lagrangian equation of continuity (Art. 14(1)) we deduce the

first of the following three symmetrical equations :

=
P Po da Po db PQ do

1
L = &&amp;gt;

dy +
r
iQ dy + tv&amp;lt;fy_

p p da p db PQ dc

p po da PQ db pQ dc

In the particular case of an incompressible fluid (p
= p ) these differ only in

the use of the notation
, 77, f from the equations given by Cauchy. They

shew at once that if the initial values
, ?7 ,

of the component rotations

vanish for any particle of the fluid, then
, 77,

are always zero for that

particle. This constitutes in fact Cauchy s proof of Lagrange s theorem.

To interpret (ii) in the general case, let us take at time = a linear

element coincident with a vortex-line, say

where e is infinitesimal. If we suppose this element to move with the fluid,

the equations (ii) shew that its projections on the coordinate axes at any other

time will be given by

*
I. c. ante p. 18.

L. 15
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i.e. the element will still form part of a vortex-line, and its length (&, say) will

vary as eo/p, where o&amp;gt; is the resultant angular velocity. But if o- be the cross-

section of a vortex-filament having 8s as axis, the product pa-ds is constant with

regard to the time. Hence the strength coo- of the vortex is constant*.

The proof given originally by von Helmholtz depends on a system of three

equations which, when generalized so as to apply to any fluid in which p is a

function ofp only, become

Dt ...

D (\ dw
T)
dw dw

Dt \p) p dx p dy p dz

These may be obtained as follows. The dynamical equations of Art. 6

may be written, when a force-potential Q, exists, in the forms

provided

where q*
= uz+ v2+w2

. From the second and third of these we obtain, elimina

ting x by cross-differentiation,

_,,,^^,_.&amp;lt;fa . ** - *
dt dy dz

Remembering the relation

dz (vi),

and the equation of continuity

Dp fdu dv dw
Dt \dx dy

we easily deduce the first of equations (iii).

To interpret these equations we take, at time t, a linear element whose

projections on the coordinate axes are

&r=e/p, 8y=(r)/p, 8z= f/p (viii)&amp;gt;

where 6 is infinitesimal. If this element be supposed to move with the fluid,

* See Nanson, Mess, of Math. t. iii., p. 120 (1874); Kirchhoff, Mechanik, Leipzig.

1876..., c. xv.; Stokes, Math, and Phys. Papers, t. ii., p. 47 (1883).

t Nanson, I. c.
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the rate at which dx is increasing is equal to the difference of the values of u

at the two ends, whence

_ % du
rj
du du

Dt p dx p dy p dz

It follows, by (iii), that

Von Helmholtz concludes that if the relations (viii) hold at time t, they will

hold at time t-\- 8t, and so on, continually. The inference is, however, not quite

rigorous ;
it is in fact open to the criticisms which Sir G. Stokes* has directed

against various defective proofs of Lagrange s velocity-potential theorem f.

By way of establishing a connection with Lord Kelvin s investigation we

may notice that the equations (i) express that the circulation is constant in

each of three infinitely small circuits initially perpendicular, respectively, to

the three coordinate axes. Taking, for example, the circuit which initially

bounded the rectangle 86 Sc, and denoting by A, B, C the areas of its pro

jections at time t on the coordinate planes, we have

d(b,c) d(b,c)

so that the first of the equations referred to is equivalent to

(x)J.

144. It is easily seen by the same kind of argument as in

Art. 41 that no irrotational motion is possible in an incompressible
fluid filling infinite space, and subject to the condition that the

velocity vanishes at infinity. This leads at once to the following

theorem :

The motion of a fluid which fills infinite space, and is at

rest at infinity, is determinate when we know the values of the

*
I. c. ante p. 18.

t It may be mentioned that, in the case of an incompressible fluid, equations some

what similar to
(iii)

had been established by Lagrange, Miscell. Taur., t. ii. (1760),

Oeuvres, t. i., p. 442. The author is indebted for this reference, and for the above

criticism of von Helmholtz investigation, to Mr Larmor. Equations equivalent to

those given by Lagrange were obtained independently by Stokes, I. c., and made the

basis of a rigorous proof of tbe velocity-potential theorem.

$ Nanson, Mess, of Math., t. vii., p. 182 (1878). A similar interpretation of

von Helmholtz equations was given by the author of this work in the Mess, of

Math., t. vii., p. 41 (1877).

Finally we may note that another proof of Lagrange s theorem, based on ele

mentary dynamical principles, without special reference to the hydrokinetic equa

tions, was indicated by Stokes (Camb. Trans., t. viii.; Math. andPhys. Papers, t. i.,

p. 113), and carried out by Lord Kelvin, in his paper on Vortex Motion.

152
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expansion (6, say) and of the component angular velocities f, 77, f,

at all points of the region.

For, if possible, let there be two sets of values, uly vlt wl}

and u2 ,
v.2 ,

w2 ,
of the component velocities, each satisfying

the equations
du dv dw

fi1 h i VT- &quot;

........................ (1),dx dy dz

dw dv .. du dw dv du

dy~Tz
=

^&amp;gt; dz~Tx
=

l7] &amp;gt; dx dy-^
......... (2) &amp;gt;

throughout infinite space, and vanishing at infinity. The quantities

will satisfy (1) and (2) with 0, , 77, each put = 0, and will vanish

at infinity. Hence, in virtue of the result above stated, they will

everywhere vanish, and there is only one possible motion satisfying

the given conditions.

In the same way we can shew that the motion of a fluid occupying any
limited simply-connected region is determinate when we know the values of

the expansion, and of the component rotations, at every point of the region,

and the value of the normal velocity at every point of the boundary. In the

case of a multiply-connected region we must add to the above data the values

of the circulations in the several independent circuits of the region.

145. If, in the case of infinite space, the quantities 6, f, 77, f

all vanish beyond some finite distance of the origin, the complete
determination of u, v, w in terms of them can be effected as

follows*.

The component velocities (ult vl} wlt say) due to the ex

pansion can be written down at once from Art. 56 (1), it being
evident that the expansion 6 in an element bx &y Sz is equivalent
to a simple source of strength l/4?r . Sw Sy Bz . We thus obtain

where &amp;lt;D=-dx dy dz .................. (2),

* The investigation which follows is substantially that given by von Helmholtz.

The kinematical problem in question was first solved, in a slightly different

manner, by Stokes, &quot;On the Dynamical Theory of Diffraction,&quot; Camb. Trans.,

t. ix. (1849), Math, and Phys. Papers, t. ii., pp. 254....
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r denoting the distance between the point (# , y , z) at which the

volume-element of the integral is situate and the point (x, y, z)

at which the values of u l,v l , w^ are required, viz.

r = a -*

and the integration including all parts of space at which 6 differs

from zero.

To verify this result, we notice that the above values ofult vlf wl

make

^ +^1+M = _ V2$=
dx ay dz

by the theory of Attractions, and also vanish at infinity.

To find the velocities (u.2 ,
v.2 ,

w2) say) due to the vortices,

we assume

_dll dG _dF dH _dG dF
U2

~~d^~dz
V2 ~~dz~ dx&amp;gt;

W
*~dx~dy&quot;&quot;

and seek to determine F, G, H so as to satisfy the required

conditions. In the first place, these formula) make

du2 d/Vz dw2 _ Q
da dy dz

and so do not interfere with the result contained in (1). Also, they

give

2 =^2 _ 2 = .

dy dz dx\dx dy dz

Hence our problem will be solved if we can find three functions

F, G, H satisfying

dFdG^dU .....................
dx dy dz

and V 2^=-2f, V&quot;G = -2r), V 2H = -2 ......... (5).

These latter equations are satisfied by making F, G, H equal to the

potentials of distributions of matter whose volume-densities at the

point (x} y, z) are f/2?r, 77/2-77-, f/2-Tr, respectively ;
thus

(6),
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where the accents attached to
, 77, f are used to distinguish the

values of these quantities at the point (x
f

, y ,
z \ and

r={(x- # )
2 + (y

-
y f + (z- z J}*,

as before. The integrations are to include, of course, all places at

which f, 77, f differ from zero.

It remains to shew that the above values of F, G, H really

satisfy (4), Since djdx .r~l = d/dx . r~l

,
we have

dF dG dH 1 ffff d , d ., d \ 1 , , ,
, , ,

j- + -j- + -j- = ~ ar I ?V-&amp;gt;
+ V j-/ + ? j~&amp;gt;

- dxdy dz
dx dy dz Sirj/Jv ** ^2/ dz J r

7T~ I I (1% + m?
?

/ + ?l? ) \~ cT
ZTT J J r ZTT

(7),

by the usual method of partial integration. The volume-integral

vanishes, by Art. 142 (i), and the surface-integral also vanishes,

since lj~ + 77177 + nf = at the bounding surfaces of the vortices.

Hence the formulae (3) and (6) lead to the prescribed values of

f, 77, f, and give a zero velocity at infinity.

The complete solution of our problem is now obtained by

superposition of the results contained in the formula (1) and (3),

viz. we have
d$&amp;gt; dH dG

u = -^j + ^j j- 1dx dy dz

d3&amp;gt; dF dH

d&amp;lt;$&amp;gt; dG dFw = - -r + -= -j-dz dx dy

where &amp;lt;l&amp;gt;

; F, G, H have the values given in (2) and (6).

When the region occupied by the fluid is not unlimited, but is bounded (in

whole or in part) by surfaces at which the normal velocity is given, and when
further (in the case of a cyclic region) the value of the circulation in each of

the independent circuits of the region is prescribed, the problem may by a

similar analysis be reduced to one of irrotational motion, of the kind con

sidered in Chap, in., and there proved to be determinate. This may be left

to the reader, with the remark that if the vortices traverse the region,

beginning and ending on the boundary, it is convenient to imagine them
continued beyond it, or along its surface, in such a manner that they form

re-entrant filaments, and to make the integrals (6) refer to the complete system
of vortices thus obtained. On this understanding the condition (4) will still

be satisfied.
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146. There is a remarkable analogy between the analytical
relations above developed and those which obtain in the theory of

Electro-magnetism. If, in the equations (1) and (2) of Art. 144,

we write

a, y8, 7, p, p } q, r

for U, V, W, 0/47T, /27T, T;/27r, J/27T,

respectively, we obtain

da d/3 dy \
IT + ~T~ + ~J-

= 47TP,dx dy dz I

dy dj3 da dy d@ da
{&quot;

~T~
~
~T = ^Trp, ~J -T~ ^q, ~J ~J~

= ^7rr
dy dz dz dx dx dy J

which are the fundamental relations of the subject referred to
;

viz. a, /:?, 7 are the components of magnetic force, p, q, r those of

electric current, and p is the volume-density of the imaginary

magnetic matter by which any magnetization present in the field

may be represented. Hence, if we disregard constant factors, the

vortex-filaments correspond to electric circuits, the strengths of

the vortices to the strengths of the currents in these circuits,

sources and sinks to positive and negative magnetic poles, and,

finally, fluid velocity to magnetic force f.

The analogy will of course extend to all results deduced from

the fundamental relations
; thus, in equations (8) of the preceding

Art., &amp;lt;l&amp;gt; corresponds to the magnetic potential and F, G, H to the

components of electro-magnetic momentum.

147. To interpret the result contained in Art. 145 (8), we

may calculate the values of u, v, w due to an isolated re-entrant

vortex-filament situate in an infinite mass of incompressible fluid

which is at rest at infinity.

Since 6 = 0, we shall have &amp;lt;3&amp;gt;

= 0. Again, to calculate the

values of F, G, H, we may replace the volume-element So/Sy S*

by v Ss
,
where &s is an element of the length of the filament, and

&amp;lt;r its cross-section. Also, we have

c., , dx , , dy .,, ,
dz

* =(a
ds&quot;

&quot;

=&amp;lt;a

ds&quot;

?=W d?

* Cf. Maxwell, Electricity and Magnetism, Art. 607.

f This analogy was first pointed out by von Helmholtz ;
it has been extensively

Utilized by Lord Kelvin in his papers on Electrostatics and Magnetism.
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where o&amp;gt; is the angular velocity of the fluid. Hence the formal*

(6) of Art. 145 become

m dot m dy m dz
~

where m
,
= a&amp;gt;V ,

measures the strength of the vortex, and the

integrals are to be taken along the whole length of the filament.

Hence, by Art. 145 (8), we have

m
(tu = o~ I

27rJ \

d\ d 1

j .dz--j--.
dy r dz r

with similar results for v, w. We thus find

_ m ffdy z z dz x x \ ds

.(2)*.

m ((dz x x dx y y ^

^ If
7 /

27rJ\ds r ds r

m [/ dx y y dy z z \ dsnn ^-^- I I ^L ~L~ ^_ *^ I

27rJ\ds r ds r ) r~

If &u, Av, A^6 denote the parts of these expressions which corre

spond to the element Ss of the filament, it appears that the

resultant of Aw, Av, At6&amp;gt; is a velocity perpendicular to the plane

containing the direction of the vortex- line at (x, y ,
z } and the

line r, and that its sense is that in which the point (x, y, z) would

be carried if it were attached to a rigid body rotating with the

fluid element at (x , y ,
z

).
For the magnitude of the resultant

we have
&quot;&quot;&quot;&quot; &quot;

(3),

where % is the angle which r makes with the vortex-line at (# , y , z).

With the change of symbols indicated in the preceding Art.

this result becomes identical with the law of action of an electric

current on a magnetic pole*)*.

* These are equivalent to the forms obtained by Stokes, 1. c. ante p. 228.

t Ampere, Theorie matheniatique des plienomenes electro-dynamiques, Paris, 1826.
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Velocity-Potential due to a Vortex.

148. At points external to the vortices there exists of course a

velocity-potential, whose value may be obtained as follows. Taking
for shortness the case of a single re-entrant vortex, it was found

in the preceding Art. that, in the case of an incompressible fluid,

m
[i

rf 1
7 , d 1 , A= o~ I \ j- -
dy 7 -,-.dz } (1).

27rJ \dz r J
dy r v
dy

By Stokes Theorem (Art. 33 (5)) we can replace a line-integral ex

tending round a closed curve by a surface-integral taken over any
surface bounded by that curve

;
viz. we have, with a slight change

of notation,

fdR dQ\ fdP dR\ fdQ dP\] ,

T-/-T^ + m j-/- j^l+ ( T%-^r-,)td&.
\dy dz) \dz doc) \dx dy )}

If we put

we find

^ 1 p d I- tf-
dz

r

r dy r*

dR_dQ = _/d* _^1\1_^11
dy dz

~
(dy* dz&quot;&amp;gt;)

r
~
d^ r

f

dP _dR_ d*
!_

dz dx
~

dx dy r

dQ_dP = _fc _!

dx dy dx dz r&quot;

so that (1) may be written

in
f

[[/, d d d \ d 1 70(u = x 1 1 U -r, + m -J-, +n -j-f
-r -&amp;gt;

- ao .

27rJJ\ d c^/ dz J dx r

Hence, and by similar reasoning, we have, since

f . r~l = -
dldx . r~\

dd&amp;gt; dd&amp;gt; dd&amp;gt; /ONu = - -f, -y = - y^, w = --^ ,
............... (2),dx dy dz

where
m f/Yj rf rf rf\ 1 7ry- /ox= er U TT + ^ J&quot;7+

*
:r&amp;gt; J

-
&amp;lt;*

............
w&amp;gt;

27rJJV rf^ rf/ dW r*

Here ^, m, ?i denote the direction-cosines of the normal to the

element 8$ of any surface bounded by the vortex-filament.
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The formula (3) may be otherwise written

where ^ denotes the angle between r and the normal
(I, m, n).

Since cos OSS
/

r&quot; measures the elementary solid angle subtended

by 8$ at (x, y, z)t
we see that the velocity-potential at any point,

due to a single re-entrant vortex, is equal to the product of m /Zir

into the solid angle which any surface bounded by the vortex

subtends at that point.

Since this solid angle changes by 4?r when the point in

question describes a circuit embracing the vortex, we verify that

the value of
&amp;lt;f&amp;gt; given by (4) is cyclic, the cyclic constant being

twice the strength of the vortex. Cf. Art. 142.

Comparing (4) with Art. 56 (4) we see that a vortex is, in

a sense, equivalent to a uniform distribution of double sources over

any surface bounded by it. The axes of the double sources must be

supposed to be everywhere normal to the surface, and the density

of the distribution to be equal to the strength of the vortex

divided by 2?r. It is here assumed that the relation between

the positive direction of the normal and the positive direction

of the axis of the vortex-filament is of the right-handed type.

See Art. 32.

Conversely, it may be shewn that any distribution of double sources over

a closed surface, the axes being directed along the normals, may be replaced

by a system of closed vortex-filaments lying in the surface*. The same thing

will appear independently from the investigation of the next Art.

Vortex-Sheets.

149. We have so far assumed w, v, w to be continuous. We
will now shew how cases where surfaces present themselves at

which these quantities are discontinuous may be brought within

the scope of our theorems.

The case of a surface where the normal velocity is discon

tinuous has already been treated in Art. 58. If u, v, w denote the

component velocities on one side, and u
,
v

,
w those on the other,

*
Cf. Maxwell, Electricity and Magnetism, Arts. 485, 652.
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it was found that the circumstances could be represented by

imagining a distribution of simple-sources, with surface density

{I (u
f

u) + m (v v) + n (w
f

w)},
47T

where I, m, n denote the direction-cosines of the normal drawn

towards the side to which the accents refer.

Let us next consider the case where the tangential velocity

(only) is discontinuous, so that

I (u
f

u) + m (v v) + w (w w) = Q (1).

We will suppose that the lines of relative motion, which are

defined by the differential equations

dx _ _dy_ = dz .

u u v v w w

are traced on the surface, and that the system of orthogonal

trajectories to these lines is also drawn. Let PQ, P Q be linear

elements drawn close to the surface, on the two sides, parallel to

a line of the system (2), and let PP and QQ be normal to the

surface and infinitely small in comparison with PQ or P Q, .

The circulation in the circuit P Q QP will then be equal to

(q q) PQ, where q, q denote the absolute velocities on the two

sides. This is the same as if the position of the surface were

occupied by an infinitely thin stratum of vortices, the orthogonal

trajectories above-mentioned being the vortex-lines, and the

angular velocity w and the (variable) thickness &n of the stratum

being connected by the relation 2o&amp;gt; . PQ . Sn = (q q) PQ, or

co$n = %(q -q) (3).

The same result follows from a consideration of the discontinuities which

occur in the values of u, v, w as determined by the formulae (3) and (6) of

Art. 145, when we apply these to the case of a stratum of thickness dn

within which
, 77,

are infinite, but so that w, r)8n, 8n are finite*.

It was shewn in Arts. 144, 145 that any continuous motion of

a fluid filling infinite space, and at rest at infinity, may be

regarded as due to a proper arrangement of sources and vortices

distributed with finite density. We have now seen how by
considerations of continuity we can pass to the case where the

sources and vortices are distributed with infinite volume-density,

*
Helmholtz, 1. c. ante p. 222.
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but finite surface-density, over surfaces. In particular, we may
take the case where the infinite fluid in question is incompressible.
and is divided into two portions by a closed surface over which the

normal velocity is continuous, but the tangential velocity dis

continuous, as in Art. 58 (12). This is equivalent to a vortex-

sheet; and we infer that every continuous irrotational motion,

whether cyclic or not, of an incompressible substance occupying

any region whatever, may be regarded as due to a certain distri

bution of vortices over the boundaries which separate it from the

rest of infinite space. In the case of a region extending to

infinity, the distribution is confined to the finite portion of the

boundary, provided the fluid be at rest at infinity.

This theorem is complementary to the results obtained in

Art. 58.

The foregoing conclusions may be illustrated by means of the results of

Art. 90. Thus when a normal velocity Sn was prescribed over the sphere
r= a, the values of the velocity-potential for the internal and external space
were found to be

respectively. Hence if e be the angle which any linear element drawn on

the surface subtends at the centre, the relative velocity estimated in the

direction of this element will be

_
n(n~+I) ~df

The resultant relative velocity is therefore tangential to the surface, and

perpendicular to the contour lines (Sn = const.) of the surface-harmonic Snt

which are therefore the vortex-lines.

For example, if we have a thin spherical shell filled with and surrounded

by liquid, moving as in Art. 91 parallel to the axis of x, the motion of the

fluid, whether internal or external, will be that due to a system of vortices

arranged in parallel circles on the sphere ;
the strength of an elementary

vortex being proportional to the projection, on the axis of x, of the breadth

of the corresponding strip of the surface*.

Impulse and Energy of a Vortex-System.

150. The following investigations relate to the case of a

vortex-system of finite dimensions in an incompressible fluid

which fills infinite space and is at rest at infinity.

* The same statements hold also for an ellipsoidal shell moving parallel to one of

its principal axes v See Art. 111.
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If X
, Y, Z be components of a distribution of impulsive

force which would generate the actual motion (u, v, w) instan

taneously from rest, we have by Art. 12 (1)

Tr ,
1 div T7, 1 d^r ,

1 dixX ;- = w, Y -T~
= V

&amp;gt;

z j = w CO.
p doc p dy p dz

where ts is the impulsive pressure. The problem of findingX ,
Y

,
Z

,

TV in terms of u, v, w, so as to satisfy these three equations, is clearly

indeterminate
;
but a sufficient solution for our purpose may be

obtained as follows.

Let us imagine a simply-connected surface 8 to be drawn

enclosing all the vortices. Over this surface, and through
the external space, let us put

=
P&amp;lt;t&amp;gt; (2),

where &amp;lt; is the velocity-potential of the vortex-system, determined

as in Art. 148. Inside S let us take as the value of w any

single-valued function which is finite and continuous, is equal to

(2) at 8, and also satisfies the equation

f =P? -(3).dn r dn

at $, where &n denotes as usual an element of the normal. It

follows from these conditions, which can evidently be satisfied in an

infinite number of ways, that the space-derivatives d^jdx, dTxjdy,

d^fjdz will be continuous at the surface S. The values ofX
,
Y

,
Z

are now given by the formula (1); they vanish at the surface S,

and at all external points.

The force- and couple-equivalents of the distribution X
,
F

,
Z

constitute the impulse of the vortex-system. We are at present

concerned only with the instantaneous state of the system, but it

is of interest to recall that, when no extraneous forces act, this

impulse is, by the argument of Art. 116, constant in every respect.

Now, considering the matter inclosed within the surface S, we

find, resolving parallel to x,

MpX dxdydz = pffludxdydz
-
pfjl^dS (4),

if I, m, n be the direction-cosines of the inwardly-directed normal

to any element &S of the surface. Let us first take the case of a

single vortex-filament of infinitely small section. The fluid
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velocity being everywhere finite and continuous, the parts of the

volume-integral on the right-hand side of (4) which are due to the

substance of the vortex itself may be neglected in comparison
with those due to the remainder of the space included within S.

Hence we may write

fjjudxdydz
= -

ffjj
dxdydz =

jjl^dS
+ 2m

fjldS
. . , (5),

where
c/&amp;gt;

has the value given by Art. 147 (4), m denoting the

strength of the vortex (so that 2m is the cyclic constant of
c/&amp;gt;),

and

$S an element of any surface bounded by it. Substituting in

(4), we infer that the components of the impulse parallel to the

coordinate axes are

Zm pffmdS ,
Zm pJfndS ............... (6).

Again, taking moments about Ox,

5S5p(yZ -zY ) dxdydz

=
pfff(yw zv) dxdydz pff(ny mz) (f&amp;gt;dS

......... (7).

For the same reason as before, we may substitute, for the volume-

integral on the right-hand side,

(ny
- mz) &amp;lt;j&amp;gt;dS

+ 2m ff(ny
- mz) dS (8).

Hence, and by symmetry, we find, for the moments of the impulse
about the coordinate axes,

2m pff(ny-mz)d8 , 2mpff(lz-nx)dS ,
2m ptf(mx

-
ly) dS . . .(9).

The surface-integrals contained in (6) and (9) may be replaced

by line-integrals taken along the vortex. In the case of (6) it is

obvious that the coefficients of m p are double the projections on

the coordinate axes of any area bounded by the vortex, so that the

components in question take the forms

,
r/ ,dz ,dy \ 7 , , [( ,dx , dz
(y ^r,-z -r/ &amp;lt;&*

&amp;gt;

m \\ z ^-,~ x ^r,
JV ds ds J j\ ds ds
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For the similar transformation of (9) we must have recourse

to Stokes Theorem
;
we obtain without difficulty the forms

+
*&amp;gt;)

ds
,

............(11).

From (10) and (11) we can derive by superposition the com

ponents of the force- and couple- resultants of any finite system of

vortices. Denoting these by P, Q, R, and Z, If, N, respectively,

we find, putting

, dx M , dy . , dz ..

~J &amp;gt;

w
TJ

= r
l w J

~
b &amp;gt;

ds ds ds

and replacing the volume-element a Ss by

P =
p$jj(y% zrj) docdydz, L = /o///(2/

2 + ^2

) f dxdydz,

Q = pfff(zg
- a) da?dyrf, Jlf= p///(^

2 + a?) 77 dajrfy^, [-...(12)*,

-R = P/J/C^7/
~
^f) docdydz, N=

pfff(a? + f) dxdydz

where the accents have been dropped, as no longer necessary.

151. Let us next consider the energy of the vortex-system.

It is easily proved that under the circumstances presupposed, and

in the absence of extraneous forces, this energy will be constant.

For if T be the energy of the fluid bounded by any closed surface

S, we have, putting F = in Art. 11 (5),

DT
_ =

ff(lu + mv + nw) pdS .................. (1).

If the surface S enclose all the vortices, we may put

and it easily follows from Art. 148 (4) that at a great distance R
from the vortices p will be finite, and lu + mv + nw of the order

R~3
,

whilst when the surface 8 is taken wholly at infinity,

* These expressions were given by J. J. Thomson, On the Motion of Vortex

(Adams Prize Essay), London, 1883, pp. 5, 6.
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the elements BS ultimately vary as R2
. Hence, ultimately, the

right-hand side of (1) vanishes, and we have

T = const............................... (3).

152. We proceed to investigate one or two important kine-

matical expressions for T, still confining ourselves, for simplicity,

to the case where the fluid (supposed incompressible) extends to

infinity, and is at rest there, all the vortices being within a finite

distance of the origin.

The first of these is indicated by the electro-magnetic analogy

pointed out in Art. 146. Since 6 = 0, and therefore O = 0, we have

+ tf + w2
) dxdydz

{[[&amp;lt; fdH dG\ (dF dH\ /dG dF\ ,= pHI\u( -=-- -
) + vi-j

--
, + w i-j

----,- dxdydz,
JjJ\ \dy dz) \dz dx) \dx dy )

by Art. 145 (3). The last member may be replaced by the sum of

a surface integral

pff{F(miv
-

nv) + G (nu
-

ho) +H (Iv
-
nm)} dS,

and a volume integral

dw dv\ fdu dw\ (dv du\] 7 7 7---i-)+0l-3- -y }^H (,--^-}\ dxdydz.
dy dz) \dz dx) \dx dy)}

At points of the infinitely distant boundary, F, G, H are ultimately

of the order R~2
,
and u, v, w of the order R~s

,
so that the surface-

integral vanishes, and we have

T= PJff(FS + h,.+ HQd*dydt .................. (1),

or, substituting the values of F, G, H from Art. 145 (6),

T = 1-
fjjfjf*?

+
7

+ K
dxdydz dx dy dz ...(2),

where each volume-integration extends over the whole space

occupied by the vortices.

A slightly different form may be given to this expression as

follows. Regarding the vortex-system as made up of filaments,

let &s, 8s be elements of length of any two filaments, a, a

the corresponding cross-sections, and
&&amp;gt;,

&&amp;gt; the corresponding

angular velocities. The elements of volume may be taken to be
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o-Ss and a Ss
, respectively, so that the expression following the

integral signs in (2) is equivalent to

cos e . , , ,-
. ftxros . ft) a- os

,

r

where e is the angle between s and Ss . If we put wa m,

MO- =m
,
so that in and m denote the strengths of the two

elementary vortices, we have

T =^mm jj

C

^dsds ............... (3),

where the double integral is to be taken along the axes of the

filaments, and the summation embraces every pair of such

filaments which are present.

The factor of p/Tr in (3) is identical with the expression for the

energy of a system of electric currents flowing along conductors

coincident in position with the vortex-filaments, with strengths

m, m ,... respectively*. The above investigation is in fact merely
an inversion of the argument given in treatises on Electro-

magnetism, whereby it is proved that

= (a
2 +& + 7

2

) dxdydz,

i, i denoting the strengths of the currents in the linear conductors

whose elements are denoted by 8s, 8s
,
and a, /3, 7 the components

of magnetic force at any point of the field.

The theorem of this Art. is purely kinematical, and rests solely

on the assumption that the functions u, v, w satisfy the equation
of continuity,

du dv dw
dx dy dz

throughout infinite space, and vanish at infinity. It can therefore

by an easy generalization be extended to the case considered in

Art. 141, where a liquid is supposed to circulate irrotationally

through apertures in fixed solids, the values of u, v, w being now

taken to be zero at all points of space not occupied by the fluid.

The investigation of Art. 149 shews that the distribution of velocity

thus obtained may be regarded as due to a system of vortex-sheets

coincident with the surfaces of the solids. The energy of this

system will be given by an obvious adaptation of the formula (3)

above, and will therefore be proportional to that of the correspond-

* See Maxwell, Electricity and Magnetism, Arts. 524, 637.

L. 16
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ing system of electric current-sheets. This proves a statement

made by anticipation in Art. 141.

153. Under the circumstances stated at the beginning of

Art. 152, we have another useful expression for T\ viz.

T= 2p /// {u (y% -zrj)+v Of-xQ+w (ay
-
y%)} dxdydz. . .(4).

To verify this, we take the right-hand member, and transform it

by the process already so often employed, omitting the surface-

integrals for the same reason as in the preceding Art. The first

of the three terms gives

dv du\ du ddu\ fdu dw\\ , , ,

T~ ~&amp;lt;M ~7
---

r~ r dxdydz
dyj \dz dxj)

Transforming the remaining terms in the same way, adding, and

making use of the equation of continuity, we obtain

+ yv + ZW dxdydz,

or, finally, on again transforming the last three terms,

iP JJ/(^
2 + v2 + w2

) dxdydz.

In the case of a finite region the surface-integrals must be retained. This

involves the addition to the right-hand side of (4) of the term

P JJ {(lu+mv+nw) (
xu +2/v+ zw] -^(te+my+ nz)

&amp;lt;?

2
} dS,

where q
2= u2+ v2+ w2

. This simplifies in the case of &fixed boundary*.

The value of the expression (4) must be unaltered by any displacement of

the origin of coordinates. Hence we must have

J7J 0&amp;gt;-
/Mty) dxdydz=Q,\

JJJ (*-*) dxdydz= Q, I ........................... (i).

J/J (^17
-

i&amp;gt;) dxdydz= Q
}

These equations, which may easily be verified by partial integration, follow

also from the consideration that the components of the impulse parallel to the

coordinate axes must be constant. Thus, taking first the case of a fluid

enclosed in a fixed envelope of finite size, we have, in the notation of Art. 150,

P = pMudxdydz-pSSl&amp;lt;l&amp;gt;dS ........................ (ii),

whence

l dS...... (iii),

Of. J. J. Thomson, I.e.

z

-pjfl
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by Art. 143 (iv). The first and third terms of this cancel, since at the

envelope we have ^ = d$ldt. Hence for any re-entrant system of vortices

enclosed in a fixed vessel, we have

with two similar equations. If now the containing vessel be supposed
infinitely large, and infinitely distant from the vortices, it follows from the

argument of Art. 116 that P is constant. This gives the first of equations (i).

Conversely from (i), established otherwise, we could infer the constancy of

the components P, Q, R of the impulse*.

Rectilinear Vortices.

154. When the motion is in two dimensions xy we have w = 0,

whilst u, v are functions of x, y, only. Hence f = 0, j] 0, so that

the vortex-lines are straight lines parallel to z. The theory then

takes a very simple form.

The formulae (8) of Art. 145 are now replaced by

dx
dy&amp;gt; dy dx

.....

the functions
&amp;lt;/&amp;gt;, -\Jr being subject to the equations

V^-0, V
1^ = 2f ..................... (2),

where V^ = d?/da? + d?/dy*,

and to the proper boundary-conditions.

In the case of an incompressible fluid, to which we will now

confine ourselves, we have

, ~r ..................... ,

dy dx

where ^ is the stream-function of Art. 59. It is known from the

theory of Attractions that the solution of

V
1V=2f .............................. (4),

where f is a given function of x,
y&amp;gt;

is

tf + fy ............... (5),

Cf. J. J. Thomson, Motion of Vortex Rings, p. 5.

162
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where f denotes the value of f at the point (x t y ), and r now
stands for

The complementary function
-&amp;lt;fr may be any solution of

V,
2
V. = ........................... (6);

it enables us to satisfy the boundary-conditions.

In the case of an unlimited mass of liquid, at rest at infinity,

we have ^ = const. The formulae (3) and (5) then give

(7).
x x

, ,-

Hence a vortex-filament whose coordinates are a?
, y and whose

strength is ??^ contributes to the motion at (x, y} a velocity whose

components are

m y y
f

, m x x--
. XffJ- ,

and .
-

.

TT r2
TT r2

This velocity is perpendicular to the line joining the points (x, y),

(# , y \ and its amount is m /irr.

Let us calculate the integrals ffugdxdy, and ffvdacdy, where

the integrations include all portions of the plane xy for which f

does not vanish. We have

gf. dxdy dx dy ,

where each double integration includes the sections of all the

vortices. Now, corresponding to any term

K dxdydxdy
1

of this result, we have another term

and these two terms neutralize one another. Hence

........................... (8),
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and, by the same reasoning,

ffv{da;dy = ........................... (9).

If as before we denote the strength of a vortex by m, these results

may be written

2wM = 0, 2rav=0 ........................ (10).

We have seen above that the strength of each vortex is constant

with regard to the time. Hence (10) express that the point whose

coordinates are

rp -_ /?/
- _\

VO ^ j (j ^&amp;gt;
j2m Zra

is fixed throughout the motion. This point, which coincides with

the centre of inertia of a film of matter distributed over the plane

xy with the surface-density f, may be called the centre of the

system of vortices, and the straight line parallel to z of which it

is the projection may be called the axis of the system.

155. Some interesting examples are furnished by the case of

one or more isolated vortices of infinitely small section. Thus :

1. Let us suppose that we have only one vortex-filament

present, and that the rotation f has the same sign throughout its

infinitely small section. Its centre, as just defined, will lie either

within the substance of the filament, or at all events infinitely

close to it. Since this centre remains at rest, the filament as a

whole will be stationary, though its parts may experience relative

motions, and its centre will not necessarily lie always in the same

element of fluid. Any particle at a finite distance r from the

centre of the filament will describe a circle about the latter as

axis, with constant velocity m/7rr. The region external to the

filament is doubly-connected ;
and the circulation in any (simple)

circuit embracing the filament is 2m. The irrotational motion of

the fluid external to the filament is the same as in Art. 28 (2).

2. Next suppose that we have two vortices, of strengths mlt

m3 , respectively. Let A, B be their centres, the centre of the

system. The motion of each filament as a whole is entirely due

to the other, and is therefore always perpendicular to AB. Hence

the two filaments remain always at the same distance from one

another, and rotate with constant angular velocity about 0, which

is fixed. This angular velocity is easily found; we have only to
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divide the velocity of A (say), viz. m,/(7r . AB), by the distance AO,
where

A0= *

AB,
m.

and so obtain

7T.AB*

for the angular velocity required.

If m1 ,
w2 be of the same sign, i.e. if the directions of rotation

in the two filaments be the same, lies between A and B\ but

if the rotations be of opposite signs, lies in AB, or BA,

produced.

If m1
= w2 ,

is at infinity; in this case it is easily seen that

A, B move with constant velocity m^vr . AB) perpendicular to AB,
which remains fixed in direction. The motion at a distance from

the filaments is given at any instant by the formulas of Art. 64, 2.

Such a combination of two equal and opposite rectilinear vortices

may be called a vortex-pair. It is the two-dimensional analogue
of a circular vortex-ring (Art. 162), and exhibits many of the

characteristic properties of the latter.

The motion at all points of the plane bisecting AB at right

angles is in this latter case tangential to that plane. We may
therefore suppose the plane to form a fixed rigid boundary of the

fluid in either side of it, and so obtain the solution of the case

where we have a single rectilinear vortex in the neighbourhood of

a fixed plane wall to which it is parallel. The filament moves

parallel to the plane with the velocity m/27rd, where d is the

distance of the vortex from the wall.

The stream-lines due to a vortex-pair, at distances from the vortices great

in comparison with the linear dimensions of the cross-sections, form a system
of coaxal circles, as shewn in the diagram
on p. 80.

We can hence derive the solution of the

case where we have a single vortex-filament

in a mass of fluid which is bounded, either

internally or externally, by a fixed circular

cylinder. Thus, in the figure, let EPD be

the section of the cylinder, A the position of

the vortex (supposed in this case external), and let B be the image of A
with respect to the circle EPD, viz. C being the centre, let
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where c is the radius of the circle. If P be any point on the circle, we have

AP AE_AD_
~BP~BE~^D~ ;

so that the circle occupies the position of a stream-line due to a pair of

vortices, whose strengths are equal and opposite in sign, situated at J, E in

an unlimited mass of fluid. Since the motion of the vortex A would then be

perpendicular to AB, it is plain that all the conditions of the problem will be

satisfied if we suppose A to describe a circle about the axis of the cylinder

with the constant velocity
m tn . CA

where m denotes the strength of A.

In the same way a single vortex of strength m, situated inside a fixed

circular cylinder, say at B, would describe a circle with constant velocity

m.CB

It is to be noticed, however*, that in the case of the external vortex the

motion is not completely determinate unless, in addition to the strength
m of the vortex, the value of the circulation in a circuit embracing the

cylinder (but not the vortex) is prescribed. In the above solution, this

circulation is that due to the vortex-image at B and is -2m. This may
be annulled by the superposition of an additional vortex +m at

(7, in which

case we have, for the velocity of ,4,

m . CA m me2

7T (CA
2 - C2

} 7T.CA 7T.CA (CA
2 - C2)

For a prescribed circulation K we must add to this the term */2ir . CA.

3. If we have four parallel rectilinear vortices whose centres

form a rectangle ABB A ,
the strengths being m for the vortices

A
, B, and m for the vortices A, B

,
it is evident that the

centres will always form a rectangle. Further, the various rota

tions having the directions indicated in the figure, we see that

* See F. A. Tarleton, &quot;On a Problem in Vortex Motion,&quot; Proc. R. L A.,

December 12, 1892.
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the effect of the presence of the pair A, A on B, B is to separate

them, and at the same time to diminish their velocity perpen
dicular to the line joining them. The planes which bisect AB,
AA at right angles may (either or both) be taken as fixed rigid

boundaries. We thus get the case where a pair of vortices, of

equal and opposite strengths, move towards (or from) a plane

wall, or where a single vortex moves in the angle between two

perpendicular walls.

If x, y be the coordinates of the vortex B relative to the planes of

symmetry, we readily find

where r2=j?+y2
. By division we obtain the differential equation of the

path, viz.

dx dy
-^ + -4=0,*

whence a2
(x

2+y2
}

a being an arbitrary constant, or, transforming to polar coordinates,

r= a/sin 20.................................... (ii).

Also since 4$f-y m/2r,

the vortex moves as if under a centre of force at the origin. This force is

repulsive, and its law is that of the inverse cube*.

156. When, as in the case of a vortex-pair, or a system of

vortex-pairs, the algebraic sum of the strengths of all the vortices

is zero, we may work out a theory of the impulse/ in two di

mensions, analogous to that given in Arts. 116, 149 for the

case of a finite vortex-system. The detailed examination of this

must be left to the reader. If P, Q denote the components of the

impulse parallel to x and y, and N its moment about Oz, all

reckoned per unit depth of the fluid parallel to z
t
it will be found

that

Q=- pSJx^dxdy, )

+ y*)Sdxdy 1

........

* See Greenhill,
&quot; On plane vortex-motion, Quart. Journ. Math., t. xv. (1877),

where some other interesting cases of motion of rectilinear vortex-filaments are

discussed.

The literature of special problems in this part of the subject is somewhat

extensive; for references see Hicks, Brit. Ass. Ecp. 1882, pp. 41...; Love, &quot;On

Kecent English Eesearches in Vortex Motion,&quot; Math. Ann., t. xxx., p. 326 (1887) ;

Winkelmann, Handbuch der Physik, t. i., pp. 446-451.
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For instance, in the case of a single vortex-pair, the strengths of

the two vortices being m, and their distance apart c, the impulse

is 2wc, in a line bisecting c at right angles.

The constancy of the impulse gives

= const., 2wy = const.,
(2).

y-)
= const.

It may also be shewn that the energy of the motion in the

present case is given by

When %m is not zero, the energy and the moment of the

impulse are both infinite, as may be easily verified in the case of

a single rectilinear vortex.

The theory of a system of isolated rectilinear vortices has been put in a

very elegant form by Kirchhoff*.

Denoting the positions of the centres of the respective vortices by

(* i&amp;gt; yi)&amp;gt; (
XM 2/2)1

and their strengths by mlt
m,

2 , ..., it is evident from

Art. 154 that we may write

dx
l _ dW d(/l _ d

dx. dW dy9 dW
m&amp;lt;&amp;gt; ji j-- ,

m2 FT = -j j

dt tfym
&quot;

dt dx

where W= - 2m
1
m2 log r

12

if r12 denote the distance between the vortices mlt m2
.

Since T7 depends only on the relative configuration of the vortices, its

value is unaltered when x
lt
#

2 ,... are increased by the same amount, whence

3dWjdxi
=

0, and, in the same way, ^,dWjdyl
= Q. This gives the first two of

equations (2), but the proof is not now limited to the case of 2m= 0. The

argument is in fact substantially the same as in Art. 154.

Again, we obtain from (i)

/ dx dii\ ( dW dW\2m (x -=- t
-- = - 2 jc -- -11 --s--=- + t/ -f- )

= - 2 (jc --T -11 --s-
dt J

dt) \ dy
J dx

or if we introduce polar coordinates (rlt ^j), (r2 , ^2), ... for the several vortices,

* Mechanik. c. xx.
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Since W is unaltered by a rotation of the axes of coordinates in their own

plane about the origin, we have 2dW/d6 = Q, whence

2mr2= const (iv),

which agrees with the third of equations (2), but is free from the restriction

there understood.

An additional integral of (i) is obtained as follows. We have

dy dx\_~( dW dW\
V
dt y

dt)~^\^ dx:
,

y
~dy)^

^de dW
or 2mr2 -r = 2r ^- (v).

dt dr

Now if every r be increased in the ratio 1 + f
3
where e is infinitesimal, the

increment of W is equal to 2er . d W/dr. The new configuration of the

vortex-system is geometrically similar to the former one, so that the mutual

distances r12 are altered in the same ratio 1+e, and therefore, from (ii), the

increment of W is err&quot;
1

. 2%?ft2
. Hence

d6 1

157. The results of Art. 155 are independent of the form of

the sections of the vortices, so long as the dimensions of these

sections are small compared with the mutual distances of the

vortices themselves. The simplest case is of course when the

sections are circular, and it is of interest to inquire whether this

form is stable. This question has been examined by Lord Kelvin*.

Let us suppose, as in Art. 28, that the space within a circle r= a, having

the centre as origin, is occupied by fluid having a uniform rotation f, and that

this is surrounded by fluid moving irrotationally. If the motion be continuous

at this circle we have, for r&amp;lt;.a

while for
r&amp;gt;a,

(ii).

To examine the effect of a slight irrotational disturbance, we assume, for

r&amp;lt;a,

and, for
r&amp;gt;a, \

(*&quot;)&amp;gt;

a a &quot;

& r i&quot;

8

where s is integral, and o- is to be determined. The constant A must have

the same value in these two expressions, since the radial component of the

*
Sir W. Thomson, &quot; On the Vibrations of a Columnar Vortex,&quot; Phil. Mag.,

Sept. 1880.
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velocity, d^IrdO, must be continuous at the boundary of the vortex, for which

r= a, approximately. Assuming for the equation to this boundary

r=a+ acos(s0 vt} (iv),

we have still to express that the tangential component (d^/dr) of the velocity

is continuous. This gives

r+ s - cos (s0
-

at]
= - s - cos (s6

-
crt).

Ctf T Cb

Substituting from (iv), and neglecting the square of a, we find

fa = sA Ia (v).

So far the work is purely kinematical; the dynamical theorem that the

vortex-lines move with the fluid shews that the normal velocity of a

particle on the boundary must be equal to that of the boundary itself.

This condition gives
dr d\fr d\lr dr

~dt

= ~
rde

~
~dr ~rdO&amp;gt;

where r has the value (iv), or

A so. . .,

cra= s + . (vi).
ct ct

Eliminating the ratio A /a between (v) and (vi) we find

&amp;lt;r

= (-l)f (vii).

Hence the disturbance represented by the plane harmonic in (iii) consists

of a system of corrugations travelling round the circumference of the vortex

with an angular velocity

&amp;lt;r/*= (*-!)/*. (viii).

This is the angular velocity in space; relative to the previously rotating

fluid the angular velocity is

the direction being opposite to that of the rotation.

When s= 2, the disturbed section is an ellipse which rotates about its

centre with angular velocity |f.

The transverse and longitudinal oscillations of an isolated rectilinear

vortex-filament have also been discussed by Lord Kelvin in the paper cited.

158. The particular case of an elliptic disturbance can be

solved without approximation as follows*.

Let us suppose that the space within the ellipse

*
Kirchhoff, Mechanik, c. xx., p. 261; Basset, Hydrodynamics, Cambridge,

1888, t. ii., p. 41.
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is occupied by liquid having a uniform rotation
,
whilst the surround

ing fluid is moving irrotationally. It will appear that the conditions

of the problem can all be satisfied if we imagine the elliptic boundary to

rotate without change of shape with a constant angular velocity (n, say), to

be determined.

The formula for the external space can be at once written down from

Art. 72, 4; viz. we have

^= %n(a+ b)
2
e~^cos2r] + (ab ..................... (ii),

where
, ^ now denote the elliptic coordinates of Art. 71, 3, and the cyclic

constant K has been put= 27j-&, in conformity with Art. 142.

The value of
&amp;gt;//

for the internal space has to satisfy

..
with the boundary-condition

ux

These conditions are both fulfilled by

provided A +B= I
, J

I (vi).

It remains to express that there is no tangential slipping at the boundary
of the vortex; i.e. that the values of d^/dg obtained from (ii) and (v)

coincide. Putting x= c cosh cos
77, y= c sinh sin

;,
where c= (a

2 62
)
2

,
diffe

rentiating, and equating coefficients of cos 2?/, we obtain the additional condition

- \n (a -f- b)
2 e~~^= c2 (A- B} cosh sinh

,

which is equivalent to

since, at points of the ellipse (i), cosh =
a/c, sinh

Combined with (vi) this gives

When a= 6, this agrees with our former approximate result.

The component velocities x, y of a particle of the vortex relative to the

principal axes of the ellipse are given by

whence we find -= ?&?, f -.., ...(x).a b b a

Integrating, we find

x=ka cos (nt -f e), y= kb sin (nt -f (
} (xi),
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where k, e are arbitrary constants, so that the relative paths of the particles are

ellipses similar to the section of the vortex, described according to the harmonic

law. If of, y be the coordinates relative to axes fixed in space, we find

of =#cos nt-y&\\\ nt= -= (a + 6) cos (2nt + f
) + -

(a
-

b) cos e, \

L.(xii).
k k

y = x sin nt +y cos nt= -(a+ b) sin (2nt -f e)
-

^ (
-

&) sin f
j

The absolute paths are therefore circles described with angular velocity 2n*.

159. It was pointed out in Art. 81 that the motion of an

incompressible fluid in a curved stratum of small but uniform

thickness is completely defined by a stream-function ^r, so that

any kinematical problem of this kind may be transformed by

projection into one relating to a plane stratum. If, further, the

projection be orthomorphic, the kinetic energy of corresponding

portions of liquid, and the circulations in corresponding circuits,

are the same in the two motions. The latter statement shews that

vortices transform into vortices of equal strengths. It follows at

once from Art. 142 that in the case of a closed simply-connected
surface the algebraic sum of the strengths of all the vortices

present is zero.

Let us apply this to motion in a spherical stratum. The

simplest case is that of a pair of isolated vortices situate at

antipodal points ;
the stream-lines are then parallel small circles,

the velocity varying inversely as the radius of the circle. For

a vortex-pair situate at any two points A, B, the stream-lines are

coaxal circles as in Art. 81. It is easily found by the method of

stereographic projection that the velocity at any point P is the

resultant of two velocities m/ira . cot \0^ and m/tra . cot \0.2 , per

pendicular respectively to the great-circle arcs AP, BP, where

0j, #2 denote the lengths of these arcs, a the radius of the sphere,

and ra the strengths of the vortices. The centre
( (see Art. 154)

* For further researches in this connection see Hill, On the Motion of Fluid

part of which is moving rotationally and part irrotationally,&quot; Phil. Trans., 1884;

and Love,
&quot; On the Stability of certain Vortex Motions,&quot; Proc. Lond. Math. Soc.,

t. xxv., p. 18 (1893).

t To prevent possible misconception it may be remarked that the centres of

corresponding vortices are not necessarily corresponding points. The paths of these

centres are therefore not in general projective.

The problem of transformation in piano has been treated by Aouth, &quot;Some

Applications of Conjugate Functions,&quot; Proc. Lond. Math. Soc., t. xii., p. 73 (1881).
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of either vortex moves perpendicular to AB with a velocity

m/7ra.cot^AB. The two vortices therefore describe parallel

and equal small circles, remaining at a constant distance from

each other.

Circular Vortices.

160. Let us next take the case where all the vortices present
in the liquid (supposed unlimited as before) are circular, having
the axis of a? as a common axis. Let CT denote the distance of any

point P from this axis, ^ the angle which TX makes with the plane

xij, v the velocity in the direction of OT, and co the angular

velocity of the fluid at P. It is evident that u
y v, co are functions

of x, va only, and that the axis of the rotation o&amp;gt; is perpendicular
to xix. We have then

y = -or cos S-, z = OT sin S-, }

v = vcos$, w=vsm*b, &amp;gt; ............... (I).

f = 0, T)
= a) sin ^, f = a) cos ^ J

The impulse of the vortex-system now reduces to a force along

Ox. Substituting from (1) in the first formula of Art. 150 (12)

we find

............ (2),

where the integration is to extend over the sections of all the

vortices. If we denote by m the strength to&cSor of an elementary
vortex-filament whose coordinates are #, tzr, this may be written

P = 27rp2m*r
2 =

2-7T/3
. 2m . -cr

2
..................... (3),

f 2m^2

/A .

lf OT 2 =
-2m

...........................W &quot;

The quantity &amp;lt;GTO ,
thus defined, may be called the mean-radius

of the whole system of circular vortices. Since m is constant for

each vortex, the constancy of the impulse requires that the mean-

radius shall be constant with respect to the time.

The formula for the kinetic energy (Art. 153 (4)) becomes, in

the present case,

T = 4*pjJ(w* xv) sraydxd Gr = ^-jrp^m (^u xv) CT ...... (5).
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Let us introduce a symbol x
,
defined by

It is plain that the position of the circle (# ,
tn- ) will depend only

on the strengths and the configuration of the vortices, and not on

the position of the origin on the axis of symmetry. This circle

may be called the circular axis of the whole system of vortex

rings ;
we have seen that it remains constant in radius. To find

its motion parallel to Ox, we have from (6) and (4),

(7),

since u and v are the rates of increase of x and w for any

particular vortex. By means of (5) we can put this in the form

] T
(x-x.)vn&amp;gt; ............ (8),

which will be of use to us later. The added term vanishes, since

= on account of the constancy of the mean radius.

161. On account of the symmetry about Ox, there exists, in

the cases at present under consideration, a stream-function ty,

defined as in Art. 93, viz. we have

1 dilr

~^rTV dx

, dv du 1 /cfiilr d2^ 1 d\lr\
whence 2o&amp;gt;

= -= = r. + .11 n
(2).dx dm ty \ dx* d^ -BT dwj

It appears from Art. 148 (4) that at a great distance from the

vortices u, v are of the order R~s
,
and therefore ty will be of the

order R~l
.

The formula for the kinetic energy may therefore be written

T= 7rpff(u* + ir) or dxdvr

f/y ^^ ^ */
r^ 7 ^= TTO In v j- u ~- dxaiz

Jj\ dx dfrj

by a partial integration, the terms at the limits vanishing.
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To determine
^jr

in terms of the (arbitrary) distribution of

angular velocity (&&amp;gt;),
we may make use of the formulae of Art. 145,

which give

F=0,

i t
[(*&amp;lt;**H =

^rjlj-^
ft) COS ^ / 7 / 7 / 7 f

TS d^ dx d ur

(4),

where r =
{(as

# )
2 + cr

2 + &quot;/2 2wj cos (^ & ))*.

Since 27r^ denotes (Art. 93) the flux, in the direction of

^--negative, through the circle
(a?, r),

we have

+4 II W If
J J V dy o

where the integration extends over the area of this circle. By
Stokes Theorem, this gives

the integral being taken round the circumference, or, in terms of

our present coordinates,

provided

f i
^ ^

i = r - _jBos^d0_ , ,

7
V, sr } Jo {(a?

- # )
2 + ^2 + ^/2 ~ 2^OT/ cos ^1-

where ^ has been written for $ & .

It is plain that the function here denned is symmetrical with

respect to the two sets of variables a?, -BJ and x
,
*& . It can be

expressed in terms of elliptic integrals, as follows. If we put

_- ..............

* The vector whose components are F, G, H is now perpendicular to the

meridian plane xw. If we denote it by &amp;lt;S\
we have F= 0, G = - S sin ^, H= S cos ^,

so that (7) is equivalent to

\f= -TffS.
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we find

cosfl k 2 cos2 6-l_
{(x

- x Y + ^2 + OT/S - 2*7*3- cos 6}*

~
2 (rr )i (1

- k2 cos2

where, from comparison of coefficients,

Hence

where J^ (&), ^ (k) are the complete elliptic integrals of the first

and second kinds, with respect to the modulus k, defined by (9).

162. The stream-function for points at a distance from an

isolated circular vortex-filament, of strength m , whose coordinates

are of, -BT
,
is therefore given by

7T

The forms of the stream-lines corresponding to equidistant
values of ty, at points whose distances from the filament are great
in comparison with the dimensions of the cross-section, are shewn
on the next page*.

At points of the infinitely small section the modulus k of the

elliptic integrals in the value of ^ is nearly equal to unity. In

this case we have~t*

4

approximately, where k denotes the complementary modulus

(1 k-)$, so that in our case

* For another elliptic-integral form of (1), and for the most convenient method
of tracing the curves $= const., see Maxwell, Electricity and Magnetism, Arts. 701,

702.

t See Cayley, Elliptic Functions, Cambridge, 1876, Arts. 72, 77; and Maxwell,

Electricity and Magnetism, Arts. 704, 705.

L. 17
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X - x
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nearly, if g denote the distance between two infinitely near points

(x, CT), (V, CT
) in the same meridian plane. Hence at points

within the substance of the vortex the value of ty is of the order

m vr log OT/, where e is a small linear magnitude comparable with

the dimensions of the section. The velocity at the same point,

depending (Art. 93) on the differential coefficients of
i/r,

will

be of the order m /e.

We can now estimate the magnitude of the velocity dx /dt of

translation of the vortex-ring. By Art. 161 (3) T is of the order

prn
^
ur log -cr/e, and u is, as we have seen, of the order m /e ;

whilst

x XQ is of course of the order e. Hence the second term on the

right-hand side of the formula (8) of Art. 160 is, in this case, small

compared with the first, and the velocity of translation of the

ring is of the order m /^ . log cr/e, and approximately constant.

An isolated vortex-ring moves then, without sensible change
of size, parallel to its rectilinear axis with nearly constant

velocity. This velocity is small compared with that of the fluid

in the immediate neighbourhood of the circular axis, but may be

large compared with m /w ,
the velocity of the fluid at the centre

of the ring, with which it agrees in direction.

For the case of a circular section more definite results can be obtained

as follows. If we neglect the variations of OT and o&amp;gt; over the section,

the formulae (7) and (10) of Art. 161 give

or, if we introduce polar coordinates (s, %) in the plane of the section,

T- 1
)
** .....................

&amp;lt;

where a is the radius of the section. Now

JO

and this definite integral is known to be equal to 277 logs ,
or 27rlogs,

according as s ^s. Hence, for points within the section,

&quot;

s ds

(ii).

172

= -
2o&amp;gt; wof* flog 0-2^ s ds -Mw, [

a

(\oS
*2*-

J Q\ s / J S\ S
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The only variable part of this is the term
-^o/t&amp;lt;r

s2
;
this shews that to our

order of approximation the stream -lines within the section are concentric

circles, the velocity at a distance s from the centre being a&amp;gt; s. Substituting

in Art. 161 (3) we find

The last term in Art. 160 (8) is equivalent to

fi
8ra o 7 ) ,-~\

{
logV-*} ...............(m) -

in our present notation, m denoting the strength of the whole vortex, this is

equal to 3m 2CT /47r. Hence the formula for the velocity of translation of the

vortex becomes
&quot;7/ &quot; m/

- 1 &quot; &quot;

.(iv)*

163. If we have any number of circular vortex-rings, coaxial

or not, the motion of any one of these may be conceived as made

up of two parts, one due to the ring itself, the other due to the

influence of the remaining rings. The preceding considerations

shew that the second part is insignificant compared with the first,

except when two or more rings approach within a very small

distance of one another. Hence each ring will move, without

sensible change of shape or size, with nearly uniform velocity in

the direction of its rectilinear axis, until it passes within a short

distance of a second ring.

A general notion of the result of the encounter of two rings

may, in particular cases, be gathered from the result of Art. 147

(3). Thus, let us suppose that we have two circular vortices

having the same rectilinear axis. If the sense of the rotation be the

same for both, the two rings will advance, on the whole, in the same

direction. One effect of their mutual influence will be to increase

the radius of the one in front, and to contract the radius of

the one in the rear. If the radius of the one in front become

larger than that of the one in the rear, the motion of the former

ring will be retarded, whilst that of the latter is accelerated.

Hence if the conditions as to relative size and strength of the

two rings be favourable, it may happen that the second ring
will overtake and pass through the first. The parts played by
the two rings will then be reversed

;
the one which is now in

* This result was first obtained by Sir W. Thomson, Phil. Mag., June, 1867.
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the rear will in turn overtake and pass through the other, and

so on, the rings alternately passing one through the other*.

If the rotations in the two rings be opposite, and such that

the rings approach one another, the mutual influence will be to

enlarge the radius of each ring. If the two rings be moreover

equal in size and strength, the velocity of approach will con

tinually diminish. In this case the motion at all points of the

plane which is parallel to the two rings, and half-way between

them, is tangential to this plane. We may therefore, if we

please, regard this plane as a fixed boundary to the fluid on

either side of it, and so obtain the case of a single vortex-ring

moving directly towards a fixed rigid wall.

The foregoing remarks are taken from von Helmholtz paper.
He adds, in conclusion, that the mutual influence of vortex-rings

may easily be studied experimentally in the case of the (roughly)

semicircular rings produced by drawing rapidly the point of a

spoon for a short space through the surface of a liquid, the spots

where the vortex-filaments meet the surface being marked by

dimples. (Cf. Art. 28.) The method of experimental illustration

by means of smoke-rings f&quot;

is too well-known to need description

here. A beautiful variation of the experiment consists in forming
the rings in water, the substance of the vortices being coloured f.

For further theoretical researches on the motion of vortex-

rings, including the question of stability, and the determination of

the small oscillations, we must refer to the papers cited below .

The motion of a vortex-ring in a fluid limited (whether

internally or externally) by a fixed spherical surface, in the case

* The corresponding case in two dimensions appears to have been worked out

very completely by Grobli; see Winkelmann, Handbuch der Physik, t. i., p. 447.

The same question has been discussed quite recently by Love,
&quot; On the Motion of

Paired Vortices with a Common Axis,&quot; Proc. Lond. Math. Soc.,t. xxv., p. 185 (1894).

t Reusch, &quot;Ueber Ringbildung der Fliissigkeiten,&quot; Pogg. Ann., t. ex. (1860);
see also Tait, Recent Advances in Physical Science, London, 1876, c. xii.

J Reynolds, &quot;On the Resistance encountered by Vortex Rings &c.&quot;, Brit. Ass.

Rep., 1876, Nature, t. xiv., p. 477.

J. J. Thomson, I. c. ante p. 239, and Phil. Trans., 1882.

W. M. Hicks, &quot;On the Steady Motion and the Small Vibrations of a Hollow

Vortex,&quot; Phil. Trans. 1884.

Dyson, 1. c. ante p. 166.

The theory of Vortex-Atoms which gave the impulse to some of these investi

gations was suggested by Sir W. Thomson, Phil Mag., July, 1867.



262 VORTEX MOTION. [CHAP. VII

where the rectilinear axis of the ring passes through the centre of

the sphere, has been investigated by Lewis*, by the method of
1

images.

The following simplified proof is due to Larmorf. The vortex-ring is

equivalent (Art. 148) to a spherical sheet of double-sources of uniform

density, concentric with the fixed sphere. The image of this sheet will,

by Art. 95, be another uniform concentric double-sheet, which is, again,

equivalent to a vortex-ring coaxial with the first. It easily follows from the

Art. last cited that the strengths (m\ m&quot;}
and the radii (or , or&quot;)

of the vortex-

ring and its image are connected by the relation

(i).

The argument obviously applies to the case of a reentrant vortex of any

form, provided it lie on a sphere concentric with the boundary.

On the Conditions for Steady Motion.

164. In steady motion, i.e. when

du_ dv_ dw_
dt~ dt~ dt&quot;

the equations (2) of Art. 6 may be written

du dv dw a ,

dx dx doc

Hence, if as in Art. 143 we put

du dv dw a , ,,_ , _ c?O _ 1 dp
dx dx doc dx p dx

we have

It follows that

dx d
)

dx dy
^

dz

*
&quot;On the Images of Vortices in a Spherical Vessel,&quot; Quart. Journ. Math.,

t. xvi., p. 338 (1879).

t &quot;

Electro-magnetic and other Images in Spheres and Planes,&quot; Quart. Journ.

Math.,t. xxiii., p. 94 (1889).
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so that each of the surfaces ^ = const, contains both stream-lines

and vortex-lines. If further 8n denote an element of the normal

at any point of such a surface, we have

n^ ........................ (2),

where q is the current-velocity, co the rotation, and /3 the angle
between the stream-line and the vortex-line at that point.

Hence the conditions that a given state of motion of a fluid

may be a possible state of steady motion are as follows. It must

be possible to draw in the fluid an infinite system of surfaces

each of which is covered by a network of stream-lines and vortex-

lines, and the product qw sin /3 Sn must be constant over each

such surface, Sn denoting the length of the normal drawn to a

consecutive surface of the system.

These conditions may also be deduced from the considerations

that the stream-lines are, in steady motion, the actual paths of

the particles, that the product of the angular velocity into the

cross-section is the same at all points of a vortex, and that this

product is, for the same vortex, constant with regard to the

time *.

The theorem that the function ^ ,
defined by (1), is constant

over each surface of the above kind is an extension of that of

Art. 22, where it was shewn that % is constant along a stream

line.

The above conditions are satisfied identically in all cases of

irrotational motion, provided of course the boundary-conditions be

such as are consistent with the steady motion.

In the motion of a liquid in two dimensions (xy) the product

cftn is constant along a stream-line
;
the conditions in question

then reduce to this, that the angular velocity f must be constant

along each stream-line, or, by Art. 59,

t.

where f(^r) is an arbitrary function o

*
See a paper

&quot; On the Conditions for Steady Motion of a Fluid,&quot; Proc. Lond.

Math. Soc., t. ix., p. 91 (1878).

t Cf. Lagrange, Nouv. M6m. de VAcad. de Berlin, 1781, Oeuvres, t. iv., p. 720 ;

and Stokes, 1. c. p. 264.
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This condition is satisfied in all cases of motion in concentric circles

about the origin. Another obvious solution of (3) is

in which case the stream-lines are similar and coaxial conies. The angular

velocity at any point is ^ (A 4- C], and is therefore uniform.

Again, if we put / (\J/-)
= -

Fx//-, where k is a constant, and transform to

polar coordinates r, 6, we get

dr2 r dr

which is satisfied by
cos)

sin)

where Ja is a Bessel s Function. This gives various solutions consistent

with a fixed circular boundary of radius a, the admissible values of k being
determined by

J3 (ka)= (iv).

The character of these solutions will be understood from the properties of

Bessel s Functions, of which some indication will be given in Chapter vni.

In the case of motion symmetrical about an axis (a?), we have

q . %7T &r$n constant along a stream-line, VT denoting as in Art. 93

the distance of any point from the axis of symmetry. The con

dition for steady motion then is that the ratio
&&amp;gt;/r

must be

constant along any stream-line. Hence, if
i|r

be the stream-

function, we must have, by Art. 161 (2),

denotes an arbitrary function of
i/r.

An interesting example of (4) is furnished by the case of Hill s Spherical

Vortex f. If we assume

-^ .................................... (v),

where r2=#2+ rar
2
,

for all points within the sphere r= a, the formula (2)

of Art. 161 makes

so that the condition of steady motion is satisfied. Again it is evident, on

reference to Arts. 95, 96 that the irrotational flow of a stream with the

* This result is due to Stokes, &quot;On the Steady Motion of Incompressible

Fluids,&quot; Camb. Trans., t. vii. (1842), Math, and Phys. Papers, t. i., p. 15.

t &quot; On a Spherical Vortex,&quot; Phil. Trans., 1894, A.
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general velocity -u parallel to the axis, past a fixed spherical surface

r=a, is given by

The two values of ^ agree when r= a-, this makes the normal velocity

continuous. In order that the tangential velocity may be continuous, the

values of d^/dr must also agree. Remembering that ar=rsin0, this gives
4 */~2 and therefore

The sum of the strengths of the vortex-filaments composing the spherical

vortex is 5u.

The figure shews the stream-lines, both inside and outside the vortex;

they are drawn, as usual, for equidistant values of
\//-.

If we impress on everything a velocity u parallel to #, we get a spherical

vortex advancing with constant velocity u through a liquid which is at rest at

infinity.

By the formulae of Arts. 160, 161, we readily find that the square of the

mean-radius of the vortex is fa
2
,
the impulse is 27rpa

3
u, and the energy is



CHAPTER VIII.

TIDAL WAVES.

165. ONE of the most interesting and successful applications

of hydrodynamical theory is to the small oscillations, under gravity,

of a liquid having a free surface. In certain cases, which are

somewhat special as regards the theory, but very important from

a practical point of view, these oscillations may combine to form

progressive waves travelling with (to a first approximation) no

change of form over the surface.

The term tidal, as applied to waves, has been used in various

senses, but it seems most natural to confine it to gravitational

oscillations possessing the characteristic feature of the oceanic

tides produced by the action of the sun and moon. We have

therefore ventured to place it at the head of this Chapter, as

descriptive of waves in which the motion of the fluid is mainly

horizontal, and therefore (as will appear) sensibly the same for all

particles in a vertical line. This latter circumstance greatly

simplifies the theory.

It will be convenient to recapitulate, in the first place, some

points in the general theory of small oscillations which will

receive constant exemplification in the investigations which

follow*.

Let qlt q.2 ,...qn be n generalized coordinates serving to specify

the configuration of a dynamical system, and let them be so chosen

as to vanish in the configuration of equilibrium. The kinetic

* For a fuller account of the general theory see Thomson and Tait, Natural

Philosophy, kits. 337, ..., Lord Rayleigh, Theory of Sound, c. iv.,Routh, Elementary

Rigid Dynamics (5th ed.), London, 1891, c. ix.
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energy T will, as explained in Art. 133, be a homogeneous

quadratic function of the generalized velocities
(ft, g^,..., say

2r=an21
2 + a22g2

2 +... + 2a12?1 ?2 + ............ (1).

The coefficients in this expression are in general functions of the

coordinates
&amp;lt;ft, q2 ,..., but in the application to small motions, we

may suppose them to be constant, and to have the values corre

sponding to
(ft
= 0, q2

= 0,.... Again, if (as we shall suppose) the

system is conservative, the potential energy V of a small displace

ment is a homogeneous quadratic function of the component

displacements q1} (?2 ,
...

,
with (on the same understanding) constant

coefficients, say

... + 2c12g1g2 + ............ (2).

By a real* linear transformation of the coordinates
(ft, ^2 ,... it

is possible to reduce T and V simultaneously to sums of squares ;

the new variables thus introduced are called the normal

coordinates of the system. In terms of these we have

(3),

(4).

The coefficients a1} a2 ,... are called the principal coefficients of

inertia
; they are necessarily positive. The coefficients cl5 c2 ,...

may be called the principal coefficients of stability ; they are all

positive when the undisturbed configuration is stable.

When given extraneous forces act on the system, the work

done by these during an arbitrary infinitesimal displacement

A(ft, Ag2 ,
... may be expressed in the form

(5).

The coefficients Qlt Q 2 &amp;gt;

are then called the normal components
of external force.

In terms of the normal coordinates, the equations of motion
are given by Lagrange s equations (Art. 133 (17)), thus

_____
dtdqs dqs

~
dqs

s

* The algebraic proof of this involves the assumption that one at least of the

functions T, V is essentially positive.
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In the present application to infinitely small motions, these

take the form

9 f
as qs + cs qs

= Qs . (6).

It is easily seen from this that the dynamical characteristics of the

normal coordinates are (1) that an impulse of any normal type

produces an initial motion of that type only, and (2) that a steady

extraneous force of any type maintains a displacement of that

type only.

To obtain the free motions of the system we put Qs
= in (6).

Solving we find

qs
= A 8 cos(ffgt + 8) (7),

where crs
=

(cs/as)% (8)*,

and A 8 , s are arbitrary constants. Hence a mode of free motion

is possible in which any normal coordinate qs varies alone, and

the motion of any particle of the system, since it depends

linearly on qs ,
will be simple-harmonic, of period 27r/crs ,

and

every particle will pass simultaneously through its equilibrium

position. The several modes of this character are called the
1 normal modes of vibration of the system ;

their number is equal
to that of the degrees of freedom, and any free motion whatever

of the system may be obtained from them by superposition, with

a proper choice of the amplitudes (A 8)
and epochs (es).

In certain cases, viz. when two or more of the free periods

(27T/cr) of the system are equal, the normal coordinates are to a

certain extent indeterminate, i.e. they can be chosen in an infinite

number of ways. An instance of this is the spherical pendulum.
Other examples will present themselves later; see Arts. 187, 191.

If two (or more) normal modes have the same period, then

by compounding them, with arbitrary amplitudes and epochs, we

obtain a small oscillation in which the motion of each particle is

the resultant of simple-harmonic vibrations in different directions,

and is therefore, in general, elliptic-harmonic, with the same

period. This is exemplified in the conical pendulum ;
an im

portant instance in our own subject is that of progressive waves in

deep water (Chap. ix.).

* The ratio o-/27r measures the frequency of the oscillation. It is convenient,

however, to have a name for the quantity a- itself ; the term speed has been used in

this sense by Lord Kelvin and Prof. G. H. Darwin in their researches on the Tides.
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If any of the coefficients of stability (cs) be negative, the

value of crs is pure imaginary. The circular function in (7) is then

replaced by real exponentials, and an arbitrary displacement

will in general increase until the assumptions on which the

approximate equation (6) is based become untenable. The un

disturbed configuration is then unstable. Hence the necessary

and sufficient condition of stability is that the potential energy V
should be a minimum in the configuration of equilibrium.

To find the effect of extraneous forces, it is sufficient to

consider the case where Qs varies as a simple-harmonic function of

the time, say
Qs =C8 coa(at+) ..................... (9),

where the value of a is now prescribed. Not only is this the

most interesting case in itself, but we know from Fourier s

Theorem that, whatever the law of variation of Qs with the time, it

can be expressed by a series of terms such as (9). A particular

integral of (9) is then

This represents the forced oscillation due to the periodic force

Qs . In it the motion of every particle is simple-harmonic, of the

prescribed period 27T/0-, and the extreme displacements coincide in

time with the maxima and minima of the force.

A constant force equal to the instantaneous value of the

actual force (9) would maintain a displacement

*

(11),

the same, of course, as if the inertia-coefficient as were null.

Hence (10) may be written

*?tr^Stf*
.....................(12X

where crs has the value (8). This very useful formula enables us

to write down the effect of a periodic force when we know that of

a steady force of the same type. It is to be noticed that qs and Qs

have the same or opposite phases according as cr J as ,
that is,

according as the period of the disturbing force is greater or less

than the free period. A simple example of this is furnished by a

simple pendulum acted on by a periodic horizontal force. Other



270 TIDAL WAVES. [CHAP. VIII

important illustrations will present themselves in the theory of the

tides*.

When a is very great in comparison with as ,
the formula (10)

becomes
C

qs
= --

~cos(&amp;lt;rt + 6) ...............(13);

the displacement is now always in the opposite phase to the force,

and depends only on the inertia of the system.

If the period of the impressed force be nearly equal to that of

the normal mode of order s, the amplitude of the forced oscillation,

as given by (12), is very great compared with qg . In the case of

exact equality, the solution (10) fails, and must be replaced by

qs
= Bt sin (at + e) ..................... (14),

where, as is verified immediately on substitution, B = Cs/Zaas .

This gives an oscillation of continually increasing amplitude, and

can therefore only be accepted as a representation of the initial

stages of the disturbance.

Another very important property of the normal modes may be noticed,

although the use which we shall have occasion to make of it will be slight.

If by the introduction of constraints the system be compelled to oscillate

in any other manner, then if the character of this motion be known, the

configuration at any instant can be specified by one variable, which we will

denote by 6. In terms of this we shall have

fc-*t4

where the quantities B8 are certain constants. This makes

.)0 .............................. (i),

)P ............................ (ii).

Hence if 6 a cos
(o-tf+ e), the constancy of the energy (T+ F) requires

Hence o-
2 is intermediate in value between the greatest and least of the

quantities cBlaa ;
in other words, the frequency of the constrained oscillation

is intermediate between the greatest and least frequencies corresponding to

the normal modes of the system. In particular, when a system is modified

by the introduction of any constraint, the frequency of the slowest natural

oscillation is increased.

* Cf . T. Young,
&quot; A Theory of Tides,&quot; Nicholson s Journal, t. xxxv. (1813) ;

Miscellaneous Works, London, 1854, t. ii., p. 262.
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Moreover, if the constrained type differ but slightly from a normal type

(a), o-
2 will differ from c8/aa by a small quantity of the second order. This gives a

valuable method of estimating approximately the frequency in cases where

the. normal types cannot be accurately determined*.

The modifications which are introduced into the theory of

small oscillations by the consideration of viscous forces will be

noticed in Chapter xi.

Long Waves in Canals.

166. Proceeding now to the special problem of this Chapter,

let us begin with the case of waves travelling along a straight

canal, with horizontal bed, and parallel vertical sides. Let the

axis of x be parallel to the length of the canal, that of y
vertical and upwards, and let us suppose that the motion takes

place in these two dimensions x, y. Let the ordinate of the free

surface, corresponding to the abscissa x, at time t, be denoted by

77 -|- /0j where y is the ordinate in the undisturbed state.

As already indicated, we shall assume in all the investigations

of this Chapter that the vertical acceleration of the fluid particles

may be neglected, or (more precisely) that the pressure at any

point (x, y) is sensibly equal to the statical pressure due to the

depth below the free surface, viz.

p-po = gp(yo + n-y) ..................... (i),

where p is the (uniform) external pressure.

This is independent of y, so that the horizontal acceleration is the

same for all particles in a plane perpendicular to x. It follows

that all particles which once lie in such a plane always do so
;
in

other words, the horizontal velocity u is a function of as and

t only.

The equation of horizontal motion, viz.

du du 1 dp_
_J_ y _ - __ *

dt dx p dx

is further simplified in the -ease of infinitely small motions by the

* These theorems are due to Lord Eayleigh,
&quot; Some General Theorems relating

to Vibrations,&quot; Proc. Lond. Math. Soc., t. iv., p. 357 (1873); Theory of Sound, c. iv.
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omission of the term udu/dx, which is of the second order, so

that

If we put

then f measures the integral displacement of liquid past the

point x, up to the time t
;
in the case of small motions it will, to

the first order of small quantities, be equal to the displacement
of the particle which originally occupied that position, or again

to that of the particle which actually occupies it at time t. The

equation (3) may now be written

The equation of continuity may be found by calculating the

volume of fluid which has, up to time t, entered the space bounded

by the planes x and x + $x\ thus, if h be the depth and b the

breadth of the canal,

The same result comes from the ordinary form of the equation of

continuity, viz.

[vdu , du
1 hus v= I -j- ay= V -j- .

*da;* * dx

if the origin be (for the moment) taken in the bottom of the canal. This

formula is of interest as shewing that the vertical velocity of any particle is

simply proportional to its height above the bottom. At the free surface we

have y = h+r), v= dr)/dt, whence (neglecting a product of small quantities)

dr,__ d^
dt~ dxdt

Prom this (5) follows by integration with respect to t.
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Eliminating 77 between (4) and (5), we obtain

The elimination of gives an equation of the same form, viz.

d^-ah^ (7)d?- g/l dx*

The above investigation can readily be extended to the case of a uniform

canal of any form of section*. If the sectional area of the undisturbed fluid

be $, and the breadth at the free surface &, the equation of continuity is

(iv),

whence rj= ~^5E ....................................... (v )&amp;gt;

as before, provided h^=S/b, i.e. h now denotes the mean depth of the canal.

The dynamical equation (4) is of course unaltered,

167. The equations (6) and (7) are of a well-known type

which occurs in several physical problems, e.g. the transverse

vibrations of strings, and the motion of sound-waves in one

dimension.

To integrate them, let us write, for shortness,

&amp;lt;f=gh
.............................. (8),

and xct = xl} x + ct = x2 .

In terms of xl and #2 as independent variables, the equation (6)

takes the form

o.

The complete solution is therefore

% = F(a;-ct)+f(a; + ct) .................. (9),

where F,fa,rQ arbitrary functions.

The corresponding values of the particle- velocity and of the

surface- elevation are given by

|/c
= - F1

(x
-

ct) +/ (* + ct), }
( }

rj/h=-F (x-ct)-f(x + ct) j

......

*
Kelland, Trans. R. S. Edin., t. xiv. (1839).

L. 18
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The interpretation of these results is simple. Take first the

motion represented by the first term in (9), alone. Since F(x ct)

is unaltered when t and x are increased by r and cr, respectively,

it is plain that the disturbance which existed at the point x

at time t has been transferred at time t + r to the point x + cr.

Hence the disturbance advances unchanged with a constant

velocity c in space. In other words we have a progressive wave

travelling with constant velocity c in the direction of ^-positive.

In the same way the second term of (9) represents a progressive

wave travelling with velocity c in the direction of ^-negative.

And it appears, since (9) is the complete solution of (6), that any
motion whatever of the fluid, which is subject to the conditions

laid down in the preceding Art., may be regarded as made up of

waves of these two kinds.

The velocity (c) of propagation is, by (8), that due to half

the depth of the undisturbed fluid*.

The following table, giving in round numbers the velocity of

wave-propagation for various depths, will be of interest, later, in

connection with the theory of the tides.

h
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168. To trace the effect of an arbitrary initial disturbance,

let us suppose that when = we have

l/c
=

*(*), WA = *(*) ..................(11).

The functions F ,f which occur in (10) are then given by

(*)+*(*)),) n
(*)-*(*)} r

Hence if we draw the curves y = rjl , y = r)2 ,
where

/IDA

the form of the wave-profile at any subsequent instant t is found

by displacing these curves parallel to x, through spaces ct,

respectively, and adding (algebraically) the ordinates. If, for

example, the original disturbance be confined to a length I of the

axis of x, then after a time Z/2c it will have broken up into two

progressive waves of length I, travelling in opposite directions.

In the particular case where in the initial state f = 0, and

therefore &amp;lt; (x)
= 0, we have ^ =

773 ;
the elevation in each of the

derived waves is then exactly half what it was, at corresponding

points, in the original disturbance.

It appears from (11) and (12) that if the initial disturbance be

such that f
=

fi/h . c, the motion will consist of a wave system

travelling in one direction only, since one or other of the functions

F and/
7

is then zero. It is easy to trace the motion of a surface-

particle as a progressive wave of either kind passes it. Suppose,
for example, that

= F(x-ct) ........................ (14),

and therefore f
=

crj/h .............................. (15).

The particle is at rest until it is reached by the wave
;

it

then moves forward with a velocity proportional at each instant

to the elevation above the mean level, the velocity being in fact

less than the wave-velocity c, in the ratio of the surface-elevation

to the depth of the water. The total displacement at any time

is given by

T Irjcdt.

182
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This integral measures the volume, per unit breadth of the canal,

of the portion of the wave which has up to the instant in question

passed the particle. Finally, when the wave has passed away, the

particle is left at rest in advance of its original position at a

distance equal to the total volume of the elevated water, divided

by the sectional area of the canal.

169. We can now examine under what circumstances the

solution expressed by (9) will be consistent with the assumptions
made provisionally in Art. 166.

The restriction to infinitely small motions, made in equation

(3), consisted in neglecting udujdx in comparison with du/dt. In

a progressive wave we have du/dt = cdujdx ;
so that u must be

small compared with c, and therefore, by (15), 77 small compared
with h.

Again, the exact equation of vertical motion, viz.

Dv dp
?Di

=
-te-W

gives, on integration with respect to y,

+i 2)v

This may be replaced by the approximate equation (1), pro
vided /3 (h + 77) be small compared with grj, where {3 denotes

the maximum vertical acceleration. Now in a progressive wave,

if X denote the distance between two consecutive nodes (i.e. points

at which the wave-profile meets the undisturbed level), the time

which the corresponding portion of the wave takes to pass a

particle is X/c, and therefore the vertical velocity will be of the

order TJC/X*, and the vertical acceleration of the order ?;c
2

/X
2
, where

77 is the maximum elevation (or depression). Hence the neglect
of the vertical acceleration is justified, provided A2

/X
2

is a small

quantity.

Waves whose slope is gradual, and whose length X is large

compared with the depth h of the fluid, are called long waves.

*
Hence, comparing with (15), we see that the ratio of the maximum vertical to

the maximum horizontal velocity is of the order h/\.
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The requisite conditions will of course be satisfied in the

general case represented by equation (9), provided they are

satisfied for each of the two progressive waves into which the

disturbance can be analysed.

170. There is another, although on the whole a less con

venient, method of investigating the motion of long waves, in

which the Lagrangian plan is adopted, of making the coordinates

refer to the individual particles of the fluid. For simplicity, we

will consider only the case of a canal of rectangular section*. The

fundamental assumption that the vertical acceleration may be

neglected implies as before that the horizontal motion of all

particles in a plane perpendicular to the length of the canal will

be the same. We therefore denote by# + f the abscissa at time

t of the plane of particles whose undisturbed abscissa is x. If ij

denote the elevation of the free surface, in this plane, the equation

of motion of unit breadth of a stratum whose thickness (in the

undisturbed state) is $%, will be

where the factor (dpfdx) . $% represents the pressure-difference for

any two opposite particles x and x + &e on the two faces of the

stratum, while the factor h + 77 represents the area of the stratum.

Since the pressure about any particle depends only on its depth
below the free surface we may write

dp dn
* - fin _L

dx~ 9p dx y

so that our dynamical equation is

The equation of continuity is obtained by equating the volumes
of a stratum, consisting of the same particles, in the disturbed and
undisturbed conditions respectively, viz. we have

*
Airy, Encyc. Metrop.,

&quot; Tides and Waves,&quot; Art. 192 (1845) ; see also Stokes,
&quot;On Waves,&quot; Camb. and Dub. Math. Journ.,t. iv. (1849), Math, and Phys. Papers,
t. ii., p. 222. The case of a canal with sloping sides has been treated by McCowan,
&quot; On the Theory of Long Waves...,&quot; Phil. Mag., March, 1892.
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Between equations (1) and (2) we may eliminate either 77 or
;

the result in terms of f is the simpler, being

(3) *-

d*

This is the general equation of long waves in a uniform canal

with vertical sides.

So far the only assumption is that the vertical acceleration of

the particles may be neglected. If we now assume, in addition,

that r}\li is a small quantity, the equations (2) and (3) reduce to

#f . d f
and -

The elevation 77 now satisfies the equation

This is in conformity with our previous result
;
for the small-

ness of d^/dx means that the relative displacement of any two

particles is never more than a minute fraction of the distance

between them, so that it is (to a first approximation) now

immaterial whether the variable as be supposed to refer to a

plane fixed in space, or to one moving with the fluid.

171. The potential energy of a wave, or system of waves,

due to the elevation or depression of the fluid above or below the

mean level is, per unit breadth, gpjfydxdy, where the integra

tion with respect to y is to be taken between the limits and ?/,

and that with respect to x over the whole length of the waves.

Effecting the former integration, we get

(1).

The kinetic energy is

(2).

*
Airy, L c.
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In a system of waves travelling in one direction only we have

so that the expressions (1) and (2) are equal ;
or the total energy

is half potential, and half kinetic.

This result may be obtained in a more general manner, as

follows*. Any progressive wave may be conceived as having been

originated by the splitting up, into two waves travelling in opposite

directions, of an initial disturbance in which the particle-velocity

was everywhere zero, and the energy therefore wholly potential.

It appears from Art. 168 that the two derived waves are symme
trical in every respect, so that each must contain half the original

store of energy. Since, however, the elevation at corresponding

points is for the derived waves exactly half that of the original

disturbance, the potential energy of each will by (1) be one-fourth

of the original store. The remaining (kinetic) part of the energy

of each derived wave must therefore also be one-fourth of the

original quantity.

172. If in any case of waves travelling in one direction only,

without change of form, we impress on the whole mass a velocity

equal and opposite to that of propagation, the motion becomes

steady, whilst the forces acting on any particle remain the same as

before. With the help of this artifice, the laws of wave-propa

gation can be investigated with great easef. Thus, in the present

case we shall have, by Art. 23 (4), at the free surface,

(1),

where q is the velocity. If the slope of the wave-profile be

everywhere gradual, and the depth h small compared with the

length of a wave, the horizontal velocity may be taken to be

uniform throughout the depth, and approximately equal to q.

Hence the equation of continuity is

q(h + 7))
= ch,

* Lord Rayleigh, &quot;On Waves,&quot; PhiL Ma0. t April, 1876,

t Lord Kayleigh, I. c&amp;gt;
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c being the velocity, in the steady motion, at places where the

depth of the stream is uniform and equal to h. Substituting
for q in (1), we have

Hence if r)/h be small, the condition for a free surface, viz.

p = const., is satisfied approximately, provided

which agrees with our former result.

173. It appears from the linearity of our equations that

any number of independent solutions may be superposed. For

example, having given a wave of any form travelling in one

direction, if we superpose its image in the plane x = 0, travelling

in the opposite direction, it is obvious that in the resulting
motion the horizontal velocity will vanish at the origin, and the

circumstances are therefore the same as if there were a fixed barrier

at this point. We can thus understand the reflexion of a wave at

a barrier
;
the elevations and depressions are reflected unchanged,

whilst the horizontal velocity is reversed. The same results

follow from the formula

f = F(ct-x)-F(ct + x) .................. (1),

which is evidently the most general value of f subject to the

condition that f = for x = 0.

We can further investigate without much difficulty the partial reflexion

of a wave at a point where there is an abrupt change in the section of the

canal. Taking the origin at the point in question, we may write, for the

negative side,

and for the positive side

-*( .-}.\ C2/
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where the function F represents the original wave, and /, $ the reflected and

transmitted portions respectively. The constancy of mass requires that at

the point #= we should have b^u^b^u^ where b
lt

b.
2
are the breadths at

the surface, and klt h2
are the mean depths. We must also have at the same

point 71 =/2) on account of the continuity of pressure*. These conditions give

*1

F(t)+f(t):

We thence find that the ratio of the elevations in corresponding parts of the

reflected and incident waves is

F &

The similar ratio for the transmitted wave is

The reader may easily verify that the energy contained in the reflected and

transmitted waves is equal to that of the original incident wave.

174. Our investigations, so far, relate to cases of free waves.

When, in addition to gravity, small disturbing forces X, Y act on

the fluid, the equation of motion is obtained as follows.

We assume that within distances comparable with the depth
h these forces vary only by a small fraction of their total value.

On this understanding we have, in place of Art. 166 (1),

Pj=f = (9- Y)(y. + v-y) ................ (1),

and therefore

1 d di

The last term may be neglected for the reason just stated, and if

*
It will be understood that the problem admits only of an approximate treat

ment, on account of the non-uniform character of the motion in the immediate

neighbourhood of the point of discontinuity. The degree of approximation implied
in the above assumptions will become more evident if we suppose the suffixes to

refer to two sections
/Sj and S2 , one on each side of the origin 0, at distances from

which, though very small compared with the wave-length, are yet moderate

multiples of the transverse dimensions of the canal. The motion of the fluid will

be sensibly uniform over each of these sections, and parallel to the length. The
conditions in the text then express that there is no sensible change of level between
S

1 and S2 .
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we further neglect the product of the small quantities F and

drj/dx, the equation reduces to

1 dp _ drj
~ _
~pdx~

9 dx

as before. The equation of horizontal motion then takes the

form

where X may be regarded as a function of x and t only. The

equation of continuity has the same form as in Art. 166, viz.

Hence, on elimination of ?;,

175. The oscillations of water in a canal of uniform section,

closed at both ends, may, as in the corresponding problem of

Acoustics, be obtained by superposition of progressive waves

travelling in opposite directions. It is more instructive, however,

with a view to subsequent more difficult investigations, to treat

the problem as an example of the general theory sketched in

Art. 165.

We have to determine ( so as to satisfy

together with the terminal conditions that f = for # = and

x I, say. To find the free oscillations we put X =
0, and assume

that

f X COS (art + e),

where o- is to be found. On substitution we obtain

whence, omitting the time-factor,

i . crx n axA sin --h B cos ,

c c
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The terminal conditions give B = 0, and

a-ljc
= STT (3),

where s is integral. Hence the normal mode of order s is

given by
A . STTX fsirct \ /yl

v

f = 4,sm-j-cosf -j- +
es

j
(4),

where the amplitude A s and epoch e8 are arbitrary.

In the slowest oscillation (s
=

1), the water sways to and fro,

heaping itself up alternately at the two ends, and there is a node

at the middle (x = J I).
The period (2Z/c) is equal to the time a

progressive wave would take to traverse twice the length of the

canal.

The periods of the higher modes are respectively , J, J,

of this, but it must be remembered, in this and in other similar

problems, that our theory ceases to be applicable when the length

l/s of a semi-undulation becomes comparable with the depth h.

On comparison with the general theory of Art. 165, it appears that the

normal coordinates of the present system are quantities qlt q2 ,
... such that

when the system is displaced according to any one of them, say qa) we have

. STTX

3,001 -j-;

and we infer that the most general displacement of which the system is

capable (subject to the conditions presupposed) is given by

where qlt qz ,
... are arbitrary. This is in accordance with Fourier s Theorem.

When expressed in terms of the normal velocities and the normal co

ordinates, the expressions for T and V must reduce to sums of squares.
This is easily verified, in the present case, from the formula (i). Thus if S
denote the sectional area of the canal, we find

(ii),

and 2F=#p^ [** J o

where aa
=

i
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It is to be noted that the coefficients of stability (c8) increase with the

depth.

Conversely, if we assume from Fourier s theorem that (i) is a sufficiently

general expression for the value of at any instant, the calculation just

indicated shews that the coefficients qa are the normal coordinates
;
and the

frequencies can then be found from the general formula (8) of Art. 165
;
viz.

we have

ov,
=

(c./a.)*
=

in agreement with (3).

176. As aD example of forced waves we take the case of a

uniform longitudinal force

X=fcos(o-t + 6) ........................ (5).

This will illustrate, to a certain extent, the generation of tides in

a land-locked sea of small dimensions. Assuming that f varies as

cos(cr + e), and omitting the time-factor, the equation (1) becomes

^ + -% = _/
dx^ c

2 *
c
2

the solution of which is

f T. . orx T-. (TX= -*-+DSUL + #cos ................. (6).
(7

2 C C

The terminal conditions give

Hence, unless sin crlfc
= 0, we have D =f/&

2
. tan cr//2c, so that

2/ ,.:
aso ;_ &amp;lt;r(l a)

&amp;lt;7*

and hf o-(2a:-0
......

i]
=

. sin -
-^
--

. cos (crt + e)

If the period of the disturbing force be large compared with

that of the slowest free mode, &amp;lt;rl/2c
will be small, and the formula

for the elevation becomes

(9),

approximately, exactly as if the water were devoid of inertia. The
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horizontal displacement of the water is always in the same

phase with the force, so long as the period is greater than

that of the slowest free mode, or
&amp;lt;r//2c &amp;lt;-^TT.

If the period be

diminished until it is less than the above value, the phase is

reversed.

When the period is exactly equal to that of a free mode of

odd order (s=l, 3, 5,...), the above expressions for f and rj

become infinite, and the solution fails. As pointed out in

Art. 165, the interpretation of this is that, in the absence of

dissipative forces (such as viscosity), the amplitude of the motion

becomes so great that the foregoing approximations are no longer

justified.

If, on the other hand, the period coincide with that of a free

mode of even order (s
=

2, 4, 6,...), we have
sin&amp;lt;rZ/c

= 0,

cos0-Z/c
= l, and the terminal conditions are satisfied indepen

dently of the value of D. The forced motion may then be

represented by

=--^sin
2

^cos(o- + e) ............ (10)*.
(T C

The above example is simpler than many of its class in that it is possible
to solve it without resolving the impressed force into its normal components.
If we wish to effect this resolution, we must calculate the work done during
an arbitrary displacement

.

Since X denotes the force on unit mass, we have

=pS I

J o

whence

. , , ~ 1 cos Srr 07 ..

provided Ca
=

. pSlf

This vanishes, as we should expect, for all even values of s. The solution of

our problem then follows from the general formulae of Art. 165. The
identification (by Fourier s Theorem) of the result thus obtained with that

contained in the formulae (8) is left to the reader.

* In the language of the general theory, the impressed force has here no

component of the particular type with which it synchronizes, so that a vibration

of this type is not excited at all. In the same way a periodic pressure applied at

any point of a stretched string will not excite any fundamental mode which has a

node there, even though it synchronize with it.
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Another very simple case of forced oscillations, of some interest

in connection with tidal theory, is that of a canal closed at one end

and communicating at the other with an open sea in which a

periodic oscillation

7]
= a cos (vt + e) (11)

is maintained. If the origin be taken at the closed end, the

solution is obviously

cos
s*

97
= a , . cos (at + e) (12),

cos
c

I denoting the length. If o-l/c be small the tide has sensibly the

same amplitude at all points of the canal. For particular values

of I, (determined by cos o-l/c
=

0), the solution fails through the

amplitude becoming infinite.

Canal Theory of the Tides.

177. The theory of forced oscillations in canals, or on open
sheets of water, owes most of its interest to its bearing on the

phenomena of the tides. The canal theory, in particular, has

been treated very fully by Airy*. We will consider one or two of

the more interesting problems.

The calculation of the disturbing effect of a distant body on

the waters of the ocean is placed for convenience in an Appendix
at the end of this Chapter. It appears that the disturbing effect

of the moon, for example, at a point P of the earth s surface, may
be represented by a potential O whose approximate value is

(i-ewa) (i),
j^r

where M denotes the mass of the moon, D its distance from

the earth s centre, a the earth s radius, 7 the constant of gravi

tation, and Sr the moon s zenith distance at the place P. This

gives a horizontal acceleration dl/ad^, or

/sin 2^ (2),

*
Encycl. Metrop., &quot;Tides and Waves,&quot; Section vi. (1845). Several of the

leading features of the theory had been made out, by very simple methods, by

Young in 1813 and 1823
; Miscellaneous Works, t. ii. pp. 262, 291,
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towards the point of the earth s surface which is vertically beneath

the moon, provided
(3).

If E be the earth s mass, we may write g = yE/a
2
,
whence

f 3 M

Putting M/E = , a/D = ^, this gives f\g = 8 57 x 10~8
. When

the sun is the disturbing body, the corresponding ratio is

It is convenient, for some purposes, to introduce a linear

magnitude H, defined by

If we put a = 21 x 106
feet, this gives, for the lunar tide, H = 1-80 ft.,

and for the solar tide H = 79 ft. It is shewn in the Appendix
that H measures the maximum range of the tide, from high water

to low water, on the equilibrium theory.

178. Take now the case of a uniform canal coincident with

the earth s equator, and let us suppose for simplicity that the

moon describes a circular orbit in the same plane. Let f be the

displacement, relative to the earth s surface, of a particle of water

whose mean position is at a distance a?, measured eastwards, from

some fixed meridian. If n be the angular velocity of the earth s

rotation, the actual displacement of the particle at time t will

be f + nt, so that the tangential acceleration will be d^g/dt
2
. If we

suppose the centrifugal force to be as usual allowed for in the

value of g, the processes of Arts. 166, 174 will apply without

further alteration.

If n denote the angular velocity of the moon relative to the

fixed meridian*, we may write

*b = n t + as/a + e,

so that the equation of motion is

Thefree oscillations are determined by the consideration that f
is necessarily a periodic function of x, its value recurring whenever

That is, n =n-nlt
if Wj be the angular velocity of the moon in her orbit.
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x increases by 2?ra. It may therefore be expressed, by Fourier s

Theorem, in the form

(2).

Substituting in (1), with the last term omitted, it is found that Ps

and Qs must satisfy the equation

The motion, in any normal mode, is therefore simple-harmonic, of

period 2?ra/5C.

For the forced waves, or tides, we find

c^H ( x \
whence y = -r^cos2 [n fH

---he ............... (5).2
c
2 n 2a2

V a J

The tide is therefore semi-diurnal (the lunar day being of course

understood), and is direct or inverted, i.e. there is high or low

water beneath the moon, according as c ria, in other words

according as the velocity, relative to the earth s surface, of a point

which moves so as to be always vertically beneath the moon, is

less or greater than that of a free wave. In the actual case of the

earth we have

(?/n *a* = (gln *a) . (h/a)
= 311 h/a,

so that unless the depth of the canal were to greatly exceed such

depths as actually occur in the ocean, the tides would be inverted.

This result, which is sometimes felt as a paradox, comes under

a general principle referred to in Art. 165. It is a consequence

of the comparative slowness of the free oscillations in an equatorial

canal of moderate depth. It appears from the rough numerical

table on p. 274 that with a depth of 11250 feet a free wave would

take about 30 hours to describe the earth s semi-circumference,

whereas the period of the tidal disturbing force is only a little

over 12 hours.

The formula (5) is, in fact, a particular case of Art. 165 (12), for

it may be written
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where rj is the elevation given by the equilibrium-theory/ viz.

2
\ a J

and a = 2ri
t

&amp;lt;TO
=

2c/a.

For such moderate depths as 10000 feet and under, n
2a2

is large

compared with gh; the amplitude of the horizontal motion, as

given by (4), is then //4/i
/2

,
or g/4tn

2a . H, nearly, being approxi

mately independent of the depth. In the case of the lunar

tide this is equal to about 140 feet. The maximum elevation is

obtained from this by multiplying by 2h/a ;
this gives, for a depth

of 10000 feet, a height of only 133 of a foot.

For greater depths the tides would be higher, but still inverted,

until we reach the critical depth n 2a2

/g, which is about 13 miles.

For depths beyond this limit, the tides become direct, and

approximate more and more to the value given by the equi

librium theory*.

179. The case of a circular canal parallel to the equator can

be worked out in a similar manner. If the moon s orbit be still

supposed to lie in the plane of the equator, we find by

spherical trigonometry
/ x \

cos S- = sin 8 cos [rit + r. + e (1),
V a sm 6 )

where 8 is the co-latitude, and x denotes the distance of any point
P of the canal from the zero meridian. This leads to

X = - j- = -/sin 8 sin 2 (n t +
X

a + e) . . .(2),dx \ asin.0 J

and thence to

cos 2 (n t + ^7,+ e) ...... (3).
V a sin 6 )2 c

2 - n 2a2 sin2 8

Hence if ria &amp;gt; c the tide will be direct or inverted according as

8 ^ sin&quot;
1

c/n a. If the depth be so great that c &amp;gt; ria, the tides

will be direct for all values of 8.

If the moon be not in the plane of the equator, but have a co-declination

A, the formula (1) is replaced by

cos ^= cos 6 cos A+ sin 6 sin A cos a (i),

*
Cf. Young, I. c. ante p. 270.

L. 19
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where a is the hour-angle of the moon from the meridian of P. For

simplicity, we will neglect the moon s motion in her orbit in comparison with

the earth s angular velocity of rotation (n) ;
thus we put

,asm 6

and treat A as constant. The resulting expression for the component X of

the disturbing force is found to be

x- -si-

We thence obtain

. .sin 20 sin 2A cos

sin2 ^ sin2 A cos 2 (nt+5-9
-

9 9 o ,,
. ..z

c2 - n2a? sin2 6 \ a sin 6

The first term gives a diurnal tide of period ^irjn ;
this vanishes and

changes sign when the moon crosses the equator, i.e. twice a month. The

second term represents a semidiurnal tide of period TT/U, whose amplitude is

now less than before in the ratio of sin2 A to 1.

180. In the case of a canal coincident with a meridian we

should have to take account of the fact that the undisturbed

figure of the free surface is one of relative equilibrium under

gravity and centrifugal force, and is therefore not exactly circular.

We shall have occasion later on to treat the question of displace

ments relative to a rotating globe somewhat carefully ;
for the

present we will assume by anticipation that in a narrow canal the

disturbances are sensibly the same as if the earth were at rest,

and the disturbing body were to revolve round it with the proper
relative motion.

If the moon be supposed to move in the plane of the equator,

the hour-angle from the meridian of the canal may be denoted by
n t + e, and if as be the distance of any point P on the canal from

the equator, we find

CT

cos ^ = cos - . cos (n t -f e) .................. (1).

Hence

X = j- = - /sin 2 - . cos2
(n t -f e)dx a

= --J/sm2-.{l+cos2(X-f e)} ............ (2).a
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Substituting in the equation (5) of Art. 174, and solving, we find

?;
= jffcos2- + j f ,, cos2-.cos2(X + 6) .. .. (3).4 a 4 c

2-n 2a2 a

The first term represents a change of mean level to the extent

(4).

The fluctuations above and below the disturbed mean level

are given by the second term in (3). This represents a semi

diurnal tide
;
and we notice that if, as in the actual case of the

earth, c be less than n a, there will be high water in latitudes

above 45, and low water in latitudes below 45, when the moon
is in the meridian of the canal, and vice versa when the moon
is 90 from that meridian. These circumstances would be all

reversed if c were greater than na.

When the moon is not on the equator, but has a given declination,
the mean level, as indicated by the term corresponding to (4), has a coefficient

depending on the declination, and the consequent variations in it indicate a

fortnightly (or, in the case of the sun, a semi-annual) tide. There is also

introduced a diurnal tide whose sign depends on the declination. The reader

will have no difficulty in examining these points, by means of the general
value of ii given in the Appendix.

Wave-Motion in a Canal of Variable Section.

181. When the section (S, say) of the canal is not uniform,
but varies gradually from point to point, the equation of con

tinuity is, as in Art. 166 (iv),

where b denotes the breadth at the surface. If h denote the

mean depth over the width b, we have S = bh, and therefore

where h, b are now functions of x.

The dynamical equation has the same form as before, viz.

#_ a ^i
dP~

~
g dx

........................... (

192
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Between (2) and (3) we may eliminate either rj or f ;
the

equation in
77 is

d dr\
l

The laws of propagation of waves in a rectangular canal of

gradually varying section were investigated by Green*. His

results, freed from the restriction to a special form of section,

may be obtained as follows.

If we introduce a variable 6 defined by

dxld6 = (gKp .................................... (i),

in place of #, the equation (4) transforms into

I/

where the accents denote differentiations with respect to 0. If b and h were

constants, the equation would be satisfied by rj F(B-t), as in Art. 167; in

the present case we assume, for trial,

1
= B.F(0-t) .................................... (iii),

where is a function of B only. Substituting in (ii), we find

The terms of this which involve F will cancel provided

or e = Cb~*k- ....................................... (v),

C being a constant. Hence, provided the remaining terms in (iv) may be

neglected, the equation (i) will be satisfied by (iii) and (v).

The above approximation is justified, provided we can neglect 0&quot;/0
and

/0 in comparison with F /F. As regards Q /Q, it appears from (v) and

(iii) that this is equivalent to neglecting b~l
. dbjdx and hrl

. dhjdx in com

parison with r)~
l
.drj/dx. If, now, A denote a wave-length, in the general

sense of Art. 169, drj/dx is of the order rj/X, so that the assumption in

question is that \dbjdx and \dhjdx are small compared with b and h, re

spectively. In other words, it is assumed that the transverse dimensions of

the canal vary only by small fractions of themselves within the limits of a

wave-length. It is easily seen, in like manner, that the neglect of
0&quot;/0

in

comparison with F /F implies a similar limitation to the rates of change of

db\dx and dhjdx.

*
&quot;On the Motion of Waves in a Variable Canal of small depth and width.&quot;

Camb. Trans., i. vi. (1837), Math. Papers, p. 225; see also Airy,
&quot; Tides and Waves,&quot;

Art. 260.
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Since the equation (4) is unaltered when we reverse the sign of t, the

complete solution, subject to the above restrictions, is

1
= b-*h-*{F(0-t)+f(6+ t)} (vi),

when F and / are arbitrary functions.

The first term in this represents a wave travelling in the direction of

^-positive; the velocity of propagation is determined by the consideration

that any particular phase is recovered when dd and dt have equal values, and

is therefore equal to (#A)*, by (i), exactly as in the case of a uniform section.

In like manner the second term in (vi) represents a wave travelling in the

direction of ^-negative. In each case the elevation of any particular part of

the wave alters, as it proceeds, according to the law b~^ h~^.

The reflection of a progressive wave at a point where the

section of a canal suddenly changes has been considered in Art.

173. The formulae there given shew, as we should expect, that

the smaller the change in the dimensions of the section, the

smaller will be the amplitude of the reflected wave. The case

where the transition from one section to the other is continuous,

instead of abrupt, comes under a general investigation of Lord

Rayleigh s*. It appears that if the space within which the

transition is completed be a moderate multiple of a wave-length
there is practically no reflection

;
whilst in the opposite extreme

the results agree with those of Art. 173.

If we assume, on the basis of these results, that when the

change of section within a wave-length may be neglected a pro

gressive wave suffers no disintegration by reflection, the law of

amplitude easily follows from the principle of energy -f-.
It

appears from Art. 17 1 that the energy of the wave varies as the

length, the breadth, and the square of the height, and it is easily

seen that the length of the wave, in different parts of the canal,

varies as the correspondiug velocity of propagation J, and therefore

as the square root of the mean depth. Hence, in the above notation,

?7
2&M is constant, or

t] oc b~^h~*,

which is Green s law above found.

* &quot; On Reflection of Vibrations at the Confines of two Media between which the

Transition is gradual,&quot; Proc. Land. Math. Soc., t. xi. p. 51 (1880) ; Theory of Sound,
2nd ed., London, 1894, Art. 1486.

t Lord Rayleigh, 1. c. ante p. 279.

t For if P, Q be any two points of a wave, and P
, Q the corresponding points

when it has reached another part of the canal, the time from P to P is the same
as from Q to Q , and therefore the time from P to Q is equal to that from P to Q .

Hence the distances PQ, P*Q are proportional to the corresponding wave-velocities.
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182. In the case of simple harmonic motion, assuming that

?; x cos (at + e), the equation (4) of the preceding Art. becomes

(1).

Some particular cases of considerable interest can be solved

with ease.

1. For example, let us take the case of a canal whose breadth varies as

the distance from the end #=0, the depth being uniform
;
and let us suppose

that at its mouth (x
= a) the canal communicates with an open sea in which

a tidal oscillation

77
=

acos(&amp;lt;r + e) ................................. (i),

is maintained. Putting h= const., 6oc#, in (1), we find

provided k2 = o-
2
/gh .................................... (iii).

The solution of (ii) which is finite when #=0 is

or, in the notation of Bessel s Functions,

t=AJQ (kx) .................................... (v).

Hence the solution of our problem is evidently

The curveyJQ (x} is figured on p. 306; it indicates how the amplitude of

the forced oscillation increases, whilst the wave length is practically constant,

as we proceed up the canal from the mouth.

2. Let us suppose that the variation is in the depth only, and that this

increases uniformly from the end #=0 of the canal, to the mouth, the remain

ing circumstances being as before. If, in (1), we put h=h
(p/at

K= &amp;lt;r

2
a/gh ,

we obtain

This solution of this which is finite for #=0 is

KX K%2

or i=*AJQ (2K a) .................................... (ix),

whence finally, restoring the time-factor and determining the constant,
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The annexed diagram of the curve y= 7 (V#), where, for clearness, the

scale adopted for y is 200 times that of #, shews how the amplitude continually

increases, and the wave-length diminishes, as we travel up the canal.

These examples may serve to illustrate the exaggeration of oceanic tides

which takes place in shallow seas arid in estuaries.

We add one or two simple problems of free oscillations.

3. Let us take the case of a canal of uniform breadth, of length 2a, whose

bed slopes uniformly from either end to the middle. If we take the origin at

one end, the motion in the first half of the canal will be determined, as

above, by

(xi),

where /c = o-%/^A ,
as before, h denoting the depth at the middle.

It is evident that the normal modes will fall into two classes. In the first

of these
77
will have opposite values at corresponding points of the two halves

of the canal, and will therefore vanish at the centre (x= a}. The values of a-

are then determined by

J (2ja*) = ................................. (xii),

viz. K being any root of this, we have

.(xiii).

In the second class, the value of
77

is symmetrical with respect to the

centre, so that drj/dx=Q at the middle. This gives

(xiv).

Some account of Bessel s Functions will be given presently, in connection

with another problem. It appears that the slowest oscillation is of the
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asymmetrical class, and so corresponds to the smallest root of (xii), which

is 2x^a*= 765577, whence

_ 1.308

4. Again, let us suppose that the depth of the canal varies according to

the law

where x now denotes the distance from the middle. Substituting in (1), with

b= const., we find

d (/, x2 \ dn] o-
2

,
. N

-7----^ -r -^ ........................ (xvi).ds
^

If we put a2= n(n+ l) ................................ (xvii),

this is of the same form as the general equation of zonal harmonics,
Art. 85 (1).

In the present problem n is determined by the condition that must be

finite for x/a= +1. This requires (Art. 86) that n should be integral; the

normal modes are therefore of the types

(xviii),

where Pn is a Legendre s Function, the value of a- being determined

by (xvii).

In the slowest oscillation (n=l\ the profile of the free surface is a

straight line. For a canal of uniform depth A
,
and of the same length (2a),

the corresponding value of &amp;lt;r would be 7rc/2a, where c= (gh$. Hence in the

present case the frequency is less, in the ratio 2^/2/vr, or &quot;9003.

The forced oscillations due to a uniform disturbing force

JT=/cos (&amp;lt;rt
+ e) ................................. (xix),

can be obtained by the rule of Art. 165 (12). The equilibrium form of the

free surface is evidently

(xx),

and, since the given force is of the normal type ?i=l, we have

where o-
2=

2grA /a
8
.
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Waves of Finite Amplitude.

183. When the elevation rj is not small compared with the

mean depth h, waves, even in an uniform canal of rectangular

section, are no longer propagated without change of type. This

question was first investigated by Airy*, by methods of successive

approximation. He found that in a progressive wave different

parts will travel with different velocities, the wave-velocity corre

sponding to an elevation 77 being given approximately by

where c is the velocity corresponding to an infinitely small

amplitude.

A more complete view of the matter can be obtained by the

method employed by Riemann in treating the analogous problem
in Acoustics, to which reference will be made in Chapter x.

The sole assumption on which we are now proceeding is that

the vertical acceleration may be neglected. It follows, as ex

plained in Art. 166, that the horizontal velocity may be taken to

be uniform over any section of the canal. The dynamical equation
is

du du drj ,
.

* +tt^=-^ .......................
&amp;lt;*&amp;gt;

as before, and the equation of continuity, in the case of a rect

angular section, is easily seen to be

where h is the depth. This may be written

drj drj du ,
.-+uL =: -(h + &amp;lt;

ri) .....................(3).dt dx &quot; dx

Let us now write

2P =/(,) + , 2Q=/(,)-u ............... (4),

where the function f(rj) is as yet at our disposal. If we multiply

(3 ) ty/ 0?) and add to (1), we get

dP dP

&quot; Tides and Waves,&quot; Art. 198.
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If we now determine /(?;) so that

(h + r,)f W = g ........................ (5),

this may be written

dP dP

In the same way we find

The condition (5) is satisfied by

(8),

where c = (gh)*. The arbitrary constant has been chosen so as to

make P and Q vanish in the parts of the canal which are free from

disturbance, but this is not essential.

Substituting in (6) and (7) we find

-u|&amp;lt;#

I

dQ
dx

It appears, therefore, that dP = 0, i. e. P is constant, for a

geometrical point moving with the velocity

whilst Q is constant for a point moving with the velocity

-

Hence any given value of P travels forwards, and any given value

of Q travels backwards, with the velocities given by (10) and (11)

respectively. The values of P and Q are determined by those

of 1) and u, and conversely.

As an example, let us suppose that the initial disturbance

is confined to the space between x = a and x = b, so that P and Q
are initially zero for x &amp;lt; a and ec &amp;gt; b. The region within which P
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differs from zero therefore advances, whilst that within which Q
differs from zero recedes, so that after a time these regions

separate, and leave between them a space within which P = 0,

Q = 0, and the fluid is therefore at rest. The original disturbance

has now been resolved into two progressive waves travelling in

opposite directions.

In the advancing wave we have

(12),

so that the elevation and the particle-velocity are connected by a

definite relation (cf. Art. 168). The wave-velocity is given by (10)

and (12), viz. it is

To the first order of 7j/h, this is in agreement with Airy s result.

Similar conclusions can be drawn in regard to the receding

wave*.

Since the wave-velocity increases with the elevation, it appears
that in a progressive wave-system the slopes will become con

tinually steeper in front, and more gradual behind, until at length
a state of things is reached in which we are no longer justified in

neglecting the vertical acceleration. As to what happens after

this point we have at present no guide from theory ;
observation

shews, however, that the crests tend ultimately to curl over and

break.

184. In the application of the equations (1) and (3) to tidal

phenomena, it is most convenient to follow the method of successive

approximation. As an example, we will take the case of a canal

communicating at one end (%
=

0) with an open sea, where

the elevation is given by

rj
= a cos crt

For a first approximation we have

du dn dn 1 du
-

* The above results can also be deduced from the equation (3) of Art. 170, to

which Biemann s method can be readily adapted.
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the solution of which, consistent with (14), is

rj
= a cos or (*--), M= coso-U--) ................... (ii).

\ GJ C \ C/

For a second approximation we substitute these values of
?/
and u in (1) and

(3), and obtain
du drt

dn 7 du go-a
2

. ... / x\
:r = ~ h -j-

~
*-*- sm 2o&quot;

(
* ~ ~

)
dt dx c2 \ CJ

(iii).

Integrating these by the usual methods, we find, as the solution consistent

with (14),

= a cos 0-

/ x\

U--J
. a

--3- x sin 2o-
A #\ \
It )

,

x sin 2o-H)

.(iv).

The figure shews, with, of course, exaggerated amplitude, the profile of

the waves in a particular case, as determined by the first of these equations.

It is to be rioted that if we fix our attention on a particular point of the canal,

the rise and fall of the water do not take place symmetrically, the fall

occupying a longer time than the rise.

When analysed, as in (iv), into a series of simple-harmonic functions of

the time, the expression for the elevation of the water at any particular place

(#) consists of two terms, of which the second represents an over-tide, or

tide of the second order, being proportional to a2
;

its frequency is double

that of the primary disturbance (14). If we were to continue the approxi
mation we should obtain tides of higher orders, whose frequencies are

3, 4, ... times that of the primary.

If, in place of (14), the disturbance at the mouth of the canal were given

by
= a cos &amp;lt;rt+ a cos (a- t+ e),

it is easily seen that in the second approximation we should obtain tides of

periods 2w/(&amp;lt;r+ &amp;lt;r ) and 2ir/(cr &amp;lt;r ); these are called compound tides. They
are closely analogous to the combination-tones in Acoustics which were

first investigated by von Helmholtz*.

*
&quot;Ueber Combinationstone,&quot; Berl. Monatsber., May 22, 1856, Ges. Abh., t. i.,

p. 256, and &quot; Theorie der Luftschwingungen in Kohren mit offenen Enden,&quot;

Crelle, t. Ivii., p. 14 (1859), Ges. Abh., t. i., p. 318.
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The occurrence of the factor x outside trigonometrical terms in (iv) shews

that there is a limit beyond which the approximation breaks down. The

condition for the success of the approximation is evidently that go-axfc*

should be small. Putting c2 =gh, \ = &amp;lt;

2irc/&amp;lt;r,
this fraction becomes equal to

2;r (a/A) . (x/\). Hence however small the ratio of the original elevation (a)

to the depth, the fraction ceases to be small when as is a sufficient multiple of

the wave-length (X).

It is to be noticed that the limit here indicated is already being over

stepped in the right-hand portions of the figure above given ;
and that

the peculiar features which are beginning to shew themselves on the rear

slope are an indication rather of the imperfections of the analysis than

of any actual property of the waves. If we were to trace the curve further,

we should find a secondary maximum and minimum of elevation developing

themselves on the rear slope. In this way Airy attempted to explain the

phenomenon of a double high-water which is observed -in some rivers
; but,

for the reason given, the argument cannot be sustained*.

The same difficulty does not necessarily present itself in the case of a canal

closed by a fixed barrier at a distance from the mouth, or, again, in the case

of the forced waves due to a periodic horizontal force in a canal closed at both

ends (Art. 176). Enough has, however, been given to shew the general

character of the results to be expected in such cases. For further details

we must refer to Airy s treatise f.

Propagation in Two Dimensions.

185. Let us suppose, in the first instance, that we have a

plane sheet of water of uniform depth h. If the vertical accelera

tion be neglected, the horizontal motion will as before be the same

for all particles in the same vertical line. The axes of x, y being

horizontal, let u, v be the component horizontal velocities at the

point (as, y), and let ? be the corresponding elevation of the free

surface above the undisturbed level. The equation of continuity

may be obtained by calculating the flux of matter into the

columnar space which stands on the elementary rectangle

viz. we have, neglecting terms of the second order,

a&amp;lt;%)8a
+ ^t

, dt , fdu dv\whence ji=-h hj- + j- (1).at \dx dy)

*
Cf. McCowan, I, c. ante p. 277.

t &quot; Tides and Waves,&quot; Arts. 198, ...and 308. See also G. H. Darwin, &quot;Tides,

Encyc. Britann. (9th ed.) t. xxiii., pp. 362, 363 (1888).



302 TIDAL WAVES. [CHAP. VIII

The dynamical equations are, in the absence of disturbing

forces,

du _ dp dv _ dp
p ~dt~~dx p

dt~~dy
y

where we may write

p-fb-jp (* + ?-*),

if zQ denote the ordinate of the free surface in the undisturbed

state, and so obtain

du _ d dv _ d . .

dt-~ g dx dt~~ 9
dy&quot;

If we eliminate u and v, we find

where c
2 = gh as before.

In the application to simple-harmonic motion, the equations

are shortened if we assume a complex time-factor ei(&amp;lt;rt+e)

,
and

reject, in the end, the imaginary parts of our expressions. This

is of course legitimate, so long as we have to deal solely with

linear equations. We have then, from (2),

_ ig d% _ ig d ...

&amp;lt;j dx (7 dy
whilst (3) becomes

where A;
2 = a2

/c
2
........................... (6).

The condition to be satisfied at a vertical bounding wall is

obtained at once from (4), viz. it is

= ..............................^
if &n denote an element of the normal to the boundary.

When the fluid is subject to small disturbing forces whose

variation within the limits of the depth may be neglected, the

equations (2) are replaced by

du _ d &amp;lt;ttl dv_ d_&amp;lt;m

dt~~ 9 dx~ dx dt~ 9
dy dy

.........

where H is the potential of these forces.
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If we put f=-n/$r ........................... (9),

so that f denotes the equilibrium-elevation corresponding to the

potential H, these may be written

du d /c, X dv d /4, S v

In the case of simple-harmonic motion, these take the forms

whence, substituting in the equation of continuity (1), we obtain

(V 1

^ + ^)? = V 1f ...................... (12),

if V x
2 =

d?/da? + cP/dy*, .................... (13),

and & =
a*/gh, as before. The condition to be satisfied at a

vertical boundary is now

186. The equation (3) of Art. 185 is identical in form with

that which presents itself in the theory of the vibrations of a

uniformly stretched membrane. A still closer analogy, when

regard is had to the boundary conditions, is furnished by the theory
of cylindrical waves of sound*. Indeed many of the results

obtained in this latter theory can be at once transferred to our

present subject.

Thus, to find the free oscillations of a sheet of water bounded

by vertical walls, we require a solution of

&amp;lt;V,
+ *)=&amp;lt;&amp;gt; ........................ (1),

subject to the boundary condition

d/dn = ........................... (2).

Just as in Art. 175 it will be found that such a solution is possible

only for certain values of k, and thus the periods (2ir/kc) of the

several normal modes are determined.

* Lord Eayleigh, Theory of Sound, Art. 339.
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Thus, in the case of a rectangular boundary, if we take the

origin at one corner, and the axes of x
} y along two of the sides,

the boundary conditions are that d^jdx = for x = and x = a,

and dQdy = for y = and y = 6, where a, b are the lengths of the

edges parallel to x, y respectively. The general value of f subject
to these conditions is given by the double Fourier s series

^v A mirx ^
?= 22.4m, COS-

COS-y^
.................. (3),

where the summations include all integral values of m, n from

to oo . Substituting in (1) we find

& =
ir*(m*/a* + n*/li ) ..................... (4).

If a &amp;gt; b, the component oscillation of longest period is got by

making m = l, n = 0, whence ka = 7r. The motion is then every
where parallel to the longer side of the rectangle. Cf. Art. 175.

187. In the case of a circular sheet of water, it is convenient

to take the origin at the centre, and to transform to polar

coordinates, writing
x = r cos 6, y = r sin 6.

The equation (1) of the preceding Art. becomes

.................. .

dr* r dr r* dd*

This might of course have been established independently.

As regards its dependance on 6, the value of f may, by
Fourier s Theorem, be supposed expanded in a series of cosines and

sines of multiples of 6
;
we thus obtain a series of terms of the

form

siri
(2).

It is found on substitution in (1) that each of these terms must

satisfy the equation independently, and that

This is the differential equation of Bessel s Functions*. Its

*
Forsyth, Differential Equations, Art. 100.
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complete primitive consists, of course, of the sum of two definite

functions of r
t
each multiplied by an arbitrary constant, but in the

present problem we are restricted to a solution which shall be finite

at the origin. This is easily obtained in the form of an ascending
series

; thus, in the ordinary notation of Bessel s Functions, we have

where, on the usual convention as to the numerical factor,

7&quot; M - 2*

1 1s(Z ~2S

77!(

Hence the various normal modes are given by

(5),
sin

where s may have any of the values 0, 1, 2, 3,..., and A s is an

arbitrary constant. The admissible values of k are determined by
the condition that d/dr = for r = a, or

J8 (ka)
= ........................... (6).

The corresponding speeds (&amp;lt;r)
of the oscillations are then given

The analytical theory of Bessel s Functions is treated more or less fully in

various works to which reference is made below*. It appears that for large

values of we may put

,
- 2 -

where

I 2 -4s2

_ (!
2 -4s2

)(3
2 -4s2

)(5
2 -4s2

)

1.80
&quot;

1.2.3(80)
3

A

...(ii).

The series P, Q are of the kind known as semi-convergent, i.e. although for

large values of the successive terms may diminish for a time, they ultimately
increase again, but if we stop at a small term we get an approximately
correct result.

*
Lommel, Studien ueber die BesseVschen Functionen, Leipzig, 1868

; Heine,

Kugelfunctionen, Arts. 42,..., 57,...; Todhunter, Functions of Laplace, Lame, and

Bessel; Byerly, On Fourier s Series, and Spherical, Cylindrical, and Ellipsoidal

Harmonics, Boston, U. S.A., 1893 ; see also Forsyth, Differential Equations, c. v.

An ample account of the matter, from the physical point of view, will be found in

Lord Rayleigh s Theory of Sound, cc. ix., xviii., with many interesting applications.
Numerical tables of the functions have been calculated by Bessel, and Hansen,

and (more recently) by Meissel (Berl. Alh., 1888). Hansen s tables are reproduced
by Lommel, and (partially) by Lord Rayleigh and Byerly.

L. 20
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It appears from (i) that Ja (z) belongs to the class of fluctuating

functions, viz. as z increases the value of the function oscillates on both

sides of zero with a continually diminishing amplitude. The period of

the oscillations is ultimately 2jr.

The general march of the functions is illustrated to some extent by the

curves y=J (#), y= J\ (\ which are figured on the opposite page. For the

sake of clearness, the scale of the ordinates has been taken five times as great

as that of the abscissae.

In the case s = 0, the motion is symmetrical about the origin,

so that the waves have annular ridges and furrows. The lowest

roots of

are given by
Jfca/7r

= r2197, 2-2330, 3 2383, (8)*,

these values tending ultimately to the form &a/7r
= ra + J, where

m is integral. In the rath mode of the symmetrical class there

are ra nodal circles whose radii are given by f=0 or

The roots of this are

kr/7r
= 7655, 17571, 27546, (10)f.

For example, in the first symmetrical mode there is one nodal

circle r = 628a. The form of the section of the free surface by
a plane through the axis of z, in any of these modes, will be

understood from the drawing of the curve y Jo (#).

When s &amp;gt; there are s equidistant nodal diameters, in addition

to the nodal circles

J,(kr) = (11).

It is to be noticed that, owing to the equality of the frequencies of

the two modes represented by (5), the normal modes are now to a

certain extent indeterminate
;

viz. in place of cos sO or sin s6 we

might substitute coss(&amp;lt;9-as), where OLS is arbitrary. The nodal

diameters are then given by

Q n TT f19\a*
2^ l**A

*
Stokes,

&quot; On the Numerical Calculation of a class of Definite Integrals and
Infinite Series,&quot; Camb. Trans, t. ix. (1850), Math, and Phys. Papers, t. ii. p. 355.

It is to be noticed that ka/Tr is equal to r /r, where T is the actual period, and TO
is the time a progressive wave would take to travel with the velocity (grfe)J over a

space equal to the diameter 2a.

t Stokes, I. c.

202
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where m = 0, 1, 2,..., 51. The indeterminateness disappears,

and the frequencies become unequal, if the boundary deviate,

however slightly, from the circular form.

In the case of the circular boundary, we obtain by super

position of two fundamental modes of the same period, in different

phases, a solution

S=C,Js (kr).co8(&amp;lt;rt+86 + e) (13).

This represents a system of waves travelling unchanged round

the origin with an angular velocity a/s in the positive or

negative direction of 6. The motion of the individual particles

is easily seen from Art. 185 (4) to be elliptic-harmonic, one

principal axis of each elliptic orbit being along the radius

vector. All this is in accordance with the general theory referred

to in Art. 165.

The most interesting modes of the unsymmetrical class are

those corresponding to 5 = 1, e.g.

f = AJ1 (kr)cos0.cos(&amp;lt;rt+e) (14),



187]

where k is determined by

The roots of this are

NODAL LINES. 309

J1 (ka)=0 (15).

&a/7r=-586, 1-697, 2-717, (16)*.

We have now one nodal diameter (6 = JTT), whose position is,

however, indeterminate, since the origin of 6 is arbitrary. In the

corresponding modes for an elliptic boundary, the nodal diameter

would be fixed, viz. it would coincide with either the major or

the minor axis, and the frequencies would be unequal.

The accompanying diagrams shew the contour-lines of the free

surface in the first two modes of the present species. These lines

meet the boundary at right angles, in conformity with the general

boundary condition (Art. 186 (2)). The simple-harmonic vibrations

/ / 1

I I

*

of the individual particles take place in straight lines perpen-
licular to the contour-lines, by Art. 185 (4). The form of the

* See Lord Kayleigh s treatise, Art. 339,
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sections of the free surface by planes through the axis of z is given

by the curve y Jl (x) on p. 306.

The first of the two modes here figured has the longest period

of all the normal types. In it, the water sways from side to side,

much as in the slowest mode of a canal closed at both ends

(Art. 175). In the second mode there is a nodal circle, whose

radius is given by the lowest root of Jj (kr) = ;
this makes

A comparison of the preceding investigation with the general theory of

small oscillations referred to in Art. 165 leads to several important properties

of Bessel s Functions.

In the first place, since the total mass of water is unaltered, we must have

/;

where has any one of the forms given by (5). For s&amp;gt;0 this is satisfied in

virtue of the trigonometrical factor cos sQ or sin s6 ;
in the symmetrical case

it gives
tn,

(iv).r
/

Again, since the most general free motion of the system can be obtained

by superposition of the normal modes, each with an arbitrary amplitude and

epoch, it follows that any value whatever of
,
which is subject to the

condition (iii), can be expanded in a series of the form

r) ..................... (v),

where the summations embrace all integral values of s (including 0) and, for

each value of s, all the roots k of (6). If the coefficients A s ,
Bs be regarded

as functions of
,
the equation (v) rnay be regarded as giving the value of the

surface-elevation at any instant. The quantities A 8 ,
Bs are then the normal

coordinates of the present system (Art. 165) ;
and in terms of them the

formulae for the kinetic and potential energies must reduce to sums of

squares. Taking, for example, the potential energy

* The oscillations of a liquid in a circular basin of any uniform depth were

discussed by Poissoii,
&quot; Sur les petites oscillations de 1 eau contenue dans un

cylindre,&quot; Ann. de Gergonne, t. xix. p. 225 (1828-9); the theory of Bessel s

Functions had not at that date been worked out, and the results were consequently
not interpreted. The full solution of the problem, with numerical details, was

given independently by Lord Eayleigh, Phil. Mag., April, 1876.

The investigation in the text is limited, of course, to the case of a depth small

in comparison with the radius a. Poisson s and Lord Kayleigh s solution for the

case of finite depth will be noticed in the proper place in Chap. ix.
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this requires that II w
l
w

zrd6dr= Q (vii),

where w
1 ,

iv
z
are any two terms of the expansion (v). If w

lt
w

2 involve

cosines or sines of different multiples of 0, this is verified at once by integra

tions with respect to 6
;
but if we take

w
1

oc Ja (^r) cos s0, w2
oc Js (k2r) cos s#,

where &
15

&2
are any two distinct roots of (6), we get

,
--- =0 (viii) -

The general results of which (iv) and (viii) are particular cases, are

/JQ (kr}rdr= -jJ (ka) (ix),
o *

and

J o
8 (l^ 8 tf rc -

k z_ k z 2 8 2
a s 1 1 8 1 2

a

(x).

In the case of k
l
= k

2
the latter expression becomes indeterminate ;

the

evaluation in the usual manner gives

o 8*

For the analytical proofs of these formulae we must refer to the treatises cited

on p. 305.

The small oscillations of an annular sheet of water bounded by
concentric circles are easily treated, theoretically, with the help of

Bessel s Functions of the second kind. The only case of any

special interest, however, is when the two radii are nearly equal ;

we then have practically a re-entrant canal, and the solution

follows more simply from Art. 178.

The analysis can also be applied to the case of a circular

sector of any angle*, or to a sheet of water bounded by two

concentric circular arcs and two radii.

188. As an example of forced vibrations, let us suppose that

the disturbing forces are such that the equilibrium elevation

would be

f = G cos sO . cos (at + e) (16).

See Lord Rayleigh, Theory of Sound, Art. 339.
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This makes V^^O, so that the equation (12) of Art. 185

reduces to the form (1), above, and the solution is

=AJ8 (kr) cos sd . cos (at + e) (17),

where A is an arbitrary constant. The boundary-condition (Art.

185 (14)), gives
AkaJs (ka)=sC,

whence = Y, \ cos sO . cos (crt + e) (18).KdJ s (fCd)

The case s = 1 is interesting as corresponding to a uniform
horizontal force

;
and the result may be compared with that of

Art. 176.

From the case s = 2 we could obtain a rough representation of

the semi-diurnal tide in a polar basin bounded by a small circle

of latitude, except that the rotation of the earth is not as yet taken

into account.

We notice that the expression for the amplitude of oscillation

becomes infinite when J8 (ka) = 0. This is in accordance with a

general principle, of which we have already had several examples ;

the period of the disturbing force being now equal to that of one

of the free modes investigated in the preceding Art.

189. When the sheet of water is of variable depth, the

investigation at the beginning of Art. 185 gives, as the equation

of continuity,

d%_ d(hu) d(hv) .-.

di~ ~~dx~ ~dy~

The dynamical equations (Art. 185 (2)) are of course unaltered.

Hence, eliminating f, we find, for the free oscillations,

d /, d\ d

If the time-factor be ei(fft+e)
,
we obtain

dx \ dx) dy \ dy) g

When h is a function of r, the distance from the origin, only,

this may be written
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As a simple example we may take the case of a circular basin which

shelves gradually from the centre to the edge, according to the law

Introducing polar coordinates, and assuming that varies as cos sQ or sin sO,

the equation (4) takes the form

This can be integrated by series. Thus, assuming

,m

LJ

where the trigonometrical factors are omitted, for shortness, the relation

between consecutive coefficients is found to be

= m (m -
2)
- ^ - Lm 2&amp;gt;

or, if we write Tr-*n(n 2) ^ (iv),

where 7& is not as yet assumed to be integral,

The equation is therefore satisfied by a series of the form (iii), beginning with

the term A a (r/a)
8
,
the succeeding coefficients being determined by putting

m=5+ 2, s+ 4,... in (v). We thus find

(m-t-
8
\al I 2(&? + 2) az

or in the usual notation of hypergeometric series

where a= -^7i+ is, /3

Since these make y a /3
=

0, the series is not convergent for r= a, unless it

terminate. This can only happen when n is integral, of the form

The corresponding values of o- are then given by (iv).

In the symmetrical modes (5=0) we have

where j may be any integer greater than unity. It may be shewn that this

expression vanishes for^
- 1 values of r between and a, indicating the exist

ence of j
- I nodal circles. The value of or is given by

()
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Thus the gravest symmetrical mode
(./
=

2) has a nodal circle of radius *707a
\

and its frequency is determined by o-
2= tyk^a?.

Of the unsymmetrical modes, the slowest, for any given value of *, is that

for which n = s+ 2, in which case we have

rs= A 8 cos s6 cos (a-t+ e),

the value of o- being given by

.................................... (x).

The slowest mode of all is that for which s l, n= 3; the free surface is

then always plane. It is found on comparison with Art. 187 (16) that the

frequency is 768 of that of the corresponding mode in a circular basin of

uniform depth A
,
and of the same radius.

As in Art. 188 we could at once write down the formula for the tidal

motion produced by a uniform horizontal periodic force
; or, more generally,

for the case when the disturbing potential is of the type

Q oc rs cos s6 cos (o-t + e).

190. We proceed to consider the case of a spherical sheet, or

ocean, of water, covering a solid globe. We will suppose for the

present that the globe does not rotate, and we will also in the first

instance neglect the mutual attraction of the particles of the water.

The mathematical conditions of the question are then exactly the

same as in the acoustical problem of the vibrations of spherical

layers of air * .

Let a be the radius of the globe, h the depth of the fluid
;
we

assume that h is small compared with a, but not (as yet) that it is

uniform. The position of any point on the sheet being specified

by the angular coordinates 6, co, let u be the component velocity of

the fluid at this point along the meridian, in the direction of 6

increasing, and v the component along the parallel of latitude, in

the direction of &&amp;gt; increasing. Also let ? denote the elevation of

the free surface above the undisturbed level. The horizontal

motion being assumed, for the reasons explained in Art. 169, to be

the same at all points in a vertical line, the condition of con

tinuity is

-fa (uha sin OBco) 80 + -y- (vha$0) Sco = a sin OBco . aS0 .
-

,

du cLa) at

where the left-hand side measures the flux out of the columnar

* Discussed in Lord Kayleigh s Theory of Sound, c. xvm.
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space standing on the element of area a sin 6$co . a$6, whilst the

right-hand member expresses the rate of diminution of the volume

of the contained fluid, owing to fall of the surface. Hence

d_ 1_ (d (hu sin 0) d(hv)}

dt~ a sin
I

d6 da&amp;gt;
}&quot;

If we neglect terms of the second order in u, v, the dynamical

equations are, on the same principles as in Arts. 166, 185,

du d dl dv d c?H ,.

dt~ add~ad6 dt
~

asinOda)
~

a sin 0da&amp;gt;

where U denotes the potential of the extraneous forces.

If we put
(3),

these may be written

du_ gd - dv_ g d

dt~~ad@ (^~ Qj K-^iam?*^ V ri

Between (1) and (4) we can eliminate u, v, and so obtain an equa
tion in f only.

In the case of simple-harmonic motion, the time-factor being
e i(&amp;lt;rt+ e )

}
the equations take the forms

,,_ i (d(husin0) d(hv)
^~ ~

191. We will now consider more particularly the case of

uniform depth. To find the free oscillations we put ?=0; the

equations (5) arid (6) of the preceding Art. then lead to

1 d . dfr 1 d* n x

This is identical in form with the general equation of spherical

surface-harmonics (Art. 84 (2)). Hence, if we put

o--a
2

/gh
= n (n + 1) (2),

a solution of (1) will be

?=# (3),

where Sn is the general surface-harmonic of order n.
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It was pointed out in Art. 87 that Sn will not be finite over

the whole sphere unless n be integral. Hence, for an ocean

covering the whole globe, the form of the free surface at any
instant is, in any fundamental mode, that of a harmonic spheroid

r=a + h + Sn cos((rt + ) .................. (4),

and the speed of the oscillation is given by

&amp;lt;r=[n(n + I)}*.(gh)*la ..................... (5),

the value of n being integral.

The characters of the various normal modes are best gathered
from a study of the nodal lines (Sn = 0) of the free surface. Thus,

it is shewn in treatises on Spherical Harmonics* that the zonal

harmonic Pn (/it)
vanishes for n real and distinct values of p lying

between 1, so that in this case we have n nodal circles of

latitude. When n is odd one of these coincides with the equator.

In the case of the tesseral harmonic

sm

the second factor vanishes for n s values of /z, and the trigono

metrical factor for 2s equidistant values of CD. The nodal lines

therefore consist of n s parallels of latitude and 2s meridians.

Similarly the sectorial harmonic

sm
has as nodal lines 2n meridians.

These are, however, merely special cases, for since there are

2n+l independent surface-harmonics of any integral order n,

and since the frequency, determined by (5), is the same for each

of these, there is a corresponding degree of indeterminateness in

the normal modes, and in the configuration of the nodal lines *fv

We can also, by superposition, build up various types of

progressive waves; e.g. taking a sectorial harmonic we get a

solution in which

f oc(l
-
ffi

n cos
(na&amp;gt;

- at + e) ............... (6);

this gives a series of meridional ridges and furrows travelling

* For references, see p. 117.

f Some interesting varieties are figured in the plates to Maxwell s Electricity and

Magnetism, t. i.
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round the globe, the velocity of propagation, as measured at the

equator, being

It is easily verified, on examination, that the orbits of the

particles are now ellipses having their principal axes in the

directions of the meridians and parallels, respectively. At the

equator these ellipses reduce to straight lines.

In the case n = I, the harmonic is always of the zonal type.

The harmonic spheroid (4) is then, to our order of approximation,
a sphere excentric to the globe. It is important to remark,

however, that this case is, strictly speaking, not included in our

dynamical investigation, unless we imagine a constraint applied to

the globe to keep it at rest
;
for the deformation in question of

the free surface would involve a displacement of the centre of mass

of the ocean, and a consequent reaction on the globe. A corrected

theory for the case where the globe is free could easily be investi

gated, but the matfcer is hardly important, first because in such

a case as that of the Earth the inertia of the solid globe is so

enormous compared with that of the ocean, and secondly because

disturbing forces which can give rise to a deformation of the type
in question do not as a rule present themselves in nature. It

appears, for example, that the first term in the expression for the

tide-generating potential of the sun or moon is a spherical har

monic of the second order (see Appendix).

When n = 2, the free surface at any instant is approximately

ellipsoidal. The corresponding period, as found from (5), is then

816 of that belonging to the analogous mode in an equatorial
canal (Art. 178).

For large values of n the distance from one nodal line to

another is small compared with the radius of the globe, and the

oscillations then take place much as on a plane sheet of water.

For example, the velocity, at the equator, of the sectorial waves

represented by (6) tends with increasing n to the value (gh)*, in

agreement with Art. 167.

From a comparison of the foregoing investigation with the general theory
of Art. 165 we are led to infer, on physical grounds alone, the possibility of

the expansion of any arbitrary value of in a series of surface harmonics, thus
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the coefficients being the normal coordinates of the system. Again, since the

products of these coefficients must disappear from the expressions for the

kinetic and potential energies, we are led to the conjugate properties of

spherical harmonics quoted in Art. 88. The actual calculation of the potential

and kinetic energies will be given in the next Chapter, in connection with an

independent treatment of the same problem.

The effect of a simple-harmonic disturbing force can be

written down at once from the formula (12) of Art. 165. If

the surface-value of fl be expanded in the form

............................. (8),

where ln is a surface-harmonic of integral order n, then the

various terms are normal components of force, in the generalized
sense of Art. 133

;
and the equilibrium value of f corresponding

to any one term Hn is

? =-. ............................ (9).

Hence, for the forced oscillation due to this term, we have

where &amp;lt;r measures the speed of the disturbing force, and &amp;lt;rn that

of the corresponding free oscillation, as given by (5). There is no

difficulty, of course, in deducing (10) directly from the equations

of the preceding Art.

192. We have up to this point neglected the mutual attrac

tion of the parts of the liquid. In the case of an ocean covering

the globe, and with such relations of density as we meet with in the

actual earth and ocean, this is not insensible. To investigate its

effect in the case of the free oscillations, we have only to sub

stitute for nn ,
in the last formula, the gravitation-potential of the

displaced water. If the density of this be denoted by p, whilst p

represents the mean density of the globe and liquid combined, we

have*

...................
II),

and

*
See, for example, Eouth, Analytical Statics, Cambridge 1892, t. ii. pp. 91-92.
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7 denoting the gravitation-constant, whence

Substituting in (10) we find

where an is now used to denote the actual speed of the oscillation,

and crn the speed calculated on the former hypothesis of no

mutual attraction. Hence the corrected speed is given by

For an ellipsoidal oscillation (n 2), and for p/p = 18 (as in the

case of the Earth), we find from (14) that the effect of the mutual

attraction is to lower the frequency in the ratio of 94 to 1.

The slowest oscillation would correspond to n = l, but, as

already indicated, it would be necessary, in this mode, to imagine
a constraint applied to the globe to keep it at rest. This being

premised, it appears from (15) that if
p&amp;gt;/?

the value of oy
5 is

negative. The circular function of t is then replaced by real

exponentials; this shews that the configuration in which the

surface of the sea is a sphere concentric with the globe is one

of unstable equilibrium. Since the introduction of a constraint

tends in the direction of stability, we infer that when
p&amp;gt; p the

equilibrium is a fortiori unstable when the globe is free. In

the extreme case when the globe itself is supposed to have no

gravitative power at all, it is obvious that the water, if disturbed,

would tend ultimately, under the influence of dissipative forces, to

collect itself into a spherical mass, the nucleus being expelled.

It is obvious from Art. 165, or it may easily be verified inde

pendently, that the forced vibrations due to a given periodic

disturbing force, when the gravitation of the water is taken into

account, will be given by the formula (10), provided Hn now
denote the potential of the extraneous forces only, and crn have

the value given by (15).

* This result was given by Laplace, Mecanique Celeste, Livre ler, Art. 1 (1799).
The free and the forced oscillations of the type n= 2 had been previously investi

gated in his &quot; Eecherches sur quelques points du systeme du monde,&quot; Mem. de
I Acad. roy. des Sciences, 1775 [1778]; Oeuvres Completes, t. ix., pp. 109,....
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193. The oscillations of a sea bounded by meridians, or

parallels of latitude, or both, can also be treated by the same

method*. The spherical harmonics involved are however, as a

rule, no longer of integral order, and it is accordingly difficult to

deduce numerical results.

In the case of a zonal sea bounded by two parallels of latitude, we assume

* (i),

where /z
= cos#, and p(p), q(fi) are the two functions of

//, containing

(1 /n
2
)*

s
as a factor, which are given by the formula (2) of Art. 87. It will

be noticed that p (/z) is an even, and q (/z) an odd function of
/*.

If we distinguish the limiting parallels by suffixes, the boundary conditions

are that u=0 for
/M
=

/X I and/u = fi2 . For the free oscillations this gives, by
Art. 190 (6),

3
(ii),

(iii),

whence

which is the equation to determine the admissible values of n. The speeds

(o-) corresponding to the various roots are given as before by Art. 191 (5).

If the two boundaries are equidistant from the equator, we have fi2
= ^

The above solutions then break up into two groups ;
viz. for one of these we

have
5= 0, p M = ................................ (v),

and for the other

.............................. (vi).

In the former case has the same value at two points symmetrically
situated on opposite sides of the equation ;

in the latter the values at these

points are numerically equal, but opposite in sign.

If we imagine one of the boundaries to be contracted to a point (say

/z2
=

1), we pass to the case of a circular basin. The values of p (1) and q (1)

are infinite, but their ratio can be evaluated by means of formulae given in

Art. 85. This gives, by (iii), the ratio A : B, and substituting in (ii) we get

the equation to determine n. A more interesting method of treating this

case consists, however, in obtaining, directly from the differential equation of

surface-harmonics, a solution which shall be finite at the pole /i
= l. This

involves a change of variable, as to which there is some latitude of choice.

Perhaps the simplest plan is to write, for a moment,

2= J(l- /x)
= sin2^.............................. (vii).

* Ct . Lord Eayleigh, I. c. ante p. 314.
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Assuming SH=(l -/**)* w^J
5o&amp;gt; ........................... (viii),

the differential equation in w
t
which is given in Art. 87, becomes, in terms of

the new variable,

=0 ...... (ix).

The solution of this which is finite for 2= is given by the ascending series

) ................................................... (x).

Hence the expression adapted to our case is

2) 1

cosj
&quot;JnJ*1.2. (5+ 1) (5+ 2)

where the admissible values of n are to be determined from the condition

that d/d0=Q for = V

The actual calculation of the roots of the equation in n, for any arbitrary

value of
ly would be difficult. The main interest of the investigation consists,

in fact, in the transition to the plane problem of Art. 187, and in the connection

which we can thus trace between Bessel s Functions and Spherical Harmonics.

If we put a= oo
,
a0= r, we get the case of a plane sheet of water, referred to

polar coordinates r, o. Making, in addition, n0= kr, so that n is now infinite,

the formula (xi) gives

( fc2r2 4r4 1 cos

2(25+ 2) 2.4(25+ 2)(2s+ 4)

or {ccJt (Jkr)

c
.

s

\8a&amp;gt; (xii),

in the notation of Art. 187 (4). We thus obtain Bessel s Functions as limiting
forms of Spherical Harmonics of infinite order t.

* When n (as well as s) is integral, the series terminates, and the expression
differs only by a numerical factor from the tesseral harmonic denoted by

T* ^
sin I

SW in Art&amp;lt; 87 In the case s= we obtain one of the expansions of the

zonal harmonic given by Murphy, Elementary Principles of the Theories of Electri

city..., Cambridge, 1833, p. 7. (The investigation is reproduced by Thomson and

Tait, Art. 782.)

t This connection appears to have been first explicitly noticed by Mehler,
&quot;Ueber die Vertheilung der statischen Elektricitat in einem von zwei Kugelkalotten

begrenzten Korper,&quot; Crelle, t. Ixviii. (1868). It was investigated independently by
Lord Kayleigh,

&quot; On the Kelation between the Functions of Laplace and Bessel,&quot;

Proc. Lond. Math. Soc., t. ix., p. 61 (1878) ;
see also the same author s Theory of

Sound, Arts. 336, 338.

L, 21
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If the sheet of water considered have as boundaries two
meridians (with or without parallels of latitude), say o&amp;gt;

= and
co = a, the condition that v = at these restricts us to the factor

cos 56), and gives so. mir, where m is integral. This determines

the admissible values of s, which are not in general integral *.

Tidal Oscillations of a Rotating Sheet of Water.

194. The theory of the tides on an open sheet of water is

seriously complicated by the fact of the earth s rotation. If,

indeed, we could assume that the periods of the free oscillations,

and of the disturbing forces, were small compared with a day, the

preceding investigations would apply as a first approximation,

but these conditions are far from being fulfilled in the actual

circumstances of the Earth.

The difficulties which arise when we attempt to take the

rotation into account have their origin in this, that a particle

having a motion in latitude tends to keep its angular momentum
about the earth s axis unchanged, and so to alter its motion in

longitude. This point is of course familiar in connection with

Hadley s theory of the trade-winds
*f*.

Its bearing on tidal theory
seems to have been first recognised by MaclaurinJ.

195. Owing to the enormous inertia of the solid body of the

earth compared with that of the ocean, the effect of tidal reactions

in producing periodic changes of the angular velocity is quite

insensible. This angular velocity will therefore for the present be

treated as constant .

The theory of the small oscillations of a dynamical system
about a state of equilibrium relative to a solid body which rotates

with constant angular velocity about a fixed axis differs in some

important particulars from the theory of small oscillations about

a state of absolute equilibrium, of which some account was given

* The reader who wishes to carry the study of the problem further in this

direction is referred to Thomson and Tait, Natural Philosophy (2nd ed.), Appendix

B,
&quot;

Spherical Harmonic Analysis.&quot;

t &quot;

Concerning the General Cause of the Trade Winds,&quot; Phil. Trans. 1735.

J De Causa Physicd Fluxus et Eefluxus Maris, Prop. vii. :
&quot; Motus aquas turbatur

ex inaequali velocitate qua corpora circa axem Teme motu diurno deferuntur&quot; (1740).

The secular effect of tidal friction in this respect will be noticed later (Chap.

XI.).
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in Art. 165. It is therefore worth while to devote a little space
to it before entering on the consideration of special problems.

Let us take a set of rectangular axes x, y, z&amp;gt;

fixed relatively to

the solid, of which the axis of z coincides with the axis of rotation,

and let n be the angular velocity of the rotation. The equations

of motion of a particle m relative to these moving axes are known

to be

m(x 2m/ n^x)
= X, ^

m(y + 2nx-n2

y)=Y, I .................. (1),

mz =Z
}

where X, F, Z are the impressed forces on the particle. Let us

now suppose that the relative coordinates (x, y, z) of any particle

can be expressed in terms of a certain number of independent quan
tities ql} ^2 ,.... If we multiply the above equations by dxjdqS)

dy/dqs , dz/dqs ,
and add, and denote by S a summation embracing

all the particles of the system, we obtain

/ dx ..dy ..dz\ ^ ^ f . dy . dx
\x^- + y-r- + z -3- }

+ 2n2&amp;lt;m(x-f- -y -,-

\ dqs
y
dqs dqsJ \ dqs

y
dqs

= mtf + f + + + -...
dqs \ dqs dqs dqj

There is a similar equation for each of the generalized coordinates

qs -

Now, exactly as in Hamilton s proof* of Lagrange s equations,

the first term in (2) may be replaced by

dt dqs dqs

where ^ = iSm(^ + ^
2 + ^2

) .................. (3),

i.e. denotes the energy of the relative motion, supposed expressed

in terms of the generalized coordinates qS) and the generalized

velocities qs . Again, we may write

+ Y + z _ ......... (4)
dqs dqs dqsj dqs

where Fis the potential energy, and Qs is the generalized com-

* See ante p. 201 (footnote).

212
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ponent of extraneous force corresponding to the coordinate qt .

Also, since

dx . dx .

X = -j (ft + j (72 + . .,

efyi dq^
dy . dy .

*-S*+i*^-
we have

^ /. dy . dx\ ^ (d(x,y) . d(x,y) .
}Sm (x -/- -y-r- = 2mJ j/ \gi + j/ xga + -r-

V % &amp;lt;y %/ (&amp;lt;* (&&amp;gt;?) d(q2,qs)* j

We will write, for shortness,

Finally, we put
rf in*Sm(Mvy*) ..................... (6),

viz. T denotes the energy of the system when rotating with the

solid, without relative motion, in the configuration (q1} q.2) ...).

With these notations, the typical equation (2) takes the form

and it is to be particularly noticed that the coefficients [r, s~\
are

subject to the relations

[r,s]
=

-|&amp;gt;,r], [s,s]
= .................. (8).

The conditions for relative equilibrium, in the absence of ex

traneous forces, are found by putting ^ = 0, g2
=

0, ... in (7), or more

simply from (2). In either way we obtain

which shews that the equilibrium value of the expression V- T is

stationary.

196. We will now suppose the coordinates qs to be chosen

so as to vanish in the undisturbed state. In the case of a small

disturbance, we may then write

. + 2al2q,q2 + ...... (1),

.+ 2c1,ql q2 + ...... (2),

*
Of. Thomson and Tait, Natural Philosophy (2nd ed.), Part i. p. 319. It

should be remarked that these equations are a particular case of Art. 139 (14),

obtained, with the help of the relations (7) of Art. 141, by supposing the rotating

solid to be free, but to have an infinite moment of inertia.
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where the coefficients may be treated as constants. The terms of

the first degree in V TQ have been omitted, on account of the

stationary property.

In order to simplify the equations as much as possible, we will

further suppose that, by a linear transformation, each of these

expressions is reduced, as in Art. 165, to a sum of squares; viz.

22T = a1 1

2 + a2g2
2 + (3),

2(F-ro)= ciqi*+c2q*+ (4).

The quantities qlt q2) ... may be called the principal coordinates

of the system, but we must be on our guard against assuming that

the same simplicity of properties attaches to them as in the case

of no rotation. The coefficients a1? a2j ... and clf c2 ,... may be

called the principal coefficients of inertia and of stability, respec

tively. The latter coefficients are the same as if we were to

ignore the rotation, and to introduce fictitious centrifugal forces

(mn
z
x, mnz

y, 0) acting on each particle in the direction outwards

from the axis.

If we further write, for convenience, /3rs in place of [r, s], then,

in terms of the new coordinates, the equation (7) of the preceding
Art. gives, in the case of infinitely small motions,

If we multiply these equations by qlt q2 ,
... in order, and add,

then taking account of the relation

Prs = Psr (6),

wefmd jt
(^+V-T,) = qi ql + Q4, + (7).

This might have been obtained without approximation from the

exact equations (7) of Art. 195. It may also be deduced directly
from first principles.

197. To investigate the free motions of the system, we put
Qi = &amp;gt; Q2

= 0, ... in (5), and assume, in accordance with the usual

method of treating linear equations,

ft
= 41^, q*

= AteV,..., (8).
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Substituting, we find

Eliminating the ratios A l : A 2 : J 3 : ..., we get the equation

A, &A,
, &.X, ...

/332X,

=
(10),

or, as we shall occasionally write it, for shortness,

A(X) = (11).

The determinant A (X) comes under the class called by Cayley
skew-determinants, in virtue of the relation (6). If we re

verse the sign of X, the rows and columns are simply interchanged,
and the value of the determinant therefore unaltered. Hence,
when expanded, the equation (10) will involve only even powers of

X, and the roots will be in pairs of the form

* = (p + ia).

In order that the configuration of relative equilibrium should

be stable it is essential that the values of p should all be zero,

for otherwise terms of the forms e pt cos at and e pt sinat would

present themselves in the realized expression for any coordinate

qs . This would indicate the possibility of an oscillation of

continually increasing amplitude.

In the theory of absolute equilibrium, sketched in Art. 165,

the necessary and sufficient condition of stability is simply that

the potential energy must be a minimum in the configuration of

equilibrium. In the present case the conditions are more com

plicated*, but we may readily shew that if the expression for

V TO be essentially positive, in other words if the coefficients

GI, C2 ,
... in (4) be all positive, the equilibrium will be stable.

This follows at once from the equation (7), which gives, in the

case of free motion,

+ (F- ro)
= const (12),

*
They have been investigated by Kouth, On the Stability of a Given State of

Motion
;
see also his Advanced Rigid Dynamics (4th ed,), London, 1884.
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shewing that under the present supposition neither ?& nor V T
can increase beyond a certain limit depending on the initial

circumstances.

Hence stability is assured if V T is a minimum in the

configuration of relative equilibrium. But this condition is not

essential, and there may even be stability with V TQ a maximum,
as will be shewn presently in the particular case of two degrees of

freedom. It is to be remarked, however, that if the system be

subject to dissipative forces, however slight, affecting the relative

coordinates qlt q%, ..., the equilibrium will be permanently or

secularly stable only if V T is a minimum. It is the

characteristic of such forces that the work done by them on

the system is always negative. Hence, by (7), the expression

f& + (V T ) will, so long as there is any relative motion of the

system, continually diminish, in the algebraical sense. Hence if

the system be started from relative rest in a configuration such that

V TO is negative, the above expression, and therefore a fortiori

the part V T
,

will assume continually increasing negative

values, which can only take place by the system deviating more

and more from its equilibrium-configuration.

This important distinction between ordinary or kinetic, and

secular or practical stability was first pointed out by Thomson

and Tait*. It is to be observed that the above investigation pre

supposes a constant angular velocity (n) maintained, if necessary, by
a proper application of force to the rotating solid. When the solid

is free, the condition of secular stability takes a somewhat different

form, to be referred to later (Chap. XII.).

To examine the character of a free oscillation, in the case

of stability, we remark that if \ be any root of (10), the equations

(9) give

where An , A,-,, Ar3 ,
... are the minors of any row in the determi

nant A, and G is arbitrary. It is to be noticed that these minors

will as a rule involve odd as well as even powers of X, and so

* Natural Philosophy (2nd ed.), Part i. p. 391. See also Poincare,
&quot; Sur

1 equilibre d une masse fluide animee d un mouvement de rotation,&quot; Acta Mathe*

matica, t. vii. (1885),
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assume unequal values for the two oppositely signed roots ( X,) of

any pair. If we put X = + ia, the general symbolical value of qs

corresponding to any such pair of roots may be written

qs
= C&r, (itr) e*

If we put

we get a solution of our equations in real form, involving two

arbitrary constants K, e
;
thus

ql
= FI (a

2

) .K cos (fft + e)- afj_ (a
2

) .K sin (fft + e),

qz
= F2 (o-

2

) . K cos (trt + e)
-

af, (cr
2

) . K sin (at + e),

q3
= F3 (o-

2

) . K cos
(&amp;lt;rf

+ e)
-

0/3 (o-
2

) . # sin (at + e),

&quot; (

The formulae (14) express what may be called a natural

mode of oscillation of the system. The number of such possible

modes is of course equal to the number of pairs of roots of (10),

i.e. to the number of degrees of freedom of the system.

If
, 77, f denote the component displacements of any particle

from its equilibrium position, we have

c. _dx dx

dql

^
dqz

^2

dq^
1 /7/.* a -

(15 &amp;gt;-

= i &amp;lt;7i
+

dqi

Substituting from (15), we obtain a result of the form

= P . K cos (at + e) + P K sin (at + e), 1

tl=Q.Kcoa(fft + e)+Q .KBm(fft + e), \ (16),

where P, P , Q, Q , R, Rf

are determinate functions of the mean

position of the particle, involving also the value of a, and there

fore different for the different normal modes, but independent of

the arbitrary constants K, e. These formulae represent an elliptic-

* We might have obtained the same result by assuming, in (5),

a A fi(fft+ e) n - A *(&amp;lt;*
+ *) - A /* (&amp;lt;r*+e)

2l A
l
6 #2 A

2 e &amp;gt; &amp;lt;l3

A 3 e J
......

where A 1 , A%, A 3 , ... are real, and rejecting, in the end, the imaginary parts.
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harmonic motion of period 2-Tr/cr ;
the directions

tlP=&amp;lt;n/Q
= yR, and SIP =&amp;lt;nlQf=SIR (if),

being those of two semi-conjugate diameters of the elliptic orbit,

of lengths (P
2 + Q2 + Ri2

. K, and (P
/2 + Q 2 + R rf . K

t respectively.

The positions and forms and relative dimensions of the elliptic

orbits, as well as the relative phases of the particles in them,

are in each natural mode determinate, the absolute dimensions

and epochs being alone arbitrary.

198. The symbolical expressions for the forced oscillations

due to a periodic disturbing force can easily be written down. If

we assume that Q1; Q2 &amp;gt;

all varj as
&&quot;*,

where a- is prescribed,

the equations (5) give, omitting the time-factors,

.(18).

The most important point of contrast with the theory of the

normal modes in the case of no rotation is that the displacement
of any one type is no longer affected solely by the disturbing force

of that type. As a consequence, the motions of the individual

particles are, as is easily seen from (15), now in general elliptic-

harmonic.

As in Art. 165, the displacement becomes very great when
A (ia) is very small, i. e. whenever the speed a- of the disturbing

force approximates to that of one of the natural modes of free

oscillation.

When the period of the disturbing forces is infinitely long, the

displacements tend to the equilibrium-values

as is found by putting cr = in (18), or more simply from the

fundamental equations (5). This conclusion must be modified,

however, when any one or more of the coefficients of stability

Cj, c2 ,
... is zero. If, for example, ^ = 0, the first row and

column of the determinant A (X) are both divisible by X, so
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that the determinantal equation (10) has a pair of zero roots.

In other words we have a possible free motion of infinitely

long period. The coefficients of Q2) Qs ,
&amp;gt; on the right-hand side

of (18) then become indeterminate for cr = 0, and the evaluated

results do not as a rule coincide with (19). This point is of some

importance, because in the hydrodynamical applications, as we

shall see, steady circulatory motions of the fluid, with a constant

deformation of the free surface, are possible when no extraneous

forces act; and as a consequence forced tidal oscillations of long

period do not necessarily approximate to the values given by the

equilibrium theory of the tides. Cf. Arts. 207, 210.

In order to elucidate the foregoing statements we may consider more in

detail the case of two degrees of freedom. The equations of motion are then

of the forms

The equation determining the periods of the free oscillations is

or
1
a2X

4 + (o^Cg+ 2
c
i+ ft

2
) X

2

For ordinary stability it is sufficient that the roots of this quadratic in X2

should be real and negative. Since 15 2 are essentially positive, it is easily

seen that this condition is in any case fulfilled if c
x ,

c
2 are both positive, and

that it will also be satisfied even when c
15

c
2
are both negative, provided /3

2 be

sufficiently great. It will be shewn later, however, that in the latter case the

equilibrium is rendered unstable by the introduction of dissipative forces.

To find the forced oscillations when Qlt Q2 vary as e i&amp;lt;Tt

,
we have, omitting

the time-factor,

whence

(Ct-o^Q
fa -*%*,) fa

-
(v)

Let us now suppose that c
2=0, or, in other words, that the displacement

q2
does not affect the value of V TQ . We will also suppose that Q2

=
Q&amp;gt;

* #.

that the extraneous forces do no work during a displacement of the type q2 .

The above formulae then give
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In the case of a disturbance of long period we have or = 0, approximately, and

therefore

The displacement ql
is therefore less than its equilibrium-value, in the

ratio 1 : l+p2
/^^; and it is accompanied by a motion of the type q2

although there is no extraneous force of the latter type (cf. Art. 210).

We pass, of course, to the case of absolute equilibrium, considered in

Art. 165, by putting /3
= 0.

199. Proceeding to the hydrodynamical examples, we begin
with the case of a plane horizontal sheet of water having in the

undisturbed state a motion of uniform rotation about a vertical

axis*. The results will apply without serious qualification to

the case of a polar or other basin, of not too great dimensions, on

a rotating globe.

Let the axis of rotation be taken as axis of z. The axes of x

and y being now supposed to rotate in their own plane with the

prescribed angular velocity n, let us denote by u, v, w the

velocities at time t, relative to these axes, of the particle which

then occupies the position (x, y, z).

The actual velocities of the same particle, parallel to the in

stantaneous positions of the axes, will be u ny, v + nx, w.

After a time $t, the particle in question will occupy, relatively

to the axes, the position (x + u$t, y + v$t, z + wSt), and therefore

the values of its actual component velocities parallel to the new

positions of the axes will be

~m & + n (x

*
Sir W. Thomson, &quot;On Gravitational Oscillations of Rotating Water,&quot; Phil*

., Aug. 1880.
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where
D d

,

d
t

d
(

d
tfC^TT-l-* j-+tfj-+ 10 3~ ............... (1),
Ite dt dx dy dz

as usual. These are in directions making with the original axis

of x angles whose cosines are 1, nSt, 0, respectively, so that the

velocity parallel to this axis at time t + St is

u + -yji
$t n (y + vSt) (v + nx) nSt.

Hence, and by similar reasoning, we obtain, for the component
accelerations in space, the expressions

- 2m, - n x,
Dt

+ 2nU -tfy, ......... (2)*.

In the present application, the relative motion is assumed

to be infinitely small, so that we may replace DjDt by d/dt.

200. Now let ZQ be the ordinate of the free surface when

there is relative equilibrium under gravity alone, so that

^ = i-( 3 + y
a

)+ const................... (3),

as in Art. 27. For simplicity we will suppose that the slope of

this surface is everywhere very small, in other words, if r be the

greatest distance of any part of the sheet from the axis of rotation,

n2

r/g is assumed to be small.

If ZQ + f denote the ordinate of the free surface when disturbed,

then on the usual assumption that the vertical acceleration of the

water is small compared with g, the pressure at any point (x, y, z)

will be given by
+-z) ..................... (4),

, I dp d I dp d
whence -f-

= n*x g -j- , j = ~ n y 9 j~
p dx

y dx p dy
9
dy

The equations of horizontal motion are therefore

du
9

d dl
dt y dx dx

dv d dQ
dt dy dy

where H denotes the potential of the disturbing forces.

* These are obviously equivalent to the expressions for the component accelera

tions which appear on the left-hand sides of Art. 195 (1).



199-200] ROTATING SHEET OF WATER. 333

If we write ? = -*% .............................. (6 )&amp;gt;

these become

The equation of continuity has the same form as in Art. 189

viz.

4(fe) 4(ftv)

cft~ cte
&amp;lt;fy

where ^ denotes the depth, from the free surface to the bottom, in

the undisturbed condition. This depth will not, of course, be

uniform unless the bottom follows the curvature of the free

surface as given by (3).

If we eliminate from the equations (7), by cross-differentiation,

we find

d

or, writing u d^dt^ v= drj/dt,

and integrating with respect to t,

dv du fd d\- + 2n l-f+ )=const (ii).dx dy \dx dy)
^

This is merely the expression of von Helmholtz theorem that the product of

the angular velocity
. (dv du\

rc+ i -y-- ^-1z
\dx dy)

and the cross-section

of a vortex-filament, is constant.

In the case of a simple-harmonic disturbance, the time-factor

being e*, the equations (7) and (8) become

-,

and fV?=--- ...... (10).dx dy
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From (9) we find

d
+ Zw^-J(C-?) |

(11),

(T m

and if we substitute from these in (10), we obtain an equation in

f only.

In the case of uniform depth the result takes the form

V i
2 +^^2

f= V i

2
? (12),

where Vj
2 =

d?lda? + d~/dy
2
,
as before.

When =0, the equations (7) and (8) can be satisfied by constant values of

u, v, provided certain conditions are satisfied. We must have

and therefore 7= ................................. (
iv

)-

d(x,y}

The latter condition shews that the contour-lines of the free surface must be

everywhere parallel to the contour-lines of the bottom, but that the value of

is otherwise arbitrary. The flow of the fluid is everywhere parallel to the

contour-lines, and it is therefore further necessary for the possibility of such

steady motions that the depth should be uniform along the boundary (sup

posed to be a vertical wall). When the depth is everywhere the same, the

condition (iv) is satisfied identically, and the only limitation on the value of

is that it should be constant along the boundary.

201. A simple application of these equations is to the case of

free waves in an infinitely long uniform straight canal *.

If we assume f=ae&amp;lt;k ^
ct-^ +my

t
v = .....................(1),

the axis of x being parallel to the length of the canal, the equa
tions (7) of the preceding Art., with the terms in f omitted, give

cu = g%, 2nu = gm%..................... (2),

whilst, from the equation of continuity (Art. 200 (8)),

c=hu .............................. (3).

*
Sir W. Thomson, I.e. ante p. 331,
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We thence derive

c
2 = ght

m 2n/c ..................... (4).

The former of these results shews that the wave-velocity is

unaffected by the rotation.

When expressed in real form, the value of f is

%=ae-y!c

cos{k(ct-x)+e} ............... (5).

The exponential factor indicates that the wave-height increases as

we pass from one side of the canal to the other, being least on the

side which is forward, in respect of the rotation. If we take

account of the directions of motion of a water-particle, at a crest

and at a trough, respectively, this result is easily seen to be in

accordance with the tendency pointed out in Art. 194*.

The problem of determining the free oscillations in a rotating

canal of finite length, or in a rotating rectangular sheet of water,

has not yet been solved.

202. We take next the case of a circular sheet of water

rotating about its centre f.

If we introduce polar coordinates r, 6, and employ the symbols

R, to denote displacements along and perpendicular to the

radius vector, then since R = iaR, = iV, the equations (9) of

Art. 200 are equivalent to

whilst the equation of continuity (10) becomes

d(hRr) d(hQ) .

rdr rd6

TT r&amp;gt;Hence R 9

and substituting in (2) we get the differential equation in f.

* For applications to tidal phenomena see Sir W. Thomson, Nature, t. xix.

pp. 154, 571 (1879).

t The investigation which follows is a development of some indications given

by Lord Kelvin in the paper referred to.
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In the case of uniform depth, we find

d? 1 d 1 d?
where Vf =^2

+ - ^ + -^ .................. (5),

and K =
(&amp;lt;7

2 -
4m*)/gh ....................... (6).

This might have been written down at once from Art. 200 (12).

The condition to be satisfied at the boundary (r
= a, say)

is R = 0, or

203. In the case of thefree oscillations we have f= 0. The way
in which the imaginary i enters into the above equations, taken

in conjunction with Fourier s theorem, suggests that 6 occurs

in the form of a factor e
is&

,
where s is integral. On this supposi

tion, the differential equation (4) becomes

dr2 r dr

and the boundary-condition (7) gives

for r = a.

The equation (8) is of Bessel s form, except that K is not, in

the present problem, necessarily positive. The solution which is

finite for r = may be written

r= 4/8 (,r) ........................... (10),
where

1 &quot;

According as K is positive or negative, this differs only by a

numerical factor from Js (fc^r) or Is (/c *r), where K is written

for K, and Is (z) denotes the function obtained by making all

the signs + on the right-hand side of Art. 187 (4)*.

* The functions I,(z) have been tabulated by Prof. A. Lodge, Brit. Ass. Eep.

1889.
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In the case of symmetry about the axis (s
=

0), we have, in

real form,

/c*r).cos(o- + e) .................. (12),

where K is determined by

JoV)=0 ........................... (13).

The corresponding values of a are then given by (6). The

free surface has, in the various modes, the same forms as in

Art. 187, but the frequencies are now greater, viz. we have

o-
2 =

&amp;lt;r

2 + 4^2
........................ (14),

where &amp;lt;r is the corresponding value of cr when there is no

rotation. It is easily seen, however, on reference to (3), that the

relative motions of the fluid particles are no longer purely radial
;

the particles describe, in fact, ellipses whose major axes are in the

direction of the radius vector.

When s &amp;gt; we have

?=4/i(,r).cos((r$ + a0+) ............... (15),

where the admissible values of K, and thence of
&amp;lt;r,

are determined

by (9), which gives

a5/.(*,)
+
^/.(*,a)

= ............(16).

The formula (15) represents a wave rotating relatively to the

water with an angular velocity a/s, the rotation of the wave being
in the same direction with that of the water, or the opposite,

according as a/n is negative or positive.

Some indications as to the values of &amp;lt;r may be gathered from a graphical

construction. If we put Ka2
=#, we have, from (6),

r/2= (1 +*/)* .............................. (i),

where /3
= 4n*a?lgh .................................... (ii).

It is easily seen that the quotient of

/(* ) b7 a^/(K a)

is a function of /ca
2

,
or #, only. Denoting this function by &amp;lt;

(a?), the equation

(16) may be written

f(*)(V+*/^-0 .............................. (iii).

The curve y= -&amp;lt;(#) .................................... (*v)

L. 22
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can be readily traced by means of the tables of the functions Js (0), Ia (z\ and
its intersections with the parabola

3/
2
=l+*//3 (v),

will give, by their ordinates, the values of
&amp;lt;r/2i.

The constant /3, on which

the positions of the roots depend, is equal to the square of the ratio

2na/(ffh)t which the period of a wave travelling round a circular canal of

depth h and perimeter 2na bears to the half-period (irjri) of the rotation of

the water.

The accompanying figures indicate the relative magnitudes of the lower

roots, in the cases s= I and s= 2, when /3 has the values 2, 6, 40, respectively*.

y

With the help of these figures we can trace, in a general way, the changes
in the character of the free modes as /3 increases from zero. The results may
be interpreted as due either to a continuous increase of n, or to a continuous

diminution of h. We will use the terms positive and negative to distin

guish waves which travel, relatively to the water, in the same direction as the

rotation and the opposite.

When |3 is infinitely small, the values of x are given by //(#*) = 0; these

correspond to the vertical asymptotes of the curve (iv). The values of a-

then occur in pairs of equal and oppositely-signed quantities, indicating that

there is now no difference between the velocity of positive and negative waves.

The case is, in fact, that of Art. 187 (13).

* For clearness the scale of y has been taken to be 10 times that of x,
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As /3 increases, the two values of a- forming a pair become unequal in

magnitude, and the corresponding values of x separate, that being the greater

for which o-/2?i is positive. When /3=s (a+ 1) the curve (iv) and the parabola

(v) touch at the point (0,
-

1), the corresponding value of o- being -2n. As

ft increases beyond this critical value, one value of x becomes negative, and

the corresponding (negative) value of cr/2n becomes smaller and smaller.

Hence, as ft increases from zero, the relative angular velocity becomes

greater for a negative than for a positive wave of (approximately) the same

type ;
moreover the value of o- for a negative wave is always greater than 2n.

(3-6

= 40

9-3 26-4 45-0 70-9

As the rotation increases, the two kinds of wave become more and more
distinct in character as well as in *

speed. With a sufficiently great value of

ft we may have one, but never more than one, positive wave for which
&amp;lt;r is numerically less than 2w. Finally, when ft is very great, the value of &amp;lt;r

corresponding to this wave becomes very small compared with n, whilst the

remaining values tend all to become more and more nearly equal to

If we use a zero suffix to distinguish the case of ^=0, we find

222
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where # refers to the proper asymptote of the curve (iv). This gives the

speed of any free mode in terms of that of the corresponding mode when

there is no rotation.

204. As a sufficient example of forced oscillations we may
assume

(17),

where the value of a- is now prescribed.

This makes V 2
f = 0, and the equation (4) then gives

f=4/-,(*,r)e &amp;lt;*+&quot;+&amp;gt; .................. (18),

where A is to be determined by the boundary-condition (7),

whence

.c ......... (19).d ,, , . 2sn

This becomes very great when the frequency of the disturbance

is nearly coincident with that of a free mode of corresponding

type.

From the point of view of tidal theory the most interesting cases are

those of s= l with o-=n, and s= 2 with o- = 2rc, respectively. These would

represent the diurnal and semidiurnal tides due to a distant disturbing body
whose proper motion may be neglected in comparison with the rotation n.

In the case of s= l we have a uniform horizontal disturbing force.

Putting, in addition, &amp;lt;r

=
n, we find without difficulty that the amplitude of

the tide-elevation at the edge (r
= a) of the basin has to its equilibrium-value

the ratio

where =
JV(3j8). With the help of Lodge s tables we find that this ratio has

the values

1-000, -638, -396,

for/3= 0, 12, 48, respectively.

When o-= 2?i, we have K= 0, /,(*, r)
= r8

,
and thence, by (17), (18), (19),

i.e. the tidal elevation has exactly the equilibrium -value.

This remarkable result can be obtained in a more general manner; it

holds whenever the disturbing force is of the type

provided the depth h be a function of r only. If we revert to the equations
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(1), we notice that when (r ^n they are satisfied by =, Q=iR To deter

mine R as a function of r, we substitute in the equation of continuity (2),

which gives
d(hR) 8-1 ID / x r \

_^-_Afl*-x (r) ........................... (iv).

The arbitrary constant which appears on integration of this equation is to be

determined by the boundary-condition.

In the present case we have x (r)
= Crs

/a*. Integrating, and making R Q

for r= a, we find,

The relation e = iR shews that the amplitudes of R and are equal, while

their phases differ always by 90
;
the relative orbits of the fluid particles are

in fact circles of radii

described each about its centre with angular velocity 2n in the negative

direction. We may easily deduce that the path of any particle in space is an

ellipse of semi-axes r + T described about the origin with harmonic motion in

the positive direction, the period being 2rr/n. This accounts for the peculiar

features of the case. For if ( have always the equilibrium-value, the hori

zontal forces due to the elevation exactly balance the disturbing force, and

there remain only the forces due to the undisturbed form of the free surface

(Art. 200 (3)). These give an acceleration gdz^dr, or n2
r, to the centre,

where r is the radius-vector of the particle in its actual position. Hence all

the conditions of the problem are satisfied by elliptic-harmonic motion of

the individual particles, provided the positions, the dimensions, and the

epochs of the orbits can be adjusted so as to satisfy the condition of con

tinuity, with the assumed value of The investigation just given resolves

this point.

205. We may also briefly notice the case of a circular basin

of variable depth, the law of depth being the same as in Art. 189,

viz.

Assuming that R, 0, all vary as e
(&amp;lt;rt+se+^

^
an(j that h is a function of

r only, we find, from Art. 202 (2), (3),

Introducing the value of h from(l), we have, for the free oscillations
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This is identical with Art. 189 (ii), except that we now have

3.2 _ 4^2 4ns

in place of o-
2
/^A - The solution can therefore be written down from the

results of that Art., viz. if we put

ghQ a-

we have =A S K\ F (a, /3, y,

and the condition of convergence at the boundary r= a requires that

k=s+ 2j (v),

where j is some positive integer. The values of a- are then given by (iii).

The forms of the free surface are therefore the same as in the case of no

rotation, but the motion of the water-particles is different. The relative orbits

are in fact now ellipses having their principal axes along and perpendicular to

the radius vector this follows easily from Art. 202 (3).

In the symmetrical modes (5
=

0), the equation (iii) gives

where o- denotes the speed of the corresponding mode in the case of

no rotation, as found in Art. 189.

For any value of s other than zero, the most important modes are those for

which = s+ 2. The equation (iii) is then divisible by &amp;lt;r+ 2?i, but this is an

extraneous factor
; discarding it, we have the quadratic

(vii),

whence o-=n(n2+ 2,sgk ()la
2
}^ ........................ (viii).

This gives two waves rotating round the origin, the relative wave-velocity

being greater for the negative than for the positive wave, as in the case

of uniform depth (Art. 203). With the help of (vii) the formula reduce to

(

r\8 f,

5) *-*j

the factor e
t

being of course understood in each case. Since G = iR,

the relative orbits are all circles. The case ,s= l is noteworthy; the free

surface is then always plane, and the circular orbits have all the same

radius.

When k &amp;gt; s-f 2, we have nodal circles. The equation (iii) is then a cubic

in a-/2n ;
it is easily seen that its roots are all real, lying between co and
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-1, 1 and 0, and + 1 and -{-co, respectively. As a numerical example, in

the case of s=l, k= 5, corresponding to the values

2, 6, 40

of 4:n2az
/ghQ ,

we find

(
+ 2-889 +1-874 +1-180,

o-/2n
=

&amp;lt;- 0-125 -0-100 -0 037,

(-2-764 -1-774 -M43.

The first and last root of each triad give positive and negative waves of a

somewhat similar character to those already obtained in the case of uniform

depth. The smaller negative root gives a comparatively slow oscillation which,

when the angular velocity n is infinitely small, becomes a steady rotational

motion, without elevation or depression of the surface.

The most important type offorced oscillations is such that

(x).

We readily verify, on substitution in
(ii),

that

0~A 7~&quot;2 0_N ^,2 \
XV

We notice that when &amp;lt;r

= Zn the tide-height has exactly the equilibrium-

value, in agreement with Art. 204.

If o-j, o-2 denote the two roots of (vii), the last formula may be written

Tides on a Rotating Globe.

206. We proceed to give some account of Laplace s problem
of the tidal oscillations of an ocean of (comparatively) small depth

covering a rotating globe*. In order to bring out more clearly the

nature of the approximations which are made on various grounds,
we shall adopt a method of establishing the fundamental equations
somewhat different from that usually followed.

When in relative equilibrium, the free surface is of course a

level-surface with respect to gravity and centrifugal force
;
we

shall assume it to be a surface of revolution about the polar axis,

but the ellipticity will not in the first instance be taken to be

small.

* &quot; Kecherches sur quelques points du systeme du monde,&quot; Mem. de VAcad. roy.

des Sciences, 1775 [1778] and 1776 [1779]; Oeuvres Completes, t. ix. pp. 88, 187.

The investigation is reproduced, with various modifications, in the Mecanique

Celeste, Livre 4me
,
c. i. (1799).
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We adopt this equilibrium-form of the free surface as a surface

of reference, and denote by 6 and o&amp;gt; the co-latitude (i.e. the angle
which the normal makes with the polar axis) and the longitude,

respectively, of any point upon it. We shall further denote by
z the altitude, measured outwards along a normal, of any point
above this surface.

The relative position of any particle of the fluid being specified

by the three orthogonal coordinates 0, o&amp;gt;, z, the kinetic energy of

unit mass is given by

where R is the radius of curvature of the meridian-section of the

surface of reference, and tzr is the distance of the particle from

the polar axis. It is to be noticed that .R is a function of 6 only,

whilst -or is a function of both 6 and z
;
and it easily follows from

geometrical considerations that

d^l(R -f z) dO = cos 0, dvr/dz = sin 6 (2).

The component accelerations are obtained at once from (1) by

Lagrange s formula. Omitting terms of the second order, on

account of the restriction to infinitely small motions, we have

1 / d dT dT\ v * 1

...(3).
I (ddT dT\

(
d

f&amp;gt;

-y -TT 3 = OTft) + 2ll -ja V +
GT \ctt da) d(oj \du

ddT dT .. , 2 LO .,
dsr

-J--J. -j-
= z (nt + 2n) & y-

dt dz dz ^ J dz

Hence, if we write u, v, w for the component relative velocities of a

particle, viz.

u=(R + z}Q )
v = &a)

)
w = z ............ (4),

and make use of (2), the hydrodynamical equations may be put in

the forms

at

C

^-+2nucos0 + 2nwsm0= - -
dt vr dco \p

dt dz \p
........................... (5),
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where M* is the gravitation-potential due to the earth s attraction,

whilst n denotes the potential of the extraneous forces.

So far the only approximation consists in the omission of terms

of the second order in u, v, w. In the present application, the

depth of the sea being small compared with the dimensions of the

globe, we may replace R + z by R. We will further assume that

the effect of the relative vertical acceleration on the pressure may
be neglected, and that the vertical velocity is small compared with

the horizontal velocity. The last of the equations (5) then re

duces to

Let us integrate this between the limits z and f, where f

denotes the elevation of the disturbed surface above the surface

of reference. At the surface of reference (z = 0) we have

-ra2 OT2 = const.,

by hypothesis, and therefore at the free surface (z = f)

- -n2OT 2 = const.

provided g= (^ - Jw
2O .................. (7).

Here g denotes the value of apparent gravity at the surface of

reference; it is of course, in general, a function of 6. The

integration in question then gives

= const. +0?+Xl ............ (8),

the variation of H with z being neglected. Substituting from (8)
in the first two of equations (5), we obtain, with the approxima
tions above indicated,

where ?=-fl/$r ........................... (10).

These equations are independent of
z&amp;gt;

so that the horizontal

motion may be assumed to be sensibly the same for all particles
in the same vertical line.
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As in Art. 190, this last result greatly simplifies the equation

of continuity. In the present case we find without difficulty

_ d(hv)\

dt~ w tide d&amp;lt; }

......

207. It is important to notice that these equations involve no

assumptions beyond those expressly laid down
;

in particular,

there is no restriction as to the ellipticity of the meridian, which

may be of any degree of oblateness.

In order, however, to simplify the question as far as possible,

without sacrificing any of its essential features, we will now take

advantage of the circumstance that in the actual case of the earth

the ellipticity is a small quantity, being in fact comparable with

the ratio (n*a/g) of centrifugal force to gravity at the equator, which

is known to be about -^. Subject to an error of this order of

magnitude, we may put R =
a, is = a sin 6, g = const., where a is

the earth s mean radius. We thus obtain*

du _ , d , -T,.

with ,_ + ......... (2),
dt a sin

{
du da) )

this last equation being identical with Art. 190 (1).

Two conclusions of some interest in connection with our previous work

follow at once from the form of the equations (1). In the first place, if u, V
denote the velocities along and perpendicular to any horizontal direction s, we

easily find, by transformation of coordinates

-2v cos 6=--Q ....................... (i).

In the case of a narrow canal, the transverse velocity v is zero, and the

equation (i) takes the same form as in the case of no rotation
;

this has

been assumed by anticipation in Art. 180. The only effect of the rotation

in such cases is to produce a slight slope of the wave-crests and furrows

in the direction across the canal, as investigated in Art. 201.

Again, by comparison of (1) with Art. 200 (7), we see that the oscillations

of a sheet of water of relatively small dimensions, in colatitude 6, will take

place according to the same laws as those of a plane sheet rotating about

a normal to its plane with angular velocity n cos 6.

*
Laplace, I.e. ante p. 343.
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As in Art. 200, free steady motions are possible, subject to certain con

ditions. Putting f=0, we find that the equations (1) and (2) are satisfied by
constant values of u, v, , provided

q df a d
a, __ __&amp;lt;j__ _i M y_ _ . (11)

Zna sin 6 cos & da 2rai cos 6 d&
&quot;

d (h sec 0, t]and
rf( tfl .)

- ..............................
&amp;lt;

U1
&amp;gt;-

The latter condition is satisfied by any assumption of the form

(iv),

and the equations (ii) then give the values of w, v. It appears from (ii) that

the velocity in these steady motions is everywhere parallel to the contour-lines

of the disturbed surface.

If h is constant, or a function of the latitude only, the only condition

imposed on is that it should be independent of &amp;lt;o

;
in other words the eleva

tion must be symmetrical about the polar axis.

208. We will now suppose that the depth h is a function of 6

only, and that the barriers to the sea, if any, coincide with parallels

of latitude. Assuming, further, that H, u, v, fall vary as

where 6 is integral, we find

iav + 2nu cos = -&quot;

(f- f)

.., . u 1 (c (Aw sin $)
with irf= A\~ ~TQ

~

Solving for u, v, we get

d

V =
7,

^^
3

If we put, for shortness,

these may be written

v =
4m(/ 2 -cos2

6&amp;gt;)V

/cos 0d?- -T + cosec 6



348 TIDAL WAVES. [CHAP. VIII

The formulae for the component displacements (f, rj, say), can

be written down from the relations u = f, v = r), or u = zcrf ,
-y = i(rrj.

It appears that in all cases of periodic disturbing forces the fluid

particles describe ellipses having their principal axes along the

meridians and the parallels of latitude, respectively.

Substituting from (7) in (4) we obtain the differential equation

inf:

1 d
f

Asinfl /d
2 _ CQS2 Q VA +

30-+*?
cosec* e

.................. (8).

In the case of the free oscillations we have f= 0. The manner

in which the boundary -conditions (if any), or the conditions of

finiteness, then determine the admissible values off, and thence of

cr, will be understood by analogy, in a general way, from Arts. 191,

193. For further details we must refer to the paper cited below*.

A practical solution of the problem, even in the case (s
= 0) of

symmetry about the axis, with uniform depth, has not yet been

worked out.

The more important problem of the forced oscillations, though

difficult, can be solved for certain laws of depth, and for certain

special values of a which correspond more or less closely to the

main types of tidal disturbance. To this we now proceed.

209. It is shewn in the Appendix to this Chapter that the

tide-generating potential, when expanded in simple-harmonic
functions of the time, consists of terms of three distinct types.

The first type is such that the equilibrium tide-height would

be given by

The corresponding forced waves are called by Laplace the Oscilla

tions of the First Species ; they include the lunar fortnightly

* Sir W. Thomson, &quot; On the General Integration of Laplace s Differential

Equation of the Tides,&quot; Phil. Mag., Nov. 1875.

t In strictness, 6 here denotes the geocentric latitude, but the difference between

this and the geographical latitude may be neglected in virtue of the assumptions in

troduced in Art. 207.
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and the solar semi-annual tides, and, generally, all the tides of

long period. Their characteristic is symmetry about the polar axis.

Putting s = in the formulae of the preceding Art. we have

ia- d?

4m(/2 -cos2

0)d&amp;lt;9

er cos 6 d~

Id (hu sin 0) , .

and ^o-f
=--s^ 7^

-- .................. (3).a sin dd

The equations (2) shew that the axes of the elliptic orbit of

any particle are in the ratio of / : cos 6. Since / is small, the

ellipses are very elongated, the greatest length being from E. to

W., except in the neighbourhood of the equator. At the equator

itself the motion of the particles vanishes.

Eliminating u, v between (2) and (3), or putting ,9 = in Art.

208 (8), we find

1 d

Te
cos

We shall consider only the case of uniform depth (h = const.).

Writing /z for cos 6, the equation then becomes

where f$
= 4ima/h= 4&amp;gt;ri*a*/gh

..................... (6).

The complete primitive of this equation is necessarily of the form

r =&amp;lt;#&amp;gt;(/*) +^+/G&quot;) ..................w,
where

c/&amp;gt; (/z), F(/JL) are even functions, and /(/*) is an odd function,

of
IJL,

and the constants A
t
B are arbitrary. In the case of an

ocean completely covering the globe, it is not obvious at first sight
that there is any limitation to the values of A and B, although on

physical grounds we are assured that the solution of the problem is

uniquely determinate, except for certain special values of the ratio

/(= c7/2n), which imply a coincidence between the speed of the

disturbing force and that of one of the free oscillations of sym
metrical type. The difficulty disappears if we consider first, for a

moment, the case of a zonal sea bounded by two parallels of
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latitude. The constants A, B are then determined by the

conditions that u = at each of these parallels. If the boundaries

in question are symmetrically situated on opposite sides of the

equator, the constant B will be zero, and the odd function f(fi)

may be disregarded ab initio. By supposing the boundaries to

contract to points at the poles we pass to the case of an unlimited

ocean. If we address ourselves in the first instance to this latter

form of the problem, the one arbitrary constant (A) which it is

necessary to introduce is determined by the condition that the

motion must be finite at the poles.

210. The integration of the equation (5) has been treated by
Lord Kelvin* and Prof. G. H. Darwin f.

We assume

1

(8).

This leads to

r = A - i/ JV + {(B, -f*Bs) ^+...

+|(^-/
f%-i)^ + ......... (9),

where A is arbitrary ;
and makes

-B^)^ + ......... (10).

Substituting in (5), and equating coefficients of the several powers
of p, we find

^O .....................(11),

Q ...............(12),
. O

and thenceforward

*
Sir W. Thomson,

&quot; On the Oscillations of the First Species in Laplace s

Theory of the Tides,&quot; Phil. Mag., Oct. 1875.

t &quot; On the Dynamical Theory of the Tides of Long Period,&quot; Proc. Roy. Soc.,

Nov. 5, 1886
; Encyc. Britann., Art, &quot;

Tides,&quot;
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It is to be noticed that (12) may be included under the typical

form (13), provided we write B^ = - 2H .

These equations determine Blt B3 ,
... B2j+l ,

... in succession, in

terms of A, and the solution thus obtained would be appropriate,

as already explained, to the case of a zonal sea bounded by two

parallels in equal N. and S. latitudes. In the case of an ocean

covering the globe, it would, as we shall prove, give infinite

velocities at the poles, except for one definite value of A, to be

determined.

Let us write

B
2j+lIB2j^ = Nj+l (14);

we shall shew, in the first place, that as j increases Nj must tend

either to the limit or to the limit 1. The equation (13) may be

written

&quot;i
~~ 1 ~~

Hence, when j is large, either

approximately, or Nj+l is not small, in which case JV}+2 will be

nearly equal to 1, and the values of Nj+3 , Nj+4) ... will tend more

and more nearly to 1, the approximate formula being

&quot;&quot;
~

Hence, with increasing j, Nj tends to one or other of the forms

(16) and (17).

In the former case (16), the series (8) will be convergent for

/A
=

1, and the solution is valid over the whole globe.

In the other event (17), the product Nlf Nz $}+!&amp;gt;
and

therefore the coefficient BZj+l ,
tends with increasing j to a finite

limit other than zero. The series (8) will then, after some finite

number of terms, become comparable with 1 4-/A
2 + /u,

4 + ..., or

(1 /A
2

)&quot;

1
,
so that we may write

M
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where L and M are functions of p which remain finite when

p=l. Hence, from (2),

which makes u infinite at the poles.

It follows that the conditions of our problem can only be

satisfied if Nj tends to the limit zero
;
and this consideration, as

we shall see, restricts us to a determinate value of the hitherto

arbitrary constant A.

The relation (15) may be put in the form

and by successive applications of this we find

(2j+2)(2y + 3) (2j + 4)(2j

,
.

1
. ,_ _ +&c

2j(2j + lV (2j+2)(2j+3)
+

(2/+4.)(% +B)
..................(21),

on the present supposition that Nj+k tends with increasing k to the

limit 0, in the manner indicated by (16). In particular, this

formula determines the value ofNlf Now

1
= J\riJ8_1

= _2^1# /

,

and the equation (11) then gives

NtH .................. (22);

in other words, this is the only value of A which is consistent with

a zero limit of Nj, and therefore with a finite motion at the poles.

Any other value of A, differing by however little, if adopted as a

starting-point for the successive calculation of B1} B3) ... will

inevitably lead at length to values of Nj which approximate to the

limit 1.

For this reason it is not possible, as a matter of practical

Arithmetic, to calculate B1} B3 , ... in succession in the above
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manner
;
for this would require us to start with exactly the right

value of A, and to observe absolute accuracy in the subsequent

stages of the work. The only practical method is to use the

formulas

BJH = - 2^, B3
=N2B1} B5

= N3B3 ,

or BJH = -2Nlf BJH = -2^2 ,

where the values of Nlt N2y N3 ,
... are to be computed from tlfjtf m

continued fraction (21). It is evident a posteriori that the solutio^f X %
thus obtained will satisfy all the conditions of the problem, anji

r &quot;

that the series (9) will converge with great rapidity. The mo^i U. *

convenient plan of conducting the calculation is to assumes +J

roughly approximate value, suggested by (16), for one of tkfe j
ratios JV} of sufficiently high order, and thence to compute

N}^,N^,... N.z , Nt

in succession by means of the formula (20). The values of the

constants A, Bl} B3 , ..., in (9), are then given by (22) and (23).

For the tidal elevation we find

- N,N, . . . Ni_t (1 -f*N,) yli- ...... (24).

In the case of the lunar fortnightly tide, / is the ratio of a

sidereal day to a lunar month, and is therefore equal to about ^,
or more precisely 0365. This makes f 2 = 00133. It is evident

that a fairly accurate representation of this tide, and a fortiori of

the solar semi-annual tide, and of the remaining tides of long

period, will be obtained by putting/= 0; this materially shortens

the calculations.

The results will involve the value of /3,
=

4n*a*/gr. For

/3 = 40, which corresponds to a depth of 7260 feet, we find in

this way

f/JT^-1515- T0000yu,
2 + l-5153yu,

4 - l 2120/*
8 + 6063/A

8 -
-2076/I-

10

-f -0516/*
12 -

-0097/4
14 + -001V5 -

-0002y*
18 ...... (25) *,

whence, at the poles (/JL
=

1),

* The coefficients in (25) and (26) differ only slightly from the numerical

values obtained by Prof. Darwin for the case/= -0365.

L. 23
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and, at the equator (/*
=

0),

Again, for = 10, or a depth of 29040 feet, we get

S/H = 2359 - l-OOOO/*
2 + -589V -

1623/t
6

+ -0258/t
8 -

-0026/*
10 + -0002/Lt

12
....... (26).

This makes, at the poles,

?=-Jtf x 470,

and, at the equator,

For /3
=

5, or a depth of 58080 feet, we find

?/# - 2723 - rOOOO/i
2 + -340V-

-
-0509/A

6 + 0043/A
8 - -000V ......... (27).

This gives, at the poles,

f=-f# x -651,

and, at the equator,

?= JJI x-817.

Since the polar and equatorial values of the equilibrium tide are

\H and \H , respectively, these results shew that for the depths
in question the long-period tides are, on the whole, direct, though
the nodal circles will, of course, be shifted more or less from the

positions assigned by the equilibrium theory. It appears, more

over, that, for depths comparable with the actual depth of the sea,

the tide has less than half the equilibrium value. It is easily

seen from the form of equation (5), that with increasing depth,
and consequent diminution of /3, the tide height will approximate
more and more closely to the equilibrium value. This tendency is

illustrated by the above numerical results.

It is to be remarked that the kinetic theory of the long-

period tides was passed over by Laplace, under the impression

that practically, owing to the operation of dissipative forces,

they would have the values given by the equilibrium theory.

He proved, indeed, that the tendency of frictional forces must

be in this direction, but it has been pointed out by Darwin*

that in the case of the fortnightly tide, at all events, it is

doubtful whether the effect would be nearly so great as Laplace

supposed. We shall return to this point later.

*
I.e. ante p. 350.
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211. It remains to notice how the free oscillations are deter

mined. In the case of symmetry with respect to the equator, we

have only to put H = in the foregoing analysis. The conditions

of convergency for
yu,
= + 1 determine Nz ,

N3 ,
JV4 ,

... exactly as

before; whilst equation (12) gives N2
= 1 /3/

2

/2 . 3, and there

fore, by (20),

__
- ......

&amp;lt;

28
&amp;gt;&amp;lt;

which is equivalent to ^ = x . This equation determines the

admissible values of / 1
=

&amp;lt;r/2w).
The constants in (9) are then

given by

where A is arbitrary.

The corresponding theory for the asymmetrical oscillations

may be left to the reader. The right-hand side of (8) must now

be replaced by an even function of
yu,.

212. In the next class of tidal motions (Laplace s Oscillations

of the Second Species ) which we shall consider, we have

fjr mooe0.&amp;lt;xw(&amp;lt;r* + + e) ............... (1),

where &amp;lt;r differs not very greatly from n. This includes the lunar

and solar diurnal tides.

In the case of a disturbing body whose proper motion could be

neglected, we should have o- = n, exactly, and therefore /= J. In

the case of the moon, the orbital motion is so rapid that the actual

period of the principal lunar diurnal tide is very appreciably

longer than a sidereal day*; but the supposition that/=J sim

plifies the formula so materially that we adopt it in the following

*
It is to be remarked, however, that there is an important term in the harmo

nic development of fi for which = 11 exactly, provided we neglect the changes in

the plane of the disturbing body s orbit. This period is the same for the sun as for

the moon, and the two partial tides thus produced combine into what is called the
1 luni-solar diurnal tide.

232
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investigation*. We shall find that it enables us to calculate the

forced oscillations when the depth follows the law

h = (I-qcos*0)h Q ........................ (2),

where q is any given constant.

Taking an exponential factor ei(nt+ta+e)
,
and therefore putting

s = l, /= ^, in Art. 208 (7), and assuming

f = Csin0cos&amp;lt;9 ........................ (3),

we find u=
i&amp;lt;rC/m,

v = a-C/m.cos0 ............... (4).

Substituting in the equation of continuity (Art. 208 (4)), we get

ma

which is consistent with the law of depth (2), provided

C=- - H &quot;

mi 2qhJma $ /h_ xThis gives f=- Y;

f ..................... (7).
1

One remarkable consequence of this formula is that in

the case of uniform depth (q
= 0) there is no diurnal tide, so

far as the rise and fall of the surface is concerned. This result

was first established (in a different manner) by Laplace, who

attached great importance to it as shewing that his kinetic theory
is able to account for the relatively small values of the diurnal

tide which are given by observation, in striking contrast to what

would be demanded by the equilibrium-theory.

But, although with a uniform depth there is no rise and fall,

there are tidal currents. It appears from (4) that every particle

describes an ellipse whose major axis is in the direction of the

meridian, and of the same length in all latitudes. The ratio of the

minor to the major axis is cos 6, and so varies from 1 at the poles

to at the equator, where the motion is wholly N. and S.

213. Finally, we have to consider Laplace s Oscillations of the

Third Species, which are such that

f = Jff&quot;

/

sina

0.cos(&amp;lt;r$ + 2G&amp;gt; + ) ............... (1),

* Taken with very slight alteration from Airy (&quot;Tides and Waves,&quot; Arts. 95...),

and Darwin (Encyc, Britann., t. xxiii., p. 359).
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where a is nearly equal to 2?i. This includes the most important of

all the tidal oscillations, viz. the lunar and solar semi-diurnal tides.

If the orbital motion of the disturbing body were infinitely

slow we should have a = 2ra, and therefore /= 1
;

for simplicity

we follow Laplace in making this approximation, although it is

a somewhat rough one in the case of the principal lunar tide*.

A solution similar to that of the preceding Art. can be obtained

for the special law of depth

li = hQ $itfd ...........................(2)f.

Adopting an exponential factor e* lmt+2m+e}
,
and putting therefore

f= i
t
s = 2, we find that if we assume

? =asin2
........................... (3)

the equations (7) of Art. 208 give

. ~ ...

u= Ocot 6, 0=- C . a ............ (4),m 2m sm 6

whence, substituting in Art. 208 (4),

= 2^0/ma. (7sm2
..................... (5).

Putting f =
&quot; + and substituting from (1) and (3), we find

,_
and therefore b = ~ n

-rn ? ........................ ( )
1 - 2/io/ma

*

For such depths as actually occur in the ocean we have 2/& &amp;lt; ma,
and the tide is therefore inverted.

It may be noticed that the formulae (4) make the velocity

infinite at the poles.

214. For any other law of depth a solution can only be

obtained in the form of an infinite series.

In the case of uniform depth we find, putting s = 2, /=!,
4raa//i

= in Art. 208 (8),

(1
-

/*
a

y |J
+ {/3 (1

-^ -
2p*

-
6} ? - -

/3 (1
- ^)

2

? p -(8),

* There is, however, a luni-solar semi-diurnal tide whose speed is exactly 2/i

if we neglect the changes in the planes of the orbits. Cf. p. 355, footnote.

t Cf. Airy and Darwin, II. cc.
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where
//,

is written for cos 6. In this form the equation is some

what intractable, since it contains terms of four different dimensions

in
yLt.

It simplifies a little, however, if we transform to

!/,=(!- /*
2

)*,
= sin 0,

as independent variable
;

viz. we find

which is of three different dimensions in v.

To obtain a solution for the case of an ocean covering the

globe, we assume

Substituting in (9), and equating coefficients, we find

jB = 0, B2
= 0, 0.54 = (11),

and thenceforward

2j (2j + 6) B2j+4
-

2j (2j + 3) B2j+2 + (3B2j
=

(13).

These equations give B6 ,
Bs ,

... J92j, ... in succession, in terms of

B4 ,
which is so far undetermined. It is obvious, however, from the

nature of the problem, that, except for certain special values of h

(and therefore of /?), which are such that there is a free oscil

lation of corresponding type (s
= 2) having the speed 2/i, the

solution must be unique. We shall see, in fact, that unless B4

have a certain definite value the solution above indicated will

make the meridian component (u) of the velocity discontinuous

at the equator*.

The argument is in some respects similar to that of Art. 210.

If we denote by Nj the ratio B2j+2/B2j
of consecutive coefficients,

we have, from (13),

2? + 3 8 1

zj +

from which it appears that, with increasing j, Nj must tend to

one or other of the limits and 1. More precisely, unless the

limit of NJ be zero, the limiting form of Nj+l will be

6), or 1-3/2J,
* In the case of a polar sea bounded by a small circle of latitude whose angular

radius is
&amp;lt;^TT,

the value of B4 is determined by the condition that u= Q, or d
ldi&amp;gt;

= 0,

at the boundary.
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approximately. This is the same as the limiting form of the ratio

of the coefficients of i$ and i/
2
-*&quot;

2 in the expansion of (1 z&amp;gt;

2

)*. We
infer that, unless B4 have such a value as to make N

ao
=

0, the

terms of the series (10) will become ultimately comparable with

those of (1 v&quot;)%,
so that we may write

? = L + (l-v*)*M ..................... (15),

where L, M are functions of v which do not vanish for v = 1. Near

the equator (y
=

1) this makes

Hence, by Art. 208 (7), u would change from a certain finite

value to an equal but opposite value as we cross the equator.

It is therefore essential, for our present purpose, to choose the

value of .Z?4 so that Nx = 0. This is effected by the same method

as in Art. 210. Writing (13) in the form

we see that Nj must be given by the converging continued fraction

_/3__ J3_
_ 2j(2j+ 6) (2;+ 2)(2/+8) (2j+4)(2y + 10) n ,

j
&quot; &quot;

_
2J + 6 2J + 8 2J + 10

k

This holds from j = 2 upwards, but it appears from (12) that it

will give also the value of A^ (not hitherto defined), provided we

use this symbol for B^jH &quot;. We have then

Bt
= N,H &quot;,

Be =N,Bt ,
Ba

= N3Be ,....

Finally, writing f = f+ f, we obtain

.
l

vf&amp;gt; + N1N,Ns * + ......... (19).

As in Art. 210, the practical method of conducting the calcula

tion is to assume an approximate value for JV}+1 ,
where j is a

moderately large number, and then to deduce Nj, JV}_,,... Na , A^
in succession by means of the formula (17).
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The above investigation is taken substantially from the very remarkable

paper written by Lord Kelvin * in vindication of Laplace s treatment of the

problem, as given in the Mecanique Celeste. In the passage more especially

in question, Laplace determines the constant B by means of the continued

fraction for N11 without, it must be allowed, giving any adequate justifica

tion of the step ;
and the soundness of this procedure had been disputed by

Airy f, and after him by FerrelJ.

Laplace, unfortunately, was not in the habit of giving specific references,

so that few of his readers appear to have become acquainted with the original

presentment of the kinetic theory, where the solution for the case in question
is put in a very convincing, though somewhat different, form. Aiming in the

first instance at an approximate solution by means of & finite series, thus :

(i),

Laplace remarks
||

that in order to satisfy the differential equation, the

coefficients would have to fulfil the conditions

as is seen at once by putting J3
2k + 4

=
0, B21c + 6 Q,... in the general relation (13).

We have here k+ 1 equations between k constants. The method followed

is to determine the constants by means of the first k relations
;
we thus

obtain an exact solution, not of the proposed differential equation (9), but of the

equation as modified by the addition of a term @B2k + 2 1/
2* + 6 to the right-hand

side. This is equivalent to an alteration of the disturbing force, and if we can

obtain a solution such that the required alteration is very small, we may
accept it as an approximate solution of the problem in its original form IF.

Now, taking the first k relations of the system (ii) in reverse order,

we obtain -52fc + 2
^n terms of Z?^, thence J3

2Jfc
in terms of jB

2 fc~i&amp;gt;
an(^ so on

&amp;gt;

Until
5

finally, B is expressed in terms of H &quot;

;
and it is obvious that if k be large

enough the value of -52& + 2 ,
and the consequent adjustment of the disturbing

* Sir W. Thomson,
&quot; On an Alleged Error in Laplace s Theory of the Tides,&quot;

Phil. Mag., Sept. 1875.

t &quot; Tides and Waves,&quot; Art. 111.

+
&quot;Tidal Kesearches,&quot; U.S. Coast Survey Rep., 1874, p. 154.
&quot; Kecherches sur quelques points du systeme du monde,&quot; Mem. de VAcad.

roy. des Sciences, 1776 [1779] ;
Oeuvres Completes, t. ix., pp. 187....

|| Oeuvres, t. ix., p. 218. The notation has been altered.

H It is remarkable that this argument is of a kind constantly employed by Airy

himself in his researches on waves.
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force which is required to make the solution exact, will be very small. This

will be illustrated presently, after Laplace, by a numerical example.

The process just given is plainly equivalent to the use of the continued

fraction (17) in the manner already explained, starting with j+ ! =
&amp;gt;(,

and

#j~/?/2fc (84+3). The continued fraction, as such, does not, however, make
its appearance in the memoir here referred to, but was introduced in the

Mecanique Celeste, probably as an after-thought, as a condensed expression of

the method of computation originally employed.

The following table gives the numerical values of the coeffi

cients of the several powers of v in the formula (19) for
f/JEP&quot;,

in

the cases j3
= 40, 20, 10, 5, 1, which correspond to depths of 7260,

14520, 29040, 58080, 290400, feet, respectively*. The last line

gives the value of QH &quot;

for v 1, i.e. the ratio of the amplitude
at the equator to its equilibrium-value. At the poles (y

=
0),

the tide has in all cases the equilibrium-value zero.
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be very small, and the formulae (17) and (19) then shew that the

tide has everywhere sensibly the equilibrium value, all the coeffi

cients being small except the first, which is unity. As h is

diminished, /3 increases, and the formula (17) shews that each

of the ratios Nj will continually increase, except when it changes

sign from -f to by passing through the value oo . No singu

larity in the solution attends this passage of Nj through oo ,

except in the case of Nlf since, as is easily seen, the product

Nj^Nj remains finite, and the coefficients in (19) are therefore all

finite. But when JVj = oo
, the expression for f becomes infinite,

shewing that the depth has then one of the critical values

already referred to.

The table above given indicates that for depths of 29040 feet,

and upwards, the tides are everywhere direct, but that there is

some critical depth between 29040 feet and 14520 feet, for which

the tide at the equator changes from direct to inverted. The

largeness of the second coefficient in the case = 40 indicates that

the depth could not be reduced much below 7260 feet before

reaching a second critical value.

Whenever the equatorial tide is inverted, there must be one

or more pairs of nodal circles (f=0), symmetrically situated on

opposite sides of the equator. In the case of /3
= 40, the position

of the nodal circles is given by z;
= 95, or = 90 + 18, approxi

mately *.

215. We close this chapter with a brief notice of the question

of the stability of the ocean, in the case of rotation.

It has been shewn in Art. 197 that the condition of secular

stability is that V T should be a minimum in the equilibrium

configuration. If we neglect the mutual attraction of the elevated

water, the application to the present problem is very simple. The

excess of the quantity V T over its undisturbed value is evidently

8 (1),

where M* denotes the potential of the earth s attraction, SS is an

element of the oceanic surface, and the rest of the notation is as

* For a fuller discussion of these points reference may be made to the original

investigation of Laplace, and to Lord Kelvin s papers.



214-215] STABILITY OF THE OCEAN. 363

before. Since &quot;^
- ?i

2w 2
is constant over the undisturbed level

(z
=

0), its value at a small altitude z may be taken to be cjz + const.,

where, as in Art. 206,

Since f/dS = Q, on account of the constancy of volume, we find

from (1) that the increment of V TQ is

iffgraa (3).

This is essentially positive, and the equilibrium is therefore

secularly stable*.

It is to be noticed that this proof does not involve any
restriction as to the depth of the fluid, or as to smallness of the

ellipticity, or even as to symmetry of the undisturbed surface with

respect to the axis of rotation.

If we wish to take into account the mutual attraction of the

water, the problem can only be solved without difficulty when the

undisturbed surface is nearly spherical, and we neglect the varia

tion of g. The question (as to secular stability) is then exactly the

same as in the case of no rotation. The calculation for this case

will find an appropriate place in the next chapter. The result, as

we might anticipate from Art. 192, is that the ocean is stable if,

and only if, its density be less than the mean density of the Earth*.

*
Cf. Laplace, Mecaniquc Celeste, Livre 4mo

,
Arts. 13, 14.



APPENDIX.

ON TIDE-GENERATING FORCES.

a. IF, in the annexed figure, and C be the centres of the earth and of

the disturbing body (say the moon), the potential of the moon s attraction at

a point P near the earth s surface will be - yM/CP, where M denotes the

moon s mass, and y the gravitation-constant. If we put OC=Z&amp;gt;, OP= r, and

denote the moon s (geocentric) zenith-distance at P, viz. the angle POC, by ^,

this potential is equal to

yM

We require, however, not the absolute accelerative effect on P, but the

acceleration relative to the earth. Now the moon produces in the whole

mass of the earth an acceleration yM/D2 *
parallel to OC, and the potential of

a uniform field of force of this intensity is evidently

yM~
rj2-

r cos ^-

Subtracting this from the former result we get, for the potential of the relative

attraction on P,

This function G is identical with the disturbing-function of planetary

theory.

* The effect of this is to produce a monthly inequality in the motion of the

earth s centre about the sun. The amplitude of the inequality in radius vector is

about 3000 miles
;

that of the inequality in longitude is about 1&quot;. Laplace,

Mecaniqne Celeste, Livre 6m% Art. 30, and Livre 13me
,
Art. 10.
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Expanding in powers of rfD, which is in our case a small quantity, and

retaining only the most important term, we find

Considered as a function of the position of P, this is a zonal harmonic of the

second degree, with OC as axis.

The reader will easily verify that, to the order of approximation adopted,

Q is equal to the joint potential of two masses, each equal to -|J/, placed, one

at C
t
and the other at a point C in CO produced such that OC = OC*.

b. In the equilibrium-theory ofthe tides it is assumed that the free surface

takes at each instant the equilibrium-form which might be maintained if the

disturbing body were to retain unchanged its actual position relative to the

rotating earth. In other words, the free surface is assumed to be a level-

surface under the combined action of gravity, of centrifugal force, and of the

disturbing force. The equation to this level-surface is

^- 2OT2+ G= const

where n is the angular velocity of the rotation, or denotes the distance of any

point from the earth s axis, and is the potential of the earth s attraction.

If we use square brackets [ ] to distinguish the values of the enclosed quanti
ties at the undisturbed level, and denote by the elevation of the water

above this level due to the disturbing potential Q, the above equation is equi
valent to

approximately, where djdz is used to indicate a space-differentiation along the

normal outwards. The first term is of course constant, and we therefore

have

(v),

where, as in Art. 206, g= [~^-
(*

-^2w2
)1 ........................... (vi).

Evidently, g denotes the value of *

apparent gravity ;
it will of course vary

more or less with the position of P on the earth s surface.

It is usual, however, in the theory of the tides, to ignore the slight

variations in the value of g, and the effect of the ellipticity of the undisturbed

level on the surface-value of O. Putting, then, r= a, g= yE/a*, where E
denotes the earth s mass, and a the mean radius of the surface, we have,

from (ii) and (v),

(vii),

where #=

as in Art. 177. Hence the equilibrium-form of the free surface is a harmonic

* Thomson and Tait, Natural Philosophy, Art. 804.
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spheroid of the second order, of the zonal type, having its axis passing through
the disturbing body.

C. Owing to the diurnal rotation, and also to the orbital motion of the

disturbing body, the position of the tidal spheroid relative to the earth is

continually changing, so that the level of the water at any particular place

will continually rise and fall. To analyse the character of these changes, let

6 be the co-latitude, and o&amp;gt; the longitude, measured eastward from some fixed

meridian, of any place P, and let A be the north-polar-distance, and a the

hour-angle west of the same meridian, of the disturbing body. We have,

then,
cos S-= cos A cos 6+ sin A sin 6 cos (a+ o&amp;gt;)

.................. (ix),

and thence, by (vii),

+ ^Hsin 2A sin 26 cos (a+ o&amp;gt;)

+ pTsin
2 Asin2

0cos2(a+ a))-|-C ..................... (x).

Each of these terms may be regarded as representing a partial tide, and

the results superposed.

Thus, the first term is a zonal harmonic of the second order, and gives a

tidal spheroid symmetrical with respect to the earth s axis, having as nodal

lines the parallels for which cos2 =
,
or = 90 35 16 . The amount of the

tidal elevation in any particular latitude varies as cos2 A J.
In the case

of the moon the chief fluctuation in this quantity has a period of about a

fortnight ;
we have here the origin of the lunar fortnightly or declina-

tional
3

tide. When the sun is the disturbing body, we have a solar semi

annual tide. It is to be noticed that the mean value of cos2 A-^ with

respect to the time is not zero, so that the inclination of the orbit of the

disturbing body to the equator involves as a consequence a permanent change

of mean level. Of. Art. 180.

The second term in (x) is a spherical harmonic of the type obtained by

putting ?i= 2, s= l in Art. 87 (6). The corresponding tidal spheroid has as

nodal lines the meridian which is distant 90 from that of the disturbing

body, and the equator. The disturbance of level is greatest in the meridian

of the disturbing body, at distances of 45 N. and S. of the equator. The
oscillation at any one place goes through its period with the hour-angle a,

i.e. in a lunar or solar day. The amplitude is, however, not constant, but

varies slowly with A, changing sign when the disturbing body crosses the

equator. This term accounts for the lunar and solar diurnal tides.

The third term is a sectorial harmonic (n= 2, a= 2), and gives a tidal

spheroid having as nodal lines the meridians which are distant 45 E. and W.
from that of the disturbing body. The oscillation at any place goes through
its period with 2a, i. e. in half a (lunar or solar) day, and the amplitude varies

as sin2
A, being greatest when the disturbing body is on the equator. We

have here the origin of the lunar and solar semi-diurnal tides.
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The constant C is to be determined by the consideration that, on account

of the invariability of volume, we must have

J/fdS = .................................... (xi),

where the integration extends over the surface of the ocean. If the ocean

cover the whole earth we have (7=0, by the general property of spherical

surface-harmonics quoted in Art. 88. It appears from (vii) that the greatest

elevation above the undisturbed level is then at the points S = 0, ^=180, i.e.

at the points where the disturbing body is in the zenith or nadir, and the

amount of this elevation is \H. The greatest depression is at places where

^= 90, i. e. the disturbing body is on the horizon, and is \H. The greatest

possible range is therefore equal to H.

In the case of a limited ocean, C does not vanish, but has at each instant a

definite value depending on the position of the disturbing body relative to the

earth. This value may be easily written down from equations (x) and (xi) ;

it is a sum of spherical harmonic functions of A, a, of the second order, with

constant coefficients in the form of surface-integrals whose values depend on

the distribution of land and water over the globe. The changes in the value

of (7, due to relative motion of the disturbing body, give a general rise and

fall of the free surface, with (in the case of the moon) fortnightly, diurnal, and

semi-diurnal periods. This * correction to the equilibrium-theory, as usually

presented, was first fully investigated by Thomson and Tait*. The necessity

for a correction of the kind, in the case of a limited sea, had however been

recognized by D. Bernoullif.

d. We have up to this point neglected the mutual attraction of the par
ticles of the water. To take this into account, we must add to the disturbing

potential Q the gravitation-potential of the elevated water. In the case of an

ocean covering the earth, the correction can be easily applied, as in Art. 192.

Putting W= 2 in the formulae of that Art,, the addition to the value of Q. is

f p/po # &amp;gt;

and we thence find without difficulty

It appears that all the tides are increased, in the ratio (1 fp/po)&quot;
1

. If we
assume p/p

=
*18, this ratio is 1*12.

e. So much for the equilibrium-theory. For the purposes of the kinetic

theory of Arts. 206 214, it is necessary to suppose the value (x) of to be

expanded in a series of simple-harmonic functions of the time. The actual

* Natural Philosophy, Art. 808; see also Prof. G. H. Darwin, &quot;On the Cor

rection to the Equilibrium Theory of the Tides for the Continents,&quot; Proc. Roy. Soc.,

April 1, 1886. It appears as the result of a numerical calculation by Prof. H. H.

Turner, appended to this paper, that with the actual distribution of land and water

the correction is of little importance.

t Traite sur le Flux et Reflux de la Mer, c. xi. (1740). This essay, as well as the

one by Maclaurin cited on p. 322, and another on the same subject by Euler, is

reprinted in Le Seur and Jacquier s edition of Newton s Principia.
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expansion, taking account of the variations of A and a, and of the distance

D of the disturbing body, (which enters into the value of _T), is a somewhat

complicated problem of Physical Astronomy, into which we do not enter here*.

Disregarding the constant (7, which disappears in the dynamical equations

(1) of Art. 207, the constancy of volume being now secured by the equation of

continuity (2), it is easily seen that the terms in question will be of three

distinct types.

First, we have the tides of long period, for which

C=# (cos
2
0-i).cos(o-*+ e) (xiii).

The most important tides of this class are the lunar fortnightly for which,

in degrees per mean solar hour, o-= l 098, and the solar semi-annual for

which o-= -082.

Secondly, we have the diurnal tides, for which

^^ smflcostf.cos^+ w + e) (xiv),

where a- differs but little from the angular velocity n of the earth s rotation.

These include the lunar diurnal
[o-
= 13 943], the solar diurnal 3

[0-
= 14 959],

and the luni-solar diurnal 3

[tr
= w= 150t

041].

Lastly, we have the semi-diurnal tides, for which

=#&quot; sm2
0.cos(o--f-2a&amp;gt; + f) (xv)f,

where &amp;lt;r differs but little from Zn. These include the lunar semi-diurnal

[0-
= 28 -984], the solar semi-diurnal [o-

= 30], and the luni-solar semi

diurnal
&amp;gt;[o-=2n

= 30 -082].

For a complete enumeration of the more important partial tides, and for

the values of the coefficients H
, H&quot;,

H&quot; in the several cases, we must refer

to the papers by Lord Kelvin and Prof. G. H. Darwin, already cited. In the

Harmonic Analysis of Tidal Observations, which is the special object of these

investigations, the only result of dynamical theory which is made use of is the

general principle that the tidal elevation at any place must be equal to the

sum of a series of simple-harmonic functions of the time, whose periods are

the same as those of the several terms in the development of the disturbing

potential, and are therefore known a priori. The; amplitudes and phases of

the various partial tides, for any particular port, are then determined by

comparison with tidal observations extending over a sufficiently long period J.

* Reference may be made to Laplace, Mecanique Celeste, Livre 13me
, Art. 2

; to

the investigations of Lord Kelvin and Prof. G. H.JDarwin in the Brit. Ass. Reports
for 1868, 1872, 1876, 1883, 1885

;
and to the Art. on &quot;

Tides,&quot; by the latter author,

in the Encyc. Britann. (9th ed.).

f It is evident that over a small area, near the poles, which may be treated as

sensibly plane, the formulae (xiv) and (xv) make

f ocrcos(o-f + w + e), and ccr2 cos((r + 2w + e),

respectively, where r, w are plane polar coordinates. These forms have been used

by anticipation in Arts. 188, 204.

+ It is of interest to note, in connection with Art. 184, that the tide-gauges,

being situated in relatively shallow water, are sensibly affected by certain tides of

the second order, which therefore have to be taken account of in the general

scheme of Harmonic Analysis.
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We thus obtain a practically complete expression which can be used for

the systematic prediction of the tides at the port in question.

f. One point of special interest in the Harmonic Analysis is the deter

mination of the long-period tides. It has been already stated that owing to

the influence of dissipative forces these must tend to approximate more or less

closely to their equilibrium values. Unfortunately, the only long-period tide,

whose coefficient can be inferred with any certainty from the observations,
is the lunar fortnightly, and it is at least doubtful whether the dissipative

forces are sufficient to produce in this case any great effect in the direction

indicated. Hence the observed fact that the fortnightly tide has less than
its equilibrium value does not entitle us to make any inference as to elastic

yielding of the solid body of the earth to the tidal distorting forces exerted by
the moon*.

* Prof. G. H. Darwin, I.e. ante p. 350.



CHAPTER IX.

SURFACE WAVES.

216. WE have now to investigate, as far as possible, the laws

of wave-motion in liquids when the restriction that the vertical

acceleration may be neglected is no longer imposed. The most

important case not covered by the preceding theory is that of

waves on relatively deep water, where, as will be seen, the agita

tion rapidly diminishes in amplitude as we pass downwards from

the surface
;
but it will be understood that there is a continuous

transition to the state of things investigated in the preceding

chapter, where the horizontal motion of the fluid was sensibly the

same from top to bottom.

We begin with the oscillations of a horizontal sheet of water,

and we will confine ourselves in the first instance to cases where

the motion is in two dimensions, of which one (#) is horizontal,

and the other (y) vertical. The elevations and depressions of the

free surface will then present the appearance of a series of parallel

straight ridges and furrows, perpendicular to the plane xy.

The motion, being assumed to have been generated originally

from rest by the action of ordinary forces, will be necessarily

irrotational, and the velocity-potential &amp;lt;f&amp;gt;

will satisfy the equation

*-o ........................ (i),*

with the condition -f- = . . (2)
dn

at a fixed boundary.
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To find the condition which must be satisfied at the free

surface (p = const.), let the origin be taken at the undisturbed

level, and let Oy be drawn vertically upwards. The motion being
assumed to be infinitely small, we find, putting ^L gy in the

formula (4) of Art. 21, and neglecting the square of the velocity (q),

Hence if tj denote the elevation of the surface at time t above the

point (x, 0), we shall have, since the pressure there is uniform,

9 L

provided the function F(t\ and the additive constant, be supposed

merged in the value of
d*f&amp;gt;/cU. Subject to an error of the order

already neglected, this may be written

Since the normal to the free surface makes an infinitely small

angle (dy/dx) with the vertical, the condition that the normal

component of the fluid velocity at the free surface must be equal
to the normal velocity of the surface itself gives, with sufficient

approximation,

drj Vd\

This is in fact what the general surface condition (Art. 10 (3))

becomes, if we put F(x, y, 2,t)=y-rj, and neglect small quanti
ties of the second order.

Eliminating ?? between (5) and (6), we obtain the condition

to be satisfied when y = 0.

In the case of simple-harmonic motion, the time-factor being
condition becomes

242
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217. Let us apply this to the free oscillations of a sheet of

water, or a straight canal, of uniform depth h, and let us suppose

for the present that there are no limits to the fluid in the direction

of x, the fixed boundaries, if any, being vertical planes parallel to xy.

Since the conditions are uniform in respect to x, the simplest

supposition we can make is that
&amp;lt;/&amp;gt;

is a simple-harmonic function

of x
;
the most general case consistent with the above assumptions

can be derived from this by superposition, in virtue of Fourier s

Theorem.

We assume then

(/&amp;gt;

= P cos kx . e &amp;gt;e+e) ........................ (1),

where P is a function of y only. The equation (1) of Art. 216

gives

whence P = Aeky + Be~ky ........................ (3).

The condition of no vertical motion at the bottom is
dcf&amp;gt;/dy

=
for y = h, whence

=, say.

This leads to

(/&amp;gt;

= C cosh k(y + h) cos kx . ei(&amp;lt;Tt+e) ............... (4).

The value of a is then determined by Art. 216 (8), which gives

o-
2 = gk tanh kh ........................ (5).

Substituting from (4) in Art. 216 (5), we find

ia-C
77= cothM COB fa?. **&amp;lt;**) ............... (6),

y

or, writing a = - aC/g . cosh kh,

and retaining only the real part of the expression,

77
= a cos kx . sin (crt + e) .................. (7).

This represents a system of standing waves, of wave-length
X = 2-7T/&, and vertical amplitude a. The relation between the

period (2?r/&amp;lt;r)
and the wave-length is given by (5). Some numeri

cal examples of this dependence will be given in Art. 218.
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In terms of a we have

ga cosh k (y + h) , ,
,

, /CA6 = Z--^r cos kx . cos (at + e) ......... (8),
cr cosh kh

and it is easily seen from Art. 62 that the corresponding value of

the stream-function is

qa sinh k (y -f h) .
7 , .

&amp;gt;. /m
Jr = v-- 2 &amp;gt; sm kx . cos (at + e) ......... (9).

or cosh kh

If x, y be the coordinates of a particle relative to its mean

position (x, y), we have

(ft~ cfo d*
dy&quot;

if we neglect the differences between the component velocities at

the points (x, y) and (x + x, y + y), as being small quantities of

the second order.

Substituting from (8), and integrating with respect to t, we find

cosh k (y + h) . . . ,
x

x. = a-.
,

. .
- sm KX . sm (at 4- e),

sinh kh

y = a --. U ;
,

- cos kx . sin (cr^ + e)
sinh kh

where a slight reduction has been effected by means of (5). The
motion of each particle is rectilinear, and simple-harmonic, the

direction of motion varying from vertical, beneath the crests and

hollows (kxm jr)^ to horizontal, beneath the nodes (kx = (m + J) TT).

As we pass downwards from the surface to the bottom the ampli
tude of the vertical motion diminishes from a cos kx to 0, whilst

that of the horizontal motion diminishes in the ratio cosh kh : 1.

When the wave-length is very small compared with the

depth, kh is large, and therefore tanh kh = l. The formulae (11)
then reduce to

x = - ae*y sin &# . sin
(&amp;lt;r

+ e),
(

.

y = ae1 cos kx . sin (crt + e) }

with a^ = gk ...........................(13)*

The motion now diminishes rapidly from the surface down-

* This case may of course be more easily investigated independently.
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wards
;
thus at a depth of a wave-length the diminution of

amplitude is in the ratio e~2n or 1/535. The forms of the lines

of (oscillatory) motion
(-vjr

=
const.), for this case, are shewn

in the annexed figure.

In the above investigation the fluid is supposed to extend to infinity in

the direction of x, and there is consequently no restriction to the value of k.

The formulae also, give, however, the longitudinal oscillations in a canal of finite

length, provided k have the proper values. If the fluid be bounded by the

vertical planes x 0, x= I (say ),
the condition d(f)/dx

= is satisfied at both ends

provided sin^= 0, or kl= mn, where m= l, 2, 3, .... The wave-lengths of the

normal modes are therefore given by the formula \= 2l/m, Cf. Art. 175.

218. The investigation of the preceding Art. relates to the

case of standing waves
;

it naturally claims the first place, as a

straightforward application of the usual method of treating the

free oscillations of a system about a state of equilibrium.

In the case, however, of a sheet of water, or a canal, of uniform

depth, extending to infinity in both directions, we can, by super

position of two systems of standing waves of the same wave-length,

obtain a system of progressive waves which advance unchanged
with constant velocity. For this, it is necessary that the crests

and troughs of one component system should coincide (horizon

tally) with the nodes of the other, that the amplitudes of the two

systems should be equal, and that their phases should differ by a

quarter-period.

Thus if we put v Vi v-2 (1),

where % = a sin kx cos at, 7j2
= a cos kx sin at (2),

we get 97
= a sin (kx a-t} (3),

which represents (Art. 167) an infinite train of waves travelling
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in the negative or positive direction of x, respectively, with

the velocity c given by

y ..................... (4),
k \k J

where the value of a has been substituted from Art. 217 (5). In

terms of the wave-length (X) we have

When the wave-length is anything less than double the depth,

we have tanh kh=l, sensibly, and therefore

=() .....................
&amp;lt;&amp;gt;

On the other hand when X is moderately large compared with h

we have tanh kh = kh, nearly, so that the velocity is independent

of the wave-length, being given by

(7),

as in Art. 167. This formula is here obtained on the assumption
that the wave-profile is a curve of sines, but Fourier s theorem

shews that this restriction is now unnecessary.

It appears, on tracing the curve y = (tanh x)jx}
or from the

numerical table to be given presently, that for a given depth h

the wave-velocity increases constantly with the wave-length,
from zero to the asymptotic value (7).

Let us now fix our attention, for definiteness, on a train of

simple-harmonic waves travelling in the positive direction, i.e. we
take the lower sign in (1) and (3). It appears, on comparison
with Art. 217 (7), that the value of % is deduced by putting
e = ^TT, and subtracting TT from the value of &#f, and that of

rj.2

by putting e = 0, simply. This proves a statement made above as

to the relation between the component systems of standing waves,

*
Green, &quot;Note on the Motion of Waves in Canals,&quot; Camb. Trans., t. vii. (1839);

Mathematical Papers, p. 279.

t This is of course merely equivalent to a change of the origin from which x is

measured,
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and also enables us to write down at once the proper modifications

of the remaining formulae of the preceding Art.

Thus, we find, for the component displacements of a particle,

cosh k (y + h) n ^x = x
x
-

x.j
= a -

. ,,, - cos UUf - crt),Smhkh
. ..(8).

sinh k (y + Ti) . /7 J
y = yi -ya=a .

- am (to
-

This shews that the motion of each particle is elliptic-harmonic,

the period (2?r/cr,
=

X/c,) being of course that in which the dis

turbance travels over a wave-length. The semi-axes, horizontal

and vertical, of the elliptic orbits are

cosh k (y + h) siuhlc(y + h)
(L-:

\ T~l
-- dilU. (Jb

-
: ; f^

--
,

sinh kh smh kh

respectively. These both diminish from the surface to the bottom

(y
=

h), where the latter vanishes. The distance between the

foci is the same for all the ellipses, being equal to a cosech kh. It

easily appears, on comparison of (8) with (3), that a surface-particle

is moving in the direction of wave-propagation when it is at a crest,

and in the opposite direction when it is in a trough*.

When the depth exceeds half a wave-length, e~kh is very small,

and the formulae (8) reduce to

x = aeky cos (kx
-

a-t), \
,~.

&quot;

so that each particle describes a circle, with constant angular

velocity cr,
=

(^X/27r)^t. The radii of these circles are given by
the formula a^y

, and therefore diminish rapidly downwards.

In the following table, the second column gives the values of sech kh

corresponding to various values of the ratio A/A. This quantity measures the

ratio of the horizontal motion at the bottom to that at the surface. The third

column gives the ratio of the vertical to the horizontal diameter of the elliptic

orbit of a surface particle. The fourth and fifth columns give the ratios

of the wave-velocity to that of waves of the same length on water of infinite

depth, and to that of long waves on water of the actual depth, respectively.

* The results of Arts. 217, 218, for the case of finite depth, were given, substan

tially, by Airy, &quot;Tides and Waves,&quot; Arts. 160... (1845).

t Green, /. c. ante p. 875.
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fc/X
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The possibility of progressive waves advancing with unchanged form is of

course limited, theoretically, to the case of uniform depth ;
but the foregoing

numerical results shew that practically a variation in the depth will have no

appreciable influence, provided the depth everywhere exceeds (say) half the

wave-length.

We remark, finally, that the theory of progressive waves may
be obtained, without the intermediary of standing waves, by

assuming at once, in place of Art. 217 (1),

The conditions to be satisfied by P are exactly the same as before,

and we easily find, in real form,

rj
= asm(kx at} (11),

qa cosh k(y + h)
&amp;lt;p

= Vi - cos (KM at] (12),
a cosh kh

with the same determination of a as before. From (12) all the

preceding results as to the motion of the individual particles can

be inferred without difficulty.

219. The energy of a system of standing waves of the simple-
harmonic type is easily found. If we imagine two vertical planes
to be drawn at unit distance apart, parallel to xy, the potential

energy per wave-length of the fluid between these planes is, as in

Art. 171,

Substituting the value of 77 from Art. 217 (7), we obtain

%gpa?\ . sin2

(at + e) (1).

The kinetic energy is, by the formula (1) of Art. 61,

Substituting from Art. 217 (8), and remembering the relation

between &amp;lt;r and k, we obtain

2X . cos2

(at + e) ..................... (2).

The total energy, being the sum of (1) and (2), is constant,
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and equal to lgptf\. We may express this by saying that the

total energy per unit area of the water-surface is
j&amp;lt;7/oa

2
.

A similar calculation may be made for the case of progressive

waves, or we may apply the more general method explained in

Art. 171. In either way we find that the energy at any instant

is half potential and half kinetic, and that the total amount, per

unit area, is ^gpa
2
. In other words, the energy of a progressive

wave-system of amplitude a is equal to the work which would be

required to raise a stratum of the fluid, of thickness a, through a

height -J-a.

220. So long as we confine ourselves to a first approximation
all our equations are linear; so that it

(f&amp;gt;
l ,

&amp;lt; 2 ,
... be the velocity-

potentials of distinct systems of waves of the simple-harmonic

type above considered, then

will be the velocity-potential of a possible form of wave-motion,

with a free surface. Since, when &amp;lt; is determined, the equation of

the free surface is given by Art. 216 (5), the elevation above the

mean level at any point of the surface, in the motion given by (1),

will be equal to the algebraic sum of the elevations due to the

separate systems of waves
&amp;lt;/&amp;gt; x ,

&amp;lt;/&amp;gt;

2 ,
Hence each of the latter

systems is propagated exactly as if the others were absent, and

produces its own elevation or depression at each point of the

surface.

We can in this way, by adding together terms of the form given in

Art. 218 (12), with properly chosen values of a, build up an analytical ex

pression for the free motion of the water in an infinitely long canal, due to any

arbitrary initial conditions. Thus, let us suppose that, when =
0, the equa

tion of the free surface is

?=/(#), ....................................... (i),

and that the normal velocity at the surface is then F (#), or, to our order of

approximation,

The value of is found to be

si&quot;/
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and the equation of the free surface is

] .............. (iv).
_ -x am fat

These formulae, in which c is a function of k given by Art. 218 (4), may be

readily verified by means of Fourier s expression for an arbitrary function as

a definite integral, viz.

/(#)= - ^ dk If* dX/(A)cos(X-o?)t ............. (v).
7T J (J -oo J

When the initial conditions are arbitrary, the subsequent motion is made

up of systems of waves, of all possible lengths, travelling in either direction,

each with the velocity proper to its own wave-length. Hence, in general, the

form of the free surface is continually altering, the only exception being when

the wave-length of every component system which is present in sensible

amplitude is large compared with the depth of the fluid. In this case the

velocity of propagation (glifi is independent of the wave-length, so that, if we
have waves travelling in one direction only, the wave-profile remains un

changed in form as it advances, as in Art. 167.

In the case of infinite depth, the formulae (iii), (iv) take the simpler forms

&quot;

cos k (X
&quot; * sn

............ (vi),

The problem of tracing out the consequences of a limited initial disturbance,

in this case, received great attention at the hands of the earlier investigators

in the subject, to the neglect of the more important and fundamental pro

perties of simple-harmonic trains. Unfortunately, the results, even on the

simplest suppositions which we may make as to the nature and extent of the

original disturbance, are complicated and difficult of interpretation. We shall

therefore content ourselves with the subjoined references, which will enable

the reader to make himself acquainted with what has been achieved in this

branch of the subject*.

*
Poisson,

&quot; M6moire sur la Theorie des Ondes,&quot; Mem. de VAcad. roy. des

Sciences, 1816.

Cauchy, 1. c. ante p. 18.

Sir W. Thomson, &quot;On the Waves produced by a Single Impulse in Water of

any Depth, or in a Dispersive Medium,&quot; Proc. Roy. Soc., Feb. 3, 18 7.

W. Burnside,
&quot; On Deep-Water Waves resulting from a Limited Original

Disturbance,&quot; Proc. Lond. Math. Soc., t. xx., p. 22 (1888).
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221. A remarkable result of the dependence of the velocity of

propagation on the wave-length is furnished by the theory of

group-velocity. It has often been noticed that when an isolated

group of waves, of sensibly the same length, is advancing over

relatively deep water, the velocity of the group as a whole is less

than that of the waves composing it. If attention be fixed on a

particular wave, it is seen to advance through the group, gradually

dying out as it approaches the front, whilst its former position in

the group is occupied in succession by other waves which have

come forward from the rear.

The simplest analytical representation of such a group is

obtained by the superposition of two systems of waves of the same

amplitude, and of nearly but not quite the same wave-length.

The corresponding equation of the free surface will be of the form

77
= a sin k (x ct) + a sin k (x c t)

/I, TJ
T[&amp;gt;n Tffn \ /]f&amp;gt;

I Iff
-~ / IV ^&quot;&quot; Iv /VC/ fif L/ , \ * / IV |^ A/= 2a cos

If k, k be very nearly equal, the cosine in this expression varies

very slowly with x
;
so that the wave-profile at any instant has

the form of a curve of sines in which the amplitude alternates

gradually between the values and 2a. The surface therefore

presents the appearance of a series of groups of waves, separated
at equal intervals by bands of nearly smooth water. The motion

of each group is then sensibly independent of the presence of the

others. Since the interval between the centres of two successive

groups is 27r/(& k
),

and the time occupied by the system in

shifting through this space is %7r/(kc k c ), the group-velocity is

(kc k c )/(k k ), or d (kc)/dk, ultimately. In terms of the wave

length X (= 27T/&), the group-velocity is

This result holds for any case of waves travelling through a

uniform medium. In the present application we have

(3),
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and therefore, for the group-velocity,

dk sinh2M

The ratio which this bears to the wave-velocity c increases as Ich

diminishes, being -|
when the depth is very great, and unity when

it is very small, compared with the wave-length.

The above explanation seems to have been first suggested by
Stokes*. The question was attacked from another point of view

by Prof. Osborne Reynolds f, by a calculation of the energy propa

gated across a vertical plane of particles. In the case of infinite

depth, the velocity-potential corresponding to a simple-harmonic
train of waves

r)
= a sin k (x ct) ........................ (5),

is
(f&amp;gt;

= aceky cos k (x ct) ..................... (6),

as may be verified by the consideration that for y = we must

have drj/dt
=

dfy/dy. The variable part of the pressure is
pd(f&amp;gt;/dt,

if we neglect terms of the second order, so that the rate at which

work is being done on the fluid to the right of the plane x is

- f p dy = pa&quot;k*c

3 sin2k (x
-

ct) f
J _oo ClX J

(7),

since c
2 =

g/k. The mean value of this expression is %gpa?c. It

appears on reference to Art. 219 that this is exactly one-half of

the energy of the waves which cross the plane in question per
unit time. Hence in the case of an isolated group the supply of

energy is sufficient only if the group advance with half the

velocity of the individual waves.

It is readily proved in the same manner that in the case

* Smith s Prize Examination, 1876. See also Lord Bayleigh, Theory of Sound,

Art. 191.

t
&quot; On the Bate of Progression of Groups of Waves, and the Bate at which

Energy is Transmitted by Waves,&quot; Nature, t. xvi., p. 343 (1877). Professor

Beynolds has also constructed a model which exhibits in a very striking manner

the distinction between wave-velocity and group-velocity in the case of the

transverse oscillations of a row of equal pendulums whose bobs are connected

by a string,
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of a finite depth h the average energy transmitted per unit

time is

which is, by (4), the same as

Hence the rate of transmission of energy is equal to the group-

velocity, d(kc)/dk, found independently by the former line of

argument.

These results have a bearing on such questions as the wave-

resistance of ships. It appears from Art. 227, below, in the

two-dimensional form of the problem, that a local disturbance

of pressure advancing with velocity c
[&amp;lt; (gh)*] over still water of

depth h is followed by a simple-harmonic train of waves of the

length (27T/&) appropriate to the velocity c, and determined there

fore by (3); whilst the water in front of the disturbance is sensibly
at rest. If we imagine a fixed vertical plane to be drawn in the rear

of the disturbance, the space in front of this plane gains, per unit

time, the additional wave-energy \gpa?c, where a is the amplitude
of the waves generated. The energy transmitted across the plane
is given by (8). The difference represents the work done by the

disturbing force. Hence if R denote the horizontal resistance

experienced by the disturbing body, we have

As c increases from zero to (gh)*, kh diminishes from oc to 0, and
therefore R diminishes from %gpa* to Of.

When c &amp;gt; (gh)*, the water is unaffected beyond a certain small

distance on either side, and the wave-resistance R is then zeroj.

* Lord Kayleigh,
&quot; On Progressive Waves,&quot; Proc. Lond. Math. Soc., t. ix., p. 21

(1877); Theory of Sound, t. i., Appendix.
t It must be remarked, however, that the amplitude a due to a disturbance of

given character will also vary with c.

+ Cf. Sir W. Thomson &quot; On Ship Waves,&quot; Proc. Inst. Hech. Eny., Aug. 3, 1887;
Popular Lectures and Addresses, London, 1889-94, t. iii., p. 450. A formula equi
valent to (10) was given in a paper by the same author,

&quot; On Stationary Waves in

Flowing Water,&quot; PlriL Mag., Nov. 1886.
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222. The theory of progressive waves may be investigated, in

a very compact manner, by the method of Art. 172*.

Thus if
(/&amp;gt;, -\/r

be the velocity- and stream-functions when the

problem has been reduced to one of steady motion, we assume

(&amp;lt;/&amp;gt;

-I- i^)/c
= -

(x + iy} + meik(*+ iy) + i/3e-
ik(x+iy}

,

whence
&amp;lt;/c

= - x - (oLe~
ky -

/3e
ky

) sin kx,\
, .

^/c = -y + (ae~
ky + /3e

ky
) cos kx }

This represents a motion which is periodic in respect to x, super

posed on a uniform current of velocity c. We shall suppose that

ka and k/3 are small quantities ;
in other words that the amplitude

of the disturbance is small compared with the wave-length.

The profile of the free surface must be a stream-line; we will

take it to be the line ^r
= 0. Its form is then given by (1), viz. to

a first approximation we have

y = (a + /3) cos kx (2),

shewing that the origin is at the mean level of the surface.

Again, at the bottom (y
=

h) we must also have ty
= const.

;
this

requires
Pe-

kh =0.

The equations (1) may therefore be put in the forms

(j)/c
= x + C cosh k (y + h) sin kx, ) , ,

Tfr/c
= y+ C sinh A; (y + A) cos &#

j

The formula for the pressure is

= const. gy i-
\ {

-2- I +
( -^~

p \\CUB/ \ay

C
2

= const. gy -= {1 2kC cosh k(y + h) cos &#},

neglecting A:
2 2

. Since the equation to the stream-line ty
= is

y = (7 sinh kh cos &# (4),

approximately, we have, along this line,

- = const. + (kc
z cothM a) y.

P

* Lord Kayleigh, I. c, ante p. 279.
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The condition for a free surface is therefore satisfied, provided

, tanhM

This determines the wave-length (2-7T/&) of possible stationary

undulations on a stream of given uniform depth h, and velocity c.

It is easily seen that the value of kh is real or imaginary

according as c is less or greater than (gh)*.

If, on the other hand, we impress on everything the velocity

c parallel to a?, we get progressive waves on still water, and (5)

is then the formula for the wave-velocity, as in Art. 218.

When the ratio of the depth to the wave-length is sufficiently great, the

formulae (1) become

leading to ^= const. -gy-
c

-{\- 2kpe*v cos lex+k^e^} ... ... (ii).
P

If we neglect F/3
2
,
the latter equation may be written

= const. + (k#-g}y+ Tccty ......................... (iii).

Hence if c2= gjk....................................... (iv),

the pressure will be uniform not only at the upper surface, but along every

stream-line
&amp;gt;//

= const.* This point is of some importance ;
for it shews that

the solution expressed by (i) and (iv) can be extended to the case of any
number of liquids of different densities, arranged one over the other in

horizontal strata, provided the uppermost surface be free, and the total depth
infinite. And, since there is no limitation to the thinness of the strata, we

may even include the case of a heterogeneous liquid whose density varies

continuously with the depth.

223. The method of the preceding Art. can be readily

adapted to a number of other problems.

For example, to find the velocity of propagation of waves over

the common horizontal boundary of two masses of fluid which are

otherwise unlimited, we may assume

where the accent relates to the upper fluid. For these satisfy the

* This conclusion, it must be noted, is limited to the case of infinite depth.

It was first remarked by Poisson, I.e. ante, p. 380.

L. 25
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condition of irrotational motion, V 2

-^r
=

;
and they give a uniform

velocity c at a great distance above and below the common surface,

at which we have
-fy
=

^r
= 0, say, and therefore y = /3 cos kx, ap

proximately.

The pressure-equations are

* = const. gy -~ (1 2&/3e^ cos kx),

$ c2

,
= const. gy -= (1 + 2kj3e~ky cos lex),

which give, at the common surface,

p/p = const. -(g-kc*)y,

p lp
= const. -(g + kc2

) y,

the usual approximations being made. The condition p=p thus

leads to

a result first obtained by Stokes.

The presence of the upper fluid has therefore the effect of

diminishing the velocity of propagation of waves of any given

length in the ratio {(1 s)/(l + s)}i, where s is the ratio of the

density of the upper to that of the lower fluid. This diminution

has a two-fold cause
;
the potential energy of a given deformation

of the common surface is diminished, whilst the inertia is in

creased. As a numerical example, in the case of water over

mercury (s~
1 = 13 6) the above ratio comes out equal to 929.

It is to be noticed, in this problem, that there is a disconti

nuity of motion at the common surface. The normal velocity

(d^rjdx) is of course continuous, but the tangential velocity

( dty/dy) changes from c(lk/3 cos Tex) to c(l + k/3 cos kx) as we
cross the surface

;
in other words we have (Art. 149) a vortex-sheet

of strength kc/3 cos kx. This is an extreme illustration of the

remark, made in Art. 18, that the free oscillations of a liquid of

variable density are not necessarily irrotational.

If p &amp;lt;

/&amp;gt;
,
the value of c is imaginary. The undisturbed

equilibrium-arrangement is then of course unstable.
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The case where the two fluids are bounded by rigid horizontal planes

y=h, y= h
,

is almost equally simple. We have, in place of (1),

sinh k (y + A)

^--y-g^&quot;^.****smh kK

leading to c2= ?. ., .f ^ ,. 77&amp;gt;t
. ...(ii).

p cothM -Hp coth kh

When M and M are both very great, this reduces to the form (2). When kh

is large, and kh small, we have

(iii),

the main effect of the presence of the upper fluid being now the change in

the potential energy of a given deformation.

When the upper surface of the upper fluid is free, we may assume

ABinh(v+A) 7 \bc= -y+p --. .y.T cos&g, I

(iv),

!// /&amp;lt;?

= y + (/3 cosh ky+ y sinh &y) cos &*? /

and the conditions that ^ = \^ , ^&amp;gt;=j0
at the free surface then lead to the

equation

c4 (p coth kh cothM + p )
- c2P (coth kh + coth M) |+ (p

-
p )^= ...... (v).

Since this is a quadratic in c2
,
there are two possible systems of waves of any

given length (2?r/^). This is as we should expect, since when the wave-length
is prescribed the system has virtually two degrees of freedom, so that there

are two independent modes of oscillation about the state of equilibrium. For

example, in the extreme case where p /p is small, one mode consists mainly in

an oscillation of the upper fluid which is almost the same as if the lower fluid

were solidified, whilst the other mode may be described as an oscillation of the

lower fluid which is almost the same as if its upper surface were free.

The ratio of the amplitudes at the upper and lower surfaces is found

to be
kc*

kc* cosh kh -g sinh kh

Of the various special cases that may be considered, the most interesting
is that in which kh is large ; i. e. the depth of the lower fluid is great compared
with the wave-length. Putting coth kh= 1, we see that one root of (v) is now

c2 =#/ ..................................... (vii),

exactly as in the case of a single fluid of infinite depth, and that the ratio of

the amplitudes is e*A . This is merely a particular case of the general result

stated at the end of Art. 222
;

it will in fact be found on examination that

252



388 SURFACE WAVES. [CHAP. IX

there is now no slipping at the common boundary of the two fluids. The

second root of (v) is

c2- p
~

p&amp;gt; - $- (viii)~ *&quot; ...ivrnj,

and for this the ratio (vi) assumes the value

............... (ix).

If in (viii) and (ix) we put &A = oo
,
we fall back on a former case

;
whilst if we

make kh small, we find

-(l-0fV (x),

and the ratio of the amplitudes is

.(xi).

These problems were first investigated by Stokes*. The case of any
number of superposed strata of different densities has been treated by Webbf
and Greenhill|. For investigations of the possible rotational oscillations in a

heterogeneous liquid the reader may consult the papers cited below .

224. As a further example of the method of Art. 222, let us

suppose that two fluids of densities p, p, one beneath the other,

are moving parallel to x with velocities U, U , respectively, the

common surface (when undisturbed) being of course plane and

horizontal. This is virtually a problem of small oscillations about

a state of steady motion.

The fluids being supposed unlimited vertically, we assume, for

the lower fluid

Tjr
= - U [y

- $e ky cos kx\ (1),

and for the upper fluid

(2),

* &quot; On the Theory of Oscillatory Waves,&quot; Carnb. Trans, t. viii. (1847) ;
Math,

and Phys. Papers, t. i., pp. 212219.
t Math. Tripos Papers, 1884.

$ &quot;Wave Motion in Hydrodynamics,&quot; Amer. Journ. Math., t. ix. (1887).

Lord Kayleigh, &quot;Investigation of the Character of the Equilibrium of an

Incompressible Heavy Fluid of Variable Density.&quot; Proc. Lond. Math. Soc., t. xiv.,

p. 170 (1883).

Burnside, &quot;On the small Wave-Motions of a Heterogeneous Fluid under Gravity.&quot;

Proc. Lond. Math. Soc., t. xx., p. 392 (1889).

Love, &quot;Wave-Motion in a Heterogeneous Heavy Liquid.&quot; Proc. Lond. Math.

Soc., t. xxii., p. 307 (1891).
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the origin being at the mean level of the common surface, which

is assumed to be stationary, and to have the form

y /3cos kx (3).

The pressure-equations give

2 = const. qy ^U2
(1 2k8eky cos kx\

P-,
= const. gy \U 2

(1 + 2kpe~ ky cos kx)
P

whence, at the common surface,

= const.
p

= const. - (kU 2 + g)
P

Since we must have p=p over this surface, we get

P U* + p U* = (P -p ) ..................... (6).

This is the condition for stationary waves on the common
surface of the two currents U, V.

If we put U = U, we fall back on the case of Art. 223. Again
if we put

17= -c, lP = -c + u,

we get the case where the upper fluid has a velocity u relative to

the lower
;

c then denotes the velocity (relative to the lower fluid)

of waves on the common surface. An interesting application of

this is to the effect of wind on the velocity of water-waves.

The equation (6) now takes the form

or, if we write s for p /p, and put c for the wave-velocity in the

absence of wind, as given by Art. 223 (2),

2su su2

-,
The roots of this quadratic in c are

su
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These are both real, provided

&amp;lt;^.Co
(10),

and they have, moreover, opposite signs, if

c (ID-

In this latter case waves of the prescribed length (2-7T/&) may
travel with or against the wind, but the velocity is greater with

the wind than against it. If u lie between the limits (10) and (11),

waves of the given length cannot travel against the wind. Finally

when u exceeds the limit (10), the values of c are imaginary. This

indicates that the plane form of the common surface is now un

stable. Any disturbance whose wave-length is less than

(12)

tends to increase indefinitely.

Hence, if there were no modifying circumstances, the slightest

breath of wind would suffice to ruffle the surface of water. We
shall give, later, a more complete investigation of the present

problem, taking account of capillary forces, which act in the

direction of stability.

It appears from (6) that if p = p ,
or if g = 0, the plane form of

the surface is unstable for all wave-lengths.

These results illustrate the statement, as to the instability of

surfaces of discontinuity in a liquid, made in Art. 80*.

When the currents are confined by fixed horizontal planes y= -h, y= h
,

we assume

I
S

_inlO^+A)
I

..................
|f smh kh j

sn
7

(n).

The condition for stationary waves on the common surface is then found

to be

(iii)f.

* This instability was first remarked by von Helmholtz, I.e. ante, p. 24.

t Greenhill, Lc. ante, p. 388.
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It appears on examination that the undisturbed motion is stable or

unstable, according as

&amp;lt;
p coth kh+p coth kh

&amp;gt;

(pp coth kh coth kh }%

where u is the velocity of the upper current relative to the lower, and c is

the wave-velocity when there are no currents (Art. 223 (ii)). When h and h

both exceed half the wave-length, this reduces practically to the former

result (10).

225. These questions of stability are so important that it is

worth while to give the more direct method of treatment*.

If
&amp;lt;/&amp;gt;

be the velocity-potential of a slightly disturbed stream

flowing with the general velocity U parallel to x, we may write

&amp;lt;/&amp;gt;

= -
t/&quot;tf +

&amp;lt;k

........................... (1),

where fa is small. The pressure-formula is, to the first order,

and the condition to be satisfied at a bounding surface y 77, where

7? is small, is

dri rjdrj_ dfa
dr U

dx~~~fy
......

To apply this to the problem stated at the beginning of Art.

224, we assume, for the lower fluid,

^ = aey+*&amp;lt;te+rf) ........................(4);
for the upper fluid

&amp;lt;j
)l
= C e-ky+Wx+^ ..................... (5);

with, as the equation of the common surface,

The continuity of the pressure at this surface requires, by (2),

p{i(&amp;lt;r
+ kU)C-ga}=p {i(&amp;lt;r

+ kU )C -ga} ...... (7);

whilst the surface-condition (3) gives

=
-kC,\ ....................

*
Sir W. Thomson, &quot;

Hydrokinetic Solutions and Observations,&quot; Phil. Mag.,
Nov. 1871; Lord Kayleigh, &quot;On the Instability of

Jets,&quot; Proc. Lond. Math. Soc.
t

t. x., p. 4 (1878).
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Eliminating a, G, C&quot;,
we get

p(&amp;lt;r
+ kU)* + p (o- + kUy = gk(p-p ) ............ (9).

It is obvious that whatever the values of U, V, other than

zero, the values of a will become imaginary when k is sufficiently

great.

Nothing essential is altered in the problem if we impress on

both fluids an arbitrary velocity in the direction of x. Hence,

putting U = 0, U = u, we get

p&amp;lt;T*
+ P (&amp;lt;r

+ ku)* = gk(p-p ) ............... (10),

which is equivalent to Art. 224 (7).

If p = p, it is evident from (9) that a will be imaginary for all

values of k. Putting U = U
}
we get

o-=ikU........................... (11).

Hence, taking the real part of (6), we find

&amp;lt;

n
= ae kut coskx ........................ (12).

The upper sign gives a system of standing waves whose height

continually increases with the time, the rate of increase being

greater, the shorter the wave-length.

The case of p~p, with U=U
,

is of some interest, as illustrating the

flapping of sails and flags*. We may conveniently simplify the question by

putting U=U =0
, any common velocity may be superposed afterwards if

desired.

On the present suppositions, the equation (9) reduces to o-
2 =0. On

account of the double root the solution has to be completed by the method

explained in books on Differential Equations. In this way we obtain the two

independent solutions

and

The former solution represents a state of equilibrium ;
the latter gives a

system of stationary waves with amplitude increasing proportionally to the

time.

In this problem there is no physical surface of separation to begin with
;

but if a slight discontinuity of motion be artificially produced, e.g. by impulses

* Lord Kayleigh, I.e.
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applied to a thin membrane which is afterwards dissolved, the discontinuity

will persist, and, as we have seen, the height of the corrugations will continu

ally increase.

The above method, when applied to the case where the fluids are confined

between two rigid horizontal planes y=h,y=kf, leads to

p(a-+kU }
2 cothkk+p (a-+kU )

2 cothkk ^gk(p-p) (iii),

which is equivalent to Art. 224 (iii).

We may next calculate the effect of an arbitrary, but

steady, application of pressure to the surface of a stream flowing
with uniform velocity c in the direction of x positive*.

It is to be noted that, in the absence of dissipative forces, this

problem is to a certain extent indeterminate, for on any motion

satisfying the prescribed pressure-conditions we may superpose a

train of free waves, of arbitrary amplitude, whose length is such

that their velocity relative to the water is equal and opposite to

that of the stream, arid which therefore maintain a fixed position
in space.

To remove this indeterminateness we may suppose that the

deviation of any particle of the fluid from the state of uniform

flow is resisted by a force proportional to the relative velocity.

This law of resistance is not that which actually obtains in nature,

but it will serve to represent in a rough way the effect of small

dissipative forces
;
and it has the great mathematical convenience

that it does not interfere with the irrotational character of the

motion. For if we write, in the equations of Art. 6,

X =
fj,(u c), Y=g fj,v,

Z= p,w ......... (1),

where the axis of y is supposed drawn vertically upwards, and c

denotes the velocity of the stream, the investigation of Art. 34,

when applied to a closed circuit, gives

(2),

whence / (udx + vdy + wdz) = Ce~^ ...... ........... (3).

* The first steps of the following investigation are adapted from a paper by
Lord Rayleigh, &quot;On the Form of Standing Waves on the Surface of Eunning
Water,&quot; Proc. Lond. Math. Soc., t. xv., p. 69 (1883), being simplified by the

omission, for the present, of all reference to Capillarity. The definite integrals
involved are treated, however, in a somewhat more general manner, and the
discussion of the results necessarily follows a different course.
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Hence the circulation in a circuit moving with the fluid, if once

zero, is always zero.

If
(f&amp;gt;

be the velocity-potential, the equations of motion have

now the integral

k2
............... (4),

this being, in fact, the form assumed by Art. 21 (4) when we write

n = gy-p(cx + &amp;lt;l&amp;gt;)

..................... (5),

in accordance with (1) above.

To calculate, in the first place, the effect of a simple-harmonic
distribution of pressure we assume

y sin kx, \

f

.................. W
The equation (4) becomes, on neglecting as usual the square

of k/3,

2 = ... - gy + fi^y (&c
2 cos kx + pc sin kx) ......... (7).

This gives for the variable part of the pressure at the upper
surface (i|r

= 0)

=
(3 [(kd

1

a) cos kx + pc sin kx} ............ (8),
P

which is equal to the real part of

If we equate the coefficient to P, we may say that to the pressure

7 = ^** (9 &amp;gt;

corresponds the surface-form

y = kd,_
P
_ i c

e
ikx

(io).

Hence taking the real parts, we find that the surface-pressure

A/n

(11)
P

produces the wave-form

p (kc* g) cos kx /AC sin kz
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If we write ic=g/c
2

,
so that ZTT/K is the wave-length of the

free waves which could maintain their position in space against

the flow of the stream, the last formula may be written

P (k /c) cos kx /^ sin kx

where /^ = //./c.

This shews that if
/u,
be small the wave-crests will coincide in position with

the maxima, and the troughs with the minima, of the applied pressure, when

the wave-length is less than
2?r/&amp;lt; ;

whilst the reverse holds in the opposite

case. This is in accordance with a general principle. If we impress on

everything a velocity -c parallel to #, the result obtained by putting /z1
= in

(13) is seen to be merely a special case of Art. 165 (12).

In the critical case of k= K, we have

y= -- . sin&,
fiC

shewing that the excess of pressure is now on the slopes which face down the

stream. This explains roughly how a system of progressive waves may be

maintained against our assumed dissipative forces by a properly adjusted

distribution of pressure over their slopes.

227. The solution expressed by (13) may be generalized, in

the first place by the addition of an arbitrary constant to x
t
and

secondly by a summation with respect to k. In this way we may
construct the effect of any arbitrary distribution of pressure, say

using Fourier s expression

f(x) = -\ dk( f(\)cosk(x-\)d\ ........ (15).
7T J o J -oo

*

It will be sufficient to consider the case where the imposed

pressure is confined to an infinitely narrow strip of the surface,

since the most general case can be derived from this by in

tegration. We will suppose then that f(\) vanishes for all but

infinitely small values of X, so that (15) becomes

a&amp;gt;)=- dkcoskx.i f(\)d\ ......... (16)*.
TTJo J_oo

teness of this expression may be avoided

a*L 1 f e-*kdk
I

f(\)cosk(x-\)d\

* The indeterminateness of this expression may be avoided by the temporary use

of Poisson s formula

in place of (15).
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Hence in (13) we must replace P by Q/jr.&k, where

and integrate with respect to k between the limits and oo
;
thus

If we put =k+ im, where k, m are taken to be the rectangular coordinates

of a variable point in a plane, the properties of the expression (18) are

contained in those of the complex integral

:*.

It is known (Art. 62) that the value of this integral, taken round the

boundary of any area which does not include the singular point (=c), is zero.

In the present case we have c= K + i^ ,
where K and /^ are both positive.

Let us first suppose that x is positive, and let us apply the above theorem

to the region which is bounded externally by the line m= and by an infinite

semicircle, described with the origin as centre on the side of this line for

which m is positive, and internally by a small circle surrounding the point

(*, JAJ).
The part of the integral due to the infinite semicircle obviously

vanishes, and it is easily seen, putting c= re
ld

,
that the part due to the small

circle is

if the direction of integration be chosen in accordance with the rule of Art. 33.

We thus obtain

dk _ V -MI)* =

which is equivalent to

rpikx
C p~ikx

,

*
. .dk= 27rie

l{K+t^ x+
*-(K+ft) 7

On the other hand, when x is negative we may take the integral (i) round

the contour made up of the line m= and an infinite semicircle lying on the

side for which m is negative. This gives the same result as before, with the

omission of the term due to the singular point, which is now external to the

contour. Thus, for x negative,

p-ikx

An alternative form of the last term in (ii) may be obtained by integrating
round the contour made up of the negative portion of the axis of &, and the
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pti

/;

positive portion of the axis of m, together with an infinite quadrant. We
thus find

which is equivalent to

p-mx
-

\
dk= -r-rdm .................. (iv).-

This is for x positive. In the case of K negative, we must take as our

contour the negative portions of the axes of
, m, and an infinite quadrant.

This leads to

r e -ikx /
emx

,
f

. .dk =
\

---dm .................. (v),

m *+(K-Hpi) J Q
m+^-iK

as the transformation of the second member of (iii).

In the foregoing argument /z x
is positive. The corresponding results for

the integral

are not required for our immediate purpose, but it will be convenient to state

them for future reference. For x positive, we find

/ eikx r e~** r e~mx

I TT-,
-

\
dk =

\ T-r-f
-^dk= \
--dm ... (vii):

/o *-(-*l) 7o^+ (-^i) Jo m+^ + iK

whilst, for x negative,

= _2,^^^+ r .

&quot;*

.

N&amp;lt;ft

J *+5-53
&quot;

^^ dm...... (viii).--
The verification is left to the reader.

If we take the real parts of the formulae (ii), (iv), and (iii), (v), respectively,
we obtain the results which follow.

The formula (18) is equivalent, for x positive, to

^ . y = -
**-*&amp;gt; sin , +

/&quot;

(t + *)

( %
~

(19),

(k + fc) cos A;^ yu,i sin A;a? ,

-7 dk

and, for x negative, to

7TC
2

Q
y ~ (20) -
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The interpretation of these results is simple. The first term of

(19) represents a train of simple-harmonic waves, on the down
stream side of the origin, of wave-length 2?rc2

/^, with amplitudes

gradually diminishing according to the law e~^x . The remaining

part of the deformation of the free-surface, expressed by the

definite integals in (19) and (20), though very great for small

values of #, diminishes very rapidly as x increases, however small

the value of the frictional coefficient /j^.

When /*! is infinitesimal, our results take the simpler forms

7TC2 ~ . f
00
cos kx

f rfliQmx
2vr sin KX + I

2
c?m (21),

Jo w + #

for a? positive, and

7TC2 pcos&tf 77 f
00

raema; , /rtox

T- y =
l. ^T7*=J ^+7^m (22)

for a? negative. The part of the disturbance of level which is

represented by the definite integrals in these expressions is now

symmetrical with respect to the origin, and diminishes constantly

as the distance from the origin increases. It is easily found, by
usual methods, that when KX is moderately large

me~mx
d

1
_3J_

5!

Q /it \ fC /C JU tC JU rC Ju

the series being of the kind known as semi-convergent. It

appears that at a distance of about half a wave-length from the

origin, on the down-stream side, the simple-harmonic wave-system
is fully established.

The definite integrals in (21) and (22) can be reduced to known functions

as follows. If we put (&+K) x=u, we have, for x positive,

r
cos kx 77 /&quot;*

cos (KX - u) _

-;
-- dk=

I
-2-Lfo

k+* f u

= - Ci KX cos KX+ (far Si KX} sin KX...... (ix),

where, in the usual notation,

n . f
00 cosu , . f

u siuu ,(J1U-I - du. Siu= I
--- du ............... (x).

ju U Jo U
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The functions Ci u and Si u have been tabulated by Glaisher*. It appears
that as u increases from zero they tend very rapidly to their asymptotic values

and ^?r, respectively. For small values of u we have

where y is Euler s constant -5772....

The expressions (19), (20) and (21), (22) alike make the eleva

tion infinite at the origin, but this difficulty disappears when the

pressure, which we have supposed concentrated on a mathematical

line of the surface, is diffused over a band of finite breadth. In

fact, to calculate the effect of a distributed pressure, it is only

necessary to write x x for x, in (21) and (22), to replace Q by
Ap/p . x

,
where Ap/p is any given function of #

,
and to in

tegrate with respect to of between the proper limits. It follows

from known principles of the Integral Calculus that, if Ap be

finite, the resulting integrals are finite for all values of x.

If we write x (u) = Ciu sin u+ (-|7r
Si w) cos u

(
x
ii)j

it is easily found from (19) and (20) that, when ^ is infinitesimal, we have, for

positive values of #,
no T

00

/ ydk Sroos*r+x(i?) (xiii).V J x

and for negative values of x

-n- x
- Kx} (xiv).

In particular, the integral depression of the free surface is given by

and is therefore independent of the velocity of the stream.

By means of a rough table of the function x (u\ it is easy to construct the

wave-profile corresponding to a uniform pressure applied over a band of any
given breadth. It may be noticed that if the breadth of the band be an
exact multiple of the wave-length (2r/ic), we have zero elevation of the surface
at a distance, on the down-stream as well as on the up-stream side of the
seat of disturbance.

* &quot; Tables of the Numerical Values of the Sine-Integral, Cosine-Integral, and
Exponential-Integral,&quot; Phil Trans., 1870. The expression of the last integral in

(22) in terms of the sine- and cosine-integrals, was obtained, in a different manner

from the above, by Schlomilch,
&quot; Sur l inte&quot;grale d6finie /

dd
e~

X&
&quot;

Crelle
62 + a*

t. xxxiii. (1846) ; see also De Morgan, Differential and Integral Calculus, London
1842, p. 654.



400 SURFACE WAVES. [CHAP, ix



227-228] FORM OF THE WAVE-PROFILE. 401

The figure on p. 400 shews, with a somewhat extravagant vertical scale,

the case where the band (AB) has a breadth K~ I
,
or 159 of the length of a

standing wave.

The circumstances in any such case might be realized approximately by

dipping the edge of a slightly inclined board into the surface of a stream,

except that the pressure on the wetted area of the board would not be uniform,
but would diminish from the central parts towards the edges. To secure

a uniform pressure, the board would have to be curved towards the edges, to

the shape of the portion of the wave-profile included between the points

A, B in the figure.

If we impress on everything a velocity c parallel to x, we

get the case of a pressure-disturbance advancing with constant

velocity c over the surface of otherwise still water. In this form

of the problem it is not difficult to understand, in a general way,
the origin of the train of waves following the disturbance. It is

easily seen from the theory of forced oscillations referred to in Art.

165 that the only motion which can be maintained against small

dissipative forces will consist of a train of waves of the velocity

c, equal to that of the disturbance, and therefore of the wave

length 2-7rc
2

/(7.
And the theory of group-velocity explained in

Art. 221 shews that a train of waves cannot be maintained ahead

of the disturbance, since the supply of energy is insufficient.

228. The main result of the preceding investigation is that a

line of pressure athwart a stream flowing with velocity c produces
a disturbance consisting of a train of waves, of length 27rc2

/#,

lying on the down-stream side. To find the effect of a line of

pressure oblique to the stream, making (say) an angle JTT 6 with

its direction, we have only to replace the velocity of the stream

by its two components, c cos 6 and c sin 6, perpendicular and

parallel to the line. If the former component existed alone, we
should have a train of waves of length 2?rc

2

/# . cos2
0, and the

superposition of the latter component does not affect the con

figuration. Hence the waves are now shorter, in the ratio cos2 0:1.

It appears also from Art. 227 (21) that, for the same integral

pressure, the amplitude is greater, varying as sec2
6, but against

this must be set the increased dissipation to which the shorter

waves are subject*.

To infer the effect of a pressure localized about a point of the

* On the special hypothesis made above this is indicated by the factor e~ Ml&amp;lt;r in

Art. 227 (19), where AC^/A/C . sec0.

I*. 26
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surface, we have only to take the mean result of a series of lines

of pressure whose inclinations 6 are distributed uniformly between

the limits + JTT*. This result is expressed by a definite integral

whose interpretation would be difficult
;
but a general idea of the

forms of the wave-ridges may be obtained by a process analogous
to that introduced by Huyghens in Physical Optics, viz. by tracing

the envelopes of the straight lines which represent them in the

component systems. It appears on reference to (21) that the

perpendicular distance p of any particular ridge from the origin

is given by
p = (2-i)lT,

where s is integral, and K = g/c* cos
2
6. The tangential polar equa

tion of the envelopes in question is therefore

p = acos*0 (1),

where, for consecutive crests or hollows, a differs by 27rc2

/#. The

forms of the curves are shewn in the annexed figure, traced from

the equations

x =jocos 6 -^sin0= \ a (5 cos 6 cos SB), }

[ (2).

y =p sin + -A cos 6 = J a (sin 6 + sin 30)
etc/ /

* This artifice is taken from Lord Rayleigh s paper, cited on p. 393.
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thisThe values of x and y are both stationary when sin2 9 =

gives a series of cusps lying on the straight lines

y\x = 2- = tan-1 19 28 *.

We have here an explanation, at all events as to the main

features, of the peculiar system of waves which accompanies a ship

in sufficiently rapid motion through the water. To an observer on

board the problem is of course one of steady motion
;
and although

the mode of disturbance is somewhat different, the action of the

bows of the ship may be roughly compared to that of a pressure-

point of the kind we have been considering. The preceding

figure accounts clearly for the two systems of transverse and

diverging waves which are in fact observed, and for the specially

conspicuous echelon
5

waves at the cusps, where these two systems

coalesce. These are well shewn in the annexed drawingf by
Mr. R. E. Froude of the waves produced by a model.

A similar system of waves is generated at the stern of the

ship, which may roughly be regarded as a negative pressure-point.

*
Of. Sir W. Thomson,

&quot; On Ship Waves,&quot; Proc. Inst. Mech. Eng., Aug. 3, 1887,

Popular Lectures, t. iii., p. 482, where a similar drawing is given. The investigation

there referred to, based apparently on the theory of group-velocity, has unfortu

nately not been published. See also E. E. Froude, &quot;On Ship Eesistance,&quot; Papers

of the Greenock Phil. Soc., Jan. 19, 1894.

t Copied, by the kind permission of Mr Froude and the Council of the Institute

of Naval Architects, from a paper by the late W. Froude, &quot;On the Effect on the

Wave-Making Kesistance of Ships of Length of Parallel Middle Body,&quot; Trans. Inst.

Nov. Arch,, t. xvii. (1877).

262
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With varying speeds of the ship the stern-waves may tend parti

ally to annul, or to exaggerate, the effect of the bow-waves, and

consequently the wave-resistance to the ship as a whole for a

given speed may fluctuate up and down as the length of the ship
is increased*.

229. If in the problem of Art. 226 we suppose the depth to be

finite and equal to h, there will be, in the absence of dissipation,

indeterminateness or not, according as the velocity c of the stream

is less or greater than (gh)%, the maximum wave-velocity for the

given depth. See Art. 222. The difficulty presented by the former

case can be evaded as before by the introduction of small frictional

forces
;
but it may be anticipated from the investigation of Art. 227

that the main effect of these will be to annul the elevation of the

surface at a distance on the up-stream side of the region of

disturbed pressure f, and if we assume this at the outset we need

not complicate our equations by retaining the frictional terms.

For the case of a simple-harmonic distribution of pressure we

assume

&amp;lt;/c

= x 4- cosh k (y + h) sin lex, ] ,^.

^fr/c
= y + ft sinh k (y 4- h) cos lex}&quot;

as in Art. 222 (3). Hence, at the surface

y = ft sinh kh cos lex ..................... (2),

we have

- = gy \ (q- c
2
)
=

/3 (kc~ cosh kh g sinh Mi) cos kx ... (3),

so that to the imposed pressure

cosfcp., ......... (4),
P

will correspond the surface-form

T-. sinh kh
-,

, , COS KX, ,

KG- cosh khg sinh ten

* See W. Fronde, I.e., and B. E. Froude,
&quot; On the Leading Phenomena of the

Wave-Making Eesistance of Ships,&quot; Trans. Inst. Nav. Arch., t. xxii. (1881), where

drawings of actual wave-patterns under varied conditions of speed are given, which

are, as to their main features, in striking agreement with the results of the above

theory. Rome of these drawings are reproduced in Lord Kelvin s paper in the Proc.

Inst. Mech. Eng., above cited.

t There is no difficulty in so modifying the investigation as to take the frictional

forces into account, when these are very small,
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As in Art. 226, the pressure is greatest over the troughs, and

least over the crests, of the waves, or vice versa, according as the

wave-length is greater or less than that corresponding to the velo

city c, in accordance with general theory.

The generalization of (5) by Fourier s method gives, with the help and in

the notation of Art. 227 (15) and (17),

sinh kh cos kx ,,

kc2coshkh-gsmhkh
W)

as the representation of the effect of a pressure of integral amount pQ applied

to a narrow band of the surface at the origin. This may be written

7TC
2 r

00

cos(#w/A) ,

.11= \ jrr
L-TTJ du (11).

Q
*

J Q ucothu-gh/c*

Now consider the complex integral

where =u+ iv. The function under the integral sign has a singular point at

= + 100
, according as x is positive or negative, and the remaining singular

points are given by the roots of

(iv).

Since (i) is an even function of x, it will be sufficient to take the case of x

positive.

Let us first suppose that c2 &amp;gt; gh. The roots of (iv) are then all pure

imaginaries ;
viz. they are of the form +

i/3, where /3 is a root of

(v).

The smallest positive root of this lies between and |TT, and the higher roots

approximate with increasing closeness to the values (S+ ^)TT, where s is integral.

We will denote these roots in order by /3 , /31} /32 ,.... Let us now take the

integral (iii) round the contour made up of the axis of u, an infinite semicircle

on the positive side of this axis, and a series of small circles surrounding the

singular points C=fc/3 &amp;gt; *|8i, ^v--- The part due to the infinite semicircle

obviously vanishes. Again, it is known that if a be a simple root o

the value of the integral

taken in the positive direction round a small circle enclosing the point =a is

equal to

Forsyth, Theory of Functions, Art. 24.
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Now in the case of (iii) we have,

......... (vii),

whence, putting a= 2&, the expression (vi) takes the form

(viii),

where JBS
=--&--j- ....................... (ix).

The theorem in question then gives

L
Oixu/h / &ixulh

- -du+
u coth u gh/c

2
J Q u coth u gh/c

2

If in the former integral we write - u for u, this becomes

o u coth u -

The surface-form is then given by

It appears that the surface-elevation (which is symmetrical with respect

to the origin) is insensible beyond a certain distance from the seat of disturb

When, on the other hand, c2 &amp;lt; gk, the equation (iv) has a pair of real roots

(
+ a, say), the lowest roots (

+ /3 )
of (v) having now disappeared. The integral

(ii) is then indeterminate, owing to the function under the integral sign

becoming infinite within the range of integration. One of its values, viz. the

principal value, in Cauchy s sense, can however be found by the same method

as before, provided we exclude the points = +a from the contour by drawing
semicircles of small radius e round them, on the side for which v is positive.

The parts of the complex integral (iii) due to these semicircles will be

f(Y
where/ (a) is given by (vii) ;

and their sum is therefore equal to

where A= ,

a
, ... (xiv).

2 _gh(ghL

The equation corresponding to (xi) now takes the form

j
(
a ~ e

+ f 1 ^^...du^-nA *maxlh+n^B8e-Wh. ..(xv),
(Jo Ja+J ucothu-gh/c

2 *\ ^ h
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so that, if we take the principal value of the integral in (ii), the surface-form

on the side of .^-positive is

(xvi).

Hence at a distance from the origin the deformation of the surface consists

of the simple-harmonic train of waves indicated by the first term, the wave

length ZTrhja being that corresponding to a velocity of propagation c relative

to still water.

Since the function (ii) is symmetrical with respect to the origin, the

corresponding result for negative values of x is

(xvii).

The general solution of our indeterminate problem is completed by adding
to (xvi) and (xvii) terms of the form

Ccosax/h 4- Dsin axfh ...... ... ............... (xviii).

The practical solution including the effect of infinitely small dissipative
forces is obtained by so adjusting these terms as to make the deformation of

the surface insensible at a distance on the up-stream side. We thus get,

finally, for positive values of x,

(xix),

and, for negative values of #,

For a different method of reducing the definite integral in this problem we
must refer to the paper by Lord Kelvin cited below.

230. The same method can be employed to investigate the

effect on a uniform stream of slight inequalities in the bed.*

Thus, in the case of a simple-harmonic corrugation given by

y = h-\- 7 cos kx
(1),

the origin being as usual in the undisturbed surface, we assume

(f)/c
= % + (& cosh ky -f ft sinh ky) sin kx,

(2)
y + (a sinh ky + ft cosh ky) cos kx {

&quot;

The condition that (1) should be a stream-line is

7 = a sinh kh + ft cosh kh (3).

*
Sir W. Thomson, &quot; On Stationary Waves in Flowing Water,&quot; Phil. Mag., Oct.

Nov. and Dec. 1886, and Jan. 1887.
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The pressure-formula is

D- = const. gy + kc2
(a cosh ky + /3 sinh ky) cos kx ... (4),

approximately, and therefore along the stream-line
-\Jr
=

- = const, -f (kc
za g(3) cos kx,

so that the condition for a free surface gives

kc*OL-g@ = ........................... (5).

The equations (3) and (5) determine a and j3. The profile of the

free surface is then given by

y = /3 cos kx

= T-TT
-

77-^ u / 1
cos&# ............ (6).cosh &n $r/A;c

2
. Sinn &/&

If the velocity of the stream be less than that of waves in still

water of uniform depth h, of the same length as the corrugations,

as determined by Art. 218 (4), the denominator is negative, so

that the undulations of the free surface are inverted relatively to

those of the bed. In the opposite case, the undulations of the

surface follow those of the bed, but with a different vertical scale.

When c has precisely the value given by Art. 218 (4), the solution

fails, as we should expect, through the vanishing of the denomi

nator. To obtain an intelligible result in this case we should be

compelled to take special account of dissipative forces.

The above solution may be generalized, by Fourier s Theorem, so as to

apply to the case where the inequalities of the bed follow any arbitrary law.

Thus, if the profile of the bed be given by

^- I dk(
J * &amp;gt;o

that of the free surface will be obtained by superposition of terms of the type

6) due to the various elements of the Fourier-integral ;
thus

1 r ji r=-\ dk
\

TT J J _
/(A)cos(#-A)y=- u/ //9 -T_/i

TT _00 cosh kh - kc* . smh kh

In the case of a single isolated inequality at the point of the bed verti

cally beneath the origin, this reduces to

_ ^

cosh kh - kc* . sinh kh

/;
r ~9--uu cosh u-ghjc*. smh u ,(iii),



2:30-231] INEQUALITIES IN THE BED OF A STREAM. 409

where Q represents the area included by the profile of the inequality above the

general level of the bed. For a depression Q will of course be negative.

The discussion of the integral

...(iv)
I cosh f

-
cfh/c

2
. sinh

can be conducted exactly as in the last Art. The function to be integrated

differs in fact only by the factor /sinh ;
the singular points therefore are the

same as before, and we can at once write down the results.

Thus when c2 &amp;gt; gh we find, for the surface-form,

&amp;lt;

v
&amp;gt;&amp;gt;

the upper or the lower sign being taken according as x is positive or negative.

When c2 &amp;lt; gh, the practical solution is, for x positive,

*i sm
,

and, for x negative,

The symbols a, /3g ,
A

t
BB have here exactly the same meanings as in

Art. 230*

Waves of Finite Amplitude.

231. The restriction to infinitely small motions, in the

investigations of Arts. 216,... implies that the ratio (a/\) of

the maximum elevation to the wave-length must be small. The

determination of the wave-forms which satisfy the conditions of

uniform propagation without change of type, when this restric

tion is abandoned, forms the subject of a classical research by
Sir G, Stokesf.

The problem is, of course, most conveniently treated as one

of steady motion. If we neglect small quantities of the order

* A very interesting drawing of the wave-profile produced by an isolated in

equality in the bed is given in Lord Kelvin s paper, Phil. Mag., Dec. 1886.

+ &quot;On the theory of Oscillatory Waves,&quot; Cavrib. Trans., t. viii. (1847); reprinted,

with a &quot;Supplement,&quot; Math, and Phys. Papers, t. i., pp. 197, 314.

The outlines of a more general investigation, including the case of permanent
waves on the common surface of two horizontal currents, have been given by
von Helmholtz,

&quot; Zur Theorie von Wind und Wellen,&quot; Berl. Monatsber., July 25,

1889.
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a?l\*, the solution of the problem in the case of infinite depth
is contained in the formulae

. . #

The equation of the wave-profile ^ = is found by successive

approximations to be

y = fidw cos ka; = P(I+ky + |-%
2 + . . .) cos kx

= i&2 + (1 + f&
2
/3

2

) cos kx + |&/3
2 cos Zkx + -f

&2 3 cos 3kx + ...

............ (2);

or, if we put 0(1+ &2
/3

2

)
= a,

y ^ka
2 = a cos kx + ^ka? cos 2kx + f&

2a3 cos 3Aj# + ...... (3).

So far as we have developed it, this coincides with the equation of

a trochoid, the circumference of the rolling circle being 2ir/&, or X,

and the length of the arm of the tracing point being a.

We have still to shew that the condition of uniform pressure

along this stream-line can be satisfied by a suitably chosen value

of c. We have, from (1), without approximation

= const. - gy
-
Jc

2

{
1 - 2kp& cos Tex + k^e2k

y} ..... (4),

and therefore, at points of the line y = $eky cos kx,

= const. + (kc* -g)y-

-const.

Hence the condition for a free surface is satisfied, to the present

order of approximation, provided

c^ +^c^^a+^a2

) .................. (6).

This determines the velocity of progressive waves of per

manent type, and shews that it increases somewhat with the

amplitude a.

For methods of proceeding to a higher approximation, and for

the treatment of the case of finite depth, we must refer to the

original investigations of Stokes.

* Lord Kayleigh, I c. ante p. 279.
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The figure shews the wave-profile, as given by (3), in the case

of ka = J, or a/\ = 0796.

The approximately trochoidal form gives an outline which is

sharper near the crests, and flatter in the troughs, than in the case

of the simple-harmonic waves of infinitely small amplitude investi

gated in Art. 218, and these features become accentuated as the

amplitude is increased. If the trochoidal form were exact, instead

of merely approximate, the limiting form would have cusps at the

crests, as in the case of Gerstner s waves to be considered presently.

In the actual problem, which is one of irrotational motion, the

extreme form has been shewn by Stokes*, in a very simple manner,

to have sharp angles of 120.

The problem being still treated as one of steady motion, the motion near

the angle will be given by the formulae of Art. 63
;

viz. if we introduce polar

coordinates r, 6 with the crest as origin, and the initial line of 6 drawn

vertically downwards, we have

(i),

with the condition that
\//&amp;gt;--0

when 6= a (say), so that ma=^n. This

formula leads to

q=mCrm
~ l

.................................... (ii),

where q is the resultant fluid velocity. But since the velocity vanishes at the

crest, its value at a neighbouring point of the free surface will be given by

(iii),

as in Art. 25 (2). Comparing (ii) and (iii), we see that we must have m=,
and therefore a= ^7rf.

In the case of progressive waves advancing over still water, the particles

at the crests, when these have their extreme forms, are moving forwards with

exactly the velocity of the wave.

Another point of interest in connection with these waves of permanent

type is that they possess, relatively to the undisturbed water, a certain

* Math, and Phys. Papers, t. i., p. 227.

t The wave-profile has been investigated and traced, for the neighbourhood of

the crest, by Michell,
&quot; The Highest Waves in Water,&quot; Phil. Mag., Nov. 1893. He

finds that the extreme height is -142 X, and that the wave-velocity is greater than in

the case of infinitely small height in the ratio of 1-2 to 1.
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momentum in the direction of wave-propagation. The momentum, per wave

length, of the fluid contained between the free surface and a depth h (beneath

the level of the origin) which we will suppose to be great compared with X, is

since ^= 0, by hypothesis, at the surface, and ch, by (1), at the great depth
h. In the absence of waves, the equation to the upper surface would be

y=^a2
, by (3), and the corresponding value of the momentum would there

fore be
A .................................. (v).

The difference of these results is equal to

7rpa
2c ....................................... (vi),

which gives therefore the momentum, per wave-length, of a system of

progressive waves of permanent type, moving over water which is at rest at a

great depth.

To find the vertical distribution of this momentum, we remark that the

equation of a stream-line ty
= cti is found from (2) by writing y-f- h for

?/,
and

j3e~
kh for /3. The mean-level of this stream-line is therefore given by

y= -h + ^^e~ 2kh
........................... (vii).

Hence the momentum, in the case of undisturbed flow, of the stratum of

fluid included between the surface and the stream-line in question would

be, per wave-length,

pcAtA +JJ/S* (!--&quot;)} ....................... (viii).

The actual momentum being pcA X, we have, for the momentum of the same

stratum in the case of waves advancing over still water,

7rp
2
c(l-e-

2fc
&amp;gt;0

................................. (ix).

It appears therefore that the motion of the individual particles, in these

progressive waves of permanent type, is not purely oscillatory, and that there

is, on the whole, a slow but continued advance in the direction of wave-

propagation*. The rate of this flow at a depth h is found approximately

by differentiating (ix) with respect to A
,
and dividing by pX, viz. it is

tfatce-* .................................... (x).

This diminishes rapidly from the surface downwards.

232. A system of exact equations, expressing a possible form

of wave-motion when the depth of the fluid is infinite, was given

so long ago as 1802 by Gerstnerf, and at a later period indepen

dently by Rankine. The circumstance, however, that the motion

1 *
Stokes, 1. c. ante, p. 409. Another very simple proof of this statement has

been given by Lord Eayleigh, 1. c. ante, p. 279.

t Professor of Mathematics at Prague, 17891823.
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in these waves is not irrotational detracts somewhat from the

physical interest of the results.

If the axis of x be horizontal, and that of y be drawn vertically

upwards, the formulae in question may be written

so = a + r ekb sin k (a + ct\

= b Tekb cos k (a + ct)

ox

where the specification is on the Lagrangian plan (Art. 16), viz.,

a, b are two parameters serving to identify a particle, and #, y are

the coordinates of this particle at time t. The constant k deter

mines the wave-length, and c is the velocity of the waves, which

are travelling in the direction of ^-negative.

To verify this solution, and to determine the value of c, we

remark, in the first place, that

_ kb

d(a,b)~

so that the Lagrangian equation of continuity (Art. 16 (2)) is

satisfied. Again, substituting from (1) in the equations of motion

(Art. 13), we find

-j- (-
+ = e sn

,

%r (

- +
db \p

whence

- = const. g ]
b y ekb cos k (a + ct) \

P I * )

- c2 ekb cos k(a + ct) + $c*e*
kb

...... (4).

For a particle on the free surface the pressure must be

constant
;
this requires

&amp;lt;?

=
g/k ............................ (5);

cf. Art. 218. This makes

= const. - gb + |c
2 e2W&amp;gt;

................... (6).
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It is obvious from (1) that the path of any particle (a, b) is a

circle of radius k~l
ekb.

The figure shews the forms of the lines of equal pressure

b = const., for a series of equidistant values of b*. These curves

are trochoids, obtained by rolling circles of radii k~l on the under

sides of the lines y = b + &&quot;

1

,
the distances of the tracing points

from the respective centres being k~l^b
. Any one of these lines

may be taken as representing the free surface, the extreme

admissible form being that of the cycloid. The dotted lines

represent the successive forms taken by a line of particles which

is vertical when it passes through a crest or a trough.

It has been already stated that the motion of the fluid in these waves is

rotational. To prove this, we remark that

sin Jc (a + ct}} + ce2kb8a

which is not an exact differential.

* The diagram is very similar to the one given originally by Gerstner, and copied
more or less closely by subsequent writers,
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The circulation in the boundary of the parallelogram whose vertices

coincide with the particles

(, 6), (a+ 8a, 6), (a, b+ 8b), (a

is,by(i),
-

and the area of the circuit is

d(a,b)

Hence the angular velocity (&&amp;gt;)
of the element (a, b} is

_ 6_ (ii).

This is greatest at the surface, and diminishes rapidly with increasing depth.

Its sense is opposite to that of the revolution of the particles in their circular

orbits.

A system of waves of the present type cannot therefore be originated from

rest, or destroyed, by the action of forces of the kind contemplated in the

general theorem of Arts. 18, 34. We may however suppose that by properly

adjusted pressures applied to the surface of the waves the liquid is gradually
reduced to a state of flow in horizontal lines, in which the velocity (u } is

a function of the ordinate (?/ ) only*. In this state we shall have af=a
t

while y is a function of b determined by the condition

or = l-e2A* .................................... (iv).

m, . , du du dii , dy
f

Thismakes ^ =
^,
J= -

2&amp;lt;0J =2te ..................... (v),

and therefore u =cezkb
.................................... (vi).

Hence, for the genesis of the waves by ordinary forces, we require as a

foundation an initial horizontal motion, in the direction opposite to that of

propagation of the waves ultimately set up, which diminishes rapidly from the

surface downwards, according to the law (vi), where b is a function ofy deter

mined by

It is to be noted that these rotational waves, when established, have zero

momentum.

* For a fuller statement of the argument see Stokes, Math, and Phys. Papers,
t. i., p. 222.
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233. Rankine s results were obtained by him by a synthetic

process for which we must refer to his paper*.

Gerstner s procedure f, again, is different. He assumed,

erroneously, that when the problem is reduced to one of steady

motion the pressure must be uniform, not only along that par
ticular stream-line which coincides with the free surface, but also

along every other stream-line. Considered, however, as a deter

mination of the only type of steady motion, under gravity, which

possesses this property, his investigation is perfectly valid, and,

especially when regard is had to its date, very remarkable.

The argument, somewhat condensed with the help of the more modern

invention of the stream-function, is as follows.

Fixing our attention at first on any one stream-line, and choosing the origin

on it at a point of minimum altitude, let the axis of x be taken horizontal,

in the general direction of the flow, and let that of y be drawn vertically up
wards. If v be the velocity at any point, and VQ the velocity at the origin, we

have, resolving along the arc s,

dv dv

&quot;5

= -** ....................................
&amp;gt;

on account of the assumed uniformity of pressure. Hence

as in Art. 25. Again, resolving along the normal,

v2
1 d dx

where 8n is an element of the normal, and R is the radius of curvature.

Now v= -d\ls/dn, where \^ is the stream-function, so that if we write & for

dpfpd\lr, which is, by hypothesis, constant along the stream-line, we have

tf dx

Putting ^ )

multiplying by dyjds, and making use of (i), we obtain

d*-x do dx_ dy
ds* ds ds~

*
ds

d2x dv dx_ dy
J-9.

&quot;

J_ j_ &quot;&quot;

&quot;jT&quot; \^/&amp;gt;

whence, on integration,
dx

*
&quot;On the Exact Form of Waves near the Surface of Deep Water,&quot; Phil. Trans.,

1863.

f &quot;Theorie der Wellen,&quot; Abh. der k. bohm. Ges. der Witt., 1802; Gilbert s

Annalen der Physik, t. xxxii. (1809).
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which is a formula for the horizontal velocity. Combined with (ii), this gives

) ........ .... (vii),

provided /3
=

VQ/O-
-
gja* ................................. (viii).

Hence, for the vertical velocity, we have

(ix).

If the coordinates x, y of any particle on the stream-line be regarded as

functions of t, we have, then,

)} ..................... 00,

whence x= -t+fB8in&amp;lt;rt, y= /3(l cos&amp;lt;r) ..................... (xi),
(T

if the time be reckoned from the instant at which the particle passes through the

origin of coordinates. The equations (xi) determine a trochoid
;
the radius of

the rolling circle is g/tr
2
,
and the distance of the tracing point from the centre

is $. The wave-length of the curve is X=

It remains to shew that the trochoidal paths can be so adjusted that the

condition of constancy of volume is satisfied. For this purpose we must

take an origin ofy which shall be independent of the particular path considered,

so that the paths are now given by

x = 0- t+ /3 sin at, y =b-$ cos at ..................... (xii),
&amp;lt;7

where b is a function of /3, and conversely. It is evident that a- must be an

absolute constant, since it determines the wave-length. Now consider two

particles P, P ,
on two consecutive stream-lines, which are in the same phase

of their motions. The projections of PP on the coordinate axes are

8/3sincr and db 8ft cos at.

The flux (Art. 59) across a line fixed in space which coincides with the

instantaneous position of PP is obtained by multiplying these projections by

dyjdt and dxldt,

respectively, and adding ;
viz. we find

coso-Z ............... (xiii).

27

&amp;lt;r

In order that this may be independent of t, we must have
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or $= C&amp;lt;P ^ (xiv),

where k= &amp;lt;r

2
/&amp;lt;7

= 2?r/X . . . . . (xv).

Hence, finally,

(xvi),

where -*-(&
The addition of a constant to b merely changes the position of the origin and

the value of C \ we may therefore suppose that 6= for the limiting cycloidal

form of the path. This makes C=k~ l
.

If the time be reckoned from some instant other than that of passage

through a lowest point, we must in the above formula} write a + ct for ct, where

a is arbitrary. If we further impress on the whole mass a velocity c in the

direction of ^-negative, we obtain the formulae (1) of Art. 232.

234. Scott Russell, in his interesting experimental investiga

tions*, was led to pay great attention to a particular type which

he calls the solitary wave. This is a wave consisting of a single

elevation, of height not necessarily small compared with the depth
of the fluid, which, if properly started, may travel for a consider

able distance along a uniform canal, with little or no change of

type. Waves of depression, of similar relative amplitude, were

found not to possess the same character of permanence, but to

break up into series of shorter waves.

The solitary type may be regarded as an extreme case of

Stokes oscillatory waves of permanent type, the wave-length

being great compared with the depth of the canal, so that the

widely separated elevations are practically independent of one

another. The methods of approximation employed by Stokes

become, however, unsuitable when the wave-length much exceeds

the depth ;
and the only successful investigations of the solitary

wave which have yet been given proceed on different lines.

The first of these was given independently by Boussinesqf and Lord

RayleighJ. The latter writer, treating the problem as one of steady motion,
starts virtually from the formula

where F(x) is real. This is especially appropriate to cases, such as the

*
&quot;Keport on Waves,&quot; Brit. Ass. Rep., 1844.

t Comptes Eendus, June 19, 1871.

t &quot;On Waves,&quot; Phil. Mag., April, 1876.
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present, where one of the family of stream-lines is straight. We derive

from (i)

.(&quot;),

Y=yF j F &quot; + F V
...

where the accents denote differentiations with respect to as. The stream-line

^= here forms the bed of the canal, whilst at the free surface we have

y = -
cA, where c is the uniform velocity, and A the depth, in the parts of the

fluid at a distance from the wave, whether in front or behind.

The condition of uniform pressure along the free surface gives

or, substituting from (ii),

But, from (ii), we have, along the same surface,

(v).

It remains to eliminate /&quot;between (iv) and (v) ;
the result will be a differential

equation to determine the ordinate y of the free surface. If (as we will

suppose) the function F (x} and its differential coefficients vary slowly with

x, so that they change only by a small fraction of their values when x increases

by an amount comparable with the depth A, the terms in (iv) and (v) will be of

gradually diminishing magnitude, and the elimination in question can be

carried out by a process of successive approximation.

Thus, from (v),

and if we retain only terms up to the order last written, the equation (iv)

becomes

or, on reduction,

y^ 3~7~3p
=
A2 ~&W~ (

V11 )

If we multiply by y ,
and integrate, determining the arbitrary constant so

as to make y = for y =A, we obtain

_ . _
,

y 3 y Ii A2 c2A2

or
(viii).

Hence y
1

vanishes only for y= h and #= c2/#, and since the last factor must
be positive, it appears that

&amp;lt;^Jg
is a maximum value of y. Hence the wave is

272
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necessarily one of elevation only, and denoting by a the maximum height above

the undisturbed level, we have

&amp;lt;*=ff(h+ a) .................................... (ix),

which is exactly the empirical formula for the wave-velocity adopted by
Russell.

The extreme form of the wave will, as in Art. 231, have a sharp crest of

120
;
and since the fluid is there at rest we shall have c2= 2#a. If the

formula (ix) were applicable to such an extreme case, it would follow that

If we put, for shortness,

y
we find, from (viii)

the integral of which is

(x),

(xii),

if the origin of x be taken beneath the summit.

There is no definite length of the wave, but we may note, as a rough in

dication of its extent, that the elevation has one-tenth of its maximum value

when #/6=3 636.

0-5 1-0 1-5

The annexed drawing of the curve

represents the wave-profile in the case a ^h. For lower waves the scale of y
must be contracted, and that of x enlarged, as indicated by the annexed

table giving the ratio b/h, which determines the horizontal scale, for various

values of a/h.

It will be found, on reviewing the above investigation, that

the approximations consist in neglecting the fourth power of

the ratio (A+a)/26.

If we impress on the fluid a velocity c parallel to x we

get the case of a progressive wave on still water. It is not

difficult to shew that, when the ratio a/h is small, the path

of each particle is an arc of a parabola having its axis vertical

and apex upwards*.

It might appear, at first sight, that the above theory is

inconsistent with the results of Art. 183, where it was shewn

that a wave whose length is great compared with the depth
*

Boussinesq, I. c,

a/h
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must inevitably suffer a continual change of form as it advances, the changes

being the more rapid the greater the elevation above the undisturbed level.

The investigation referred to postulates, however, a length so great that the

vertical acceleration may be neglected, with the result that the horizontal

velocity is sensibly uniform from top to bottom (Art. 169). The numerical

table above given shews, on the other hand, that the longer the solitary

wave is, the lower it is. In other words, the more nearly it approaches to

the character of a long wave, in the sense of Art. 169, the more easily is

the change of type averted by a slight adjustment of the particle-velocities*.

The motion at the outskirts of the solitary wave can be represented by a

very simple formula f. Considering a progressive wave travelling in the

direction of ^-positive, and taking the origin in the bottom of the canal, at a

point in the front part of the wave, we assume

This satisfies v2
&amp;lt;/&amp;gt;

= 0, and the surface-condition

will also be satisfied for y= h, provided

This will be found to agree approximately with Lord Kayleigh s investigation

if we put m= b~ 1
.

235. The theory of waves of permanent type has been brought
into relation with general dynamical principles by von HelmholtzJ,

If in the equations of motion of a gyrostatic system, Art.

139 (14), we put

dV dV

*
Stokes,

&quot; On the Highest Wave of Uniform Propagation,&quot; Proc. Camb. Phil.

Soc., t. iv., p. 361 (1883).

For another method of investigation see McCowan &quot; On the Solitary Wave,&quot;

Phil. Mag., July 1891; and &quot;On the Highest Wave of Permanent Type,&quot; Phil.

Mag., Oct. 1894. The latter paper gives an approximate determination of the

extreme form of the wave, when the crest has a sharp angle of 120. The limiting
value for the ratio a/ft is found to be -78.

t Kindly communicated by Sir George Stokes.

t
&quot; Die Energie der Wogen und des Windes,&quot; Berl. Monatsber., July 17, 1890;

Wied. Ann., t. xli., p. 641.
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where V is the potential energy, it appears that the conditions for

steady motion, with qlt q2 ,
... constant, are

where K is the energy of the motion corresponding to any given

values of the coordinates ql} q2 , ..., when these are prevented from

varying by the application of suitable extraneous forces.

This energy is here supposed expressed in terms of the constant

momenta C, C ,... corresponding to the ignored coordinates

2, 2

7

, ..,, and of the palpable coordinates ql} qz ,
It may how

ever also be expressed in terms of the velocities %, ^ ,
... and

the coordinates qlt #2 , ...; in this form we denote it by T . It

may be shewn, exactly as in Art. 141, that dT /dqr
= dK/dqr) so

that the conditions (2) are equivalent to

Hence the condition for free steady motion with any assigned

constant values of qlt q2) ... is that the corresponding value of

V + K, or of V-T
,
should be stationary. Cf. Art. 195.

Further, if in the equations of Art. 139 we write dV/dqs + Q8

for Q8 ,
so that Qs now denotes a component of extraneous force, we

find, on multiplying by qlt q.2)
... in order, and adding,

Q1
&amp;lt;z

1 +Q2j2 + ............... (4),

where f& is the part of the energy which involves the velocities

qlt fa, .... It follows, by the same argument as in Art. 197, that

the condition for secular stability, when there are dissipative

forces affecting the coordinates qlt qz , ..., but not the ignored

coordinates ^, ^ , ..., is that V+K should be a minimum.

In the application to the problem of stationary waves, it will

tend to clearness if we eliminate all infinities from the question

by imagining that the fluid circulates in a ring-shaped canal of

uniform rectangular section (the sides being horizontal and

vertical), of very large radius. The generalized velocity ^ corre-
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spending to the ignored coordinate may be taken to be the flux

per unit breadth of the channel, and the constant momentum of

the circulation may be replaced by the cyclic constant K. The

coordinates qlt qt ,
... of the general theory are now represented by

the value of the surface-elevation (T?) considered as a function of

the longitudinal space-coordinate x. The corresponding com

ponents of extraneous force are represented by arbitrary pressures

applied to the surface.

If I denote the whole length of the circuit, then considering

unit breadth of the canal we have

V = \go \ r)
2dx (5),

Jo

where 77 is subject to the condition

= 0.. ...(6).

ri

JQ

If we could with the same ease obtain a general expression for

the kinetic energy of the steady motion corresponding to any

prescribed form of the surface, the minimum condition in either of

the forms above given would, by the usual processes of the Calculus

of Variations, lead to a determination of the possible forms, if any,

of stationary waves*.

Practically, this is not feasible, except by methods of successive

approximation, but we may illustrate the question by reproducing,

on the basis of the present theory, the results already obtained

for long waves of infinitely small amplitude.

If h be the depth of the canal, the velocity in any section when the surface

is maintained at rest, with arbitrary elevation
77,

is x/(/i + ?
?)&amp;gt;

where x is the

flux. Hence, for the cyclic constant,

* For some general considerations bearing on the problem of stationary waves

on the common surface of two currents reference may be made to von Helmholtz

paper. This also contains, at the end, some speculations, based on calculations of

energy and momentum, as to the length of the waves which would be excited

in the first instance by a wind of given velocity. These appear to involve the

assumption that the waves will necessarily be of permanent type, since it is only on

some such hypothesis that we get a determinate value for the momentum of a train

of waves of small amplitude.
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approximately, where the term of the first order in
77

has been omitted, in

virtue of (6).

The kinetic energy, ^PK\&amp;gt; may be expressed in terms of either x r * We
thus obtain the forms

The variable part of V- T is

and that of V+Kis

It is obvious that these are both stationary for
rj
=

;
and that they will

be stationary for any infinitely small values of
77, provided x

2
=gk?, or

if We put x=Uh, or K=Ul, this condition gives

in agreement with Art. 172.

It appears, moreover, that
77
= makes V-\-K a maximum or a minimum

according as U 2 is greater or less than gli. In other words, the plane

form of the surface is secularly stable if, and only if, U&amp;lt;(gfif.
It is to be

remarked, however, that the dissipative forces here contemplated are of a special

character, viz. they affect the vertical motion of the surface, but not (directly)

the flow of the liquid. It is otherwise evident from Art. 172 that if pressures
be applied to maintain any given constant form of the surface, then if

U*&amp;gt;gh
these pressures must be greatest over the elevations and least over

the depressions. Hence if the pressures be removed, the inequalities of the

surface will tend to increase.

Standing Waves in Limited Masses of Water.

236. The problem of wave-motion in two horizontal dimensions

(x, y), in the case where the depth is uniform and the fluid is

bounded laterally by vertical walls, can be reduced to the same

analytical form as in Art. 185*.

If the origin be taken in the undisturbed surface, and if f

denote the elevation at time t above this level, the pressure-

* For references to the original investigations of Poisson and Lord Kayleigh

see p. 310. The problem was also treated by Ostrogradsky,
&quot; Memoire sur la

propagation des ondes dans un bassin cylindrique,&quot; Mem. des Sav. Etrang.,

t. iii. (1832).
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condition to be satisfied at the surface is, in the case of infinitely

small motions,

and the kinematical surface-condition is

d%_ [df\ /o\

dt~ LkJ-&quot;

Hence, for z 0, we must have

or, in the case of simple-harmonic motion,

if the time-factor be e i{&amp;lt;rt+e)
. The proof is the same as in

Art. 216.

The equation of continuity, V-$ = 0, and the condition of zero

vertical motion at the depth z = h, are both satisfied by

(f)
= ^ cosh k (z 4- h) ..................... (5),

where ^ is a function of x, y, provided

The form of fa and the admissible values of k are determined by
this equation, and by the condition that

at the vertical walls. The corresponding values of the speed (cr)

of the oscillations are then given by the surface-condition (4), viz.

we have
a- = gk tanh kl ........................ (8).

From (2) and (5) we obtain

(7
.(9).

The conditions (6) and (7) are of the same form as in the case

of small depth, and we could therefore at once write down the
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results for a rectangular or a circular tank. The values of k, and

the forms of the free surface, in the various fundamental modes,

are the same as in Arts. 186, 187*, but the amplitude of the

oscillation now diminishes with increasing depth below the surface,

according to the law (5) ;
whilst the speed of any particular mode

is given by (8).

When kh is small, we have &amp;lt;j*
=

k*gh, as in the Arts, re

ferred to.

237. The number of cases of motion with a variable depth, of

which the solution has been obtained, is very small.

1. We may notice, first, the two-dimensional oscillations of water across

a channel whose section consists of two straight lines inclined at 45 to the

vertical f.

The axes of y, z being respectively horizontal and vertical, in the plane of

the cross-section, we assume

(f&amp;gt;

+ fy=A {cosh (y-ftz)-}- cos (#+w)} .......(i),

the time-factor e*(
a*+e)

being understood. This gives

&amp;lt;f&amp;gt;

=A (cosh ky cos kz + cos ky cosh kz\ ) . .

ty
=A (sinh ky sin kz - sin ky sinh kz) J

&quot;

The latter formula shews at once that the lines y=z constitute the

stream-line ^= 0, and may therefore be taken as fixed boundaries.

The condition to be satisfied at the free surface is, as in Art. 216,

o*4&amp;gt;=gd&amp;lt;j&amp;gt;ld....: (iii).

Substituting from (ii)
we find, if h denote the height of the surface above the

origin,

&amp;lt;r

2
(cosh ky cos kh+ cos ky cosh M) =gk (

- cosh ky sin kh + cos ky sinh M).

This will be satisfied for all values of y, provided

o-
2 cos kh gk sin kh

t | /JVA

o-
2 cosh kh=gk sinh kh )

whence tanh kh= - tan kh (v).

This determines the admissible values of k
;

the corresponding values of

o- are then given by either of the equations (iv).

Since (ii) makes &amp;lt; an even function of y, the oscillations which it represents

are symmetrical with respect to the medial plane y= 0.

* It may be remarked that either of the two modes figured on pp. 308, 309 may
be easily excited by properly-timed horizontal agitation of a tumbler containing

water.

t Kirchhoff,
&quot; Ueber stehende Schwingungen einer schweren Fliissigkeit,&quot; Berl.

Honatsber.. May 15, 1879; Ges. Abh., p. 428. Greenhill, 1. c. ante p. 388.
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The asymmetrical oscillations are given by

or
(f)
= - A (sinh Jcy sin kz+ sin ky sinh kz\ }

\js
= A (cosh Icy cos kz - cos ky cosh /#) J

The stream-line ^= consists, as before, of the lines y = z; and the surface-

condition (iii) gives

o-
2
(sinh ky sin kh+ sin ky sinh kh} =gk (sinh% cos kh 4- sin y cosh kh}.

This requires a2 sinM=^ cos kh, } , ....

&amp;lt;r

2smhA=^coshM f&quot;

whence tanhA = tanM ................................. (ix).

The equations (v) and (ix) present themselves in the theory of the lateral

vibrations of a bar free at both ends
;

viz. they are both included in the

equation
cosmcoshm= l .............................. (x )*&amp;gt;

where m=2M.

The root M=
0, of (ix), which is extraneous in the theory referred to, is

now important ;
it corresponds in fact to the slowest mode of oscillation in

the present problem. Putting Ak2= B, and making k infinitesimal, the

formulae (vii) become, on restoring the time-factor, and taking the real parts,

whilst from (viii)

The corresponding form of the free surface is

i r/7/^n

(xiii).

The surface in this mode is therefore always plane.

The annexed figure shews the lines of motion (^= const.) for a series

of equidistant values of
\//-.

*
Of. Lord Bayleigh, Theory of Sound, t. i., Art. 170, where the numerical

solution of the equation is fully discussed.
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The next gravest mode is symmetrical, and is given by the lowest finite

root of (v), which is M= 2-3650, whence o-= l 5244 (gjKf.

In this mode, the profile of the surface has two nodes, whose positions are

determined by putting =
0, z= k, in (ii) ;

whence it is found that

*/& -5516*.

The next mode corresponds to the lowest finite root of (ix), and so ont.

2. Greenhill, in the paper already cited, has investigated the symmetrical
oscillations of the water across a channel whose section consists of two straight

lines inclined at 60 to the vertical. In the (analytically) simplest mode of

this kind we have, omitting the time-factor,

4) + i^= iA(y+ iz)3+B........................... (xiv),

or
&amp;lt;t&amp;gt;

= Az(z*-Zy*) + B, + =Ay(i?-W) ............... (xv),

the latter formula making \//-
= along the boundary y=&amp;gt;j3.z. The

surface-condition (iii) is satisfied for z=k, provided

&amp;lt;r*=g/h,
B= 2A/i3

........................... (xvi).

The corresponding form of the free surface is

a parabolic cylinder, with two nodes at distances of 5774 of the half-breadth

from the centre. Unfortunately, this is not the slowest mode, which must

evidently be of asymmetrical type.

3. If in any of the above cases we transfer the origin to either edge of

the canal, and then make the breadth infinite, we get a system of standing

waves on a sea bounded by a sloping bank. This may be regarded as made

up of an incident and a reflected system. The reflection is complete, but

there is in general a change of phase.

When the inclination of the bank is 45 the solution is

^ H{^z
(cos ky- sin ky] +e~kv

(cos &z+ sin kz)} cos

For an inclination of 30 to the horizontal we have

.......... ...(xix).

In each case o-
2=#, as in the case of waves on an unlimited sheet of deep

water.

These results, which may easily be verified ab initio, were given by

Kirchhoff (I. c.}.

* Lord Eayleigh, Theory of Sound, Art. 178.

f An experimental verification of the frequencies, and of the positions of the

loops (places of maximum vertical amplitude), in various fundamental modes, has

been made by Kirchhoff and Hansemann,
&quot; Ueber stehende Schwingungen des

Wassers,&quot; Wied. Ann., t. x. (1880); Kirchhoff, Ges. Abh., p. 442.
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238. An interesting problem which presents itself in this

connection is that of the transversal oscillations of water contained

in a canal of circular section. This has not yet been solved, but

it may be worth while to point out that an approximate determi

nation of the frequency of the slowest mode, in the case where the

free surface is at the level of the axis, can be effected by Lord

Rayleigh s method, explained in Art. 165.

If we assume as an approximate type that in which the free

surface remains always plane, making a small angle Q (say) with

the horizontal, it appears, from Art. 72, 3, that the kinetic energy

T is given by

aW (1),

where a is the radius, whilst for the potential energy V we have

2V =
%gpa&amp;gt;ffi

........................ (2).

If we assume that 6 oc cos
(&amp;lt;rt

+ e), this gives

-

whence a = 1-169 a*.

In the case of a rectangular section of breadth 2a, and depth

a, the speed is given by Art. 236 (8), where we must put k 7r/2a

from Art. 186, and h a. This gives

0-2 = ^TJ- tanh TT .
- ........................ (4),

or a = 1 200 (#/)*. The frequency in the actual problem is less,

since the kinetic energy due to a given motion of the surface

is greater, whilst the potential energy for a given deformation

is the same. Cf. Art. 45.

239. We may next consider the free oscillations of the water

included between two transverse partitions in a uniform horizontal

canal. It will be worth while, before proceeding to particular

cases, to examine for a moment the nature of the analytical

problem, with the view of clearing up some misunderstandings
which have arisen as to the general question of wave-propagation
in a uniform canal of unlimited length.
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If the axis of x be parallel to the length, and the origin be

taken in one of the ends, the velocity potential in any one of the

fundamental modes referred to may, by Fourier s theorem, be

supposed expressed in the form

$ = (P + pl cos kx + P2 cos 2kx + ...

+ Pg cos skx + . . .) cos (o-t + e) ......... (1),

where k = ir/l, if I denote the length of the compartment. The

coefficients Ps are here functions of y, z. If the axis of z be drawn

vertically upwards, and that of y be therefore horizontal and

transverse to the canal, the forms of these functions, and the

admissible values of
&amp;lt;r,

are to be determined from the equation
of continuity

V = ............................. (2),

with the conditions that

d&amp;lt;f&amp;gt;ldn

= ........................... (3)
at the sides, and that

......................... (4)

at the free surface. Since dfyjdx must vanish for x = and x = Z,

it follows from known principles* that each term in (1) must

satisfy the conditions (2), (3), (4) independently ;
viz. we must

have

^2P -0 (5)

with dPK/dn = ........................... (6)

at the lateral boundary, and

a*P8
= gdP./dz ......................... (7)

at the free surface.

The term P gives purely transverse oscillations such as have

been discussed in Art. 237. Any other term Ps cos skx gives a

series of fundamental modes with s nodal lines transverse to the

canal, and 0, 1, 2, 3,... nodal lines parallel to the length.

It will be sufficient for our purpose to consider the term

P! cos kx. It is evident that the assumption

&amp;lt;

= Px cos kx . cos (at + e) .................. (8),

with a proper form of Pj and the corresponding value of cr deter-

* See Stokes, &quot;On the Critical Values of the Sums of Periodic Series,&quot; Camb.

Trans., t. viii. (1847) ;
Math, and Phys. Paper*, t. i., p. 236,
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mined as above, gives the velocity-potential of a possible system of

standing waves, of arbitrary wave-length 2-7T/&, in an unlimited

canal of the given form of section. Now, as explained in Art. 218,

by superposition of two properly adjusted systems of standing

waves of this type we can build up a system of progressive waves

&amp;lt;f)

= Pl cos (kas + at) (9).

Hence, contrary to what has been sometimes asserted, progressive

waves of simple-harmonic profile, of any assigned wave-length, are

possible in an infinitely long canal of any uniform section.

We might go further, and assert the possibility of an infinite

number of types, of any given wave-length, with wave-velocities

ranging from a certain lowest value to infinity. The types, how

ever, in which there are longitudinal nodes at a distance from the

sides are from the present point of view of subordinate interest.

Two extreme cases call for special notice, viz. where the wave

length is very great or very small compared with the dimensions

of the transverse section.

The most interesting types of the former class have no longi

tudinal nodes, and are covered by the general theory of long
waves given in Arts. 166, 167. The only additional information

we can look for is as to the shapes of the wave-ridges in the

direction transverse to the canal.

In the case of relatively short waves, the most important type
is one in which the ridges extend across the canal with gradually

varying height, and the wave-velocity is that of free waves on

deep-water as given by Art. 218 (6).

There is another type of short waves which may present itself

when the banks are inclined, and which we may distinguish by
the name of edge-waves, since the amplitude diminishes expo

nentially as the distance from the bank increases. In fact, if the

amplitude at the edges be within the limits imposed by our

approximations, it will become altogether insensible at a distance

whose projection on the slope exceeds a wave-length. The wave-

velocity is less than that of waves of the same length on deep
water. It does not appear that the type of motion here referred

to is of any physical importance.
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A general formula for these edge-waves has been given by Stokes*.

Taking the origin in one edge, the axis of z vertically upwards, and that of y
transverse to the canal, and treating the breadth as relatively infinite, the

formula in question is

=m-^ cos^ sin
^cos(^-cO (i),

where /3 is the slope of the bank to the horizontal, and

The reader will have no difficulty in verifying this result.

240. We proceed to the consideration of some special cases.

We shall treat the question as one of standing waves in an

infinitely long canal, or in a compartment bounded by two

transverse partitions whose distance apart is a multiple of half the

arbitrary wave-length (27T/&), but the investigations can be easily

modified as above so as to apply to progressive waves, arid we

shall occasionally state results in terms of the wave- velocity.

1. The solution for the case of a rectangular section, with horizontal bed

and vertical sides, could be written down at once from the results of Arts.

186, 236. The nodal lines are transverse and longitudinal, except in the case

of a coincidence in period between two distinct modes, when more complex
forms are possible. This will happen, for instance, in the case of a square
tank.

2. In the case of a canal whose section consists of two straight lines in

clined at 45 to the vertical we have, first, the type discovered by Kellandf ;

viz. if the axis of x coincide with the bottom line of the canal,

=A cosh
-If-

cosh -^ cos kx . cos (o-t + t) (i).

This evidently satisfies v2
&amp;lt;

=
0, and makes

d(f)/dy +d(f&amp;gt;/dz (ii),

for y=+z, respectively. The surface-condition (7) then gives

~/, /&amp;gt;./,

(i&quot;),

v/2
&quot;

where h is the height of the free surface above the bottom line. If we put

a= kc, the wave-velocity c is given by

where #= 2ir/A, if X be the wave-length.

*
&quot;Report on Recent Researches in Hydrodynamics,&quot; Brit. Ass. Rep., 1846;

Math, and Phys. Papers, t. i., p. 167.

f
&quot; On Waves,&quot; Trans. R. S, Edin., t. xiv. (1839),
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When k/\ is small, this reduces to

&amp;lt;?

=
(fe^)* (v),

in agreement with Art. 167 (8), since the mean depth is now denoted by \h.

When, on the other hand, h/\ is moderately large, we have

(vi).

The formula (i) indicates now a rapid increase of amplitude towards the

sides. We have here, in fact, an instance of edge-waves, and the wave-

velocity agrees with that obtained by putting /3=45 in Stokes formula.

The remaining types of oscillation which are symmetrical with respect to

the medial plane y--=Q are given by the formula

&amp;lt;

= C (cosh ay cos fjz+ cos /3y cosh az) cos kx . cos (trt+c) (vii),

provided a, /3, a- are properly determined. This evidently satisfies (ii), and the

equation of continuity gives

a2
-/3

2=P (viii).

The surface-condition, Art. 239 (4), to be satisfied for z= h, requires

o-
2 coshaA=

&amp;lt;7asinhaA,|

a2 cos j3h
=

gft sin /3A j

&quot;

Hence aA tanh aA+A tan A= (x).

The values of a, are determined by (viii) and (x), and the corresponding
values of o- are then given by either of the equations (ix).

If, for a moment, we write

x=ah, y= fih (xi),

the roots are given by the intersections of the curve

x tanh x -fy tan y (xii),

whose general form can be easily traced, with the hyperbola

(xiii).

There are an infinite number of real solutions, with values of fth lying in

the second, fourth, sixth, ... quadrants. These give respectively 2, 4, 6, ...

longitudinal nodes of the free surface. When h/\ is moderately large, we have

tanh ah= 1, nearly, and /3A is (in the simplest mode of this class) a little greater
than TT. The two longitudinal nodes in this case approach very closely to

the edges as X is diminished, whilst the wave-velocity becomes practically

equal to that of waves of length X on deep water. As a numerical example,

assuming A= I l x
TT, we find

aA= 10-910, M= 1O772, c= 1-0064 x (

The distance of either nodal line from the nearest edge is then -12^.

L, 28
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We may next consider the asymmetrical modes. The solution of this type
which is analogous to Kelland s was noticed by Greenhill (I. c.}. It is

= A sinh -^ sinh -^ cos kas . cos
(&amp;lt;rf+e) ......... (xiv),V^ V*

with a2 =

When kh is small, this makes o-
2
=^/A, so that the speed is very great

compared with that given by the theory of long waves. The oscillation

is in fact mainly transversal, with a very gradual variation of phase as we

pass along the canal. The middle line of the surface is of course nodal.

When kh is great, we get edge-waves, as before.

The remaining asymmetrical oscillations are given by

&amp;lt;f&amp;gt;

=A (sinh ay sin fiz+ sin /3y sinh az) cos ksc . cos (crt+f) ...... (xvi).

This leads in the same manner as before to

a2
-/3

2= 2
................................. (xvii),

o-
2 sinh ah= ga cosh ah,}

and ..................... (xvm
&amp;gt;

whence ah coth ah ^h cot fth ........................... (xix).

There are an infinite number of solutions, with values of /3A in the third,

fifth, seventh, ... quadrants, giving 3, 5, 7, ... longitudinal nodes, one of which

is central.

3. The case of a canal with plane sides inclined at 60 to the vertical has

been recently treated by Macdonald*. He has discovered a very compre
hensive type, which may be verified as follows.

The assumption
=P cos kx . cos

(&amp;lt;rt+e) ........................... (xx),
where

P= A cosh kz+B sinh /b+cosh - ccosh +D sinh ..

evidently satisfies the equation of continuity; and it is easily shewn that

it makes

for y= *j3z, provided

C=2A, D=-2B ........................... (xxii).

The surface-condition, Art. 239 (4), is then satisfied, provided

^7 (A cosh kh+B sinh kh)=A sinh kh+B cosh M, }

9*
[
...... (xxiii).

2&amp;lt;r

2
/ , ,kh D . , M\

4
. , kh D , kh (

-j- (
A cosh -zr-B sinh

)
= A sinh -5- / cosh

\

gk \ 2.2/ L * )

*
&quot;Waves in Canals,&quot; Proc. Lond. Math. Soc., t. xxv., p. 101 (1894).
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The former of these is equivalent to

/ 2 \ \

A =H ( cosh kh T sinh kh ) ,

\
2

9k / (xxiv),

Bmff( cosh kh - sinh kh\

and the latter then leads to

2
|

\ 3 coth 3 j-l = (xxv).

Also, substituting from (xxii) and (xxiv) in (xxi), we find

The equations (xxv) and (xxvi) are those arrived at by Macdonald, by a

different process. The surface-value of P is

...... (xxvii).

The equation (xxv) is a quadratic in
&amp;lt;^igk.

In the case of a wave whose

length (27r/) is great compared with A, we have

t ,
3M 2

C0th
2~-

=
3M

nearly, and the roots of (xxv) are then

&amp;lt;r*lgk=%kh,
and a*lgk=\lkh .................. (xxviii),

approximately. If we put &amp;lt;r

=
kc, the former result gives c*= ^gh, in accord

ance with the usual theory of long waves (Arts. 166, 167). The formula

(xxvii) now makes P=3jST, approximately; this is independent of y, so that

the wave ridges are nearly straight. The second of the roots (xxviii) makes

(T
2
=g/h, giving a much greater wave-velocity ;

but the considerations adduced

above shew that there is nothing paradoxical in this*. It will be found on

examination that the cross-sections of the waves are parabolic in form, and

that there are two nodal lines parallel to the length of the canal. The period

is, in fact, almost exactly that of the symmetrical transverse oscillation

discussed in Art. 237, 2.

When, on the other hand, the wave-length is short compared with the

transverse dimensions of the canal, kh is large, and coth |M= 1, nearly. The
roots of (xxv) are then

l and ^\gk=\ ........................ (xxix),

approximately. The former result makes P=ff, nearly, so that the wave-

ridges are straight, experiencing only a slight change of altitude towards the

* There is some divergence here, and elsewhere in the text, from the views

maintained by Greenhill and Macdonald in the papers cited.

282
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sides. The speed, o-= (gk}%, is exactly what we should expect from the general

theory of waves on relatively deep water.

If in this case we transfer the origin to one edge of the water-surface,

writing z+h for z
t
and y *J%h for y, and then make h infinite, we get the case

of a system of waves travelling parallel to a shore which slopes downwards at

an angle of 30 to the horizon. The result is

....... (xxx),

where c =(#/)*. This admits of immediate verification. At a distance of a

wave-length or so from the shore, the value of
&amp;lt;,

near the surface, reduces to

&amp;lt;/&amp;gt;

=H^z cos kx . cos
(&amp;lt;rt

+ e) ........................ (xxxi),

practically, as in Art. 217 *. Near the edge the elevation changes sign, there

being a longitudinal node for which

(xxxii),

The second of the two roots (xxix) gives a system of edge-waves, the results

being equivalent to those obtained by making /3=30 in Stokes formula.

Oscillations of a Spherical Mass of Liquid.

241. The theory of the gravitational oscillations of a mass of

liquid about the spherical form has been given by Lord Kelvin (.

Taking the origin at the centre, and denoting the radius vector

at any point of the surface by a + f, where a is the radius in the

undisturbed state, we assume

r=2&quot;Cn.............................. (1),

where fn is a surface-harmonic of integral order n. The equation
of continuity V 2

&amp;lt;

= is satisfied by

where Sn is a surface-harmonic, and the kinematical condition

* The result contained in (xxx) does not appear to have been hitherto noticed.

t Sir W. Thomson, &quot;Dynamical Problems regarding Elastic Spheroidal Shells

and Spheroids of Incompressible Liquid,&quot; Phil. Trans., 1863; Math, and Phijs.

Papers, t. iii., p. 384.
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to be satisfied when r a, gives

d n _ n ...

~S- a
&quot;-

The gravitation-potential at the free surface is, by Art. 192,

47T7pa
3 *

4,Trypa (W Z
i 27i+l&amp;gt;&quot;

where 7 is the gravitation-constant. Putting

g=%7rypa, r = a + 2?w ,

we find

n = const.+^
2

2

(^r^ ................. (6 &amp;gt;-

Substituting from (2) and (6) in the pressure equation

(7),
-

p at

we find, since p must be constant over the surface,

Eliminating Sn between (4) and (8), we obtain

This shews that fw oc cos (crnt + e), where

2n(n-l)jr
&quot;n

2 + l B&quot;

For the same density of liquid, g oc a, and the frequency is

therefore independent of the dimensions of the globe.

The formula makes o^ = 0, as we should expect, since in the

deformation expressed by a surface-harmonic of the first order the

surface remains spherical, and the period is therefore infinitely

long.

&quot; For the case n = 2, or an ellipsoidal deformation, the length of

the isochronous simple pendulum becomes }a, or one and a quarter
times the earth s radius, for a homogeneous liquid globe of the

same mass and diameter as the earth
;
and therefore for this case,
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or for any homogeneous liquid globe of about 5J times the density
of water, the half-period is 47 m. 12s.*&quot;

&quot; A steel globe of the same dimensions, without mutual gravi

tation of its parts, could scarcely oscillate so rapidly, since the

velocity of plane waves of distortion in steel is only about 10,140

feet per second, at which rate a space equal to the earth s diameter

would not be travelled in less than 1 h. 8 m. 40s.f
&quot;

When the surface oscillates in the form of a zonal harmonic spheroid of the

second order, the equation of the lines of motion is xw i= const., where zsr

denotes the distance of any point from the axis of symmetry, which is taken

as axis of x (see Art. 94 (11)). The forms of these lines, for a series of equi

distant values of the constant, are shewn in the annexed figure.

242. This problem may also be treated very compactly by the

method of normal coordinates (Art. 165).

The kinetic energy is given by the formula

* Sir W. Thomson, /.. c.

t Sir W. Thomson. The exact theory of the vibrations of an elastic sphere

gives, for the slowest oscillation of a steel globe of the dimensions of the earth, a

period of 1 h. 18m. Proc. Lond. Math. Soc., t. xiii., p. 212 (1882).
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where 88 is an element of the surface r = a. Hence, when the

surface oscillates in the form r = a + fn ,
we find, on substitution

from (2) and (4),

(12).

To find the potential energy, we may suppose that the external

surface is constrained to assume in succession the forms r = a + 0?n ,

where 6 varies from to 1. At any stage of this process, the

gravitation potential at the surface is, by (6),

fl = const. + ^?n ............... (13).

Hence the work required to add a film of thickness n&0 is

W.^2gpfKSdS .................. (14).

Integrating this from 6 = to 6 = I, we find

(15).

The results corresponding to the general deformation (1) are

obtained by prefixing the sign 2 of summation with respect to n,

in (12) and (15); since the terms involving products of surface-

harmonics of different orders vanish, by Art. 88.

The fact that the general expressions for T and V thus reduce

to sums of squares shews that any spherical-harmonic deformation

is of a normal type. Also, assuming that fw oc cos
(&amp;lt;rnt + e), the

consideration that the total energy T + V must be constant leads

us again to the result (10).

In the case of the forced oscillations due to a disturbing

potential IT cos (at + e) which satisfies the equation V 2fy = at

all points of the fluid, we must suppose H to be expanded in

a series of solid harmonics. If fn be the equilibrium-elevation

corresponding to the term of order n, we have, by Art. 165 (12),

for the forced oscillation,

where a- is the imposed speed, and &amp;lt;rn that of the free oscillations

of the same type, as given by (10).
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The numerical results given above for the case n = 2 shew

that, in a non-rotating liquid globe of the same dimensions and

mean density as the earth, forced oscillations having the cha

racters and periods of the actual lunar and solar tides, would

practically have the amplitudes assigned by the equilibrium-theory.

243. The investigation is easily extended to the case of an

ocean of any uniform depth, covering a symmetrical spherical

nucleus.

Let b be the radius of the nucleus, a that of the external surface. The

surface-form being

we assume, for the velocity-potential,

{

rn /,, + 11

f*+
1
&amp;gt;P+*^}*

........................... (ii),

where the coefficients have been adjusted so as to make
d&amp;lt;j)/dr

= for r=b.

The condition that

for r=a, gives

t
For the gravitation-potential at the free surface (i) we have

where p is the mean density of the whole mass. Hence, putting #=
we find

The pressure-condition at the free surface then gives

-A
: (vii).

The elimination of Sn between (iv) and (vii) then leads to

j:r + n
a n=0 (viii),
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If p=p ,
we have o-

1
= as we should expect. When

p&amp;gt;p
the value of o-j

is imaginary ;
the equilibrium configuration in which the external surface

of the fluid is concentric with the nucleus is then unstable. (Of. Art. 192.)

If in (ix) we put &= 0, we reproduce the result of the preceding Art. If,

on the other hand, the depth of the ocean be small compared with the radius,

we find, putting 6= a-A, and neglecting the square of A/a,

3 P\ ff
h

t,\

provided n be small compared with a/A. This agrees with Laplace s result,

obtained in a more direct manner in Art. 192.

But if n be comparable with a/A, we have, putting n= ka,

so that (ix) reduces to (r
a=#tanhA ................................. (xi),

as in Art. 217. Moreover, the expression (ii; for the velocity-potential

becomes, if we write r=a+ z,

+ h) .............................. (xii),

where
&amp;lt;px

is a function of the coordinates in the surface, which may now be

treated as plane. Cf. Art. 236.

The formulae for the kinetic and potential energies, in the general case, are

easily found by the same method as in the preceding Art. to be

and

The latter result shews, again, that the equilibrium configuration is one of

minimum potential energy, and therefore thoroughly stable, provided p &amp;lt; p .

In the case where the depth is relatively small, whilst n is finite, we obtain,

putting 6= a -A,

whilst the expression for V is of course unaltered.

If the amplitudes of the harmonics
, t
be regarded as generalized co

ordinates (Art. 165), the formula (xv) shews that for relatively small depths
the inertia-coefficients vary inversely as the depth. We have had frequent

illustrations of this principle in our discussions of tidal waves.
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Capillarity.

244. The part played by Cohesion in certain cases of fluid

motion has long been recognized in a general way, but it is only
within recent years that the question has been subjected to exact

mathematical treatment. We proceed to give some account of

the remarkable investigations of Lord Kelvin and Lord Rayleigh
in this field.

It is, of course, beyond our province to discuss the physical

theory of the matter*. It is sufficient, for our purpose, to know

that the free surface of a liquid, or, more generally, the common
surface of two fluids which do not mix, behaves as if it were in a

state of uniform tension, the stress between two adjacent portions

of the surface, estimated at per unit length of the common

boundary-line, depending only on the nature of the two fluids

and on the temperature. We shall denote this surface-tension/

as it is called, by the symbol T1 . Its value in c.G.s. units (dynes

per linear centimetre) appears to be about 74 for a water-air

surface at 20C.f ;
it diminishes somewhat with rise of temperature.

The corresponding value for a mercury-air surface is about 540.

An equivalent statement is that the potential energy of any

system, of which the surface in question forms part, contains a

term proportional to the area of the surface, the amount of this

superficial energy per unit area being equal to T^. Since the

condition of stable equilibrium is that the energy should be a

minimum, the surface tends to contract as much as is consistent

with the other conditions of the problem.

The chief modification which the consideration of surface-

tension will introduce into our previous methods is contained in

the theorem that the fluid pressure is now discontinuous at a

surface of separation, viz. we have

* For this, see Maxwell, Encyc. Britann., Art. &quot;Capillary Action&quot;; Scientific

Papers, Cambridge, 1890, t. ii., p. 541, where references to the older writers are

given. Also, Lord Kayleigh, &quot;On the Theory of Surface Forces,&quot; Phil. Mag.,

Oct. and Dec., 1890, and Feb. and May, 1892.

f Lord Kayleigh
&quot; On the Tension of Water-Surfaces, Clean and Contaminated,

investigated by the method of Hippies,&quot; Phil. Mag. Nov. 1890.

See Maxwell, Theory of Heat, London, 1871, c. xx.
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where p, p are the pressures close to the surface on the two sides,

and Rl , RZ are the principal radii of curvature of the surface, to be

reckoned negative when the corresponding centres of curvature lie

on the side to which the accent refers. This formula is readily

obtained by resolving along the normal the forces acting on a rect

angular element of a superficial film, bounded by lines of curvature
;

but it seems unnecessary to give here the proof, which may be found

in most recent treatises on Hydrostatics.

245. The simplest problem we can take, to begin with, is that

of waves on a plane surface forming the common boundary of two

fluids at rest.

If the origin be taken in this plane, and the axis of y normal

to it, the velocity-potentials corresponding to a simple-harmonic
deformation of the common surface may be assumed to be

&amp;lt;f)

= Ceky cos Tex . cos (at + e), j

&amp;lt;

=
0V^cosA?a?.cos(&amp;lt;r*+))

................
&quot;*

where the former equation relates to the side on which y is

negative, and the latter to that on which y is positive. For these

values satisfy V 2
&amp;lt;

= 0, V 2
&amp;lt;

= 0, and make the velocity zero for

y = qp oo
, respectively.

The corresponding displacement of the surface in the direction

of y will be of the type

rj
= a cos kx . sin (at + e) .................. (2) ;

and the conditions that

drj/dt
=

d(f&amp;gt;/dy
=

dfy jdy,
for y = 0, give

&amp;lt;ra
= -kC = kC ........................ (3).

If, for the moment, we ignore gravity, the variable part of the

pressure is given by

p dd&amp;gt; 0-a . , . ,
^

.- rr = -- eky cos kx . sin
(&amp;lt;rt

4- e),

,
(4).

cos ^x s^n ( fft + 6)

To find the pressure-condition at the common surface, we may
calculate the forces which act in the direction of y on a strip of



444 SURFACE WAVES. [CHAP. IX

breadth Boo. The fluid pressures on the two sides have a resultant

(p p)Sx, and the difference of the tensions parallel to y on

the two edges gives S (f^ifty/tfe). We thus get the equation

to be satisfied when y approximately. This might have been

written down at once as a particular case of the general surface-

condition (Art. 244 (1)). Substituting in (5) from (2) and (4), we
find

T le*

&amp;lt;T

2 =
ff-7 ........................... (6),
P + P

which determines the speed of the oscillations of wave-length 2tr/k.

The energy of motion, per wave-length, of the fluid included between two

planes parallel to xyt
at unit distance apart, is

o .-0 o V .y=o

If we assume
77
= a cos &e ....................................... (ii),

where a depends on t only, and therefore, having regard to the kinematical

conditions,

= -
1&amp;lt;r

l a(*v cos lex, $ = k~l ae~*v cos kx ............... (iii),

we find T=(p+p )k-
l &.\ ........................... (iv).

Again, the energy of extension of the surface of separation is

Substituting from (ii), this gives

.\ ................................. (vi).

To find the mean energy, of either kind, per unit length of the axis of #,

we must omit the factor X.

If we assume that a &amp;lt;x cos (a-t+ e), where o- is determined by (6), we verify

that the total energy T+ V is constant.

Conversely, if we assume that

T)
= 2 (a cos kx -f /3 sin kx] ........................... (vii),

it is easily seen that the expressions for T and V will reduce to sums of

squares of d, /3 and a, 0, respectively, with constant coefficients, so that the

quantities a, /3 are normal coordinates. The general theory of Art. 165

then leads independently to the formula (6) for the speed.
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By compounding two systems of standing waves, as in Art. 218,

we obtain a progressive wave-system

?;
= a cos (kso + crt) (7),

travelling with the velocity
cr

c=
k
=

or, in terms of the wave-length,

.(9).

The contrast with Art. 218 is noteworthy; as the wave-length

is diminished, the period diminishes in a more rapid ratio, so that

the wave-velocity increases.

Since c varies as X~*, the group-velocity, Art. 221 (2), is in the

present case

c-xj = |o (10).

The fact that the group-velocity for capillary waves exceeds the

wave-velocity helps to explain some interesting phenomena to be

referred to later (Art. 249).

For numerical illustration we may take the case of a free

water-surface; thus, putting /&amp;gt;

=
!, /o

= 0, 2^ = 74, we have the

following results, the units being the centimetre and second *.

Wave-length.
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positive direction of y upwards, the pressure at the disturbed

surface will be given by

,
e),

P
, ,

-, = -^-

gy = I ?=r + g
J
a cos kx . sin (at + e)

approximately. Substituting in Art. 245 (5), we find

at^^gk+W .................... (2).
P+&amp;gt; /&amp;gt;

+ ?

Putting a = kc, we find, for the velocity of a train of progressive

waves,

where we have written

P )
= T ................ (4).

In the particular cases of Tl
= and g = 0, respectively, we fall

back on the results of Arts. 223, 245.

There are several points to be noticed with respect to the

formula (3). In the first place, although, as the wave-length

(2ir/&) diminishes from oo to 0, the speed (a-) continually increases,

the wave-velocity, after falling to a certain minimum, begins to

increase again. This minimum value (cm , say) is given by

(5),

and corresponds to a wave-length

Xm = 2^m = 27r(r/Sr)i .................. (6)*.

In terms of \m and cm the formula (3) may be written

&amp;gt;

* The theory of the minimum wave-velocity, together with most of the substance

of Arts. 245, 246, was given by Sir W. Thomson, &quot;

Hydrokinetic Solutions and

Observations,&quot; Phil. Mag., Nov. 1871; see also Nature, t. v., p. 1 (1871),
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shewing that for any prescribed value of c, greater than cm ,
there

are two admissible values (reciprocals) of X/Xm . For example,

corresponding to

c/cm = T2 1-4 1-6 1-8 2-0

we have

, f2-476 3-646 4-917 6*322 7 873
1 m

~{ -404 -274 -203 -158 -127,

to which we add, for future reference,

sin-1
cni/c

= 5626 /

45 35 38 41 33 45 30.

For sufficiently large values of X the first term in the formula

(3) for c2
is large compared with the second

;
the force governing

the motion of the waves being mainly that of gravity. On the

other hand, when X is very small, the second term preponderates,
and the motion is mainly governed by cohesion, as in Art. 245. As
an indication of the actual magnitudes here in question, we may
note that if X/\m &amp;gt;10, the influence of cohesion on the wave-

velocity amounts only to about 5 per cent., whilst gravity becomes

relatively ineffective to a like degree if X/Xm &amp;lt; -fa.

It has been proposed by Lord Kelvin to distinguish by the

name of ripples waves whose length is less than Xm .

The relative importance of gravity and cohesion, as depending on the

value of X, may be traced to the form of the expression for the potential

energy of a deformation of the type

The part of this energy due to the extension of the bounding surface is, per
unit area,

Tr^o /X
8
.................................... (ii),

whilst the part due to gravity is

p )
2
.................................... (iii).

As X diminishes, the former becomes more and more important compared with

the latter.

For a water-surface, using the same data as before, with #= 981, we find

from (5) and (6),

Xm= l-73, cm = 23 2,

the units being the centimetre and the second. That is to say, roughly, the

minimum wave-velocity is about nine inches per second, or -45 sea-miles per
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hour, with a wave-length of two-thirds of an inch. Combined with the

numerical results already obtained, this gives,

for c= 27-8 32-5 37 1 41-8 46 4

in centimetres and seconds.

If we substitute from (7) in the general formula (Art. 221 (2))

for the group-velocity, we find

Hence the group-velocity is greater or less than the wave-velocity,

according as X
&amp;gt;

Xm . For sufficiently long waves the group-velocity

is practically equal to \c, whilst for very short waves it tends to

the value fc*.

A further consequence of (2) is to be noted. We have hitherto tacitly

supposed that the lower fluid is the denser (i.e. p&amp;gt;p )&amp;gt;

as is indeed necessary

for stability when T
l
is neglected. The formula referred to shews, however,

that there is stability even when
p&amp;lt;p , provided

i.e. provided X be less than the wave-length Xm of minimum velocity when the

denser fluid is below. Hence in the case of water above and air below the

maximum wave-length consistent with stability is 1 73 cm. If the fluids

be included between two parallel vertical walls, this imposes a superior limit

to the admissible wave-length, and we learn that there is stability (in the two-

dimensional problem) provided the interval between the walls does not exceed

86 cm. We have here an explanation, in principle, of a familiar experiment in

which water is retained by atmospheric pressure in an inverted tumbler, or

other vessel, whose mouth is covered by a gauze with sufficiently fine meshes t-

247. We next consider the case of waves on a horizontal

surface forming the common boundary of two parallel currents

U, Uf

.

*
Cf. Lord Rayleigh, L c. ante p. 383.

t The case where the fluids are contained in a cylindrical tube has been solved

by Maxwell, Encyc. Britann., Art. &quot;

Capillary Action,&quot; t. v., p. 69, Scientific Papers,

t. ii., p. 585, and compared with some experiments of Duprez. The agreement is

better than might have been expected when we consider that the special condition

to be satisfied at the line of contact of the surface with the wall of the tube has

been left out of account.
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If we apply the method of Art. 224, we find without difficulty

that the condition for stationary waves is now

the last term being due to the altered form of the pressure

condition which has to be satisfied at the surface. Putting

U c, U = - c + u, p /p
=

s,

we get

where

i.e. c is the velocity of waves of the given length (Zir/k) when
there are no currents.

The various inferences to be drawn from (2) are much as in

Art. 224, with the important qualification that, since c has now a

minimum value, viz. the cm of Art. 246 (5), the equilibrium of

the surface when plane is stable for disturbances of all wave

lengths so long as

u&amp;lt;
L
J
f .c

1
........................ (4).

When the relative velocity u of the two currents exceeds this

value, c becomes imaginary for wave-lengths lying between certain

limits. It is evident that in the alternative method of Art. 225

the time-factor e
i&amp;lt;Tt will now take the form e*=*t+W

t
where

&
&quot;\ T~: rr U CA f K3 /3 z /tU ( O ).J/llo\2 1lr \/

The real part of the exponential indicates the possibility of a

disturbance of continually increasing amplitude.

For the case of air over water we have s= -00129, cm= 23 2 (c.s.), whence
the maximum value of u consistent with stability is about 646 centimetres

per second, or (roughly) 12*5 sea-miles per hour*. For slightly greater values

of u the instability will manifest itself by the formation, in the first in-

* The wind-velocity at which the surface of water actually begins to be ruffled

by the formation of capillary waves, so as to lose the power of distinct reflection, is

much less than this, and is determined by other causes. We shall revert to this

point later (Art. 302).

L. 29
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stance, of wavelets of about two-thirds of an inch in length, which will

continually increase in amplitude until they transcend the limits implied

in our approximation.

248. We resume the investigation of the effect of a steady

pressure-disturbance on the surface of a running stream, by the

method of Arts. 226, 227, including now the effect of capillary

forces. This will give, in addition to the former results, the ex

planation (in principle) of the fringe of ripples which is seen in

advance of a solid moving at a moderate speed through still

water, or on the up-stream side of any disturbance in a uniform

current.

Beginning with a simple-harmonic distribution of pressure, we

assume

&amp;lt;f&amp;gt;/c

= - x + ftefr sin lex, \
.

^/c-y+tf**coefcr J

the upper surface coinciding with the stream-line -^
= 0, whose

equation is

y = ft cos kx ........................... (2),

approximately. At a point just beneath this surface we find, as

in Art. 226 (8), for the variable part of the pressure,

=
ft {(kc*

-
g) cos kx + yuc sin kx} ............ (3),

where
//,

is the frictional coefficient. At an adjacent point just

above the surface we must have

p p x*

=
ft {(kc

z -g- &T) cos kx + pc sin kx] ......... (4),

where T is now written for TJp. This is equal to the real part of

ft (kc* -g- k*T - ific) eikx.

Writing P for the coefficient, we find that to the imposed pressure

will correspond the surface-form

_ (k^ ~ 9 ~ k*T
f

) cos kx nc sin kx

(5)
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Let us first suppose that the velocity c of the stream exceeds

the minimum wave-velocity (cm) investigated in Art. 246. We may
then write

K,)(K2 -k) .................. (7),

where K^ tc2 are the two values of k corresponding to the wave-

velocity c on still water; in other words, ZTT/KH 27r//c2 are the lengths

of the two systems of free waves which could maintain a stationary

position in space, on the surface of the flowing stream. We will

suppose that K&amp;lt;&amp;gt;&amp;gt; K^.

In terms of these quantities, the formula (6) may be written

_ P (k K!) (K2 k) cos kx /// sin kx , .

y =
T&quot; (k-Kjfa-ky + p *

where ///
= pc/T . This shews that if p! be small the pressure is

least over the crests, and greatest over the troughs of the waves

when k is greater than K.2 or less than KI} whilst the reverse is

the case when k is intermediate to telt K2 . In the case of a pro

gressive disturbance advancing over still water, these results are

seen to be in accordance with Art. 165 (12).

249. From (8) we can infer as in Art. 227 the effect of

a pressure of integral amount Q concentrated on a line of the

surface at the origin, viz. we find

Q r (k- ^(Kz-k) cos kx - fjf sin kx (
.

y -
*TI

-

Jo -^tf&i-ky+jfi-
This definite integral is the real part of

e**dk

rJ o

The dissipation-coefficient // has been introduced solely for the purpose of

making the problem determinate; we may therefore avail ourselves of the

slight gain in simplicity obtained by supposing pf to be infinitesimal. In this

case the two roots of the denominator in (i) are

k=

where v=p. /(ic.2 -Kl ).

Since *2 &amp;gt; K
i&amp;gt;

&quot; is positive. The integral (i)
is therefore equivalent to

i
f r &amp;lt;p*dk r _j

tta

tifc__i
K2
-

Kl -2iv \J A-fa + fr) Jo k-(K2 -iv)f~

292
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These integrals are of the forms discussed in Art. 227. It appears that

when x is positive the former integral is equal to

r e~ ilcx
7

27rie
iKlX+ I TT * (1U )&amp;gt;

Jo &-*-&amp;lt;!

and the latter to

dk
o

On the other hand, when x is negative, the former reduces to

~ dk... ....(v),

and the latter to
-ikxr p-ikx

+j.jSf (vi) -

We have here simplified the formulae by putting v= after the transfor

mations.

If we now discard the imaginary parts of our expressions, we obtain the

results which immediately follow.

When fjf is infinitesimal, the equation (9) gives, for x positive,

^.y = - *?sanc& + F(x) (10),
V #2

~ Kl

and, for x negative,

2?T . -r., *. /i-i\^) ...............(11),

where
1

([&quot;&quot;coskxjj [
x
coskx,j} .=~ \\ -j

--- dk- ,- dk&amp;gt; ....... (12).
K2
-

K! (Jo k + K! Jo k + K2 J

This function F(x) can be expressed in terms of the known func

tions Ci !#, Si #!#, Ci K&, Si K.&, by Art. 227 (ix). The disturb

ance of level represented by it is very small for values of x,

whether positive or negative, which exceed, say, half the greater

wave-length (^TT/KJ).

Hence, beyond some such distance, the surface is covered on

the down-stream side by a regular train of simple-harmonic waves

of length 27r/Klt and on the up-stream side by a train of the

shorter wave-length 27r/;2 . It appears from the numerical results

of Art. 246 that when the velocity c of the stream much exceeds

the minimum wave-velocity (cm ) the former system of waves is

governed mainly by gravity, and the latter by cohesion.
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It is worth notice that, in contrast with

the case of Art. 227, the elevation is now

finite when x = 0, viz. we have

(^ K2 Kl KI

This follows easily from (10).

The figure shews the transition between

the two sets of waves, in the case of K2
= 5^.

The general explanation of the effects

of an isolated pressure-disturbance advanc

ing over still water, indicated near the end

of Art. 227, is now modified by the fact

that there are tivo wave-lengths correspond

ing to the given velocity c. For one of

these (the shorter) the group-velocity is

greater, whilst for the other it is less, than

c. We can thus understand why the waves

of shorter wave-length should be found

ahead, and those of longer wave-length in

the rear, of the disturbing pressure.

It will be noticed that the formulge (10),

(11) make the height of the up-stream

capillary waves the same as that of the

down-stream gravity waves
;
but this result

will be greatly modified when the pressure

is diffused over a band of finite breadth,

instead of being concentrated on a mathe

matical line. If, for example, the breadth

of the band do not exceed one-fourth of the

wave-length on the down-stream side, whilst

it considerably exceeds the wave-length of

the up-stream ripples, as may happen with

a very moderate velocity, the different parts

of the breadth will on the whole reinforce

one another as regards their action on the

down-stream side, whilst on the up-stream
side we shall have interference, with a

comparatively small residual amplitude.
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When the velocity c of the stream is less than the minimum
wave-velocity, the factors of

are imaginary. There is now no indeterminateness caused by

putting fju
= ab initio. The surface-form is given by

Q r coskx

The integral might be transformed by the previous method, but it

is evident a priori that its value tends rapidly, with increasing x,

to zero, on account of the more and more rapid fluctuations in

sign of cos kx. The disturbance of level is now confined to the

neighbourhood of the origin. For x = we find

Finally we have the critical case where c is exactly equal to

the minimum wave-velocity, and therefore K2
= /q. The first term

in (10) or (11) is now infinite, whilst the remainder of the expres

sion, when evaluated, is finite. To get an intelligible result in

this case it is necessary to retain the frictional coefficient //.

If we put //
= 2sr2

)
we have

(k-^+ i^
f

={k-(&amp;lt;+ ^-iw}}{k-(&amp;lt;-w-\-iw}} ............ (vii),

so that the integral (i) may now be equated to

l-M r r
&amp;lt;p*

r j** \ .-
\ I

j
-.
--..dk- I

-j r i

-
!~v&amp;lt;fifcV

...... (vm).
4tzr \J 9 k-^-w+iw] J Q k-(K.+ TZ-iw} J

The formulae of Art. 227 shew that when or is small the most important

part of this expression, for points at a distance from the origin on either side,

is

It appears that the surface-elevation is now given by

7T ,
/i/&amp;gt;\

(16).

The examination of the effect of inequalities in the bed of a

stream, by the method of Art. 230, must be left to the reader.
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250. The investigation by Lord Rayleigh*, from which the

foregoing differs principally in the manner of treating the definite

integrals, was undertaken with a view to explaining more fully

some phenomena described by Scott Russellf and Lord Kelvin
J.

&quot;When a small obstacle, such as a fishing line, is moved

forward slowly through still water, or (which of course cornes to

the same thing) is held stationary in moving water, the surface is

covered with a beautiful wave-pattern, fixed relatively to the

obstacle. On the up-stream side the wave-length is short, and, as

Thomson has shewn, the force governing the vibrations is prin

cipally cohesion. On the down-stream side the waves are longer,

and are governed principally by gravity. Both sets of waves move

with the same velocity relatively to the water
; namely, that

required in order that they may maintain a fixed position relatively

to the obstacle. The same condition governs the velocity, and

therefore the wave-length, of those parts of the pattern where the

fronts are oblique to the direction of motion. If the angle between

this direction and the normal to the wave-front be called 0, the

velocity of propagation of the waves must be equal to VQ cos 0,

where v represents the velocity of the water relatively to the fixed

obstacle.

&quot; Thomson has shewn that, whatever the wave-length may be,

the velocity of propagation of waves on the surface of water cannot

be less than about 23 centimetres per second. The water must

run somewhat faster than this in order that the wave-pattern may
be formed. Even then the angle 6 is subject to a limit defined by
v cos 6 = 23, and the curved wave-front has a corresponding

asymptote.

&quot; The immersed portion of the obstacle disturbs the flow of the

liquid independently of the deformation of the surface, and renders

the problem in its original form one of great difficulty. We may
however, without altering the essence of the matter, suppose that

the disturbance is produced by the application to one point of the

surface of a slightly abnormal pressure, such as might be produced

by electrical attraction, or by the impact of a small jet of air.

*
I. e. ante p. 393. + On Waves,&quot; Brit. Ass. Rep., 1844.

1. c. ante p. 446.
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Indeed, either of these methods the latter especially gives very
beautiful wave-patterns*.&quot;

The solution of the problem here stated is to be derived from

the results of the last Art. in the manner explained in Art. 228.

For a line of pressure making an angle JTT with the

direction of the stream, the distances (p) of the successive wave-

ridges from the origin are given by

kp = (2m - %) TT,

where m is an integer, and the values of k are determined by

l&T -&c2 cos2 + # = (1).

If we put cm = (40r)* (2),

and cosa = cm/c, a = (m - J) 7rc
2

/# (3),

this gives
_- 2^cos*0+ cos4 a = (4),

whence p/a = cos2 9 (cos
4 6 cos4

a)* (5).

The greater of these two values of p corresponds to the down

stream and the smaller to the up-stream side of the seat of

disturbance.

The general form of the wave-ridges due to a pressure-point at

the origin is then given, on Huyghens principle, by (5), considered

as a tangential-polar equation between p and 6. The four lines

for which 6 = a. are asymptotes. The values of ^TT a for several

values of c/cm have been tabulated in Art. 246.

The figure opposite shews the wave-system thus obtained,

in the particular case where the ratio of the wave-lengths in the

line of symmetry is 4 : 1. This corresponds to a= 26 34 *h

In the outlying parts of the wave-pattern, where the ridges
are nearly straight, the wave-lengths of the two systems are

nearly equal, and we have then the abnormal amplitude indicated

by equation (16) of the preceding Art.

When the ratio c/cm is at all considerable, a is nearly equal to |TT, and

the asymptotes make a very acute angle with the axis. The wave-envelope

* Lord Eayleigh, I. c.

t The figure may be compared with the drawing, from observation, given by
Scott Russell, I c.
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on the down-stream side then approximates to the form investigated in Art.

228, except that the curve, after approaching the axis of x near the origin,

runs back along the asymptotes. On the up-stream side we have approxi

mately

j
= &sec2 # (i),

where b = \a cos4 a. This gives

251. Another problem of great interest is the determination

of the nature of the equilibrium of a cylindrical column of liquid,

of circular section. This contains the theory of the well-known

experiments of Bidone, Savart, and others, on the behaviour of a

jet issuing under pressure from a small orifice in the wall of a

containing vessel. It is obvious that the uniform velocity in the
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direction of the axis of the jet does not affect the dynamics of the

question, and may be disregarded in the analytical treatment.

We will take first the two-dimensional vibrations of the

column, the motion being supposed to be the same in each

section. Using polar coordinates r, in the plane of a section,

with the origin in the axis, we may write, in accordance with

Art. 63,
rs

(/&amp;gt;

= J. cos s# . cos (oi + e) ............... (1),
Cl&amp;gt;

where a is the mean radius. The equation of the boundary at

any instant will then be

r-o+f .............................. (2),

where = -- cos s6 . sin (at + e) ............... (3),
&amp;lt;T&

the relation between the coefficients being determined by

dt
~

dr

for r = a. For the variable part of the pressure inside the column,

close to the surface, we have

- = -~- = aA cos sO . sin (at + e) ............ (5).
p ctt

The curvature of a curve which differs infinitely little from a

circle having its centre at the origin is found by elementary

methods to be

1_ = 1_ 1 &r
R
~

r r* dQ*

or, in the notation of (2),

Hence the surface condition

p = T,/R + const., ..................... (7),

gives, on substitution from (5),

* For the original investigation, by the method of energy, see Lord Eayleigh,

&quot;On the Instability of Jets,&quot; Proc. Lond. Math. Soc., t. x., p. 4 (1878); &quot;On the

Capillary Phenomena of Jets,&quot; Proc. Boy. Soc., May 5, 1879. The latter paper

contains a comparison of the theory with experiment.
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For s=l, we have cr = 0; to our order of approximation the

section remains circular, being merely displaced, so that the

equilibrium is neutral. For all other integral values of s, o-
2

is

positive, so that the equilibrium is thoroughly stable for two-

dimensional deformations. This is evident a priori, since the

circle is the form of least perimeter, and therefore least potential

energy, for given sectional area.

In the case of a jet issuing from an orifice in the shape of an

ellipse, an equilateral triangle, or a square, prominence is given to

the disturbance of the type 5 = 2, 3, or 4, respectively. The motion

being steady, the jet exhibits a system of stationary waves, whose

length is equal to the velocity of the jet multiplied by the period

252. Abandoning now the restriction to two dimensions,

we assume that

&amp;lt;f&amp;gt;

= facoskz .
cos(&amp;lt;rt + e) ..................... (9),

where the axis of z coincides with that of the cylinder, and fa is a

function of the remaining coordinates x, y. Substituting in the

equation of continuity, V 2 =
0, we get

07^-^)^ = ..................... (10),

where Vi
2 =

d^jdx^ + d2

/dy
2
. If we put x r cos 6, y = r sin 0, this

may be written

SKt^S-*- ............
&amp;lt;&amp;gt;

This equation is of the form considered in Art. 187, except for the

sign of &
;
the solutions which are finite for r = are therefore of

the type

fa=BIt (kr)\80 ..................... (12),
bill \

where
Zs

Hence, writing

&amp;lt;f)

= BIS (kr) cos s6 cos Icz . cos (at + e) ......... (14),

we have, by (4),

s
......... (15).

o~ft
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To find the sum of the principal curvatures, we remark that, as an

obvious consequence of Euler s and Meunier s theorems on curva

ture of surfaces, the curvature of any section differing infinitely

little from a principal normal section is, to the first order of small

quantities, the same as that of the principal section itself. It is

sufficient therefore in the present problem to calculate the curva

tures of a transverse section of the cylinder, and of a section

through the axis. These are the principal sections in the

undisturbed state, and the principal sections of the deformed

surface will make infinitely small angles with them. For the

transverse section the formula (6) applies, whilst for the axial

section the curvature is d2

Qdz* ;
so that the required sum of

the principal curvatures is

._
R R a a*V:dPi dz*

Also, at the surface,

- = -./= crB Is (ka) cos s6 cos kz . sin (at + e) . . . (17).
p at

The surface-condition Art. 244 (1) then gives

^2 = 2 _ ............ ^
l,(ka) pa

s

For s &amp;gt; 0, o-
2
is positive ;

but in the case (s
=

0) of symmetry about

the axis a2 will be negative if ka &amp;lt; 1 ;
that is, the equilibrium is

unstable for disturbances whose wave-length (2ir/k) exceeds the

circumference of the jet. To ascertain the type of disturbance for

which the instability is greatest, we require to know the value of

ka which makes

kaIQ (ka)

I9 (ka)
(k l)

a maximum. For this Lord Rayleigh finds k2a2 = 4858, whence,

for the wave-length of maximum instability,

2-7T/&
= 4-508 x 2a.

There is a tendency therefore to the production of bead-like
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swellings and contractions of this wave-length, with continually

increasing amplitude, until finally the jet breaks up into detached

drops*.

253. This leads naturally to the discussion of the small

oscillations of a drop of liquid about the spherical form-f. We
will slightly generalize the question by supposing that we have a

sphere of liquid, of density p, surrounded by an infinite mass

of other liquid of density p.

Taking the origin at the centre, let the shape of the common
surface at any instant be given by

? = a + f=a+ 8n .sin(at + e) (1),

where a is the mean radius, and Sn is a surface-harmonic of order

n. The corresponding values of the velocity-potential will be,

at internal points,
fTCt W v

= -- -Sn . cos (at + e) (2),
7i a

and at external points
(T(i an+i

(3),
Id T JL /

since these make

~di

==

~~dr
=

~~dr

for r = a. The variable parts of the internal and external pressures

at the surface are then given by

To find the sum of the curvatures we make use of the theorem

* The argument here is that if we have a series of possible types of disturbance,

with time-factors e
ttl

,
e

2&amp;lt;

,
e&quot;

3

*, ..., where a
1

&amp;gt;a2 &amp;gt;a3
&amp;gt; ..., and if these be excited

simultaneously, the amplitude of the first will increase relatively to those of the

other components in the ratios a
*1

***, e
(otl

~
a3

^, . . . . The component with the

greatest a will therefore ultimately predominate.
The instability of a cylindrical jet surrounded by other fluid has been discussed

by Lord Eayleigh,
&quot; On the Instability of Cylindrical Fluid Surfaces,&quot; Phil. Mag.,

Aug. 1892. For a jet of air in water the wave-length of maximum instability is

found to be 6-48 x 2a.

t Lord Eayleigh, I. c. ante p. 458; Webb, Mess, of Math., t. ix. p. 177 (1880).
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of Solid Geometry, that if X, p, v be the direction-cosines of the

normal at any point of a surface F(x, y, z) = 0, viz.

1 1 d\ diji dv
then

~p~&quot;*~fc
r =

;7~&quot;*~77
+

;7~ ( )

Since the square of ? is to be neglected, the equation (1) of the

harmonic spheroid may also be written

r = o + ft,, (6),

rn
where f?l

= Sn . sin (at + e) (7),
CL

i.e. %n is a solid harmonic of degree n. We thus find

X d%n X
y

f dii w& V /

Z Cv^n ^ ^

~r~dz l

r2 ^n

whence

~~

a a2

Substituting from (4) and (9) in the general surface-condition of

Art. 244, we find

If we put p = 0, this gives

The most important mode of vibration is the ellipsoidal one,

for which n = 2
;
we then have



253] VIBRATIONS OF A GLOBULE. 463

Hence for a drop of water, putting Tl
= 74, p = 1, we find, for the

frequency,

&amp;lt;r/27r

= 3 87a- seconds,

if a be the radius in centimetres. The radius of the sphere
which would vibrate seconds is a = 2*47 cm. or a little less than an

inch.

The case of a spherical bubble of air, surrounded by liquid,

is obtained by putting p
= in (10), viz. we have

l)( + 2)j ............ (12).

For the same density of the liquid, the frequency of any given
mode is greater than in the case represented by (11), on account

of the diminished inertia
;

cf. Art. 90 (6), (7).



CHAPTER X.

WAVES OF EXPANSION.

254. A TREATISE on Hydrodynamics would hardly be complete
without some reference to this subject, if merely for the reason

that all actual fluids are more or less compressible, and that it is

only when we recognize this compressibility that we escape such

apparently paradoxical results as that of Art. 21, where a change
of pressure was found to be propagated instantaneously through a

liquid mass.

We shall accordingly investigate in this Chapter the general

laws of propagation of small disturbances, passing over, however,

for the most part, such details as belong more properly to the

Theory of Sound.

In most cases which we shall consider, the changes of pressure

are small, and may be taken to be proportional to the changes
in density, thus

Aj&amp;gt;

= *&amp;gt; (1),

where K (=p dp/dp) is a certain coefficient, called the elasticity of

volume.
1

For a given liquid the value of K varies with the

temperature, and (very slightly) with the pressure. For water at

15 C., K = 2 22 x 1010

dynes per square centimetre; for mercury
at the same temperature tc= 5*42 x 1011

. The case of gases will

be considered presently.

Plane Waves.

255. We take first the case of plane waves in a uniform

medium.

The motion being in one dimension (x), the dynamical equation

is, in the absence of extraneous forces,

du du _ 1 dp _ 1 dp dp X-.X

dt dx p dx p dp dx&quot;
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whilst the equation of continuity, Art. 8 (4), reduces to

If we put
p=pQ (I+s) ........................... (3),

where pQ is the density in the undisturbed state, s may be called

the condensation in the plane x. Substituting in (1) and (2),

we find, on the supposition that the motion is infinitely small,

du K ds ,..

Tt
=
~p,dx

&quot;

ds du /K ,

and -j-
=

--j-
.......................... (5),

dt dx

if K = [pdp/dp] p=p(}
........................ (6),

as above. Eliminating s we have

#u = c
,#u

dt2 dx2
&quot;

where c
2 =

K/p
= [dp/dp]p=po ..................... (8).

The equation (7) is of the form treated in Art. 107, and the

complete solution is

u = F(ct-x)+f(ct + x) .................. (9),

representing two systems of waves travelling with the constant

velocity c, one in the positive and the other in the negative

direction of x. It appears from (5) that the corresponding value

of s is given by
............... (10).

For a single wave we have

u = cs ..................... ...... (11),

since one or other of the functions F,f is zero. The upper or the

lower sign is to be taken according as the wave is travelling in

the positive or the negative direction.

There is an exact correspondence between the above approximate theory
and that of long gravity-waves on water. If we write

77/A for s, and gh for

ic/Po, the equations (4) and (5), above, become identical with Art. 166 (3), (5).

I,. 30



466 WAVES OF EXPANSION. [CHAP. X

256. With the value of K given in Art. 254, we find for water

at 15 C.

c = 1490 metres per second.

The number obtained directly by Colladon and Sturm in their

experiments on the lake of Geneva was 1437, at a temperature
of 8 C *

In the case of a gas, if we assume that the temperature is

constant, the value of K is determined by Boyle s Law

viz. K=PO .............................. (2),

so that c =
O&amp;gt;/po)*

........................
( &amp;lt;S )-

This is known as the Newtonian velocity of sound
(*.

If we

denote by H the height of a homogeneous atmosphere of the

gas, we have pQ
= gp H, and therefore

c=foH) ........................... (4),

which may be compared with the formula (8) of Art. 167 for

the velocity of long gravity-waves in liquids. For air at C.

we have as corresponding values J

p = 76 x 13-60 x 981, p = -00129,

in absolute C.G.S. units; whence

c = 280 metres per second.

This is considerably below the value found by direct observation.

The reconciliation of theory and fact is due to Laplace .

When a gas is suddenly compressed, its temperature rises, so

that the pressure is increased more than in proportion to the

diminution of volume
;
and a similar statement applies of course

to the case of a sudden expansion. The formula (1) is appro

priate only to the case where the expansions and rarefactions are

so gradual that there is ample time for equalization of temperature

by thermal conduction and radiation. In most cases of interest,

the alternations of density are exceedingly rapid ;
the flow of heat

* Ann. de Chim. et de Phys., t. xxxvi. (1827).

t Principia, Lib. ii., Sect, viii., Prop. 48.

J Everett, Units and Physical Constants.

%
&quot; Sur la vitesse du son dans 1 air et dans 1 eau, Ann. de Chim. et de Phys.,

t. iii. (1816); Mecanique Celeste, Livre 12me
,

c. iii. (1823).
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from one element to another has hardly set in before its direction

is reversed, so that practically each element behaves as if it

neither gained nor lost heat.

On this view we have, in place of (1), the adiabatic law

where, as explained in books on Thermodynamics, 7 is the ratio of

the two specific heats of the gas. This makes

K = ypo ................................... (6),

and therefore c = (WO/PO)* ........................... (7).

If we put 7=1*410*, the former result is to be multiplied by
1-187, whence

c = 332 metres per second,

which agrees very closely with the best direct determinations.

The confidence felt by physicists in the soundness of Laplace s view is so

complete that it is now usual to apply the formula (7) in the inverse manner,
and to infer the values of y for various gases and vapours from observation

of wave-velocities in them.

In strictness, a similar distinction should be made between the adiaba

tic and isothermal coefficients of elasticity of a liquid or a solid, but

practically the difference is unimportant. Thus in the case of water the

ratio of the two volume-elasticities is calculated to be l 0012f.

The effects of thermal radiation and conduction on air-waves have been

studied theoretically by Stokes J and Lord Rayleigh. When the oscillations

are too rapid for equalization of temperature, but not so rapid as to exclude

communication of heat between adjacent elements, the waves diminish in

amplitude as they advance, owing to the dissipation of energy which

takes place in the thermal processes.

According to the law of Charles and Gay Lussac

p /po oc 1 + -00366 0,

where 6 is the temperature Centigrade. Hence the velocity of

sound will vary as the square root of the absolute temperature.
For several of the more permanent gases, which have sensibly the

same value of 7, the formula (7) shews that the velocity varies

* The value found by direct experiment.

t Everett, Units and Physical Constants.

J
&quot; An Examination of the possible effect of the Radiation of Heat on the Pro

pagation of Sound,&quot; Phil. Mag., April, 1851.

Theory of Sound, Art. 247.

302
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inversely as the square root of the density, provided the relative

densities be determined under the same conditions of pressure and

temperature.

257. The theory of plane waves can also be treated very

simply by the Lagrangian method.

If f denote the displacement at time t of the particles whose

undisturbed abscissa is x
t
the stratum of matter originally in

cluded between the planes x and as + &e is at the time t + 8t

bounded by the planes

and *+?+

so that the equation of continuity is

where p is the density in the undisturbed state. Hence if ,9

denote the condensation (p /OO )/PO&amp;gt;
we nave

dx

The dynamical equation obtained by considering the forces

acting on unit area of the above stratum is

o**- dp
(S)*&quot;~ ; -

These equations are exact, but in the case of small motions

we may write

........................... (4),

_
.

Substituting in (3) we find

where c2 = K/p ........................... (7).

The interpretation of (6) is the same as in Arts. 167, 255.
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258. The kinetic energy of a system of plane waves is given

by
T-faff&tadydM (1),

where u is the velocity at the point (x, y, z] at time t.

The calculation of the intrinsic energy requires a little care.

If v be the volume of unit mass, the work which this gives out in

expanding from its actual volume to the normal volume v is

I pdv
J V

(2).

Putting v = Vu/(l+s), p=po+KS, we find, for the intrinsic energy

(E) of unit mass

^=boS + (i*-po)s
2K (3),

if we neglect terms of higher order. Hence, for the intrinsic

energy of the fluid which in the disturbed condition occupies any

given region, we have the expression

W=jtfEpdxdydz = p9fffE (1 + s) dxdydz

= S!5(pQ s + %KS&amp;gt;}dxdydz (4),

since p v = I. If we consider a region so great that the con

densations and rarefactions balance, we have

fjfsdxdydz = (5),

and therefore W \ KJjjs^dxdydz (6).

In a progressive plane wave we have cs = u, and therefore

T= W. The equality of the two kinds of energy, in this case, may
also be inferred from the more general line of argument given in

Art. 171.

In the theory of Sound special interest attaches, of course, to

the case of simple-harmonic vibrations. If a be the amplitude
of a progressive wave of period 27r/cr, we may assume, in con

formity with Art. 257 (6),

f = a cos (kx at + e) (7),

where k =
&amp;lt;r/c.

The formulae (1) and (6) then give, for the energy
contained in a prismatic space of sectional area unity and length
\ (in the direction #),

T+ W =
^p&amp;lt;rW\ (8),
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the same as the kinetic energy of the whole mass when animated

with the maximum velocity &amp;lt;ra.

The rate of transmission of energy across unit area of a plane moving
with the particles situate in it is

p~ =p&amp;lt;ra
sin (kx -a-t+e) , (i).

The work done by the constant part of the pressure in a complete period is

zero. For the variable part we have

Ajo
= KS= K-~

CkOG

Substituting in (i), we find, for the mean rate of transmission of energy,

Wa2=
Po &amp;lt;7

2a2 xc (iii).

Hence the energy transmitted in any number of complete periods is exactly

that corresponding to the waves which pass the plane in the same time.

This is in accordance with the general theory of Art. 221, since, c being

independent of X, the group-velocity is identical with the wave-velocity.

Waves of Finite Amplitude.

259. If p be a function of p only, the equations (1) and (3) of

Art. 257, give, without approximation,

d^ = dp d^
dt* pfdp da?&quot;

On the isothermal hypothesis that

this becomes -
7
-~ =

dt PQ

In the same way, the adiabatic relation

These exact equations (3) and (4) may be compared with the similar

equation for long waves in a uniform canal, Art. 170 (3).
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It appears from (1) that the equation (6) of Art. 257 could be regarded as

exact if the relation between p and p were such that

Hence plane waves of finite amplitude can be propagated without change of

type if, and only if,

A relation of this form does not hold for any known substance, whether at

constant temperature or when free from gain or loss of heat by conduction

and radiation. Hence sound-waves of finite amplitude must inevitably under

go a change of type as they proceed.

260. The laws of propagation of waves of finite amplitude
have been investigated, independently and by different methods,

by Earnshaw and Riemann. It is proposed to give here a brief

account of these investigations, referring for further details to the

original papers, and to the very full discussion of the matter

by Lord Rayleigh *.

Riemann s method
(

has already been applied in this treatise

to the discussion of the corresponding question in the theory
of long gravity-waves on liquids (Art. 183). He starts from

the Eulerian equations of Art. 255, which may be written

du du 1 dp dp
-j2 + u -j-

= -- j ^ .................. (I)-
at dec p dp dx

dp dp du
-f,+u~T = -p-r ........................ (2).dt dx r dx

If we put
P=f(p)+u, Q=f(p)-u ............... (3),

where f(p) is as yet undetermined, we find, multiplying (2) by
/ (p), and adding to (1),

dP
u dP_ = _dpdp_ ff( }

du

dt dx p dp dx ^ dx

If we now determine f(p) so that

*
Theory of Sound, c. xi.

t
&quot; Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,&quot;

Gott. Abh., t. viii. (1860) ; Werke, Leipzig, 1876, p. 145.
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this may be written

dp dp .,. dp
dt
+u d^=-tf^d* ..................

&amp;lt;&amp;gt;-

In the same way we obtain

The condition (4) is satisfied by

Substituting in (5) and (6), we find

\dpj j J dx

Hence dP = 0, or P is constant, for a geometrical point moving
with the velocity

*-$) + ........................

whilst Q is constant for a point whose velocity is

.(10).

Hence, any given value of P moves forward, and any value of Q
moves backward, with the velocity given by (9) or (10), as

the case may be.

These results enable us to understand, in a general way, the

nature of the motion in any given case. Thus if the initial

disturbance be confined to the space between the two planes

x = a, x = b, we may suppose that P and Q both vanish for x &amp;gt; a

and for x &amp;lt; b. The region within which P is variable will

advance, and that within which Q is variable will recede, until

after a time these regions separate and leave between them a

space for which P = 0, Q = 0, and in which the fluid is therefore

at rest. The original disturbance has thus been split up into two

progressive waves travelling in opposite directions. In the

advancing wave we have Q = 0, and therefore
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so that both the density and the particle-velocity are propagated
forwards at the rate given by (9). Whether we adopt the isother

mal or the adiabatic law of expansion, this velocity of propagation
will be found to be greater, the greater the value of p. The law

of progress of the wave may be illustrated by drawing a curve

with x as abscissa and p as ordinate, and making each point
of this curve move forward with the appropriate velocity, as

given by (9) and (11). Since those parts move faster which

have the greater ordinates, the curve will eventually become at

some point perpendicular to x. The quantities dujdx, dpjdx are

then infinite
;
and the preceding method fails to yield any infor

mation as to the subsequent course of the motion. Cf. Art. 183.

261. Similar results can be deduced from Earnshaw s investi

gation*, which is, however, somewhat less general in that it

applies only to a progressive wave supposed already established.

For simplicity we will suppose p and p to be connected by Boyle s Law

P=c*p ....................................... (i).

If we write y=x-\-l~-&amp;gt;

so that y denotes the absolute coordinate at time t of

the particle whose undisturbed abscissa is #, the equation (3) of Art. 259

becomes

da?dae
This is satisfied by

Hence a first integral of (ii) is

To obtain the general integral of (v) we must eliminate a between the

equations

-

where &amp;lt; is arbitrary. Now

dy/dx=p /p,

* &quot; On the Mathematical Theory of Sound,&quot; Phil. Trans., 1860.

t See Forsyth, Differential Equations, c. ix.
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so that, if u be the velocity of the particle #, we have

(vii).

On the outskirts of the wave we shall have u=0, p=p - It follows that

(7=0, and therefore

P=P^ulc
................................. (viii).

Hence in a progressive wave p and u must be connected by this relation.

If this be satisfied initially, the function $ which occurs in (vi) is to be

determined from the conditions at time t= by the equation

To obtain results independent of the particular form of the wave, consider

two particles (which we will distinguish by suffixes) so related that the value

of p which obtains for the first particle at time ^ is found at the second

particle at time t.2
.

The value of a
(
= p /p) is the same for both, and therefore by (vi), with

(7=0,

#2-#i= (#2
-

#1) c &- *i) lo &amp;gt;1

( }

Q= a(xz-x1)c(tt-t]) J

The latter equation may be written

A#
. p / -N

-TT=+ C - .................................... xi),
A* po

shewing that the value of p is propagated from particle to particle at the rate

p/p . c. The rate of propagation in space is given by

= +c+u .................................... (xii).

This is in agreement with Eiemann s results, since on the isothermal

hypothesis (dp/dp)*=c.

For a wave travelling in the positive direction we must take the lower

signs. If it be one of condensation
(p&amp;gt;p ),

u is positive, by (viii). It follows

that the denser parts of the wave are continually gaining on the rarer, and

at length overtake them
;
the subsequent motion is then beyond the scope of

our analysis.

Eliminating x between the equations (vi), and writing for c log a its value

u, we find for a wave travelling in the positive direction,

y= (c+ u)t+F(a) ........................... (xiii).

In virtue of (viii) this is equivalent to
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This formula is due to Poisson*. Its interpretation, leading to the same

results as above, for the mode of alteration of the wave as it proceeds, forms

the subject of a paper by Stokes f.

262. The conditions for a wave of permanent type have been

investigated in a very simple manner by Rankine
J.

If, as in Art. 172, we impress on everything a velocity c equal
and opposite to that of the waves, we reduce the problem to one of

steady motion.

Let A, B be two points of an ideal tube of unit section drawn

in the direction of propagation, and let the values of the pressure,

the density, and the particle-velocity at A and B be denoted

by plt p1} K! and&amp;gt;2 &amp;gt; p2, u2 , respectively.

Since the same amount of matter now crosses in unit time

each section of the tube, we have

Pi(c-ul)
=

pa (c-ua\ = mt (1),

say ;
where m denotes the mass swept past in unit time by a plane

moving with the wave, in the original form of the problem. This

quantity m is called by Rankine the mass-velocity of the wave.

Again, the total force acting on the mass included between A
and B is p.2 pi, and the rate at which this mass is gaining
momentum is

m(c tbi) m(c ut).

Hence p2 pl
= m(t^-u1) (2).

Combined with (1) this gives

p1 -\-m
2

/pl =p2 + m-/p2 (3).

Hence a wave of finite amplitude cannot be propagated un

changed except in a medium such that

p +mz

/p
= const

(4).

This conclusion has already been arrived at, in a different manner,
in Art. 259.

* &quot; Memoire sur la Theorie du Son,&quot; Journ. de VEcole Polytechn., t. vii., p. 319

(1808).

t &quot; On a Difficulty in the Theory of Sound,&quot; Phil. Mag., NOT. 1848; Math, and

Phys. Papers, t. ii., p. 51.

% &quot;On the Thermodynamic Theory of Waves of Finite Longitudinal Disturb

ance,&quot; Phil. Trans., 1870.
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If the variation of density be slight, the relation (4) may,
however, be regarded as holding approximately for actual fluids,

provided m have the proper value. Putting

c ............ (5),

we find c
2 =

/c/p .............................. (6),

as in Art. 255.

The fact that in actual fluids a progressive wave of finite

amplitude continually alters its type, so that the variations of

density towards the front become more and more abrupt, has led

various writers to speculate on the possibility of a wave of dis

continuity, analogous to a bore in water-waves.

It has been shewn, first by Stokes*, and afterwards by several

other writers, that the conditions of constancy of mass and of

constancy of momentum can both be satisfied for such a wave.

The simplest case is when there is no variation in the values of

p and u except at the plane of discontinuity. If, in Rankine s

argument, the sections A, B be taken, one in front of, and the

other behind this plane, we find

m

and, if we further suppose that u2
= 0, so that the medium is at

rest in front of the wave,

(8),
p2 \pi

-
P*

m
-L /(ffl

-
ff2) (Pi

-
P2)V /QXand u, = c = 11 (&quot;/

ft \

The upper or the lower sign is to be taken according as p l is

greater or less than p2 ,
i.e. according as the wave is one of

condensation or of rarefaction.

These results have, however, lost some of their interest since

it has been pointed out by Lord Rayleigh -f*
that the equation of

energy cannot be satisfied consistently with (1) and (2). Con

sidering the excess of the work done on the fluid entering the

*
I. c. ante p. 475.

t Theory of Sound, Art. 253.
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space AB at B over that done by the fluid leaving at A, we find

p2 (c
-

Us) -pi(c- MJ)
= Jm {(c

- ?O
2 -

(c
-

Ma)
2

}

+ m(El -E,} ...... (10),

where the first term on the right-hand represents the gain of

kinetic, and the second that of intrinsic energy ;
cf. Art. 23. As

in Art. 11 (7), we have

It is easily shewn that (10) is inconsistent with (2) unless

^-E^^-pf) ..................(12),

which is only satisfied provided the relation between p and

p be that given by (4). In words, the conditions for a wave

of discontinuity can only be satisfied in the case of a medium

whose intrinsic energy varies as the square of the pressure.

In the above investigation no account has been taken of

dissipative forces, such as viscosity and thermal conduction and

radiation. Practically, a wave such as we have been considering

would imply a finite difference of temperature between the

portions of the fluid on the two sides of the plane of discontinuity,

so that, to say nothing of viscosity, there would necessarily be a

dissipation of energy due to thermal action at the junction.

Whether this dissipation would be of such an amount as to be

consistent, approximately, with the relation (12) is a physical

question, involving considerations which lie outside the province

of theoretical Hydrodynamics.

Spherical Waves.

263. Let us next suppose that the disturbance is symmetrical
with respect to a fixed point, which we take as origin. The

motion is necessarily irrotational, so that a velocity-potential

(p exists, which is here a function of r, the distance from the

origin, and t, only. If as before we neglect the squares of

small quantities, we have by Art. 21 (3)

J p dt
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In the notation of Arts. 254, 255 we may write

/&amp;gt; fKCfc

J P J Po

whence tfs = -~ (1).
(MI

To form the equation of continuity we remark that, owing to

the difference of flux across the inner and outer surfaces, the

space included between the spheres r and r + $r is gaining mass

at the rate

dH ^dr,

Since the same rate is also expressed by dp/dt . 4?rr2 Br we have

dp d

This might also have been arrived at by direct transformation of

the general equation of continuity, Art. 8 (4). In the case of

infinitely small motions, (2) gives

_ _

dt~r*dr\
r

dr

whence, substituting from (1),

^-^A(r
d? r* dr V dr

This may be put into the more convenient form

so that the solution is

(6).

Hence the motion is made up of two systems of spherical waves,

travelling, one outwards, the other inwards, with velocity c.

Considering for a moment the first system alone, we have

= --F (r-ct),

which shews that a condensation is propagated outwards with

velocity c, but diminishes as it proceeds, its amount varying
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inversely as the distance from the origin. The velocity due to

the same train of waves is

As r increases the second term becomes less and less important

compared with the first, so that ultimately the velocity is pro

pagated according to the same law as the condensation.

264. The determination of the functions F and / in terms of

the initial conditions, for an unlimited space, can be effected

as follows. Let us suppose that the initial distributions of velocity

and condensation are determined by the formulae

where
i/r, % are arbitrary functions, of which the former must

fulfil the condition ^r (0)
=

0, since otherwise the equation of

continuity would not be satisfied at the origin. Both functions

are given, primd facie, only for positive values of the variable
;

but all our equations are consistent with the view that r changes

sign as the point to which it refers passes through the origin. On
this understanding we have, on account of the symmetry of the

circumstances with respect to the origin,

+ (-r) = + (r), x(-r) = x (r) ............... (8),

that is, -\|r
and % are even functions. From (6) and (7) we have

If we put

J%X(r)&amp;lt;fr

=
Xl (r) ..................... (10),

the latter equation may be written

= i
Xl (r) .................. (11),

the constant of integration being omitted, as it will disappear
from the final result. We notice that

%i(- )=%0) ..................... (12).
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Hence, we have

1_

2c
(13).

The complete value of
c/&amp;gt;

is then given by (6), viz.

As a very simple example, we may suppose that the air is initially at rest,

and that the disturbance consists of a uniform condensation SQ extending

through a sphere of radius a. The formula) then shew that after a certain

time the disturbance is confined to a spherical shell whose internal and

external radii are ct-a and ct+ a, and that the condensation at any point

within the thickness of this shell is given by

The condensation is therefore positive through the outer half, and negative

through the inner half, of the thickness. This is a particular case of a

general result stated long ago by Stokes*, according to which a diverging

spherical wave must necessarily contain both condensed and rarefied portions.

We shall require shortly the form which the general value

(14) of $ assumes at the origin. This is found most simply by

differentiating both sides of (14) with respect to r and then

making r = 0. The result is, if we take account of the relations

(8), (10), (12),

(15).

General Equation of Round Waves.

265. We proceed to the general case of propagation of ex

pansion-waves. We neglect, as before, the squares of small

quantities, so that the dynamical equation is as in Art. 263,

r8?-^ m&quot;

dt

*
&quot; On Some Points in the Keceived Theory of Sound,&quot; Phil. Mag., Jan. 1849 ;

Math, and Pliy. Papers, t. ii., p. 82.
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Also, writing p = pQ (1 + s) in the general equation of continuity,

Art. 8 (4), we have, with the same approximation,

dt dx~ dy~ dzz
&quot;

The elimination of s between (1) and (2) gives

or, in our former notation,

Since this equation is linear, it will be satisfied by the arith

metic mean of any number of separate solutions
&amp;lt;/&amp;gt;

ly &amp;lt; 2 ,
&amp;lt;/&amp;gt;

3 ,....

As in Art. 39, let us imagine an infinite number of systems of

rectangular axes to be arranged uniformly about any point P as .

origin, and let
&amp;lt;f&amp;gt;

1 ,
&amp;lt;f&amp;gt;,

&amp;lt; 3 ,
... be the velocity-potentials of motions

which are the same with respect to these systems as the original
motion

&amp;lt;/&amp;gt;

is with respect to the system x, y, z. In this case the

arithmetic mean
(&amp;lt;/&amp;gt;, say), of the functions

&amp;lt;f&amp;gt;

l}
&amp;lt;/&amp;gt;

2 ,
&amp;lt;/&amp;gt;

3 ,... will be

the velocity-potential of a motion symmetrical with respect to

the point P, and will therefore come under the investigation of

Art. 264, provided r denote the distance of any point from P. In

other words, if $ be a function of r and t, defined by the equation

(5),

where &amp;lt; is any solution of (4), and Biz- is the solid angle subtended

at P by an element of the surface of a sphere of radius r having
this point as centre, then

dt* dr*

Hence r$ = F(r-ct)+f(r + ct) .................. (7).

The mean value of $ over a sphere having any point P of

the medium as centre is therefore subject to the same laws as the

* This result was obtained, in a different manner, by Poisson,
&quot; Memoire sur la

theorie du son,&quot; Journ. de VEcole Polytechn., t. vii. (1807), pp. 334338. The remark

that it leads at once to the complete solution of (4) is due to Liouville, Journ. de

Math., 1856, pp. 16.

L. 31
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velocity-potential of a symmetrical spherical disturbance. We
see at once that the value of &amp;lt; at P at the time t depends on

the mean initial values of
(/&amp;gt;

and d(f)/dt over a sphere of radius ct

described about P as centre, so that the disturbance is propagated

in all directions with uniform velocity c. Thus if the original

disturbance extend only through a finite portion S of space, the

disturbance at any point P external to 2 will begin after a time

r-i/c,
will last for a time (r2 ?*i)/c,

and will then cease altogether ;

r-L ,
r2 denoting the radii of two spheres described with P as centre,

the one just excluding, the other just including 2.

To express the solution of (4), already virtually obtained, in

an analytical form, let the values of
(f&amp;gt;

and
d(f&amp;gt;/dt,

when t = 0, be

&amp;lt;j&amp;gt;

= ty(x,y,z\
-* = x (a;,y,*) ............... (8).

The mean initial values of these quantities over a sphere of radius

r described about (#, y, z) as centre are

&amp;lt;/&amp;gt;

=
-^

1 1 ty (x + Ir, y + mr, z + nr) dvr,

= x + r
&amp;gt; y + mr &amp;gt;

z + nr
&amp;gt;

where I, m, n denote the direction- cosines of any radius of this

sphere, and 57 the corresponding elementary solid angle. If we

put
I = sin 6 cos

ft&amp;gt;,

m = sin 6 sin
o&amp;gt;,

n cos 6,

we shall have
Stzr =sin

Hence, comparing with Art. 264 (15), we see that the value of

(f&amp;gt;

at the point {x, y, z), at any subsequent time t, is

&amp;lt;f&amp;gt;
T~

-J-.
t 1 1 ty ( + ct sin 6 cos

&&amp;gt;, y -f ct sin 6 sin
&&amp;gt;,

z -\- ct cos 6) sin OdOda)

+ 1 1 ^ (x + ct sin 6 cos
o&amp;gt;, y + ct sin # sin

o&amp;gt;,

s + cZ cos 6) sin 0d0d&&amp;gt; . . . (9),

which is the form given by Poisson*.

* &quot; M6moire sur I int6gration de quelques Equations lineaires aux differences

partielles, et particulierement de 1 equation generale du mouvement des fluides

elastiques,&quot; N.6m. de VAcad. des Sciences, t. iii., 1818-19.
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266. In the case of simple-harmonic motion, the time-factor

being ei(Tt
,
the equation (4) of Art. 265 takes the form

(V* + #)0 = ........................ (1),

where k = a/c .............................. (2).

It appears on comparison with Art. 258 (7) that 2-7T/& is the wave

length of plane waves of the same period (27T/0-).

There is little excuse for trespassing further on the domain of

Acoustics; but we may briefly notice the solutions of (1) which

are appropriate when the boundary- conditions have reference to

spherical surfaces, as this will introduce us to some results of

analysis which will be of service in the next Chapter.

In the case of symmetry with respect to the origin, we have

by Art. 263 (5), or by direct transformation of (1),

%*+&quot;*-&amp;lt;&amp;gt;
.....................

&amp;lt;

3
&amp;gt;&amp;gt;

the solution of which is

A sin&r n coskr ...

+ = A +8- .................... (4).

When the motion is finite at the origin we must have B = 0.

1. This may be applied to the radial vibrations of air contained in a

spherical cavity. The condition that d(f)/dr
= at the surface r= a gives

tan ka= Tca .................................... (i),

which determines the frequencies of the normal modes. The roots of this

equation, which presents itself in various physical problems, can be cal

culated without much difficulty, either by means of a series*, or by a

method devised by Fourierf. The values obtained by Schwerdt for the

first few roots are

a/7r
= 1-4303, 2-4590, 3-4709, 4 4774, 5-4818, 6 4844 ......... (ii),

approximating to the form ra + ,
where m is integral. These numbers give

the ratio (2a/X) of the diameter of the sphere to the wave-length. Taking
the reciprocals we find

X/2a=-6992, -4067, -2881, -2233, -1824, -1542 ............... (iii).

In the case of the second and higher roots of (i) the roots of lower order give

*
Euler, .

Introductio in Analysin Infinitorum, Lausannse, 1748, t. ii., p. 319 ;

Rayleigh, Theory of Sound, Art. 207.

t Theorie analytique de la Chaleur, Paris, 1822, Art. 286.

% Quoted by Verdet, Optique Physique, t. i., p. 266.

312



484 WAVES OF EXPANSION. [CHAP. X

the positions of the spherical nodes (c?$/dr=0). Thus in the second mode

there is a spherical node whose radius is given by

r/a= (l 4303)/(2-4590)= 5817.

2. In the case of waves propagated outwards into infinite space from a

spherical surface, it is more convenient to use the solution of (3), including

the time-factor, in the form

(iv).

If the motion of the gas be due to a prescribed radial motion

r=ae^ ....................................... (v)

of a sphere of radius a, C is determined by the condition that r= -dfyjdr for

r= a. This gives

whence, taking the real parts, we have, corresponding to a prescribed normal

motion

(vh),

-
a)}

When lea is infinitesimal, this reduces to

where A = knot a. We have here the conception of the simple source of

sound, which plays so great a part in the modern treatment of Acoustics.

The rate of emission of energy may be calculated from the result of Art. 258.

At a great distance r from the origin, the waves are approximately plane, of

amplitude A/4^rcr. Putting this value of a in the expression p o-
2 a2 c for the

energy transmitted across unit area, and multiplying by 4nr2
,
we obtain for

the energy emitted per second

&7TC

267. When the restriction as to symmetry is abandoned, we

may suppose the value of
&amp;lt;/&amp;gt;

over any sphere of radius r, having
its centre at the origin, to be expanded in a series of surface-

harmonics whose coefficients are functions of r. We therefore

assume

n (5),
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where
&amp;lt;f&amp;gt;

n is a solid harmonic of degree n, and Rn is a function of r

only. Now

dy dy dz dz

dx dy dz

(6).

And, by the definition of a solid harmonic, we have

Hence

If we substitute in (1), the terms in
&amp;lt;/&amp;gt;

n must satisfy the

equation independently, whence

which is the differential equation in Rn .

This can be integrated by series. Thus, assuming that

En = 2Am (kr) }

the relation between consecutive coefficients is found to be

m (2n +1+ ra) Am + Am_^ = 0.

This gives two ascending series, one beginning with m = 0, and the

other with m = 2n 1
;
thus

-

2(l-2n)2.4(l-27i)(3-2n) &quot;V

where A, B are arbitrary constants. Hence putting &amp;lt; n = rw &amp;lt;8fn ,
so

that Sn is a surface-harmonic of order n, the general solution of (1)

may be written

^)J r& ............ (9),
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where

---
2(l-2w) 2.4(l-2n)(3-2n)

&quot;

......... (10)*.

The first term of (9) is alone to be retained when the motion

is finite at the origin.

The functions tyn (f), ^n (f) can also be expressed in finite

terms, as follows :

d sin? ^
-.

(11).

These are readily identified with (10) by expanding sin f, cos f, and

performing the differentiations. As particular cases we have

sn

3 IV . 3 cos?

The formulae (9) and (11) shew that the general solution of the

equation

2 (n + 1) d& + Rn = (12

which is obtained by writing f for AT in (8), is

d n Ae*+Ber*

This is easily verified
;
for if ,ftn be any solution of (12), we find that the

corresponding equation for Rn + 1
is satisfied by

* There is a slight deviation here from the notation adopted by Heine, Kugel-

functionen, p. 82.
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and by repeated applications of this result it appears that (12) is satisfied by

where Itn is the solution of

that is

268. A simple application of the foregoing analysis is to the

vibrations of air contained in a spherical envelope.

1. Let us first consider the free vibrations when the envelope is rigid.

Since the motion is finite at the origin, we have, by (9),

t^A^W^SH.e ................................. (i),

with the boundary-condition

ka^(ka} + n^n (ka}=0 .............................. (ii),

a being the radius. This determines the admissible values of k and thence of

It is evident from Art. 267 (11) that this equation reduces always to the

form
tan &(&) ................................. (iii),

where f(ka) is a rational algebraic function. The roots can then be calculated

without difficulty by Fourier s method, referred to in Art. 266.

In the case n= l, if we take the axis of x coincident with that of the

harmonic Slt and write .v= rcos 6, we have

kr cos kr

and the equation (ii) becomes

(v).

The zero root is irrelevant. The next root gives, for the ratio of the

diameter to the wave-length,

and the higher values of this ratio approximate to the successive integers

2, 3, 4.... In the case of the lowest root, we have, inverting,

X/2= 1-509.

* The above analysis, which has a wide application in mathematical physics,

has been given, in one form or another, by various writers, from Poisson (Tlieorie

matheinatique de la Chaleur, Paris, 1835) downwards. For references to the history

of the matter, considered as a problem in Differential Equations, see Glaisher, &quot;On

Riccati s Equation and its Transformations,&quot; PhiL Trans., 1881.
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In this, the gravest of all the normal modes, the air sways to and fro much
in the same manner as in a doubly-closed pipe. In the case of any one of

the higher roots, the roots of lower order give the positions of the spherical
nodes

(d&amp;lt;f)/dr
=

Q). For the further discussion of the problem we must refer to

the investigation by Lord Kayleigh*.

2. To find the motion of the enclosed air due to a prescribed normal

motion of the boundary, say

we have, +4f(ir}f ^.
:

/ &amp;gt;v

.............................. (ix),

with the condition A (ka^ (&*) +n^n (ka)}a
n~ *= 1

,

and therefore 0- ^&quot;(^ , n . . a (-Y Sn . e
i&amp;lt;Tt

...... (x).

This expression becomes infinite, as we should expect, whenever ka is a root

of (ii) ;
i.e. whenever the period of the imposed vibration coincides with that

of one of the natural periods, of the same spherical-harmonic type.

By putting ka= Q we pass to the case of an incompressible fluid. The

formula (x) then reduces to

as in Art. 90. It is important to notice that the same result holds approximately,

even in the case of a gas, whenever ka is small, i.e. whenever the wave-length

(27r/) corresponding to the actual period is large compared with the circum

ference of the sphere. This is otherwise evident from the mere form of the

fundamental equation, Art. 266 (1), since as k diminishes the equation tends

more and more to the form v2
&amp;lt;

= appropriate to an incompressible fluid t.

* &quot; On the Vibrations of a Gas contained within a Rigid Spherical Envelope,&quot;

Proc. Lond. Math. Soc., t. iv., p. 93 (1872) ; Theory of Sound, Art. 331.

t In the transverse oscillations of the air contained in a cylindrica vessel we

have

where Yl
z=d2

/dx
2 + d2

ldy~. In the case of a circular section, transforming to polar

coordinates r, 6, we have, for the free oscillations,

with k determined by
J. (fca)

= 0,

a being the radius. The nature of the results will be understood from Art. 187,

where the mathematical problem is identical. The figures on pp. 308, 309 shew the

forms of the lines of equal pressure, to which the motion of the particle is ortho

gonal, in two of the more important modes. The problem is fully discussed in

Lord Eayleigh s Theory of Sound, Art. 339.
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269. To determine the motion of a gas within a space

bounded by two concentric spheres, we require the complete

formula (9) of Art. 267. The only interesting case, however, is

where the two radii are nearly equal ;
and this can be solved more

easily by an independent process*.

In terms of polar coordinates r, 6, o&amp;gt;,

the equation (v
&amp;gt;2 + &2

) &amp;lt;

= becomes

-
dr2 r dr r2 [_dfi (&quot; dp J 1 -

p.
2

da&amp;gt;

2

If, now, d(f)/dr
= for r=a and =

&, where a and b are nearly equal, we may
neglect the radial motion altogether, so that the equation reduces to

It appears, exactly as in Art. 191, that the only solutions which are finite over

the whole spherical surface arc of the type

0*S,t ....................................... (iii),

where Sn is a surface-harmonic of integral order n, and that the corresponding

values of k are given by

In the gravest mode (n= l), the gas sways to and fro across the equator

of the harmonic Slt being, in the extreme phases of the oscillation, condensed

at one pole and rarefied at the other. Since ka=
&amp;gt;jZ

in this case, we have

for the equivalent wave-length A/2a= 2*221.

In the next mode (?i
=

2), the type of the vibration depends on that of

the harmonic 8.
2

. If this be zonal, the equator is a node. The frequency is

determined by tca=j6,or X/2a= 1 283.

270. We may next consider the propagation of waves outivards

from a spherical surface into an unlimited medium.

If at the surface (ra) we have a prescribed normal velocity

the appropriate solution of (v
2+ 2

) 0=0 is

/ ^^ Cknrn
\krd(kr}]

for this is included in the general formula (13) of Art. 207, and evidently

represents a system of waves travelling outwards f.

* Lord Rayleigh, Theory of Sound, Art. 333.

t This problem was solved, in a somewhat different manner, by Stokes, &quot;On

the Communication of Vibrations from a Vibrating Body to a surrounding

Gas,&quot; Phil. Trans., 1868.
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We shall here only follow out in detail the case of ?i= l, which corresponds
to an oscillation of the sphere, as rigid, to and fro in a straight line. Putting

S
l
= a cos 8.................................... (iii),

where 6 is the angle which r makes with the line in which the centre

oscillates, the formula (ii) reduces to

(iv).

The value of C is determined by the surface-condition

-^Loe^cos* ........ , ..................... (v),

for r=a. This gives

_ _

The resultant pressure on the sphere is

X= -
I Ap cos 6 . 27ra2 sin 6dB ..................... (vii),
J o

where A^ = c2p s= p c^/c&= iVp &amp;lt;/&amp;gt;

........................ (viii).

Substituting from (iv) and (vi), and performing the integration, we find

2 +Fa2-iFa3
. iat .. .X= --|7rPoa

3
.

j-j-p-p
ivae

1**
.................. (ix).

This may be written in the form

du

where u(=ae
l&amp;lt;rt

)
denotes the velocity of the sphere.

The first term of this expression is the same as if the inertia of the

sphere were increased by the amount
_

,
.,

whilst the second is the same as if the sphere were subject to a frictional force

varying as the velocity, the coefficient being

In the case of an incompressible fluid, and, more generally, whenever the

wave-length 2?r/^ is large compared with the circumference of the sphere, we

may put ka= Q. The addition to the inertia is then half that of the fluid

displaced ;
whilst the frictional coefficient vanishes f. Cf. Art. 91.

The frictional coefficient is in any case of high order in ka^ so that the

vibrations of a sphere whose circumference is moderately small compared with

* This formula is given by Lord Bayleigh, Theory of Sound, Art. 325. For another

treatment of the problem of the vibrating sphere, see Poisson,
&quot; Sur les mouvements

simultan6s d un pendule et de 1 air environnant,&quot; Mem. de VAcad. des Sciences,

t. xi. (1832), and Kirchhoff, Mecluinik, c. xxiii.

f Poisson, I.e.
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the wave-length are only slightly affected in this way. To mid the energy

expended per unit time in generating waves in the surrounding medium, we

must multiply the frictional term in (x), now regarded as an equation in real

quantities, by u, and take the mean value
;
this is found to be

In other words, if pl
be the mean density of the sphere, the fraction of its

energy which is expended in one period is

It has been tacitly assumed in the foregoing investigation that the ampli

tude of vibration of the sphere is small compared with the radius. This

restriction may however be removed, if we suppose the symbols u, v, w to

represent the component velocities of the fluid, not at a fixed point of space,

but at a point whose coordinates relative to a system of axes originating at

the centre of the sphere, and moving with it, are #, y, z. The only change

which this will involve is that we must, in our fundamental equations, replace

&amp;lt;L b
d - *-

The additional terms thus introduced are of the second order in the velocities,

and may consistently be neglected*.

271. The theory of such questions as the large-scale oscilla

tions of the earth s atmosphere, where the equilibrium-density

cannot be taken to be uniform, has received little attention at the

hands of mathematicians.

Let us suppose that we have a gas in equilibrium under certain

constant forces having a potential XI, and let us denote by p and

PO the values of p and p in this state, these quantities being in

general functions of the coordinates x, y, z. We have, then,

The equations of small motion, under the influence (it may be) of

disturbing forces having a potential XI
, may therefore be written

du _ dp p dp
dx

dv _ dp p dp
dt&quot; dy p.dy

^
dw _ dp p dp= -

]
-~

(2).

*
Cf. Stokes, Camb. Trans., t. ix., p. [50]. The assumption is that the maximum

velocity of the sphere is small compared with the velocity of sound.
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The case that lends itself most readily to mathematical treat

ment is where the equilibrium-temperature is uniform*, and

the expansions and contractions are assumed to follow the iso

thermal law, so that

c denoting the Newtonian velocity of sound. If we write

p = p (l+s), p=p (l+s),

the equations (2) reduce to the forms

du d , _x

dv d , _,

*=- cV~ s)

*
^

(4)

_-*.-/.

where
e (V/^2 /K\s- M/C (&;,

that is, 5 denotes the equilibrium-value of the condensation due

to the disturbing-potential H .

The general equation of continuity, Art. 8 (4), gives, with the

same approximation,

ds _ d d , . d

We find, by elimination of it, v, w between (5) and (6),

d2s
2
_

2
. , c

2

(dp d dp d dp d\, _.
,^.

d&
~

p \dx dx dy dy dz dz)
*

272. If we neglect the curvature of the earth, and suppose the

axis of z to be drawn vertically upwards, p will be a function of z

only, determined by

^? = - (1)

On the present hypothesis of uniform temperature, we have, by

Boyle s Law,

* The motion is in this case irrotational, and might have been investigated in

terms of the velocity-potential.
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where H denotes as in Art. 256 the height of a homogeneous

atmosphere at the given temperature. Hence

y/H /Q\
poc e~z H

v&amp;gt;

Substituting in Art. 271 (7), and putting s = 0, we find, in

the case of no disturbing forces,

For plane waves travelling in a vertical direction, s will be a function of z

only, and therefore

If we assume a time-factor e
r&amp;lt;Tt

,
this is satisfied by

&amp;lt;j&amp;gt;

= Ae ....................................... (ii),

provided m2 -m/IL + o*/&amp;lt;?=0
.............................. (iii),

or wi= l/2Ha- ................................. (iv),

where k =^ l ~
* Y

The lower sign gives the case of waves propagated upwards. Expressed in

real form the solution for this case is

The wave-velocity (o-/k&quot;)
varies with the frequency, but so long as o- is large

compared with c/2H it is approximately constant, differing from c by a small

quantity of the second order. The main effect of the variation of density is

on the amplitude, which increases as the waves ascend upwards into the rarer

regions, according to the law indicated by the exponential factor. This

increase might have been foreseen without calculation ; for when the variation

of density within the limits of a wave-length is small, there is no sensible

reflection, and the energy per wave-length, which varies as 2
p (a being the

amplitude), must therefore remain unaltered as the waves proceed. Since

pQ
oc e~z/K

,
this shews that a oc e

zl2K
.

When
&amp;lt;r&amp;lt;c/2H,

the form of the solution is changed, viz. we have

where m1} m2 (the two roots of (iii)) are real and positive. This represents a

standing oscillation, with one nodal and one loop plane. For example, if

the nodal plane be that of z Q, we have m^-fm2
.4

2
=

0, and the position of

the loop (s
=

0) is given by

z=^r^ los? (viii)-
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For plane waves travelling horizontally, the equation (4) takes the form

The waves are therefore propagated unchanged with velocity c, as we should

expect, since on the present hypothesis of uniform equilibrium-temperature
the wave-velocity is independent of the altitude*.

273. We may next consider the large-scale oscillations of an

atmosphere of uniform temperature covering a globe at rest.

If we introduce angular coordinates 0, w as in Art. 190, and

denote by u
t

v the velocities along and perpendicular to the

meridian, the equations (4) of Art. 271 give

du c
2 d , dv c2 d ,

s 5fc-ft s--iiE&quot;=&amp;lt;*-i&amp;gt;
(1)&amp;gt;

where a is the radius. If we assume that the vertical motion (w)
is zero, the equation of continuity, Art. 271 (6), becomes

ds 1 (d(usm6) dv

dt a sin 6
(

dd o

The equations (1) and (2) shew that u, v, s may be regarded as

independent of the altitude. The formulae are in fact the same as in

Art. 190, except that s takes the place of %/h, and c
2 of gh. Since,

in our present notation, we have c
2 = #H, it appears that the free

and the forced oscillations will follow exactly the same laws as

those of a liquid of uniform depth H covering the same globe.

Thus for the free oscillations we shall have

Q n ( 4- \ \ ( *\\

where Sn is a surface-harmonic of integral order n, and

(4).

As a numerical example, putting c=2 80 x 104
,
2vra = 4 x 109

[c. s.],

we find, in the cases n l,n = 2, periods of 28*1 and 16 2 hours,

respectively.

* The substance of this Art. is from a paper by Lord Kayleigh,
u On Vibrations

of an Atmosphere,&quot; Phil. Mag., Feb. 1890. For a discussion of the effects of

upward variation of temperature on propagation of sound-waves, see the same

author s Theory of Sound, Art. 288.
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The tidal variations of pressure due to the gravitational action

of the sun and moon are very minute. It appears from the above

analogy that the equilibrium value s of the condensation will be

comparable with HJJ-L, where His the quantity defined in Art. 177.

Taking H=l SO ft. (for the lunar tide), and H = 25000 feet, this

gives for the amplitude of s the value 7 2 x 10~5
. If the normal

height of the barometer be 30 inches, this means an oscillation of

only -00216 of an inch.

It will be seen on reference to Art. 206 that the analogy with

the oscillations of a liquid of depth H is not disturbed when we

proceed to the tidal oscillations on a rotating globe. The height
H of the homogeneous atmosphere does not fall very far short of

one of the values (29040 ft.) of the depth of the ocean for which

the semi-diurnal tides were calculated by Laplace*. The tides in

this case were found to be direct, and to have at the equator
11*267 times their equilibrium value. Even with this factor the

corresponding barometric oscillation would only amount to 0243

of an inchf.

274. The most regular oscillations of the barometer have solar diurnal

and semi-diurnal periods, and cannot be due to gravitational action, since in

that case the corresponding lunar tides would be 2*28 times as great, whereas

they are practically insensible.

The observed oscillations must be ascribed to the daily variation in tem

perature, which, when analyzed into simple-harmonic constituents, will have

components whose periods are respectively 1, J, J, J, ... of a solar day. It

is very remarkable that the second (viz. the semi-diurnal) component has a

considerably greater amplitude than the first. It has been suggested by
Lord Kelvin that the explanation of this peculiarity is to be sought for in

the closer agreement of the period of the semi-diurnal component with a free

period of the earth s atmosphere than is the case with the diurnal component.
This question has been made the subject of an elaborate investigation by
Margules J, taking into account the earth s rotation. The further consideration

of atmospheric problems is, however, outside our province.

* See the table on p. 361, above.

t Cf. Laplace, &quot;Recherches sur plusieurs points du systeme du monde,&quot; Mtm.
de VAcad. roy. des Sciences, 1776 [1779], Oeuvres, t. ix., p. 283. Also Mecanique
Celeste, Livre 4me

, chap. v.

J This paper, with several others cited in the course of this work, is included in

a very useful collection edited and (where necessary) translated by Prof. Cleveland

Abbe, under the title :
&quot; Mechanics of the Earth s Atmosphere,&quot; Smithsonian Miscel

laneous Collections, Washington, 1891.



CHAPTER XL

VISCOSITY.

275. THE main theme of this Chapter is the resistance to

distortion, known as viscosity or internal friction, which is

exhibited more or less by all real fluids, but which we have

hitherto neglected.

It will be convenient, following a plan already adopted on

several occasions, to recall briefly the outlines of the general theory
of a dynamical system subject to dissipative forces which are

linear functions of the generalized velocities*. This will not only
be useful as tending to bring under one point of view most of

the special investigations which follow; it will sometimes indicate

the general character of the results to be expected in cases which

are as yet beyond our powers of calculation.

We begin with the case of one degree of freedom. The equa
tion of motion is of the type

aq + bq + cq Q ........................ (1).

Here q is a generalized coordinate specifying the deviation from a

position of equilibrium ;
a is the coefficient of inertia, and is

necessarily positive ;
c is the coefficient of stability, and is positive

in the applications which we shall consider; b is a coefficient of

friction, and is positive.

If we put
T=laf, V=\vf, F=W ............... (2),

the equation may be written

q ..................... (3).

* For a fuller account of the theory reference may be made to Lord Kayleigh,

Theory of Sound, cc. iv., v.
;
Thomson and Tait, Nattiral Philosophy (2nd ed.)

Arts. 340-345; Eouth, Advanced Rigid Dynamics, cc. vi., vii.
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This shews that the energy T + V is increasing at a rate less

than that at which the extraneous force is doing work on the

system. The difference 2F represents the rate at which energy is

being dissipated ;
this is always positive.

In free motion we have

aq + bq + cq
=

(4).

If we assume that q oc eu
,
the solution takes different forms

according to the relative importance of the factional term. If

b&quot; &amp;lt; 4tac, we have

or, say, X = r~l
icr (6).

Hence the full solution, expressed in real form, is

q
= A e-VT cos (at + e) (7 ),

where A, e are arbitrary. The type of motion which this represents

may be described as a simple-harmonic vibration, with amplitude

diminishing asymptotically to zero, according to the law e~t/T
. The

time r in which the amplitude sinks to l/e of its original value is

sometimes called the modulus of decay of the oscillations.

If b/2a be small compared with (c/a)*, b 2

/4&amp;gt;ac
is a small quantity

of the second order, and the speed a is then practically unaffected

by the friction. This is the case whenever the time (27rr) in

which the amplitude sinks to e~27r

(=^) of its initial value is large

compared with the period (27r/&amp;lt;r).

When, on the other hand, b2
&amp;gt;

4&amp;lt;ac,
the values of X are real and

negative. Denoting them by 1} 2 ,
we have

q
= A 1 fT ** + Aser**

t

(8).

This represents aperiodic motion
;

viz. the system never passes

more than once through its equilibrium position, towards which it

finally creeps asymptotically.

In the critical case 62 = 4ac, the two values of X are equal ;
we

then find by usual methods

q = (A+Bt)er* (9),

which may be similarly interpreted.

L. 32
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As the frictional coefficient b is increased, the two quantities

!, 2 become more and more unequal; viz. one of them ( 2 , say)

tends to the value b/a, and the other to the value c/b. The

effect of the second term in (8) then rapidly disappears, and the

residual motion is the same as if the inertia-coefficient (a) were

zero.

276. We consider next the effect of a periodic extraneous

force. Assuming that

QoceW+e
&amp;gt;

(10),

the equation (1) gives

If we put -*
, .

where ex lies between and 180, we have

Taking real parts, we may say that the force

Q=Ccoa(&amp;lt;rt + e) ........................(14)

will maintain the oscillation

C
l) ...................(15).

Since

(16),

it is easily found that if 62
&amp;lt; 4ac the amplitude is greatest when

its value being then

&amp;lt;r= -) .
M_i_

(17),W V
2
ac/

v

b \ ~ I \*-~~~l (-^)-

In the case of relatively small friction, where 62

/4ac may be

treated as of the second order, the amplitude is greatest when the

period of the imposed force coincides with that of the free

oscillation (cf. Art. 165). The formula (18) then shews that the

amplitude when a maximum bears to its equilibrium-value

(C/c) the ratio (arf/b, which is by hypothesis large.
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On the other hand, when 62
&amp;gt; 4ac the amplitude continually

increases as the speed cr diminishes, tending ultimately to the

equilibrium-value C/c.

It also appears from (15) and (12) that the maximum dis

placement follows the maximum of the force at an interval of

phase equal to e1? where

(19).

If the period be longer than the free-period in the absence of

friction this difference of phase lies between and 90
;
in the

opposite case it lies between 90 and 180. If the frictional

coefficient b be relatively small, the interval differs very little from

or 180, as the case may be.

The rate of dissipation is bq
2
, the mean value of which is easily

found to be
bC2

This is greatest when &amp;lt;r

=
(c/a)*.

As in Art. 165, when the oscillations are very rapid the formula

(11) gives

q = -
Q/o*a (21),

approximately ;
the inertia only of the system being operative.

On the other hand when a is small, the displacement has very

nearly the equilibrium-value

n _ n/r f99\
(/ V/v \L&).

277. An interesting example is furnished by the tides in an

equatorial canal*.

The equation of motion, as modified by the introduction of a

frictional term, is

where the notation is as in Art. 178-f.

*
Airy,

&quot; Tides and Waves,&quot; Arts. 315...

f In particular, c2 now stands for gh, where li is the depth.

322
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In the case offree waves, putting X = and assuming that

we find X2 + yuX + &2
c
2 = 0,

whence
X = -i/ii(^c2-^2

) .................. (3).

If we neglect the square of p/hc, this gives, in real form,

% = Ae-^cos{k(ctx) + 6} .................. (4).

The modulus of decay is 2/ur
1

,
and the wave-velocity is (to the

first order) unaffected by the friction.

To find the forced waves due to the attraction of the moon we

write, in conformity with Art. 178,

where n is the angular velocity of the moon relative to a fixed

point on the canal, and a is the earth s radius. We find, assuming
the same time-factor,

Hence, for the surface-elevation, we have

*

(
*7\

where H/a =f/g, as in Art. 177.

To put these expressions in real form, we write

where &amp;lt; ^ &amp;lt; 90. We thus find that to the tidal disturbing force

X =
-fsm2(rit+^ + e^

..................... (9)

corresponds the horizontal displacement

and the surface-elevation

x=
*

cos
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Since in these expressions n t + x/a + e measures the hour-angle
of the moon past the meridian of any point (x) on the canal, it

appears that high-water will follow the moon s transit at an in

terval ^ given by n t-^
=

%.

If c
2

&amp;lt; w 2a2
,
or h/a &amp;lt; n 2

a/g, we should in the case of infinitesimal

friction have ^ = 90, i.e. the tides would be inverted (cf. Art. 178).

With sensible friction, ^ will lie between 90 and 45, and the

time of high-water is accelerated by the time-equivalent of the

angle 90 %.

On the other hand, when hia &amp;gt; n 2

a/g, so that in the absence of

friction the tides would be direct, the value of ^ lies between

and 45, and the time of high-water is retarded by the time-

equivalent of this angle.

The figures shew the two cases. The letters J/, M indicate the positions

of the moon and anti-moon (see p. 365) supposed situate in the plane of the

equator, and the curved arrows shew the direction of the earth s rotation.

It is evident that in each case the attraction of the disturbing
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system on the elevated water is equivalent to a couple tending to

diminish the angular momentum of the system composed of the

earth and sea.

In the present problem the amount of the couple can be easily

calculated. We find, from (9) and (11), for the integral tangential

force on the elevated water

r

J
2y ............... (12),

where h is the vertical amplitude. Since the positive direction of

X is eastwards, this shews that there is on the whole a balance of

westward force. If we multiply by a we get the amount of the

retarding couple, per unit breadth of the canal*.

Another more obvious phenomenon, viz. the retardation of the time of

spring tides behind the days of new and full moon, can be illustrated on the

same principles. The composition of two simple-harmonic oscillations of

nearly equal speed gives

77
=A COS

(&amp;lt;rt
+ f) +A

r

COS (tr t+ e )

=(A+A cos(f))cos(ort+ f} + A sin&amp;lt;f&amp;gt;sii\((rt + ) ............... (i),

where &amp;lt;

=
(&amp;lt;r

o- ) + e-e .............................. (ii).

If the first term in the second member of (i) represents the lunar, and the

second the solar tide, we shall have &amp;lt;r&amp;lt;o- ,
and A&amp;gt;A . If we write

A +A cos = C cos a, A sin &amp;lt;

= C sin a ............... (iii),

we get 7)
=

Ccos(&amp;lt;rt+ -a) .............................. (iv),

where C=(A*+2AA cos&amp;lt;j&amp;gt;+
A rf ........................ (v),

This may be described as a simple-harmonic vibration of slowly varying

amplitude and phase. The amplitude ranges between the limits AA
9

whilst a lies always between +^ir. The speed must also be regarded as

variable, viz. we find

da _ a-A2 + (o- + cr) AA cos
&amp;lt;ft

+ v A&quot;* , ...~~ ~~~
r

cos~f+A *

* Cf. Delaunay,
&quot; Sur 1 existence d une cause nouvelle ayant une influence

sensible sur la valeur de 1 equation seeulaire de la Lune,&quot; Comptes llendus, t. Ixi.

(1865) ;
Sir W. Thomson, &quot; On the Observations and Calculations required to find

the Tidal Ketardation of the Earth s Rotation,&quot; Phil. Mag., June (supplement)

1866, Math, and Pliys. Papers, t. iii., p. 337. The first direct numerical estimate of

tidal retardation appears to have been made by Ferrel, in 1853.
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m, .
, , AfT+A v , A(T A v . ......

This ranges between .
,

and ---
r,- ........................ (vin)*.

A-f A A A

The above is the well-known explanation of the phenomena of the spring-

and neap-tides f ;
but we are now concerned further with the question of phase.

In the absence of friction, the maxima of the amplitude C would occur whenever

(&amp;lt;r

r

-&amp;lt;r)t
= 2mir + e - e

,

where in is integral. Owing to the friction, e and e are replaced by quantities

of the form e - f
x
and e - e/, and the corresponding times of maximum are

given by
(a- &amp;lt;r)t (e/

-
ej)
= 2wi7r + e - e

,

i. e. they occur later by an interval (e/
- e

1)/(o-
-

o-). If the difference between

a- and a- were infinitesimal, this would be equal to dejdo:

In the case of the semi-diurnal tides in an equatorial canal we have &amp;lt;r

= 2ft
,

f
1
=

2x, whence

_
do- dri

278. Returning to the general theory, let q^ q.2 ,... be the

coordinates of a dynamical system, which we will suppose subject

to conservative forces depending on its configuration, to motional

forces varying as the velocities, and to given extraneous forces.

The equations of small motion of such a system, on the most

general assumptions we can make, will be of the type

where the kinetic and potential energies T, V are given by ex

pressions of the forms

2g^2 + ............ (2),

2 g1^2 + ............ (3).

It is to be remembered that

drs
= dsr ,

Cr8 = Csr ........................ \*)&amp;gt;

but we do not assume the equality of Brs and Bsr .

If we now write

..................... (5),

*
Helmholtz, Lehre von den, Tommpjindunyen (2 Aufl.), Braunschweig, 1870,

p. 622.

t Cf. Thomson and Tait, Natural Philosophy, Art. 60.

$ Cf. Airy, &quot;Tides and Waves,&quot; Arts. 328...
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and &a = -&r = i (# -#) .................. (C),

the typical equation (1) takes the form

d dT dF

provided
2F=bu qi + b2,q/+... +26lag,ga + ............... (8).

From the equations in this form we derive

%-t
(T+V) + 2F=2Qrqr ....................(9).

The right-hand side expresses the rate at which the extraneous

forces are doing work. Part of this work goes to increase the total

energy T-f V of the system; the remainder is dissipated, at the

rate %F. In the application to natural problems the function F is

essentially positive : it is called by Lord Rayleigh *, by whom it

was first formally employed, the Dissipation-Function.

The terms in (7) which are due to F may be distinguished as

the frictional terms. The remaining terms in qly (J2 , ..., with

coefficients subject to the relation /3rg
=

ftfr ,
are of the type we

have already met with in the general equations of a gyrostatic

system (Art. 139); they may therefore be referred to as the

gyrostatic terms.

279. When the gyrostatic terms are absent, the equation (7)

reduces to

d dT dF dV
-T. -j-r-

+ -T^ +-F- =Q,....................(10).
dt dqr dq, dqr

As in Art. 165, we may suppose that by transformation of

coordinates the expressions for T and V are reduced to sums of

squares, thus :

2r = o1g1

2 + a2ga
a + ..................... (11),

27=^+0^ + ..................... (12).

It frequently, but not necessarily, happens that the same

transformation also reduces F to this form, say

2F=1^ + 14?+ ..................... (13).

* &quot; Some General Theorems relating to Vibrations,&quot; Proc. Lond. Math. Soc.,

t. iv., p. 363 (1873) ; Theory of Sound, Art. 81.
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The typical equation (10) then assumes the simple form

Qi...................... (14),

which has been discussed in Art. 275. Each coordinate qr now

varies independently of the rest.

When F is not reduced by the same transformation as T and F, the

equations of small motion are

where b ft
=

f

The motion is now more complicated ;
for example, in the case of free

oscillations about stable equilibrium, each particle executes (in any fun

damental type) an elliptic-harmonic vibration, with the axes of the orbit

contracting according to the law e~^.

The question becomes somewhat simpler when the frictional coefficients

b rg are small, since the modes of motion will then be almost the same as in the

case of no friction. Thus it appears from (i) that a mode of free motion is

possible in which the main variation is in one coordinate, say qr . The rth

equation then reduces to

a,.V+ &n-j-+ &amp;lt;V2,.

= .............................. (ii),

where we have omitted terms in which the relatively small quantities y1} y2 ,
...

(other than qr) are multiplied by the small coefficients brl ,
6r2 ,... We have

seen in Art. 275 that if brr be small the solution of (ii) is of the type

(iii),

where T-i=$brr/ar ,
&amp;lt;r

=
(c&amp;gt;,)*........................... (iv).

The relatively small variations of the remaining coordinates are then given

by the remaining equations of the system (i). For example, with the same

approximations,

whence qs
= ~ &amp;lt;r~~ Ae~t/T sin (at + e) .-*

Except in the case of approximate equality of period between two funda
mental modes, the elliptic orbits of the particles will on the present supposi
tions be very flat.

If we were to assume that

3V=acos((r* + e) .............................. (vii),

where a- has the same value as in the case of no friction, whilst a varies slowly
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with the time, and that the variations of the other coordinates are relatively

small, we should find

T+V=$ar qr
* +&rqr

*=^ar a* .................. (viii),

nearly. Again, the dissipation is

the mean value of which is ^o-
2 brr a

2
.................................... (ix),

approximately. Hence equating the rate of decay of the energy to the mean

value of the dissipation, we get

da
,
br

di
= -* ar

rr
a

whence a = a e~^T
.................................... (xi),

if r-^i&^/a,.................................. (xii),

as in Art. 275. This method of ascertaining the rate of decay of the oscilla

tions is sometimes useful when the complete determination of the character

of the motion, as affected by friction, would be difficult.

When the frictional coefficients are relatively great, the inertia of the

system becomes ineffective
;
and the most appropriate system of coordinates

is that which reduces F and V simultaneously to sums of squares, say

The equations of free-motion are then of the type

b r qr+ crqr
= Q ................................. (xiv),

whence qr Ce~ t r
.................................... (

xv
)j

if r= b r/c t
..................................... (xvi).

280. When gyrostatic as well as frictional terms are present

in the fundamental equations, the theory is naturally more com

plicated. It will be sufficient here to consider the case of two

degrees of freedom, by way of supplement to the investigation of

Art. 198.

The equations of motion are now of the types

%&+*nft+(*is+0)fs+i?r-$i,)
(i)

ift+(*it-)&+*si+tyft&amp;lt;?! J

To determine the modes of free motion we put Ql
=

) Q2
=

0&amp;gt;
and assume that

q l
and q.z vary as e*

1
. This leads to the biquadratic in X :

t
622) X

3+ ( 2
c
t + a^+ft*+ bn 62.

2
- 6

12
2
) X

2

c
2
= ...... (ii),
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There is no difficulty in shewing, with the help of criteria given by Routh*,
that if, as in our case, the quantities

are all positive, the necessary and sufficient conditions that this biquadratic

should have the real parts of its roots all negative are that c
x ,

c
2
should both

be positive.

If we neglect terms of the second order in the frictional coefficients, the

same conclusion may be attained more directly as follows. On this hypothesis

the roots of (ii) are, approximately,

X = - a
x
+ i(r

l ,

- a2 io-2 ........................ (iii),

where &amp;lt;TI} &amp;lt;r2 are, to the first order, the same as in the case of no friction, viz.

they are the roots of

a
1
a
2 (r^-(a2

c
1
+ a

1
c
2+^ 2

}(r
2+ c

l
c
2
= .................. (iv),

whilst a1} a2
are determined by

It is evident that, if
o-j

and o-2
are to be real, clt c.

2
must have the same sign,

and that if a
x ,

a2
are to be positive, this sign must be + . Conversely, if clt c

2

are both positive, the values of o^
2

,
o-2

2 are real and positive, and the quantities

ci/a i&amp;gt;

c2/^2 b tn lie ifl the interval between them. It then easily follows from

(v) that al5 a2
are both positivet.

If one of the coefficients c
lt c2 (say c2) be zero, one of the values of a (say

o-2)
is zero, indicating a free mode of infinitely long period. We then have

* Advanced Rigid Dynamics, Art. 287.

t A simple example of the above theory is supplied by the case of a particle in

an ellipsoidal bowl rotating about a principal axis, which is vertical. If the bowl
be frictionless, the equilibrium of the particle when at the lowest point will be stable

unless the period of the rotation lie between the periods of the two fundamental
modes of oscillation (one in each principal plane) of the particle when the bowl is at

rest. But if there be friction of motion between the particle and the bowl, there will

be secular stability only so long as the speed of the rotation is less than that of the

slower of the two modes referred to. If the rotation be more rapid, the particle
will gradually work its way outwards into a position of relative equilibrium in which
it rotates with the bowl like the bob of a conical pendulum. In this state the system
made up of the particle and the bowl has Zt s,s energy for the same angular momentum
than when the particle was at the bottom. Cf. Art. 235.
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As in Art. 198 we could easily write down the expressions for the forced

oscillations in the general case where Qlt $2 vary as e
i&amp;lt;T

\ but we shall here

consider more particularly the case where &amp;lt;?

2
= and $2

= 0. The equations (i)

then give

ia (619 8) &amp;lt;?i + (i&amp;lt;ra9+ b99 ) 6 9
=

TT- Vl^r /ii x Z v / 29
Hence

n ,.

A2)
&quot;2 2 2

This may also be written

a,a2 {(iV+a^+ oY
2

} (tcr+ a,)
11

Our main object is to examine the case of a disturbing force of long period,

for the sake of its bearing on Laplace s argument as to the fortnightly tide

(Art. 210). We will therefore suppose that the ratio
o-j/tr,

as well as o^/c^, is

large. The formula then reduces to

i&amp;lt;ra.2+b22

Everything now turns on the values of the ratios o-/a2 and aa.Jb^. If o- be so

small that these may be both neglected, we have

in agreement with the equilibrium theory. The assumption here made

is that the period of the imposed force is long compared with the time in

which free motions would, owing to friction, fall to e~ of their initial

amplitudes. This condition is evidently far from being fulfilled in the case of

the fortnightly tide. If, as is more in agreement with the actual state of

things, we assume o-/a2 and o-a2/622 to be large, we obtain

as in Art. 198 (vii).

Viscosity.

281. sAVe proceed to consider the special kind of resistance

which is met with in fluids. The methods we shall employ are of

necessity the same as are applicable to the resistance to distortion,

known as elasticity, which is characteristic of solid bodies.

The two classes of phenomena are of course physically distinct,

the latter depending on the actual changes of shape produced,

the former on the rate of change of shape, but the mathema

tical methods appropriate to them are to a great extent identical.

If we imagine three planes to be drawn through any point P
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perpendicular to the axes of x, y, z, respectively, the three com

ponents of the stress, per unit area, exerted across the first of

these planes may be denoted by pxx , pxy ,pxz&amp;gt; respectively; those

of the stress across the second plane by pyx , pyy,pyz \
and those of

the stress across the third plane by pZx&amp;gt;
Pzy&amp;gt; Pzz*- If we ^x our

attention on an element SxSySz having its centre at P, we find,

on taking moments, and dividing by $xyz,

Pyz
=
Pzy &amp;gt; Pzx ==

PXZ&amp;gt; Pxy
==
Pyx (

1
)&amp;gt;

the extraneous forces and the kinetic reactions being omitted,

since they are of a higher order of small quantities than the

surface tractions. These equalities reduce the nine components
of stress to six

;
in the case of a viscous fluid they will also follow

independently from the expressions for pyz ,pzx&amp;gt;pxy
in terms of the

rates of distortion, to be given presently (Art. 283).

v/282. It appears from Arts. 1, 2 that in a fluid the deviation

of the state of stress denoted by pXX) pxy ,... from one of pressure
uniform in all directions depends entirely on the motion of

distortion in the neighbourhood of P, i.e. on the six quantities

a, 6, c,f, g, h by which this distortion was in Art. 31 shewn to be

specified. Before endeavouring to express pxx , pxy) ... as functions

of these quantities, it will be convenient to establish certain for

mulae of transformation.

Let us draw Px
t Py

f

,
Pz in the directions of the principal

axes of distortion at P, arid let a
,
&

,
c be the

rates of extension along these lines. Further

let the mutual configuration of the two sets of ^

axes, x, y, z and x
t y , z, be specified in the y 2 , ra&amp;lt;,

usual manner by the annexed scheme of direc- z ! 13 ,
m3 ,

n3 .

tion-cosines. We have, then,

+ *

J?)

.

dx dy dz

* In conformity with the usual practice in the theory of Elasticity, we reckon

a tension as positive, a pressure as negative. Thus in the case of a frictionless fluid

we have
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Hence a = l*a + LrV + l*c
9

(1),

the last two relations being written down from symmetry. We
notice that

a + & + c = a + & + c ..................... (2),

an invariant, as it should be, by Art. 7.

Again

dw dv / d d d/ d \ , ,=r &&amp;gt;

+
*?

+ m-
d?) (n M + &quot; + w

and this, with the two corresponding formula?, gives

f= m^af + m^nj) +

;
(3).

liO, + LmM +

283. From the symmetry of the circumstances it is plain

that the stresses exerted at P across the planes y z, z x
,
x y must

be wholly perpendicular to these planes. Let us denote them by

PI, P-2, P* respectively. In the figure of Art. 2 let ABC now

represent a plane drawn perpendicular to cc, infinitely close to P,

meeting the axes of #
, y ,

z in A, B, C, respectively ;
and let A

denote the area ABC. The areas of the remaining faces of the

tetrahedron PABC will then be ^A, /2 A, 3 A. Resolving parallel

to os the forces acting on the tetrahedron, we find

paa-A =p1 llA . h +p2 l2A . 4 +p.A ls& . 13 ;

the external impressed forces and the resistances to acceleration

being omitted for the same reason as before. Hence, and by
similar reasoning,

We notice that

(2).
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Hence the arithmetic mean of the normal pressures on any three

mutually perpendicular planes through the point P is the same.

We shall denote this mean pressure by p.

Again, resolving parallel to y, we obtain the third of the

following symmetrical system of equations:

Pyz
=

These shew that

Pyz
=

Pzy &amp;gt; PZX
~
PXZ &amp;gt; pxy Pyx &amp;gt;

as in Art. 281.
y

If in the same figure we suppose PA, PB, PC to be drawn

parallel to x, y, z respectively, whilst ABC is any plane drawn near

P, whose direction-cosines are I, m, n, we find in the same way
that the components (phx, phy, Phz) of the stress exerted across this

plane are

Phx = Ipxx + mpxy + npxz ,

(4).

284. Now PI, p2 , ps differ from p by quantities depending
on the motion of distortion, which must therefore be functions of

a ,
b

, c
, only. The simplest hypothesis we can frame on this

point is that these functions are linear. We write therefore

Pi
= -P + X (a + b 4- c ) + 2/Aa ,

|

[ ............ (1),

where X, //,
are constants depending on the nature of the fluid,

and on its physical state, this being the most general assumption
consistent with the above suppositions, and with symmetry. Sub

stituting these values of^,^,^ in (1) and (3) of Art. 283, and

making use of the results of Art. 282, we find

Pxx = -P + X (a + 6 + c) +
2yaa,|^ = -^ +Ma + & + c)+2/^,l ............... (2),

Pzz
= -p + X (a -f b + c) + 2/xc }

xy
=

2tdi ............... (3).
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The definition ofp adopted in Art. 283 implies the relation

3\ + 2fji
= 0,

whence, finally, introducing the values of a, b, c, /, g, h, from

i dv dw\ . du
Art. 31,

PZZ
~~ P

dy

du dv

+
^Ty
dw

&quot;

dz

dw dv

du dwdw\ _
~dx)

=Pxz .(5).

dv du

The constant
yu,

is called the coefficient of viscosity. Its physi
cal meaning may be illustrated by reference to the case of a fluid

in what is called laminar motion (Art. 31); i.e. the fluid moves
in a system of parallel planes, the velocity being in direction

everywhere the same, and in magnitude proportional to the

distance from some fixed plane of the system. Each stratum of

fluid will then exert on the one next to it a tangential traction,

opposing the relative motion, whose amount per unit area is /*

times the variation of velocity per unit distance perpendicular to

the planes. In symbols, if u = ay, v = 0, w 0, we have

Pxx =Pyy =Pzz :=-
P, Pyz

=
&amp;gt; Pzx

=
, pxy

=

If [M], [L], [T] denote the units of mass, length, and time, the

dimensions of the &amp;gt; s are [ML~
l

T~*], and those of the rates of

distortion (a, b, c, ...) are [T~
l

],
so that the dimensions of p are

The stresses in different fluids, under similar circumstances of

motion, will be proportional to the corresponding values of
//, ;

but

if we wish to compare their effects in modifying the existing

motion we have to take account of the ratio of these stresses to

the inertia of the fluid. From this point of view, the determining
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quantity is the ratio p/p ;
it is therefore usual to denote this by a

special symbol v, called by Maxwell the kinematic coefficient of

viscosity. The dimensions of v are [L
2T~1

].

The hypothesis made above that the stresses pxx , pxy ,. . . are linear functions

of the rates of strain a, b, c,... is of a purely tentative character, and although

there is considerable a priori probability that it will represent the facts

accurately for the case of infinitely small motions, we have so far no assurance

that it will hold generally. It has however been pointed out by Prof. Osborne

Keynolds* that the equations based on this hypothesis have been put to a

very severe test in the experiments of Poiseuille and others, to be referred to

presently (Art. 289). Considering the very wide range of values of the rates of

distortion over which these experiments extend, we can hardly hesitate to

accept the equations in question as a complete statement of the laws of

viscosity. In the case of gases we have additional grounds for this assump
tion in the investigations of the kinetic theory by Maxwell f.

The practical determination of /u (or v) is a matter of some difficulty.

Without entering into the details of experimental methods, we quote a few of

the best-established results. The calculations of von HelmholtzJ, based on

Poiseuille s observations, give for water

0178
M ~l + -0337&amp;lt;9+-000221&amp;lt;9

2

in c. G. s. units, where B is the temperature Centigrade. The viscosity, as in

the case of all liquids as yet investigated, diminishes rapidly as the temperature
rises

;
thus at 17 C. the value is

^= 0109.

For mercury Koch found

^= 01697, and pw= 01633,

respectively.

In gases, the value of
/z

is found to be sensibly independent of the pressure,

within very wide limits, but to increase somewhat with rise of temperature.
Maxwell found as the result of his experiments ||,

/u
= -0001878 (1 + -00366 6} ;

this makes p proportional to the absolute temperature as measured by the

air-therrnometer. Subsequent observers have found a somewhat smaller

value for the first factor, and a less rapid increase with temperature.
We may take perhaps as a fairly established value

/* =-000170

* &quot; On the Theory of Lubrication, &c.,&quot; Phil. Trans., 1886, Pt. I., p. 165.

t &quot;On the Dynamical Theory of Gases,&quot; Phil. Trans., 1867; Scientific Papers,

t. ii., p. 26.

J &quot;Ueber Reibung tropfbarer Fliissigkeiten,&quot; Wien. Sitzungsber., t. xl. (I860);

Ges. Abh., t. i., p. 172.

Wied. Ann., t. xiv. (1881).

||

&quot; On the Viscosity or Internal Friction of Air and other Gases,&quot; Phil. Trans.,

1866; Scientific Papers, t. ii., p. 1.

L. 33
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for the temperature C. For air at atmospheric pressure, assuming p = 00129

this gives

The value of v varies inversely as the pressure*.

285. We have still to inquire into the dynamical conditions

to be satisfied at the boundaries.

At a free surface, or at the surface of contact of two dissimilar

fluids, the three components of stress across the surface must be

continuous
)-.

The resulting conditions can easily be written down

with the help of Art. 283 (4).

A more difficult question arises as to the state of things at the

surface of contact of a fluid with a solid. It appears probable that

in all ordinary cases there is no motion, relative to the solid, of the

fluid immediately in contact with it. The contrary supposition

would imply an infinitely greater resistance to the sliding of one

portion of the fluid past another than to the sliding of the fluid

over a solid .

If however we wish, temporarily, to leave this point open, the most

natural supposition to make is that the slipping is resisted by a tangential

force proportional to the relative velocity. If we consider the motion of a

small film of fluid, of thickness infinitely small compared with its lateral

dimensions, in contact with the solid, it is evident that the tangential traction

on its inner surface must ultimately balance the force exerted on its outer

surface by the solid. The former force may be calculated from Art. 283 (4) ;

the latter is in a direction opposite to the relative velocity, and proportional

to it. The constant (/3, say) which expresses the ratio of the tangential force

to the relative velocity may be called the coefficient of sliding friction.

286. The equations of motion of a viscous fluid are obtained

by considering, as in Art. 6, a rectangular element Sx&ySz having
its centre at P. Taking, for instance, the resolution parallel

to #, the difference of the normal tractions on the two yz- faces

gives (dpxxjdx) x . Sy Sz. The tangential tractions on the two

#-faces contribute (dpyx/dy) Sy . 8z$x, and the two xy-f&ces give

* A very full account of the results obtained by various experimenters is

given in Wmkelmann s Handbuch der Physik, t. i., Art. Keibung.

t This statement requires an obvious modification when capillarity is taken into

account. Cf. Art. 302.

Stokes, 1. c. p. 518.
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in like manner (dpzxjdz) Sz . 8x8y. Hence, with our usual

notation,
Du _ _ dpxx dpyx dpzx

p Dt~ p2
~

dx
&quot;~&quot;

dz

_ y yy
p Dt~ p dx

~

dy
4

d5

p
n^: = pZ + -%= -f ^p- -f 5=Dt dx dy dz

Substituting the values of pxx , pxy ,
... from Art. 284 (4), (5),

we find

Du_ dp, __W

Z)w dp d6
p p \~ 4-//&amp;lt;

jji dy d/ ?/

Dw dp dO

where

and V 2 has its usual meaning.

When the fluid is incompressible, these reduce to

Dw

These dynamical equations were first obtained by Navier*

and Poisson-f- on various considerations as to the mutual action of

the ultimate molecules of fluids. The method above adopted,
which is free from all hypothesis of this kind, appears to be due

in principle to de Saint-Venant and Stokes
f.

* &quot; M6moire sur les Lois du Mouvement des Fluides,&quot; Mem. de VAcad. des

Sciences, t. vi. (1822).

t &quot;Memoire sur les Equations g&amp;lt;n&amp;lt;rales
de l quilibre et du Mouvement des

Corps solides elastiques et des Fluides,&quot; Journ. de VEcoJe Polytechn., t. xiii. (1829).

J
&quot; On the Theories of the Internal Friction of Fluids in Motion, &c.,&quot; Camb.

Trans., t. viii. (1845); Math, and Phys. Papers, t. i., p. 88.

332
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The equations (4) admit of an interesting interpretation. The first of

them, for example, may be written

Du I dp ...

-=-=X -- - + vV*u .............................. (i).Dt p dx

The first two terms on the right hand express the rate of variation of u in

consequence of the external forces and of the instantaneous distribution of

pressure, and have the same forms as in the case of a frictionless liquid. The

remaining term
i&amp;gt;vX

due to viscosity, gives an additional variation following

the same law as that of temperature in Thermal Conduction, or of density in

the theory of Diffusion. This variation is in fact proportional to the (positive

or negative) excess of the mean value of u through a small sphere of given

radius surrounding the point (#, y, z] over its value at that point*. In

connection with this analogy it is interesting to note that the value of v for

water is of the same order of magnitude as that (-01249) found by I)r Everett

for the thermometric conductivity of the Greenwich gravel.

When the forces X, F, Z have a potential G, the equations (4) may be

written

where /== - + i&amp;lt;7

2

P

q denoting the resultant velocity, and
, 77,

the components of the angular

velocity of the fluid. If we eliminate x by cross-differentiation, we find,

du

D{ .dw dw dw

(iv).

The first three terms on the right hand of each of these equations express, as

in Art. 143, the rates at which
, ?/, vary for a particle, when the vortex-lines

move with the fluid, and the strengths of the vortices remain constant. The
additional variation of these quantities, due to viscosity, is given by the last

terms, and follows the law of conduction of heat. It is evident from this

analogy that vortex-motion cannot originate in the interior of a viscous liquid,

but must be diffused inwards from the boundary.

*
Maxwell, Proc. Lond. Math. Soc., t. iii., p. 230; Electricity and Magnetism,

Art. 26.
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287. To compute the rate of dissipation of energy, due to

viscosity, we consider first the portion of fluid which at time t

occupies a rectangular element xyz having its centre at (x, y, z).

Calculating the differences of the rates at which work is being done

by the tractions on the pairs of opposite faces, we obtain

\dxdx
xx xy xz

dy
(pyxU +PyyV + P

(1).

The terms

\(dpxx dpyx dpzx\ fdpxy dpyy dpzy\

\\ 7 T ~~7
--r ~j I

w i
\

T~~ &quot;1

--
7 &quot;1

--
7 I

(\ dx dy dz J \ dx dy dz )

/^ dft
^_A

]

V dx dy dz J )

express, by Art. 286 (1), the rate at which the tractions on the faces

are doing work on the element as a whole, in increasing its kinetic

energy and in compensating the work done against the extraneous

forces JT, Y, Z. The remaining terms express the rate at which

work is being done in changing the volume and shape of the

element. They may be written

(Pxxtt + Pyyb + pzz G + %pyzf+ %pzxg + tyxyh) &*% &Z- (3 )&amp;gt;

where a, b, c, f, g, h have the same meanings as in Arts. 31, 284.

Substituting from Art. 284 (2), (3), we get

p(a + b + c)

+ }- J/A (a + b

...... (4).

If p be a function of p only, the first line of this is equal to

provided

(5),

i.e. E denotes, as in Art. 11, the intrinsic energy per unit mass.

Hence the second line of (4) represents the rate at which energy
is being dissipated. On the principles established by Joule, the

mechanical energy thus lost takes the form of heat, developed in

the element.
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If we integrate over the whole volume of the fluid, we find, for

the total rate of dissipation,

(6),

where
fdu dv dw^

.dz)

fdw dv\- (du dw \~ (dv
duY2

}

dy dz) \dz dx) \dx dy) }

If we write this in the form

it appears that F cannot vanish unless

a= 6= c, and f=g= h=0,

at every point of the fluid. In the case of an incompressible fluid it is

necessary that the quantities , 6, c, /, y, h should all vanish. It easily

follows, on reference to Art. 31, that the only condition under which a liquid

can be in motion without dissipation of energy by viscosity is that there must

be nowhere any extension or contraction of linear elements
;
in other words,

the motion must be composed of a translation and a pure rotation, as in the

case of a rigid body. In the case of a gas there may be superposed on this an

expansion or contraction which is the same in all directions.

We now consider specially the case when the fluid is incompressible, so that

If we subtract from this the expression

^Y*+*4r
\JBUS dy

which is zero, we obtain

dv\ 2 du dw\ 2 dv du=

(dv dw dv dw dw du dw du du dv du dv\
^
\dy dz dz dy dz dx dx dz dx dy dy dx)

&quot; ^

*
Stokes,

&quot; On the Effect of the Internal Friction of Fluids on the Motion of

Pendulums,&quot; Camb. Trans., t. ix., p. [58] (1851).
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If we integrate this over a region such that u, v, w vanish at every point of

the boundary, as in the case of a liquid filling a closed vessel, on the hypothesis

of no slipping, the terms due to the second line vanish (after a partial integra

tion), and we obtain

............ (iv)*

In the general case, when no limitation is made as to the boundary

conditions, the formula (iii)
leads to

2^=4^ I I ntf+ rf+ ffdxdydz- n I

l-^dtS

f fffr
&amp;gt;w

*&amp;gt;

+ 4^1/1 \u, v, iv, dS (v),

I
&amp;gt; *?&amp;gt;

|

where, in the former of the two surface-integrals, dn denotes an element of the

normal, and, in the latter, I, m, n are the direction-cosines of the normal,

drawn inwards in each case from the surface-element dS.

When the motion considered is irrotational, this formula reduces to

simply. In the particular case of a spherical boundary this expression follows

independently from Art. 44 (i).

Problems of Steady Motion.

288. The first application which we shall consider is to the

steady motion of liquid, under pressure, between two fixed parallel

planes, the flow being supposed to take place in parallel lines.

Let the origin be taken half-way between the planes, and the

axis of y perpendicular to them. We assume that u is a function

of y only, and that v, w = 0. Since the traction parallel to x on any

plane perpendicular to y is equal to pdujdy, the difference of the

tractions on the two faces of a stratum of unit area and thickness

% gives a resultant fj,d
2

u/dy*. 8y. This must be balanced by the

normal pressures, which give a resultant dpjdx per unit volume

of the stratum. Hence
d2u dp

*
Bobyleff, &quot;Einige Betrachtungen tiber die Gleichungen der Hydrodynamik,&quot;

Math. Ann., t. vi. (1873); Forsyth, &quot;On the Motion of a Viscous Incompressible

Fluid,&quot; Mess, of Math., t. ix. (1880).
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Also, since there is no motion parallel to y, dpjdy must vanish.

These results might of course have been obtained immediately
from the general equations of Art. 286.

It follows that the pressure-gradient dpjdx is an absolute

constant. Hence (1) gives

and determining the constants so as to make u = for y = h, we

find

Zh* dpHence y= __ ..................... (4).

289. The investigation of the steady flow of a liquid through
a straight pipe of uniform circular section is equally simple, and

physically more important.

If we take the axis of z coincident with the axis of the tube,

and assume that the velocity is everywhere parallel to z, and a

function of the distance (r) from this axis, the tangential stress

across a plane perpendicular to r will be pdw/dr. Hence, con

sidering a cylindrical shell of fluid, whose bounding radii are r

and r + r, and whose length is I, the difference of the tangential

tractions on the two curved surfaces gives a retarding force

d [ dw _ A ?
-J- /* -j- - 2 r-

dr \ dr J

On account of the steady character of the motion, this must be

balanced by the normal pressures on the ends of the shell. Since

dwjdz = 0, the difference of these normal pressures is equal to

where pr , p2 are the values of p (the mean pressure) at the two

ends. Hence

dr\dr

Again, if we resolve along the radius the forces acting on a

rectangular element, we find dp/dr = 0, so that the mean pressure

is uniform over each section of the pipe.
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The equation (1) might have been obtained from Art. 286

(4) by direct transformation of coordinates, putting

r = (#
2 + 2/

2

)i
The integral of (1) is

~

(2).

Since the velocity must be finite at the axis, we must have A = 0;

and if we determine B on the hypothesis that there is no slipping

at the wall of the pipe (r
=

a, say), we obtain

This gives, for the flux across any section,

sr-*1?* (
4

)-

It has been assumed, for shortness, that the flow takes place

under pressure only. If we have an extraneous force X acting

parallel to the length of the pipe, the flux will be

In practice, X is the component of gravity in the direction of the

length.

The formula (4) contains exactly the laws found experimentally

by Poiseuille* in his researches on the flow of water through

capillary tubes
;

viz. that the time of efflux of a given volume of

water is directly as the length of the tube, inversely as the

difference of pressure at the two ends, and inversely as the fourth

power of the diameter.

This last result is of great importance as furnishing a conclusive proof that

there is in these experiments no appreciable slipping of the fluid in contact

with the wall. If we were to assume a slipping-coefficient /3, as explained in

Art. 285, the surface-condition would be

-p.dw/dr=fiiv,

or w -\diojdr..............................

*
&quot;Recherches experimentales sur le mouvement des liquides dans les tubes de

tr&s petits diametres,&quot; Comptes Rendus, tt. xi., xii. (1840-1), Mem. des Sav.

Etrangers, t. ix. (1846).
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if X = /i//3. This determines B, in (2), so that

(ii).

If X/a be small, this gives sensibly the same law of velocity as in a tube of

radius a+ \, on the hypothesis of no slipping. The corresponding value

of the flux is

If X were more than a very minute fraction of a in the narrowest tubes

employed by Poiseuille [a= 001 5 cm.J a deviation from the law of the fourth

power of the diameter, which was found to hold very exactly, would become

apparent. This is sufficient to exclude the possibility of values of X such as

235 cm., which were inferred by Helmholtz and Piotrowski from their

experiments on the torsional oscillations of a metal globe filled with water,

described in the paper already cited*.

The assumption of no slipping being thus justified, the comparison of the

formula (4) with experiment gives a very direct means of determining the

value of the coefficient p, for various fluids.

It is easily found from (3) and (4) that the rate of shear close

to the wall of the tube is equal to 4w /a, where w is the mean

velocity over the cross-section. As a numerical example, we may
take a case given by Poiseuille, where a mean velocity of 126 6 c. s.

was obtained in a tube of 01134 cm. diameter. This makes

4&amp;gt;w /a 89300 radians per second of time.

290. Some theoretical results for sections other than circular

may be briefly noticed.

1. The solution for a channel of annular section is readily deduced from

equation (2) of the preceding Art., with A retained. Thus if the boundary-

conditions be that w= Q for r= a and r=b, we find

giving a flux

2. It has been pointed out by Greenhillt that the analytical conditions

of the present problem are similar to those which determine the motion of a

Motionless liquid in a rotating prismatic vessel of the same form of section

* For a fuller discussion of this point see Whetham,
&quot; On the Alleged Slipping

at the Boundary of a Liquid in Motion,&quot; Phil. Trans., 1890, A.

f &quot; On the Flow of a Viscous Liquid in a Pipe or Channel,&quot; Proc. Lond. Math.

Soc., t. xiii. p. 43 (1881).
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(Art. 72). If the axis of z be parallel to the length of the pipe, and if we

assume that w is a function of #, y only, then in the case of steady motion

the equations reduce to

where Vi
2=d2

/d^
2+d2

/d^
2

. Hence, denoting by P the constant pressure-

gradient (
-
dp/dz), we have

Vl*w=-P/f
j. ................................. (iv),

with the condition that w=0 at the boundary. If we write ^ o&amp;gt;

for w
t
and 2o&amp;gt; for P/p, we reproduce the conditions of the Art. referred to.

This proves the analogy in question.

In the case of an elliptic section of semi-axes a, 6, we assume

which will satisfy (iv) provided

The discharge per second is therefore

P~

f f
I I

]J

P naW
wdxdy= . ~5 TT ........................ (vn)~

This bears to the discharge through a circular pipe of the same sectional

area the ratio 26/(a
2
-f- 6

2
).

For small values of the eccentricity (e) this

fraction differs from unity by a quantity of the order e*. Hence considerable

variations may exist in the shape of the section without seriously affecting

the discharge, provided the sectional area be unaltered. Even when a : b = 8 : 7,

the discharge is diminished by less than one per cent.

291. We consider next some simple cases of steady rotatory

motion.

The first is that of two-dimensional rotation about the axis of

z, the angular velocity being a function of the distance (r) from

this axis. Writing
u = wy, v = cox, ........................(1)

we find that the rates of extension along and perpendicular to the

radius vector are zero, whilst the rate of shear in the plane xy is

rdco/dr. Hence the moment, about the origin, of the tangential
forces on a cylindrical surface of radius r, is per unit length of

the axis, = prdcdjdr . 2?rr . r. On account of the steady motion,
the fluid included between two coaxial cylinders is neither gaining

*
This, with corresponding results for other forms of section, appears to have

been obtained by Boussinesq in 1868
;
see Hicks, Brit. Ass. Rep., 1882, p. 63.
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nor losing angular momentum, so that the above expression must

be independent of r. This gives

(2).

If the fluid extend to infinity, while the internal boundary is that

of a solid cylinder of radius a, whose angular velocity is o&amp;gt;
,
we

have
a&amp;gt;

= co a2

/r* .......................... (3).

The frictional couple on the cylinder is therefore

47TyU.a
4
ft) ........................... (4).

If the fluid were bounded externally by a fixed coaxial cylin

drical surface of radius b we should find

which gives a frictional couple

*-,. -(6)*-

292. A similar solution, restricted however to the case of

infinitely small motions, can be obtained for the steady motion of

a fluid surrounding a solid sphere which is made to rotate

uniformly about a diameter. Taking the centre as origin, and the

axis of rotation as axis of a?, we assume

u = coy, v = wx
)
w = (1),

where o&amp;gt; is a function of the radius vector r, only. If we put

P=fa&amp;gt;rdr (2),

these equations may be written

u = -dP/dy, v = dP/d.x, w = Q (3);

and it appears on substitution in Art. 286 (4) that, provided we

neglect the terms of the second order in the velocities, the

equations are satisfied by

p = const., V 2P = const (4).

* This problem was first treated, not quite accurately, by Newton, Principia,

Lib. ii., Prop. 51. The above results were given substantially by Stokes, I. c. ante,

p. 515.
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The latter equation may be written

d?P
,

2 dP
;nr + -

-j-
~ cons

t-&amp;gt;

dr* r dr

or r -; + 3ce) = const (5),
dr

whence o&amp;gt;

= A/1* + B (6).

If the fluid extend to infinity and is at rest there, whilst &amp;lt;y is

the angular velocity of the rotating sphere (r
= a\ we have

0) = 0)
fl .(7).

If the external boundary be a fixed concentric sphere of radius

b the solution is

a3 63 -r3

ft) = . 7.
,

.

r3
6&quot; a3

,

(O).

The retarding couple on the sphere may be calculated directly

by means of the formulae of Art. 284, or, perhaps more simply,

by means of the Dissipation Function of Art. 287. We find

without difficulty that the rate of dissipation of energy

-s- dxdvdz
dr I

^}dr

If N denote the couple which must be applied to the sphere to

maintain the rotation, this expression must be equivalent to Na&amp;gt;
,

whence

or, in the case corresponding to (7), where b = oo
,

........................ (11)-

The neglect of the terms of the second order in this problem involves a

more serious limitation of its practical value than might be expected. It is

not difficult to ascertain that the assumption virtually made is that the ratio

*
Kirchhofif, Meclumik, c. xxvi.
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o&amp;gt; a2
/i&amp;gt;

is small. If we put v= -018 (water), and a= 10, we find that the

equatorial velocity co a must be small compared with 0018 (c. s.)*.

When the terms of the second order are sensible, no steady motion of

this kind is possible. The sphere then acts like a centrifugal fan, the motion

at a distance from the sphere consisting of a flow outwards from the equator
and inwards towards the poles, superposed on a motion of rotation f.

It appears from Art. 286 that the equations of motion may be written

=^- +^%, &c., &c

where

Hence a steady motion which satisfies the conditions of any given problem,
when the terms of the second order are neglected, will hold when these are

retained, provided we introduce the constraining forces

X=2(wr)-v\ Y=2(u-w), Z=2(v-ur)) ......... (iii)t

The only change is that the pressure p is diminished by ^pg
2

. These forces

are everywhere perpendicular to the stream-lines and to the vortex-lines, and

their intensity is given by the product 2^co sin ^, where o&amp;gt; is the angular

velocity of the fluid element, and ^ is the angle between the direction of q
and the axis of to.

In the problem investigated in this Art. it is evident d priori that the

constraining forces

X=-A, F=-fy, Z=0 ............... . ........ (iv).

would make the solution rigorous. It may easily be verified that these

expressions differ from (iii) by terms of the forms -dQ/dx, dQ/dy, -dQ/dz,

respectively, which will only modify the pressure.

293. The motion of a viscous incompressible fluid, when the

effects of inertia are insensible, can be treated in a very general

manner, in terms of spherical harmonic functions.

It will be convenient, in the first place, to investigate the

general solution of the following system of equations :

VV =
0, VV = 0, W = ............... (1),

*
Cf. Lord Rayleigh,

&quot; On the Flow of Viscous Liquids, especially in Two

Dimensions,&quot; Phil. Mag., Oct. 1893.

t Stokes, 1. c. ante, p. 515.

Lord Rayleigh, L c.
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The functions u, v
,
w may be expanded in series of solid har

monics, and it is plain that the terms of algebraical degree n in

these expansions, say un ,
vn ,

wn ,
must separately satisfy (2). The

equations V2wn = 0, V 2vn = 0, V 2wn = may therefore be put in

the forms

dx

d fdVn d?ln\ _ d

dy V dx dy )

~
dz \ dz

dz \ dy dz J dx \ dx dy
d

fdiin
dwn \ _ d idwn dvn

dx \ dz dx ] dy \ dy dz

(3).

Hence

_
dy dz

~
dx dz

dw^ _ dxn dvn _ dun _ dxn
dx

~

dy dx dy
~~

dz
&quot;

where %n is some function of x, y, z
;
and it further appears from

these relations that V 2

^n = 0, so that %n is a solid harmonic of

degree n.

From (4) we also obtain

- ^ (Win + yvn + ZWn*)
. . . (5),

with two similar equations. Now it follows from (1) and (2) that

V 2

(a?un + yn + *wn )
= .................. (6),

so that we may write

OMn + yVn -f ZWn =
&amp;lt;/&amp;gt;

?l+1 .................. (7),

where n+1 is a solid harmonic of degree n + 1. Hence (5) may be
written

( + 1) Un =*! + g
dX- _ /Xn..... (8)dx dy

1 dz

The factor n + 1 may be dropped without loss of generality ;
and

we obtain as the solution of the proposed system of equations :
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dy
^ dz J

(9),

+ _
dz

+ y dx
*
dy)

where the harmonics
(f)n , %n are arbitrary*.

294. If we neglect the inertia-terms, the equations of motion

of a viscous liquid reduce, in the absence of extraneous forces, to

the forms

............ (1),

.,, du dv dw /ox
with

;j- + :r 4
-:r- :=0 ........................ (2)-

dx dy dz

By differentiation we obtain

.............................. (3),

so that p can be expanded in a series of solid harmonics, thus

P = 2pn .............................. (4).

The terms of the solution involving harmonics of different alge

braical degrees will be independent. To obtain the terms in pn
we assume

*f&amp;gt;
+ r^ ^,\da; dx r2 ^1

dy dy

dz dz

where r2 = x2 + y
2 + z*. The terms multiplied by B are solid

harmonics of degree n + 1, by Arts. 82, 84. Now

dx J dx \ dx y
dy dz/ dx dx-. ,

*
Cf. Borchardt,

&quot;

Untersuchungen uber die Elasticitat fester Korper unter

Beriicksichtigung der Warme,&quot; Berl. Monatsber., Jan. 9, 1873; Gesammelte Werke,

Berlin, 1888, p. 245. The investigation in the text is from a paper
&quot; On the

Oscillations of a Viscous Spheroid,&quot; Proc. Lond. Math. Soc., t. xiii., p. 51 (1881).
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Hence the equations (1) are satisfied, provided

Also, substituting in (2), we find

l

whence B=,- ... /rt
-rrr^-;rr~ ................. CO-

Hence the general solution of the system (1) and (2) is

u =
*

dpn

2(2n + l) dx

= lvf__rL
H (2 (2n +

,

- a Pn , ,

(n + 1) (2n + 1) (2n + 3) dy r+^

^\+w
1) efe (n + 1) (2?i + 1) (2w + 3) dz

......... (8)*,

where w
,
v

7

,
w have the forms given in (9) of the preceding Art.

The formulae (8) make

nr2

(9).

Also, if we denote by f, 77, f the components of the angular

velocity of the fluid (Art. 31), we find

dz dy J dx

o ^ V -^
f

(*/Pn dpn\ ^ / ,T\ (*Xn \ /in\
Zri = Z ; , . /rt 77 z -j- x -j- I + ^- (?i + I ) ~=

,
V...( 1U).

/A (n + 1) (2r? + 1) V # dz J dy

These make 2 (#f + 3/17 + ^f) = Sn (w + 1) XH (H).

* This investigation is derived, with some modifications, from various sources.

Cf. Thomson and Tait, Natural Philosophy, A.rt. 736 ; Borchardt, 1. c.
; Oberbeck,

&quot;Ueber stationare Fliissigkeitsbewegungen mit Beriicksichtigung der inneren

Reibung,&quot; Crelle, t. Ixxxi., p. 62 (1876).

L. 34
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295. The results of Arts. 293, 294 can be applied to the

solution of a number of problems where the boundary conditions

have relation to spherical surfaces. The most interesting cases

fall under one or other of two classes, viz. we either have

xu -f yv + zw = (1)

everywhere, and therefore pn = 0,
(f&amp;gt;
n = ;

or

af+yi/ + *f=0 (2),

and therefore %n = 0.

1. Let us investigate the steady motion of a liquid past a fixed spherical

obstacle. If we take the origin at the centre, and the axis of x parallel to the

flow, the boundary conditions are that w = 0, v= 0, w= for r=a (the radius),

and w = u, v = 0, w= for r=o&amp;gt;. It is obvious that the vortex-lines will be

circles about the axis of x, so that the relation (2) will be fulfilled. Again, the

equation (9) of Art. 294, taken in conjunction with the condition to be

satisfied at infinity, shews that as regards the functions pn and n we are

limited to surface-harmonics of the first order, and therefore to the cases

=
1, n= -2. Also, we must evidently have^ = 0. Assuming, then,

we find

3B

The condition of no slipping at the surface r=a gives

whence

Hence

These make

:0
&amp;gt; * *2

(V),

(vi).
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The components of stress across the surface of a sphere of radius r are,

by Art. 283,

If we substitute the values ofpxxt pxy , pxt , ..., from Art. 284, we find

d
-j- (xu +yv + zw\

d

d \ d
-r--i)w+n-r,

In the present case we have

We thus obtain, for the component tractions on the sphere r= a,

If 8S denote an element of the surface, we find

The resultant force on the sphere is therefore parallel to
.r, arid equal to

The character of the motion may be most concisely expressed by means of

the stream-function of Art. 93. If we put x=r cos 0, the flux (27r\^) through a

circle with Ox as axis, whose radius subtends an angle 6 at is given by

as is evident at once from (v).

If we impress on everything a velocity
- u in the direction of x, we get

the case of a sphere moving steadily through a viscous fluid which is at rest

at infinity. The stream-function is then

2\

(xiii)*

The diagram on p. 532, shews the stream-lines ^ = const., in this case, for a

series of equidistant values of
&amp;gt;//&amp;gt;.

The contrast with the case of a Motionless

liquid, depicted on p. 137, is remarkable, but it must be remembered that the

* This problem was first solved by Stokes, in terms of the stream-function,

I.e. ante p. 518.

342
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fundamental assumptions are very different. In the former case inertia was

predominant, and viscosity neglected ;
in the present problem these circum

stances are reversed.

If X be the extraneous force acting on the sphere, this must balance the

resistance, whence

(xiv).

It is to be noticed that the formula (xiii) makes the momentum and the
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energy of the fluid both infinite*. The steady motion here investigated

could therefore only be fully established by a constant force X acting on the

sphere through an infinite distance.

The whole of this investigation is based on the assumption that the

inertia-terms udu\dx, ... in the fundamental equations (4) of Art. 286 may
be neglected in comparison with i/v

2
w, .... It easily follows from (iv) above

that ua must be small compared with v. This condition can always be

realized by making u or a sufficiently small, but in the case of mobile fluids

like water, this restricts us to velocities or dimensions which are, from a

practical point of view, exceedingly minute. Thus even for a sphere of a

millimetre radius moving through water (t/
= 018), the velocity must be

considerably less than -18 cm. per sec.f.

We might easily apply the formula (xiv) to find the * terminal velocity of

a sphere falling vertically in a fluid. The force X is then the excess of the

gravity of the sphere over its buoyancy, viz.

where p denotes the density of the fluid, and p the mean density of the

sphere. This gives

This will only apply, as already stated, provided u/i/ is small. For a

particle of sand descending in water, we may put (roughly)

p = 2p, y=-018, #= 981,

whence it appears that a must be small compared with -0114 cm. Subject to

this condition, the terminal velocity is u = 12000 a2
.

For a globule of water falling through the air, we have

Po
=

l, p = -00129, ,i
= -00017.

This gives a terminal velocity u= 1280000 a2
, subject to the condition that a

is small compared with -006 cm.

2. The problem of a rotating sphere in an infinite mass of liquid is

solved by assuming
av_o ^Y-9 \=z
-y*-y-fr&amp;gt;}

&quot;
=*%2 -* %r

w= y j # =

dx dy

.(xvii),

where

* Lord Eayleigh, Phil. Mag., May 1886.

t Lord Eayleigh, 1. c. ante p. 526.
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the axis of z being that of rotation. At the surface ra we must have

u= ay, v= ax, w= Q,

if &amp;lt; be the angular velocity of the sphere. This gives A = &amp;lt;oa

3
;

cf. Art. 292.

296. The solutions of the corresponding problems for an

ellipsoid can be obtained in terms of the gravitation-potential of

the solid, regarded as homogeneous and of unit density.

The equation of the surface being

5+1
the gravitation-potential is given, at external points, by Dirichlet s formula*

where A= {(

and the lower limit is the positive root of

This makes
dQ dQ, dQ.
-j

=
zirax, -y-

=
27raV, r~dx ciy ciz

where
d\

We will also write

. ...

.............................. (vn) ;

it has been shewn in Art. 110 that this satisfies V2
x~^-

If the fluid be streaming past the ellipsoid, regarded as fixed, with the

general velocity u in the direction of #, we assume f

-, ..................... (viii).

dxdy dy (

-,-
dxdz dz

These satisfy the equation of continuity, in virtue of the relations

*
Crelle, t. xxxii. (1846) ; see also Kirchhoff, Mechanik, c. xviii., and Thomson

and Tait, Natural Philosophy (2nd ed.), Art. 494m.

t Oberbeck, I.e. ante p. 529.
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and they evidently make w= u, v= 0, w= Q at infinity. Again, they make

so that the equations (1) of Art. 294 are satisfied by

-+ const............................... (x).

It remains to shew by a proper choice of A, B we can make u, v, w= at

the surface (i). The conditions =
0, w= require

+S
&amp;lt;^]

=0)
dAj*=o

or 27r^/a
2+ = ................................. (xi).

With the help of this relation, the condition u= reduces to

2ir4ao-#xo-Hl= .............................. (xii),

where the suffix denotes that the lower limit in the integrals (vi) and (vii) is

to be replaced by zero. Hence

u (
xiii

)-

At a great distance r from the origin we have

Q= A
Trabcjr, ^ = 2a6c/r,

whence it appears, on comparison with the equations (iv) of the preceding Art.,

that the disturbance is the same as would be produced by a sphere of radius

a, determined by
(xiv),

&quot;*i*
.............................. (xv) &quot;

The resistance experienced by the ellipsoid will therefore be

(xvi).

In the case of a circular disk moving broadside-on, we have a=0, 6= c;

whence o =
2, ^O =TTOC, so that

a= ^-c=-85c.
O7T

We must not delay longer over problems which, for reasons

already given, have hardly any real application except to fluids of

extremely great viscosity. We can therefore only advert to the

mathematically very elegant investigations which have been

given of the steady rotation of an ellipsoid*, and of the flow

*
Edwardes, Quart. Journ. Math., t. xxvi., pp. 70, 157 (1892).
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through a channel bounded by a hyperboloid of revolution (of one

sheet)*.

Some examples of a different kind, relating to two-dimensional

steady motions in a circular cylinder, due to sources and sinks in

various positions on the boundary, have been recently discussed

by Lord Rayleighf.

297. Some general theorems relating to the dissipation of

energy in the steady motion of a liquid under constant extra

neous forces have been given by von Helmholtz and Korteweg.

They involve the assumption that the terms of the second order in

the velocities may be neglected.

1. Considering the motion in a region bounded by any closed surface 2,

let u, v, w be the component velocities in the steady motion, and u+ u
, v+v ,

w+ tv the values of the same components in any other motion subject only to

the condition that u
,
v

,
w vanish at all points of the boundary 2. By

Art. 287 (3), the dissipation in the altered motion is equal to

where the accent attached to any symbol indicates the value which the

function in question assumes when u, -y,
w are replaced by u

,
v

,
w . Now the

formulae (2), (3) of Art. 284 shew that, in the case of an incompressible fluid,

&amp;gt; VVb +p ,gC+ 2p yzf+ ty &+ 2p xyk (11),

each side being a symmetric function of a, b, c, /, g, h and a
,
6

,
c

, / , ^ ,
/* .

Hence, and by Art. 287, the expression (i) reduces to

JJJ* dxdydz+ JJJ* dxdy dz+ 2 jjj(pxxa +pvy b +pz,c

+ Zpyzf + Vpzxg + %Pxyh } dxdydz (iii).

The last integral may be written

du du du
.

and by a partial integration, remembering that u
,

v
,

iv vanish at the

boundary, this becomes

or Mp(Xu + YJ+Zvi)dxdyd* ....................... (vi),

*
Sampson, 1. c. ante p. 134.

t &quot;On the Flow of Viscous Liquids, especially in Two Dimensions,&quot; Phil.

Oct. 1893.
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by Art. 286. If the extraneous forces X, F, Z have a single-valued potential,

this vanishes, in virtue of the equation of continuity, by Art. 42 (4).

Under these conditions the dissipation in the altered motion is equal to

\\\$&amp;gt;dxdydz+ \\\& dxdydz .......................... (vii),

or 2 (F+F }.
That is, it exceeds the dissipation in the steady motion by the

essentially positive quantity 2F which represents the dissipation in the

motion u
,
v

,
w .

In other words, provided the terms of the second order in the velocities

may be neglected, the steady motion of a liquid under constant forces having
a single-valued potential is characterized by the property that the dissipation

in any region is less than in any other motion consistent with the same

values of u, v, w at the boundary.

It follows that, with prescribed velocities over the boundary, there is only
one type of steady motion in the region*.

2. If u, v, w refer to any motion whatever in the given region, we have

2/= JJJ* dxdydz

=
2Stt(pxXa+PyV i&amp;gt;+P*zC+ 2pV3f+2pzX sr+ 2pxyh)dxdydz...... (viii),

since the formula (ii) holds when dots take the place of accents.

The treatment of this integral is the same as before. If we suppose that

u, v, w vanish over the bounding surface 2, we find

= -pJJJ(w
2+ 2+ M&amp;gt;

2
) dxdydz + pSH(Xu+ Yv+Ziv) dxdydz ...(ix).

The latter integral vanishes when the extraneous forces have a single-

valued potential, so that

F= -
P $jj(u

2+ v2+w2
)dxdydz ..................... (x).

This is essentially negative, so that F continually diminishes, the process

ceasing only when u=Q, v=0, 10= 0, that is, when the motion has become

Hence when the velocities over the boundary 2 are maintained constant,

the motion in the interior will tend to become steady. The type of steady
motion ultimately attained is therefore stable, as well as unique f.

It has been shewn by Lord RayleighJ that the above theorem can be

extended so as to apply to any dynamical system devoid of potential energy,

*
Helmholtz,

&quot; Zur Theorie der stationaren Strome in reibenden Fliissig-

keiten,&quot; Verh. d. naturhist.-med. Vereins, Oct. 30, 1868
;

JHss. Abh., t. i., p. 223.

t Korteweg, &quot;On a General Theorem of the Stability of the Motion of a Viscous

Fluid,&quot; Phil. May., Aug. 1883.

+ I.e. ante p. 526.
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in which the kinetic energy (T] and the dissipation-function (F) can be

expressed as quadratic functions of the generalized velocities, with constant

coefficients.

If the extraneous forces have not a single-valued potential, or if instead of

given velocities we have given tractions over the boundary, the theorems

require a slight modification. The excess of the dissipation over double the

rate at which work is being done by the extraneous forces (including the

tractions on the boundary) tends to a unique minimum, which is only
attained when the motion is steady*.

Periodic Motion.

298. We next examine the influence of viscosity in various

problems of small oscillations.

We begin with the case of laminar motion, as this will enable

us to illustrate some points of great importance, without elaborate

mathematics. If we assume that v = 0, w=Q, whilst u is a

function of y only, the equations (4) of Art. 286 require that

p = const., and
du d2u

This has the same form as the equation of linear motion of

heat. In the case of simple-harmonic motion, assuming a time-

factor e i(&amp;lt;Tt+f&amp;gt;

,
we have

d?u ia-

-j-- u ........................... (2),
ajf v

the solution of which is

u = Ae (l+i)f*y + Be~ (l+i}M ...................... (3),

provided 0=(&amp;lt;r/2v)* ........................... (4).

Let us first suppose that the fluid lies on the positive side of

the plane xz
t
and that the motion is due to a prescribed oscillation

w =rae* (&amp;lt;rt+e) ........................... (5)

of a rigid surface coincident with this plane. If the fluid extend

to infinity in the direction of y-positive, the first term in (3) is

excluded, and determining B by the boundary-condition (5), we

have

*
Cf. Helmholtz, Z.c.
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or, taking the real part,

s(&amp;lt;rt-0y + e) .................. (7),

corresponding to a prescribed motion

u a cos (at 4- e) ........................ (8)

at the boundary*.

The formula (7) represents a wave of transversal vibrations

propagated inwards from the boundary with the velocity &amp;lt;r//3,
but

with rapidly diminishing amplitude, the falling off within a wave

length being in the ratio e~27T

,
or ^.

The linear magnitude

27T//3 Or
(4&amp;gt;7TV

. 2?r/(7)*

is of great importance in all problems of oscillatory motion which

do not involve changes of density, as indicating the extent to

which the effects of viscosity penetrate into the fluid. In the

case of air (y
= 13) its value is 1 28P* centimetres, if P be the

period of oscillation in seconds. For water the corresponding

value is 47P*. We shall have further illustrations, presently,

of the fact that the influence of viscosity extends only to a short

distance from the surface of a body performing small oscillations

with sufficient frequency.

The retarding force on the rigid plane is, per unit area,

IJL -j- I

=
fj,/3a {cos (at + e) sin (at + e)}LyJ=o

=
pv* a* a cos (at + e + \ TT) ............... (9).

The force has its maxima at intervals of one-eighth of a period
before the oscillating plane passes through its mean position.

On the forced oscillation above investigated we may superpose any of the

normal modes of free motion of which the system is capable. If we assume
that

u &amp;lt;x A cos my -fB sin my ........................... (i),

and substitute in (1), we find

du

whence we obtain the solution

u= 2,(A

Stokes, I.e. ante p. 518.
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The admissible values of w, and the ratios A : B are as a rule determined

by the boundary conditions. The arbitrary constants which remain are then

to be found in terms of the initial conditions, by Fourier s methods.

In the case of a fluid extending from y= oo to y= + GO
,
all real values of

m are admissible. The solution, in terms of the initial conditions, can in

this case be immediately written down by Fourier s Theorem (Art. 227 (15)).

Thus

u = -
{ dm( /(X)cosw(y-X)e-&quot;

m2^X ............... (iv),
&quot;&quot; J J -oo

if t*=/(y) ....................................... (v)

be the arbitrary initial distribution of velocity.

The integration with respect to m can be effected by the known formula

w/todfc-jf-)
1*-^..................... (vi).

\ a/

We thus find u= i- f e ^^1**
f(\} d\ .. ... (vii).

2
&amp;lt;w_.

As a particular case, let us suppose that f(y}=U, where the upper or

lower sign is to be taken according as y is positive or negative. This will

represent the case of an initial surface of discontinuity coincident with the

plane y= 0. After the first instant, the velocity at this surface will be zero

on both sides. We find

u= U r
2

(**)*&amp;lt;/

(viii).

By a change of variables, and easy reductions, this can be brought to the

form

where in Glaisher s (revised) notation f

Erf x= e~x &quot;dx .............................. (x).

The function 27r~*Erf x was tabulated by EnckeJ. It appears that u will

equal \U when y/2j/M= 4769. For water, this gives, in seconds and centi

metres,

* Lord Rayleigh, &quot;On the Stability, or Instability, of certain Fluid Motions,&quot;

Proc. Lond. Math. Soc., t. xi., p. 57 (1880).

t See Phil Mag., Dec. 1871, and Encyc. Britann., Art. &quot;

Tables.&quot;

J BerL Ast. Jahrbtich, 1834. The table has been reprinted by De Morgan,

Encyc. Metrop., Art. &quot;Probabilities,&quot; and Lord Kelvin, Math, and Phys. Papers,

t. iii., p. 434.
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The corresponding result for air is

t= 8-3 y
2

.

These results indicate how rapidly a surface of discontinuity, if it could

ever be formed, would be obliterated in a viscous fluid.

The angular velocity () of the fluid is given by

This represents the diffusion of the angular velocity, which is initially

confined to a vortex-sheet coincident with the plane y= 0, into the fluid on

either side.

299. When the fluid does not extend to infinity, but is

bounded by a fixed rigid plane y = h, then in determining the

motion due to a forced oscillation of the plane y = both terms of

(3) are required, and the boundary conditions give

, sinh(l + i)@(h y) .. .
, /11Nwhence u = a .\ /.. ^ ^ -

. et(&amp;lt;rt+g) ............ (11),sm

as is easily verified. This gives for the retarding force per unit

area on the oscillating plane

_ p = p (i + i) fa coth (l+j)0h. e*^ . . . (12).

The real part of this may be reduced to the form

smh 2/3A cos (o-Z + e -I- ITT) + sin 2/3A, sin (oi

cosh 2A- cos 2/3h

......... (13).

When @h is moderately large this is equivalent to (9) above
;

whilst for small values of f3h it reduces to

fjLa/h.cos((rt+e) ..................... (14),

as might have been foreseen.

This example contains the theory of the modification introduced by
Maxwell* into Coulomb s method f of investigating the viscosity of liquids by
the rotational oscillation of a circular disk in its own (horizontal) plane. The

*
1. c. ante p. 513.

t Mem. de Vlnst., t. iii. (1800).
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addition of fixed parallel disks at a short distance above and below greatly
increases the effect of viscosity.

The free modes of motion are expressed by (iii), with the conditions that

u= for y= and y = h. This gives .4=0 and mh=STT^ where s is integral.

The corresponding moduli of decay are then given by r= l/vm
2

.

300. As a further example, let us take the case of a force

X=fcos(at + e) ..................... (1),

acting uniformly on an infinite mass of water of uniform depth h.

The equation (1) of Art. 298 is now replaced by

du d^u
-J1 V T~o ~r ^ ........................ (^ )

at dy
2

If the origin be taken in the bottom, the boundary-conditions

are u = for y = 0, and dujdy = for y = h
;
this latter condition

expressing the absence of tangential force on the free surface.

Replacing (1) by
X =feirt+ e} ............................ (3),

-, ifL coah(l+i)P(h-y)} ....
,we find u = -^\l ---- \ ,., \ -\ 01 \

e }

a-
( cosh(l +l)ph J

if =
(V/2j/)*, as before.

When ph is large, the expression in
{ }

reduces practically to

its first term for all points of the fluid whose height above the

bottom exceeds a moderate multiple of /3~
l

. Hence, taking the

real part,
f

u = J~ sin (at + e) ........................ (5).
(7

This shews that the bulk of the fluid, with the exception of a

stratum at the bottom, oscillates exactly like a free particle, the

effect of viscosity being insensible. For points near the bottom

the formula (4) becomes

(6),

or, on rejecting the imaginary part,

u = i- sin
(&amp;lt;rt

+ e)
- e~^ sin (at

-
fiy + e) (7).

(7 (T
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This might have been obtained directly, as the solution of (2)

satisfying the conditions that u = for y = 0, and

u
=f/&amp;lt;r

. sin (at + e)

for large values of (3y.

The curves J, , (7, Z&amp;gt;, E, F in the accompanying figure represent

successive forms assumed by the same line of particles at intervals of

one-tenth of a period. To complete the series it would be necessary to add

the images of E, D, C, B with respect to the vertical through 0. The whole

system of curves may be regarded as successive aspects of a properly shaped

spiral revolving uniformly about a vertical axis through 0. The vertical range

of the diagram is one wave-length (2?r//3) of the laminar disturbance.

As a numerical illustration we note that if i/ = 0l78, and 2ir/o-
= 12 hours,

we find /3~
1 = 15 6 centimetres. This indicates how utterly insensible must

be the direct action of viscosity on oceanic tides. There can be no doubt that

the dissipation of energy by tidal friction takes place mainly through the

eddying motion produced by the exaggeration of tidal currents in shallow

water. Cf. Art. 310.
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When /3h is small the real part of (4) gives

w = /y(2&-y).cos(&amp;lt;rf + ) ............... (8),

the velocity being in the same phase with the force, and varying

inversely as v.

301. To find the effect of viscosity on free waves on deep
water we may make use of the Dissipation-Function of Art. 287,

in any of the forms there given, the simplest for our purpose

being

since, by Art. 279, the dissipation may, under a certain restriction,

be calculated as if the motion were irrotational.

To put the calculation in a form which shall apply at once to

the case where capillary as well as gravitational forces are taken

into account, we recall that, corresponding to the surface-elevation

77
= a sin k (x ct) ..................... (2),

we have
&amp;lt;f&amp;gt;

= aceky cos k (sc ct) ..................... (3),

since this makes drj/dt
=

dfy/dy for y = 0. Hence

and the dissipation is, by (1),

2yitPc
2a2.............................. (5),

per unit area of the surface. The kinetic energy,

has a mean value ^pktfa? per unit area. The total energy, being

double of this, is
2
.............................. (7).

Hence, equating the rate of decay of the energy to the dissipa

tion, we have

a2
.................. (8),

or (9),
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whence a = a.Qe~^m ........................ (10).

The modulus of decay/ r, is therefore given by r= I/2v&, or,

in terms of the wave-length (X),

T = X2

/87T
2
Z/ (11)*.

In the case of water, this gives

r = -712 X2
seconds,

if X be expressed in centimetres. It follows that capillary waves

are very rapidly extinguished by viscosity; whilst for a wave

length of one metre r would be about 2 hours.

The above method rests on the assumption that or is moderately large,

where o-(
=

kc] denotes the speed. In mobile fluids such as water this

condition is fulfilled for all but excessively minute wave-lengths.

The method referred to fails for another reason when the depth is less than

(say) half the wave-length. Owing to the practically infinite resistance to

slipping at the bottom, the dissipation can no longer be calculated as if the

motion were irrotational.

302. The direct calculation of the effect of viscosity on

water waves can be conducted as follows.

If the axis of y be drawn vertically upwards, and if we assume

that the motion is confined to the two dimensions x, y, we have

du 1 dp
dt p dx

dv _ I dp
dt p dy

du dv.,,
Wlth

These are satisfied by

dd&amp;gt;-
~r-&amp;gt;

v = -~^- + -j ............ (3),
dy dy dx

=-&amp;lt; ........................ w,

*
Stokes, 1. c. ante p. 518. (Through an oversight in the calculation the value

obtained for T was too small by one-half.)

L- 35
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provided V^ = 0,

(5),

where V,
2 =

d?lda? + d?jdf .

To determine the normal modes which are periodic in

respect of as, with a prescribed wave-length 2?r/&, we assume a

time-factor e
at and a space-factor eikx . The solutions of (5) are

then

&amp;lt;f&amp;gt;

= (Ad* + Be-^) eikx+at ..

with

The boundary-conditions will supply equations which are sufficient

to determine the nature of the various modes, and the corre

sponding values of a.

In the case of infinite depth one of these conditions takes the

form that the motion must be finite for y - - oo . Excluding for

the present the cases where m is pure-imaginary, this requires

that B = Q, D =
0, provided m denote that root of (7) which has

its real part positive. Hence

v mCemv) eikx+at ,}

ikCtfw) eikx+at j

......

If TJ denote the elevation at the free surface, we must have

drj/dt
= v. If the origin of y be taken in the undisturbed level,

this gives

r)
= -^(A-iC)eikx+at .................. (9).

If Tj_ denote the surface-tension, the stress-conditions at the

surface are evidently

(10),

to the first order, since the inclination of the surface to the

horizontal is assumed to be infinitely small. Now

dv du
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whence, by (4) and (6) we find, at the surface,

Pyy_ r d^ = _d^ v
&amp;lt;h

p dxz dt dy

+gk + T fr) A - i (gk + T ks + Zvkma) C] ... .(12),

(13),

where T = T1/p &amp;gt;

the common factor eikx+at being understood.

Substituting in (10), and eliminating the ratio A : C, we obtain

(cL + 2vk*)* + gk+T ks = 4&amp;gt;vk*m ............ (14).

If we eliminate m by means of (7), we get a biquadratic in a,

but only those roots are admissible which give a positive value to

the real part of the left-hand member of (14), and so make the

real part of m positive.

If we write, for shortness,

gk + T k3 = o-
2
, vk*/&amp;lt;r

= 0, a + 2vk2 =
x&amp;lt;r ...... (15),

the biquadratic in question takes the form

(a? + iy=160*(a;-0) .................. (16).

It is not difficult to shew that this has always two roots (both

complex) which violate the restriction just stated, and two

admissible roots which may be real or complex according to the

magnitude of the ratio 0. If X be the wave-length, and c ( a/k)

the wave-velocity in the absence of friction, we have

=vk/c
=

(2Trv/c)-r-\ .................. (17).

Now, for water, if cm denote the minimum wave-velocity of

Art. 246, we find 2irv/cm = 0048 cm., so that except for very
minute wave-lengths is a small number. Neglecting the square
of 0, we have x=i, and

OL- 2vk2 ia ........................ (18).

The condition pxy shews that

CJA = -
2ivk*/(oL + 2i/#)

= + 2^2

/o- ............ (19),

which is, under the same circumstances, very small. Hence the

motion is approximately irrotational, with a velocity-potential

352
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If we put a = + kA/a, the equation (9) of the free surface

becomes, approximately, on taking the real part,

v = ae-2vkH sm(kxo-t) .................. (21).

The wave-velocity is ajk, or (g/k + Tk)*, as in Art. 246, and

the law of decay is that investigated independently in the last Art.

To examine more closely the character of the motion, as affected by

viscosity, we may calculate the angular velocity (&amp;lt;&amp;gt;)

at any point of the fluid.

This is given by
dv du a

Now, from (7) and (18), we have, approximately,

m=(li)& where p= (&amp;lt;r/2v)*.

With the same notation as before, we find

a&amp;gt;=+&amp;lt;rkae-*

vk*t+f*y
$m{kx(&amp;lt;rt+py)} ................. (ii).

This diminishes rapidly from the surface downwards, in accordance with

the analogy pointed out in Art. 286. Owing to the oscillatory character of

the motion, the sign of the vortex-motion which is being diffused inwards

from the surface is continually being reversed, so that beyond a stratum of

thickness comparable with 2?r//3 the effect is insensible, just as the fluctuations

of temperature at the earth s surface cease to have any influence at a depth
of a few yards.

In the case of a very viscous fluid, such as treacle or pitch, 6

may be large even when the wave-length is considerable. The

admissible roots of (16) are then both real. One of them is

evidently nearly equal to 20, and continuing the approximation
we find

whence, neglecting capillarity, we have, by (15),

a = -g/2kv ........................ (22).

The remaining real root is 1 09#, nearly, which gives

(23).

The former root is the more important. It represents a slow

creeping of the fluid towards a state of equilibrium with a horizontal

surface
;
the rate of recovery depending on the relation between
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the gravity of the fluid (which is proportional to gp) and the

viscosity (/u,),
the influence of inertia being insensible. It appears

from (7) and (15) that m = k, nearly, so that the motion is ap

proximately irrotational.

The type of motion corresponding to (23), on the other hand,

depends, as to its persistence, on the relation between the inertia

(p) and the viscosity (/a), the effect of gravity being unimportant.

It dies out very rapidly.

The above investigation gives the most important of the normal modes, of

the prescribed wave-length, of which the system is capable. We know apriori
that there must be an infinity of others. These correspond to pure-imaginary

values of m, and are of a less persistent character. If in place of (6) we

assume

((7cos my+D sin my}
&quot;

with m 2= W-ajv .................................. (iv),

and carry out the investigation as before, we find

(a
2+ 2i^2a+gk+ T &} A -

i(gk+ T k*} C- Zivkm aD= 01

2ik*A + (tf-m *)C=0)
......... W

Any real value of m is admissible, these equations determining the ratios

A : C : D
;
and the corresponding value of a is

a=- v (k*+m *) ................................ (vi).

In any one of these modes the plane xy is divided horizontally and

vertically into a series of quasi-rectangular compartments, within each of

which the fluid circulates, gradually coming to rest as the original momentum
is spent against viscosity.

By a proper synthesis of the various normal modes it must be possible to

represent the decay of any arbitrary initial disturbance.

303. The equations (12) and (13) of the preceding Art.

enable us to examine a related question of some interest, viz. the

generation and maintenance of waves against viscosity, by suit

able forces applied to the surface.

If the external forces p yyi p xy be given multiples of eikx+at ,

where k and a are prescribed, the equations in question deter

mine A and C, and thence, by (9), the value of rj. Thus we find

p yy (a
2 + 2vk*QL + o-

2
) A - i (o-

2 + Zvkma) C

gk(A-iC)

p xy = a.

^

2ivk*A + (a + 2^2

)

#/077 ^ J. iC
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Let us first examine the effect of a purely tangential force.

Assuming p yy
= 0, we find

ia (OL + 2i/
2

)
2 + a2 - 4i/2A?m

gk a + 2z&amp;gt;&

2 2vkm

For a given wave-length, the elevation will be greatest when
a = io-, nearly. To find the force necessary to maintain a train

of waves of given amplitude, travelling in the direction of x-

positive, we put a = ia. Assuming, for a reason already indi

cated, that vk^ja- and vkm/o- are small, we find

P xyldP7!
= ^vkvjg, or p xy

= 4/^a?; . . . . ....... (4).

Hence the force acts forwards on the crests of the waves, and

backwards at the troughs, changing sign at the nodes. A force

having the same distribution, but less intensity in proportion to

the height of the waves than that given by (4), would only retard,

without preventing, the decay of the waves by viscosity. A force

having the opposite sign would accelerate this decay.

The case of purely normal force can be investigated in a

similar manner. If p xy
= 0, we have

p yy _ (OL + 2i^2

)
2 + o-

2 - 4i/
2 3m

gprj~ gk

The reader may easily satisfy himself that when there is no

viscosity this coincides with the result of Art. 226. If we put
a = ia, we obtain, with the same approximations as before,

Hence the wave-system

77
= a sin (lex crt) ........................ (7)

will be maintained without increase or decrease by the pressure-

distribution

p const. + 4yitfca&amp;lt;7
cos (kx &amp;lt;rt)

............... (8),

applied to the surface. It appears that the pressure is greatest on

the rear and least on the front slopes of the waves*.

If we call to mind the phases of the particles, revolving in their

circular orbits, at different parts of a wave-profile, it is evident

* This agrees with the result given at the end of Art. 226, where, however, the

dissipative forces were of a different kind.



303] GENERATION OF WAVES BY WIND. 551

that the forces above investigated, whether normal or tangential,

are on the whole urging the surface-particles in the directions in

which they are already moving.

Owing to the irregular, eddying, character of a wind blowing
over a roughened surface, it is not easy to give more than a

general explanation of the manner in which it generates and

maintains waves. It is not difficult to see, however, that the

action of the wind will tend to produce surface forces of the

kinds above investigated. When the air is moving in the direction

in which the wave-form is travelling, but with a greater velocity,

there will evidently be an excess of pressure on the rear-slopes, as

well as a tangential drag on the exposed crests. The aggregate
effect of these forces will be a surface drift, and the residual

tractions, whether normal or tangential, will have on the whole

the distribution above postulated. Hence the tendency will be to

increase the amplitude of the waves to such a point that the

dissipation balances the work done by the surface forces. In like

manner waves travelling faster than the wind, or against the wind,

will have their amplitude continually reduced*.

It has been shewn (Art. 246) that, under the joint influence

of gravity and capillarity, there is a minimum wave-velocity
of 23*2 cm. per sec., or 45 miles per hour. Hence a wind of

smaller velocity than this is incapable of reinforcing waves

accidentally started, which, if of short wave-length, must be

rapidly extinguished by viscosity f. This is in accordance with

the observations of Scott Russell J, from whose paper we make
the following interesting extract :

&quot; Let [a spectator] begin his observations in a perfect calm, when the

surface of the water is smooth and reflects like a mirror the images of

surrounding objects. This appearance will not be affected by even a slight

motion of the air, and a velocity of less than half a mile an hour (8$ in. per sec.)

does not sensibly disturb the smoothness of the reflecting surface. A gentle

zephyr flitting along the surface from point to point, may be observed to

destroy the perfection of the mirror for a moment, and on departing, the

surface remains polished as before
;

if the air have a velocity of about a mile

an hour, the surface of the water becomes less capable of distinct reflexion, and

*
Cf. Airy, &quot;Tides and Waves,&quot; Arts. 265272; Stokes, Camb. Trans., t. ix.,

p. [62] ;
Lord Eayleigh, 1. c. ante p. 526.

t Sir W. Thomson, 1. c. ante p. 446.

t I. c. ante p. 455.
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on observing it in such a condition, it is to be noticed that the diminution of

this reflecting power is owing to the presence of those minute corrugations of

the superficial film which form waves of the third order [capillary waves]....

This first stage of disturbance has this distinguishing circumstance, that the

phenomena on the surface cease almost simultaneously with the intermission

of the disturbing cause so that a spot which is sheltered from the direct action

of the wind remains smooth, the waves of the third order being incapable of

travelling spontaneously to any considerable distance, except when under the

continued action of the original disturbing force. This condition is the

indication of present force, not of that which is past. While it remains it

gives that deep blackness to the water which the sailor is accustomed to

regard as the index of the presence of wind, and often as the forerunner of

more.

&quot; The second condition of wave motion is to be observed when the velocity

of the wind acting on the smooth water has increased to two miles an hour.

Small waves then begin to rise uniformly over the whole surface of the water ;

these are waves of the second order, and cover the water with considerable

regularity. Capillary waves disappear from the ridges of these waves, but are

to be found sheltered in the hollows between them, and on the anterior slopes

of these waves. The regularity of the distribution of these secondary waves

over the surface is remarkable
; they begin with about an inch of amplitude,

and a couple of inches long ; they enlarge as the velocity or duration of the

wave increases
; by and by the coterminal waves unite

;
the ridges increase,

and if the wind increase the waves become cusped, and are regular waves of

the second order [gravity waves]*. They continue enlarging their dimensions,
and the depth to which they produce the agitation increasing simultaneously
with their magnitude, the surface becomes extensively covered with waves of

nearly uniform magnitude.&quot;

It will be seen that our theoretical investigations give con

siderable insight into the incipient stages of wave-formation. No
sufficient explanation appears however to have been as yet given

of the origin of the regular processions of waves of greater length

which are so conspicuous a result of the continued action of wind

on a large expanse of water.

304. The calming effect of oil on water waves appears to be

due to the variations of tension caused by the extensions and con

tractions of the contaminated surface t- The surface-tension of

pure water is less than the sum of the tensions of the surfaces of

separation of oil and air, and oil and water, respectively, so that a

* Scott Bussell s wave of the first order is the solitary wave (Art. 234).

t Keynolds, &quot;On the Effect of Oil in destroying Waves on the Surface of

Water,&quot; Brit. Ass. Rep., 1880; Aitken, &quot;On the Effect of Oil on a Stormy Sea,

Proc. Roy. Soc. Edin. t t. xii., p. 56 (1883).
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drop of oil thrown on water is gradually drawn out into a thin film.

If the film be sufficiently thin, say not more than two millionths of

a millimetre in thickness, the tension is increased when the thick

ness is reduced by stretching, and conversely. It is evident at

once from the figure on p. 374 that in oscillatory waves any

portion of the surface is alternately contracted and extended,

according as it is above or below the mean level. The consequent
variations in tension produce an alternating tangential drag on the

water, with a consequent increase in the rate of dissipation of

energy.

The preceding formulae enable us to submit this explanation, to a certain

extent, to the test of calculation.

Assuming that the surface tension varies by an amount proportional to

the extension, we may denote it by

where T is the tension in the undisturbed state, is the horizontal displace

ment of a surface particle, and / is a numerical coefficient.

The internal motion of the water is given by the same formulae as in

Art. 302. The surface-conditions are obtained by resolving normally and

tangentially the forces acting on an element of the superficial film. We thus

find, in the case of free waves,

^__~J
p dx~ da

where T =T
l/p. In the derivation of the first of these equations a term of

the second order has been neglected.

Since the time-factor is e
at

,
we have ^=u/a, whence, substituting from

Art. 302 (8), (9), (11), we find, as the expression of the surface-conditions (ii),

(a
2+ 2^2a+gk+ T k*} A - i (gk+ T&+ 2i//bwa) (7= 0,

i(2vk*a+fT
f

t?) A + (a
z + 2vk*a+fT k*m) (7=0

If we write

the elimination of the ratio A : C between the above equations gives

+ &amp;lt;r

2 -4,/2 X +fj o-
2

ja
2+

(l --} o4 = ...... (v).
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This equation, with
* (vi),

determines the values of a and m. Eliminating m, we find

(a + i/F) {/o-
2
(a

2+ o-
2
)
- 4v2 4a2

}
2= M&2

[a
2
{(a + 2^2

)
2+ o-

2
} -/&amp;lt;rV]2

. . .(vii),

or, if we write

a/o-=y, vk*/&amp;lt;r=0 (
y

iii)&amp;gt;

(y+ 0) 1-f^jL (y2 +1) _ 40y\ =
0[~y

2
{(# + 20)

2

4a}-^/T....(ix).
I CT J L

&quot;

J

This equation has an extraneous root y= 0, and other roots are in

admissible as giving, when substituted in (v), negative values to the real part

of m. For all but very minute wave-lengths, 6 is a small number
; and, if we

neglect the squa re of 0, we obtain

This is satisfied by y=i, approximately; and a closer approximation is

given by
y(y

2
+l)

2=0 (xi),

leading to

/ ^_\ . 0*
y~ ~\ 2V2/

l

2^2
(XU)

Hence, neglecting the small change in the speed of the oscillations,

The modulus of decay is therefore

in the notation of Art. 246.

Under the circumstances to which this formula applies the elasticity of the

oil-film has the effect of practically annulling the horizontal motion at the

surface. The dissipation is therefore (within limits) independent of the

precise value of /.

The substitution of (x) for (ix) is permissible when 6 is small compared
with /o-

2
/cr

2
,
or c small compared with fT /v. Assuming i/= 018, ^ =40,

we have T /v =2200. Hence the investigation applies to waves whose

velocity is small compared with 2200 centimetres per second. It appears on

examination that this condition is fulfilled for wave-lengths ranging from a

fraction of a millimetre to several metres.

The ratio of the modulus (xiv) to the value (l/2i/&
2
),

obtained on the

hypothesis of constant surface-tension, is 4^/2 (^2
/o-)^, which is assumed to

be small. The above numerical data make Xm=l 27, cm= 20. Substituting

in (xiv) we find

r= -30X x(cffi/c)*.

For X=Xm this gives r= 43sec. instead of 1 41 sec. as on the hypothesis
of constant tension. For larger values of X the change is greater.
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When the wave-velocity c is great compared with 2200 c.s., we may
neglect o-y

2/^ in comparison with 6. The result is the sams as if we were to

put /=0, so that the modulus of decay has, for sufficiently long waves, the

value l/2f
2 found in Art. 301. The same statement would apply to

sufficiently minute crispations ; but 6 then ceases to be small, and the

approximations break down ab initio. The motion, in fact, tends to become

aperiodic.

305. Problems of periodic motion in two dimensions, with a

circular boundary, can be treated with the help of Bessel s Func

tions*. The theory of the Bessel s Function, whether of the first

or second kind, with a complex argument, involves however some

points of great delicacy, which have been discussed in several

papers by Stokes f. To avoid entering on these, we pass on to

fche case of a spherical boundary ;
this includes various problems

of greater interest which can be investigated with much less

difficulty, since the functions involved (the ^rn and M/&quot;n of Art. 267)
admit of being expressed in finite forms.

It is convenient, with a view to treating all such questions on

a uniform plan, to give, first, the general solution of the system of

equations :

(V
3 + A2

)w = 0, (V
2 +/^ = 0, (V

3 + #) w =
(1),

M M M
dx dy dz

in terms of spherical harmonics. This is an extension of the

problem considered in Art. 293. We will consider only, in the

first instance, cases where u
,
v

,
wr

are finite at the origin.

The solutions fall naturally into two distinct classes. If r

denote the radius vector, the typical solution of the First Class is

y (3),

*
Cf. Stokes, 1. c. ante p. 518 ; Steam, Quart. Journ. Math., t. xvii. (1881) ;

and the last paper cited on p. 558.

t &quot;On the Discontinuity of Arbitrary Constants which appear in Divergent

Developments,&quot; Camb. Trans., t. x. (1857), and t. xi. (1868).

/ - / 7 \

*-*&amp;lt;*&amp;gt;

d d
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where ^n is a solid harmonic of positive degree n, and tyn is

defined by

d l sin

1.3...(2 + 1)

(4).

It is immediately verified, on reference to Arts. 266, 267, that the

above expressions do in fact satisfy (1) and (2). It is to be

noticed that this solution makes

xu + yv + zwf =
(5).

The typical solution of the Second Class is

u = (n + l) ^M (hr) --p
- n^n+1 (hr) h

2r +B -rdx

J fk

(hr]

where
&amp;lt;j&amp;gt;

n is a solid harmonic of positive degree n. The coefficients

of ^n-i (hr) and ^rw+i (^) in these expressions are solid harmonics

of degrees n 1 and n + 1 respectively, so that the equations (1)

are satisfied.

To verify that (2) is also satisfied we need the relations

* (0 = -Ww.&amp;lt;0 ..................... (1),

which follow easily from (4). The formulae (6) make

xu + yv + zw = n (n -f 1) (2w + 1) ^rn (hr) $n ...... (9),

the reduction being effected by means of (7) and (8).

If we write

dw dv ,du dw dv
f

du
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we find, in the solutions of the First Class,

v- !

2~-j |V
*y yn-iv

&quot;&quot;/~^7

&quot;T41V*/&quot; ^ r2w+1

1

2rc + l

(ii);
these make

2 (^ + yV + &amp;lt;zO

= - 7i (?i + 1) i^w (&r) %7i (12).

In the solutions of the Second Class, we have

n (fcr)
(y^

-
^) ^,

-*4&amp;gt;n (13),

2^=-
and therefore

% + 2/V + *% = (14).

In the derivation of these results use has been made of (7),

and of the easily verified formula

d_ 2n+1 _

To shew that the aggregate of the solutions of the types (3)

and (6), with all integral values of n, and all possible forms of the

harmonics
&amp;lt;/&amp;gt;

n , %n ,
constitutes the complete solution of the proposed

system of equations (1) and (2), we remark in the first place that

the equations in question imply

(V
8 + Aa

)(a*
/ + yw

/ + 2W/

)
= ............... (16),

and (V
2 + ^)Of

/ + 2/77

/ +O = ............... (17).

It is evident from Arts. 266, 267 that the complete solution of

these, subject to the condition of finiteness at the origin, is

contained in the equations (9) and (12), above, if these be

generalized by prefixing the sign 2) of summation with respect to

n. Now when xu -f yv + zw and x% + yrf + z% are given through-
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out any space, the values of u , v ,
w are rendered by (2) completely

determinate. For if there were two sets of values, say u, v, w
and

u&quot;, v&quot;, w&quot;,
both satisfying the prescribed conditions, then,

writing

we should have

anii + yvi 4- zw^ = 0,\

du^ dvl dwl _ \

~j
--

T
----

T~ u
dx dy dz }

Regarding u^ t
vl} wl as the component velocities of a liquid, the

first of these shews that the lines of flow are closed curves lying

on a system of concentric spherical surfaces. Hence the circula

tion (Art. 32) in any such line has a finite value. On the

other hand, the second equation shews, by Art. 33, that the

circulation in any circuit drawn on one of the above spherical

surfaces is zero. These conclusions are irreconcileable unless

ult vl} w1 are all zero.

Hence, in the present problem, whenever the functions
(f&amp;gt;

n and

%n have been determined by (9) and (12), the values of u
,
v

,
w

follow uniquely as in (3) and (6).

When the region contemplated is bounded internally by a

spherical surface, the condition of finiteness when r = is no longer

imposed, and we have an additional system of solutions in which

the functions ^n (f) are replaced by &amp;gt;PW (?), in accordance with

Art. 267*.

*
Advantage is here taken of an improvement introduced by Love,

&quot; The Free

and Forced Vibrations of an Elastic Spherical Shell containing a given Mass of

Liquid,&quot; Proc. Lond. Math. Soc., t. xix., p. 170 (1888).

The foregoing investigation is taken, with slight changes of notation, from the

following papers :

&quot; On the Oscillations of a Viscous Spheroid,&quot; Proc. Lond. Math. Soc., t. xiii.,

p. 51 (1881) ;

&quot;On the Vibrations of an Elastic Sphere,&quot; Proc. Lond. Math. Soc., t. xiii.,

p. 189 (1882) ;

&quot;On the Motion of a Viscous Fluid contained in a Spherical Vessel,&quot; Proc.

Lond. Math. Soc., t. xvi., p. 27 (1884).
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306. The equations of small motion of an incompressible

fluid are, in the absence of extraneous forces,

du 1 dp
-ji

= -7^4-
dt pdx

dv I dp , n x

-jI
= --^-+vV*V t

..................... (1),
at pay

dw I dp
-JT

= -f +
dt pdz

. , du dv dw /cnwith 3- + j- + ^j~ = ..................... V2 )-dx dy dz

If we assume that u, v, w all vary as e^, the equations (1) may
be written

(v^^)

(V2 ^&amp;gt;

(V+A)w

where h? = \/v ........................... (4).

From (2) and (3) we deduce

V 2

j9
= .............................. (5).

Hence a particular solution of (3) and (2) is

and therefore the general solution is

1 dp , 1 dp ,
I dpU =TTJ+ U

&amp;gt;

V = T^^T + V
&amp;gt;

w = T -
* dz

/t_.

... (7),

where u
t
v

,
w are determined by the conditions of the preceding

Art.

Hence the solutions in spherical harmonics, subject to the

condition of finiteness at the origin, fall into two classes.
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In the First Class we have

p = const.,

d d

and therefore asu + yv 4- zw

In the Second Class we have

P=Pn,

and

[CHAP, xi

(8);

.(9).

.(10),

(11),

where f, ?;, f denote the component rotations of the fluid at the

point (as, y, z). The symbols %n ,
&amp;lt;f&amp;gt;

n , pn stand for solid harmonics

of the degrees indicated.

The component tractions on the surface of a sphere of radius r

are given by

-
(xu + yv + zw),

= xp + p

j.

^
(
r T^

- 1
J

A6 TT- +
I

In the solutions of the First Class we find without difficulty
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71

V dx dz
(13),

where Pn = (Ar) + (w
-

1)^ (Ar)} ......... (14).

To obtain the corresponding formulae for the solutions of the

Second Class, we remark first that the terms in pn give

-
dr dx dx

1 J dx dx

,

1

The remaining terms give

(r ^ -
l)

u = (n + 1) {Ar^ (Ar) + (n
-

2) ^M_1 (Ar)}^
-_

and

...... (17).

Various reductions have here been effected by means of Art. 305

(7), (8), (15). Hence, and by symmetry, we obtain

r
P&amp;gt;,

= An
|&amp;gt;

+ Bnr^^^ + Cn ^
d

&amp;lt;l&amp;gt;

n

dy r*n+i&amp;gt;

rprz =An

where

..(18),

_ 2(71-1) r2

w ~
A2 271 + 1

Cn = JJL(U + I) {hr^ n^ (hr) + 2 (n
-

1) ^v-i

Dn = -

L.

...(19).

36
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307. The general formulas being once established, the applica

tion to special problems is easy.

1. We may first investigate the decay of the motion of a viscous fluid

contained in a spherical vessel which is at rest.

The boundary conditions are that

u=
t

v = 0, w= .............................. (i),

for r= a, the radius of the vessel. In the modes of the First Class, represented

by (8) above, these conditions are satisfied by

*(A) = .................................... (ii).

The roots of this are all real, and the corresponding values of the modulus of

decay (r) are then given by

.............................. (iii).

The modes ?i = 1 are of a rotatory character
;

the equation (ii) then

becomes
tan ha= ha .................................... (iv),

the lowest root of which is Aa= 4 493. Hence

In the case of water, we have v= -018 c. s., and

r= 2-75 a2
seconds,

if a be expressed in centimetres.

The modes of the Second Class are given by (10). The surface conditions

may be expressed by saying that the following three functions of #, y, z

dy

must severally vanish when r= a. Now these functions as they stand satisfy
the equations

V 2U= 0, V 2V= 0, V2W= (vi),

and since they are finite throughout the sphere, and vanish at the boundary,

they must everywhere vanish, by Art. 40. Hence, forming the equation

dv dv
L
dw n ,

...

-j- + -7- + -r- =0 (vn),dx dy dz

we find ^n + 1 (Aa) = (viii).
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Again, since .ru+yv+zw= ................................. (ix),

for r= a, we must have

J-^n -f^(n+ l)(2w+ l)^n (Aa)0n= .................. (x),

where use has been made of Art. 305 (7). This determines the ratio pn : $n.

In the case n= 1
,
the equation (viii) becomes

, .v

(xi),

the lowest root of which is ha 5*764, leading to

r= 0301-.
v

For the method of combining the various solutions so as to represent the

decay of any arbitrary initial motion we must refer to the paper cited last on

p. 558.

2. We take next the case of a hollow spherical shell containing liquid,

and oscillating by the torsion of a suspending wire*.

The forced oscillations of the liquid will evidently be of the First Class, with

n= 1 . If the axis of z coincide with the vertical diameter of the shell, we find,

putting xi=Ck,
tt-Cf^A^y, v=-Cty l (hr}x, w = ................. (xii).

If o) denote the angular velocity of the shell, the surface-condition gives

CVr1 (Aa)=-6) ................................. (xiii).

It appears that at any instant the particles situate on a spherical surface

of radius r concentric with the boundary are rotating together with an

angular velocity

^i(Ar) ,
.

N

T^TT-H o&amp;gt; ................................. (xiv).

If we assume that co = ae (
^+e)

................................. (xv),

and put h?=-i&amp;lt;r/v
= (I-i)

2
P*........................... (xvi),

where, as in Art. 297, /3
2=

o-/2j/ ................................. (xvii),

the expression (xiv) for the angular velocity may be separated into its real

and imaginary parts with the help of the formula

. ... sin cosf

If the viscosity be so small that (3a is considerable, then, keeping only the

most important term, we have, for points near the surface,

* This was first treated, in a different manner, by Helmholtz, 1. c. ante p. 513.

362
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and therefore, for the angular velocity (xiv),

the real part of which is

a ^ e~^ (a
~

r)
.cos{o*-j8(r-a) + e} .................. (xxi).

As in the case of laminar motion (Art. 298), this represents a system of waves

travelling inwards from the surface with rapidly diminishing amplitude.

When, on the other hand, the viscosity is very great, /3a is small, and the

formula (xiv) reduces to

o&amp;gt;cos(o- + f) ................................. (xxii),

nearly, when the imaginary part is rejected. This shews that the fluid now
moves almost bodily with the sphere.

The stress-components at the surface of the sphere are given by (13). In

the present case the formula reduce to

Pry= -p-
z

(xxiii).

If SS denote an element of the surface, these give a couple

^= -
JJtePnr -yprx) &amp;lt;*S=CM (ha) JJ(a* +

9 h*a*fa(ha) ,
.

N

-a&quot;-&quot;*

^(ll)
&quot; ............... (XX1V)

by (xiii) and Art. 305 (7).

In the case of small viscosity, where /3a is large, we find, on reference to

Art. 267, putting ha= (l-i) /3a, that

/ fJ \e*f
2i+n (ha}=(-y(Jl^

- ..................... (xxv),

approximately, where (=(! i) j3a. This leads to

^V
r

=-|7r/Lia
3 (l+*)^a ......................... (xxvi).

If we restore the time-factor, this is equivalent to

............ (xxvii).

The first term has the effect of a slight addition to the inertia of the sphere ;

the second gives a frictional force varying as the velocity.

308. The general formulae of Arts. 305, 306 may be further

applied to discuss the effect of viscosity on the oscillations of a
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mass of liquid about the spherical form. The principal result of

the investigation can, however, be obtained more simply by the

method of Art. 301.

It was shewn in Arts. 241, 242, that when viscosity is neglected, the

velocity-potential in any fundamental mode is of the form

where Sn is a surface harmonic. This gives for twice the kinetic energy
included within a sphere of radius r, the expression

p (U (

^r*dn =
pna(^\

2n ~ 1

j
ISJdw . ,4 2

cos2(^+ 6) ...... (ii),

if 8or denote an elementary solid angle, and therefore for the total kinetic

energy
..................... (iii).

The potential energy must therefore be given by the formula

V=$pnaHSn*diff.A*am*(&amp;lt;rt+ c) ..................... (iv).

Hence the total energy is

w.A* ........................... (v).

Again, the dissipation in a sphere of radius r, calculated on the assumption
that the motion is irrotational, is, by Art. 287 (vi),

Now
J jqZd&^^j j(j&amp;gt;-^r*d&

..................... (vii),

each side, when multiplied by pdr being double the kinetic energy of the fluid

contained between two spheres of radii r and r+ dr. Hence, from (ii),

Substituting in (vi), and putting r= a, we have, for the total dissipation,

2F=2n(n-l)(2n + l)^
f \S,?dw.A 2

co&(&amp;lt;rt+ e} ...... (viii).

The mean dissipation, per unit time, is therefore

2F=n(n-l) (2w+ l)^ f fs
n
2d&. A 2

.................. (ix).

If the effect of viscosity be represented by a gradual variation of the

coefficient A, we must have
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whence, substituting from (v) and (ix),

~=-(n-l}(2n+l}^A ........................ (xi).

This shews that A&amp;lt;z e~tlr
, where

1 a2

The most remarkable feature of this result is the excessively minute

extent to which the oscillations of a globe of moderate dimensions are affected

by such a degree of viscosity as is ordinarily met with in nature. For a globe
of the size of the earth, and of the same kinematic viscosity as water, we

have, on the c.G. s. system, a= 6*37 x 108
,
i/= 0178, and the value of r for the

gravitational oscillation of longest period (n
=

2) is

T= 1*44 x 1011
years.

Even with the value found by Darwin f for the viscosity of pitch near the

freezing temperature, viz.
/i
= l 3 x 108

x#, we find, taking #= 980, the value

r= 180 hours

for the modulus of decay of the slowest oscillation of a globe of the size of the

earth, having the density of water and the viscosity of pitch. Since this is

still large compared with the period of 1 h. 34 m. found in Art. 241
,
it appears

that such a globe would oscillate almost like a perfect fluid.

The investigation by which (xii) was obtained does not involve any special

assumption as to the nature of the forces which produce the tendency to the

spherical form. The result applies, therefore, equally well to the vibrations

of a liquid globule under the surface-tension of the bounding film. The

modulus of decay of the slowest oscillation of a globule of water is, in seconds,

r=ll 2a2
,

where the unit of a is the centimetre.

The formula (xii) includes of course the case of waves on a plane surface.

When n is very great we find, putting X= 2n-a/?i,

r= A2
/87T

2v .. ............................... (xiii),

in agreement with Art. 301.

The same method, applied to the case of a spherical bubble, gives

where v is the viscosity of the surrounding liquid. If this be water we have,

for n = 2, r= 2-8a2
.

The above results all postulate that 2yrr is a considerable multiple of the

period. The opposite extreme, where the viscosity is so great that the motion

* Proc. Lond. Math. Soc., t. xiii., pp. 61, 65 (1881).

t &quot;On the Bodily Tides of Viscous and Semi-Elastic Spheroids,...,&quot; Phil.

Trans., 1879.
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is aperiodic, can be investigated by the method of Arts. 293, 294, the effects of

inertia being disregarded. In the case of a globe returning to the spherical

form under the influence of gravitation, it appears that

n ga
a result first given by Darwin (1. c.). Of. Art. 302 (22).

309. Problems of periodic motion of a liquid in the space
between two concentric spheres require for their treatment

additional solutions of the equations of Art. 306, in which p is of

the form p-n-i ,
and the functions tyn (hr) which occur in the

complementary functions u
t
v

,
w are to be replaced by ^fn (hr).

The question is simplified, when the radius of the second sphere
is infinite, by the condition that the fluid is at rest at infinity. It

was shewn in Art. 267 that the functions tyn ()&amp;gt; ^nCO are both

included in the form
d A&+Ber* n .

In the present applications, we have f= hr, where h is defined

by Art. 306 (4), and we will suppose, for definiteness, that that

value of h is adopted which makes the real part of ih positive.

The condition of zero motion at infinity then requires that A =
0,

and we have to deal only with the function

As particular cases :

(0 = (-

The formulae of reduction for/n (f) are exactly the same as for

^n (f) and^n (f), and the general solution of the equations of

small periodic motion of a viscous liquid, for the space external to

a sphere, are therefore given at once by Art. 306 (8), (10), with

P-n-i written for pn , tmd/n (hr) for tyn (hr).

1. The case of the rotatory oscillations of a sphere surrounded by an
infinite mass of liquid is included in the solutions of the First Class, with
n=l. As in Art. 307, 2, we put Xl

=
Cz, and find

u= Cfl (hr}y, v=-Cfl (fo)z, w= Q .................. (i),
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with the condition Cf-^ (ha) = o&amp;gt; ................................. (ii),

a being the radius, and o&amp;gt; the angular velocity of the sphere, which we suppose

given by the formula

Putting h= (l i)$, where
/3=(&amp;lt;r/2r)*,

we find that the particles on a

concentric sphere of radius r are rotating together with the angular velocity

. .........
/j(Aa) r3 l + iha

where the values of/x (hr\ /: (ha) have been substituted from (3). The real

part of (iv) is

a

-|8(r- a) sin {erf- (*-) + }] ...... (v),

corresponding to an angular velocity

(vi)
of the sphere.

The couple on the sphere is found in the same way as in Art. 307 to be

03

l+iha

Putting ha= (\ i) /3a, and separating the real and imaginary parts we find

This is equivalent to

, r ~
dt

~

The interpretation is similar to that of Art. 307 (xxvii) *.

2. In the case of a ball pendulum oscillating in an infinite mass of fluid,

which we treat as incompressible, we take the origin at the mean position of

the centre, and the axis of x in the direction of the oscillation.

The conditions to be satisfied at the surface are then

w=u, =
0, w .............................. (x),

for r= a (the radius), where u denotes the velocity of the sphere. It is evident

that we are concerned only with a solution of the Second Class. Again, the

formula) (10) of Art. 306, when modified as aforesaid, make

(hr)&amp;lt;l&amp;gt;n ...... (xi) ;~_ n

* Another solution of this problem is given by Kirchhofif, Mechanik, o. xxvi.
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and by comparison with (x), it appears that this must involve surface

harmonics of the first order only. We therefore put n = l, and assume

&amp;lt;$&amp;gt;i

=Bx........................... (xii).

Hence

w -*
A d x - /r N 70 . d x

w-

The conditions (x) are therefore satisfied if

2f (ha) B= n .................. (xiv).

The character of the motion, which is evidently symmetrical about the

axis of X) can be most concisely expressed by means of the stream-function

(Art. 93). From (xi) or (xiii) we find

or, substituting from (3),

If we put ,=rcos0, this leads, in the notation, and on the convention as

to sign, of Art. 93 to

Writing u= a i(&amp;lt;rt+f)

................................. (xviii),

and therefore h = (l i) /3, where /3
=

(cr/2i/)*, we find, on rejecting the imagina

part of (xvii),

cos &amp;lt;r^~ ^ r &quot;

a) + e }

At a sufficient distance from the sphere, the part of the disturbance which
is expressed by the terms in the first line of this expression is predominant.
This part is irrotational, and differs only in amplitude and phase from the

motion produced by a sphere oscillating in a Motionless liquid (Arts. 91, 95).

The terms in the second line are of the type we have already met with in the

case of laminar motion (Art. 298).

To calculate the resultant force (X] on the sphere, we have recourse to

Art. 306 (18). Substituting from (xii), and rejecting all but the constant
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terms in prx ,
since the surface-harmonics of other than zero order will

disappear when integrated over the sphere, we find

z + Cl
Ba .................. (xx),

where B_^-\a\ &amp;lt;7X
=

2/iAa/ (ha) ..................... (xxi),

by Art. 306 (19). Hence, by (xii) and (3),

{2/0/ (ha} Wa*h (ha}}

This is equivalent to

X- -
1^ *+ -3,P V + u ......(xxiii).

The first term gives the correction to the inertia of the sphere. This

amounts to the fraction

^+4^
of the mass of fluid displaced, instead of ^ as in the case of a frictionless

liquid (Art. 91). The second term gives a frictional force varying as the

velocity*.

310. We may next briefly notice the effect of viscosity on

waves of expansion in gases, although, for a reason to be given, the

results cannot be regarded as more than illustrative.

In the case of plane wavesf in a laterally unlimited medium,
we have, if we take the axis of as in the direction of propagation,
and neglect terms of the second order in the velocity,

du _ I dp d?u m
Tt~~^Tx

+ * v dx*
.................. !

by Art. 286 (2), (3). If s denote the condensation, the equation
of continuity is, as in Art. 255,

ds _ du

dt~ dx
......

* This problem was first solved, in a different manner, by Stokes, 1. c. ante

p. 518. For other methods of treatment see 0. E. Meyer, &quot;Ueber die pendelnde

Bewegung einer Kugel unter dem Einflusse der inneren Keibung des umgebenden
mediums,&quot; Crelle, t. Ixxiii. (1871) ; Kirchhoff, Mechanik, c. xxvi. The variable

motion of a sphere in a liquid has been discussed by Basset, Phil. Trans., 1888;

Hydrodynamics, c. xxii.

t Discussed by Stokes, I. c. ante p. 518.
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and the physical equation is, if the transfer of heat be neglected,

p=p^^p,s (3),

where c is the velocity of sound in the absence of viscosity.

Eliminating p and s, we have

d*u A*u .
d*u

To apply this to the case of forced waves, we may suppose that

at the plane x = a given vibration

u = aei&amp;lt;Tt

(5)

is kept up. Assuming as the solution of (4)

u = aePrt+ f&amp;gt;

x
(6),

we find /3
s
(c

2 + ^Vcr)
= - cr

2
(7),

whence 8=4- . ^ ...
,

c V
6

c2

If we neglect the square of i/cr/c
2

,
and take the lower sign, this

gives

c
3

c
3

Substituting in (6), and taking the real part, we get, for the waves

propagated in the direction of ^-positive

u ae~x!l cos aH
where l = $&/vo* ........................ (11).

The amplitude of the waves diminishes exponentially as they

proceed, the diminution being more rapid the greater the value of

&amp;lt;7. The wave-velocity is, to the first order of
i/&amp;lt;7/c

2
,
unaffected by

the friction.

The linear magnitude I measures the distance in which the

amplitude falls to l/e of its original value. If X denote the wave

length (27rc/&amp;lt;r),
we have

it is assumed in the above calculation that this is a small ratio.
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In the case of air-waves we have c= 3 32 x 104
,

j/= 132, C.G.S., whence

i/o-/c
2=

27ri//Xc
= 2-50X- 1 xlO- 5

,
=9 56X2 xl03

,

if X be expressed in centimetres.

To find the decay of free waves of any prescribed wave-length

(2-7T/&), we assume

and, substituting in (4), we obtain

Gt
2 + vk2a = -k-c2

..................... (14).

If we neglect the square of vk/c, this gives

a = -*vk2 ikc ..................... (15).

Hence, in real form,

u = ae-t/T cosk(a}ct) .................. (16),

where T = 3/2z/&
2
........................ (17)*.

The estimates of the rate of damping of aerial vibrations,

which are given by calculations such as the preceding, though
doubtless of the right order of magnitude, must be actually under

the mark, since the thermal processes of conduction and radiation

will produce effects of the same kind, of comparable amount, and

ought therefore, for consistency, to be included in our calculations.

This was first pointed out distinctly by Kirchhoff, who has

investigated, in particular, the theoretical velocity of sound-waves

in a narrow tubef. This problem is important for its bearing on

the well-known experimental method of Kundt. Lord Rayleigh
has applied the same principles to explain the action of porous
bodies in absorption of sound

J.

311. It remains to call attention to the chief outstanding

difficulty of our subject.

It has already been pointed out that the neglect of the terms

of the second order (adu/dx, &c.) seriously limits the application

of many of the preceding results to fluids possessed of ordinary

* For a calculation, on the same assumptions, of the effect of viscosity in

damping the vibrations of air contained within spherical and cylindrical envelopes

reference may be made to the paper On the Motion of a Viscous Fluid contained

in a Spherical Vessel,&quot; cited on p. 558.

t &quot; Ueber den Einfluss der Warmeleitung in einem Gase auf die Schallbewegung,&quot;

Pogfl. Ann., t. cxxxiv. (1868) ;
Ges. Abh., p. 540.

J
&quot; On Porous Bodies in relation to Sound,&quot; Phil. Mag. t Sept. 1883.
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degrees of mobility. Unless the velocities be very small, the

actual motion, in such cases, so far as it admits of being observed,

is found to be very different from that represented by our formulae.

For example, when a solid of easy shape moves through a liquid,

an irregular, eddying, motion is produced in a layer of the fluid

next to the solid, and a widening trail of eddies is left behind,

whilst the motion at a distance laterally is comparatively smooth

and uniform.

The mathematical disability above pointed out does not apply
to cases of rectilinear flow, such as have been discussed in Arts.

288, 289
;
but even here observation shews that the types of

motion there investigated, though always theoretically possible,

become under certain conditions unstable. The case of flow

through a pipe of circular section has been made the subject of

a very careful experimental study by Reynolds*, by means of

filaments of coloured fluid introduced into the stream. So long
as the mean velocity (w ) over the cross-section falls below a

certain limit depending on the radius of the pipe and the nature

of the fluid, the flow is smooth, and in accordance with Poiseuille s

laws
;
but when this limit is exceeded the motion becomes wildly

irregular, and the tube appears to be filled with interlacing and

constantly varying streams, crossing and recrossing the pipe. It

was inferred by Reynolds, from considerations of dimensions, that

the aforesaid limit must be determined by the ratio of wQa to v,

where a is the radius, and v the (kinematic) viscosity. This was

verified by experiment, the critical ratio being found to be,

roughly,

Thus for a pipe one centimetre in radius the critical velocity for

water (v 018) would be 18 cm. per sec.

Simultaneously with the change in the character of the motion,

when the critical ratio is passed, there is a change in the relation

between the pressure-gradient (dp/dz) and the mean velocity w .

So long as w^a/v falls below the above limit, dp/dz varies as wQt as

*
&quot;An Experimental Investigation of the Circumstances which determine

whether the Motion of Water shall be Direct or Sinuous, and of the Law of Resist

ance in Parallel Channels,&quot; Phil. Trans., 1883.

t The dependence on v was tested by varying the temperature.
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in Poiseuille s experiments, but when the irregular mode of flow

has set in, dpjdz varies more nearly as WQ-.

The practical formula adopted by writers on Hydraulics, for

pipes whose diameter exceeds a certain limit, is

R = tfpwf ........................... (2),

where R is the tangential resistance per unit area, WQ is the mean

velocity relative to the wetted surface, and f is a numerical

constant depending on the nature of the surface. As a rough

average value for the case of water moving over a clean iron

surface, we may take f 005*. A more complete expression for

R, taking into account the influence of the diameter, has been

given by Darcy, as the result of his very extensive observations on

the flow of water through conduits t-

The resistance, in the case of turbulent flow, is found to be

sensibly independent of the temperature, and therefore of the

viscosity of the fluid. This is what we should anticipate from

considerations of dimensions, if it be assumed that R oc w*\.

If we accept the formula (2) as the expression of observed

facts, a conclusion of some interest may be at once drawn.

Taking the axis of z in the general direction of the flow, if w
denote the mean velocity (with respect to the time) at any point

of space, we have, at the surface,

dw
&quot;X

if w denote the general velocity of the stream, and S?? an element

of the normal. If we take a linear magnitude I such

w /l
= dw/dn,

then I measures the distance between two planes moving with a

relative velocity w in the regular laminar flow which would give

the same tangential stress. We find

(3).

* See Kankine, Applied Mechanics, Art. 638; Unwin, Encyc. Britann., Art.

&quot;

Hydromechanics.&quot;

t Recherches experimentales relatives au mouvement de Veau dans les tuyaux,

Paris, 1855. The formula is quoted by Bankine and Unwin.

J Lord Bayleigh,
&quot; On the Question of the Stability of the Flow of Fluids,&quot;

Phil. Mag., July 1892.
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For example, putting v = 018, ?# = 300 [c. s.], /= 005, we obtain

I = 024 cm. * The smallness of this result suggests that in the

turbulent flow of a fluid through a pipe of not too small diameter

the value of w is nearly uniform over the section, falling rapidly

to zero within a very minute distance of the walls *K

Applied to pipes of sufficient width, the formula (2) gives

Tra2
-/- = 2-7TCLR = 7rfpaw

2
,

CiZ

- l- d
/=f

w
-l ........................ (4).

p dz a

The form of the relation which was found to hold by Reynolds, in

his experiments, was

1 dp vz-mw m
~ ~

where wi = l723.

The increased resistance, for velocities above a certain limit,

represented by the formula (2) or (4), is no doubt due to the action

of the eddies in continually bringing fresh fluid, moving with a

considerable relative velocity, close up to the boundary, and so

increasing the distortion-rate (dw/dn) greatly beyond that which

would obtain in regular laminar motion}.

The frictional or skin-resistance experienced by a solid of

easy shape moving through a liquid is to be accounted for on the

same principles. The circumstances are however more complicated

than in the case of a pipe. The friction appears to vary roughly

as the square of the velocity ;
but it is different in different parts

of the wetted area, for a reason given by W. Froude, to whom the

most exact observations
||
on the subject are due.

*
Cf. Sir W. Thomson, Phil. Mag., Sept. 1887.

t This was in fact found experimentally by Darcy, I. c. The author is indebted

for this reference to Prof. Keynolds.

J Stokes, Math, and Phys. Papers, t. i., p. 99.

So called by writers on naval architecture, to distinguish it from the wave-

resistance referred to in Arts. 221, 228.

|| &quot;Experiments on the Surface-friction experienced by a Plane moving through

Water,&quot; Brit. Ass. Rep., 1872, p. 118.
&quot; The portion of the surface that goes first in the line of motion, in experiencing

resistance from the water, must in turn communicate to the water motion, in the

direction in which it is itself travelling. Consequently the portion of the water

which succeeds the first will be rubbing, not against stationary water, but against

water partially moving in its own direction, and cannot therefore experience as

much resistance from it.&quot;
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312. The theoretical explanation of the instability of linear

flow, under the conditions stated, and of the manner in which

eddies are maintained against viscosity, is at present obscure. We
may refer, however, to one or two attempts which have been .made

to elucidate the question.

Lord Rayleigh, in several papers*, has set himself to examine

the stability of various arrangements of vortices, such as might be

produced by viscosity. The fact that, in the disturbed motion,

viscosity is ignored does not seriously affect the physical value

of the results except perhaps in cases where these would imply

slipping at a rigid boundary.

As the method is simple, we may briefly notice the two-dimensional form

of the problem.

Let us suppose that in a slight disturbance of the steady laminar motion

u= 7, #=0, w= 0,

where U is a function of y only, we have

u=U+u ,
v= v

,
io= (i).

The equation of continuity is

The dynamical equations reduce, by Art. 143, to the condition of constant

angular velocity DQDt= 0, or

3

..... ...(iv).
dy)

*
dy

Hence, neglecting terms of the second order in u
,
v

,

Contemplating now a disturbance which is periodic in respect to #, we

assume that u
,
v vary as e

ikx+ i&amp;lt;Tt

, Hence, from (ii) and (v),

and .(r^JH7)fihp__ fr.O..................... (vii).

* &quot; On the Stability or Instability of certain Fluid Motions,&quot; Proc. Lond. Math.

Soc., t. xi., p. 57 (1880), and t. xix., p. 67 (1887) ;

&quot; On the Question of the Stability

of the Flow of Fluids,&quot; Phil. Mag., July 1892.
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Eliminating %
,
we find

(v+kU)(**-W\ -& =0 (viii),W / dy*

which is the fundamental equation.

If, for any value of y, dUjdy is discontinuous, the equation (viii) must be

replaced by

where A denotes the difference of the values of the respective quantities on

the two sides of the plane of discontinuity. This is obtained from (viii) by

integration with respect to y, the discontinuity being regarded as the limit of

an infinitely rapid variation. The formula (ix) may also be obtained as the

condition of continuity of pressure, or as the condition that there should be no

tangential slipping at the (displaced) boundary.

At a fixed boundary, we must have v = Q.

1. Suppose that a layer of fluid of uniform vorticity bounded by the

planes y= h, is interposed between two masses of fluid moving irrotationally,

the velocity being everywhere continuous. This is a variation of a problem
discussed in Art. 225.

Assuming, then, U=u for
y&amp;gt;h t U=uy/h for

h&amp;gt;y&amp;gt; -h, and U= u for

y&amp;lt; -h, we notice that d2
//&amp;lt;%

2
-

0, everywhere, so that (viii) reduces to

$-&quot;-
....................... ............

The appropriate solutions of this are :

v = Ae-k
v, for

y&amp;gt;h-,
\

v = Be-*y+
C&amp;lt;*v,

for
h&amp;gt;y&amp;gt;-k;

I ..................... (xi).

v =Dek
v, for y&amp;lt;-h

The continuity of v requires

With the help of these relations, the condition (ix) gives

2 (a-+ /hi) Cfe** -
1 (Be-**+ C&amp;lt;*

h
)
=

0,

2 (o--/hl) Be
kh+

Eliminating the ratio B : (7, we obtain

(xiii).

(xiv).

87
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For small values of kh this makes &amp;lt;r

2= - k*ii2
,
as in the case of absolute

discontinuity (Art. 225). For large values of &/*, on the other hand, &amp;lt;r= &u,

indicating stability. Hence the question as to the stability for disturbances

of wave-length X depends on the ratio X/2A. The values of the function in

{ }
on the right-hand of (xiv) have been tabulated by Lord Eayleigh. It

appears that there is instability if
X/2A&amp;gt;5,

about
;
and that the instability is

a maximum for X/2A = 8.

2. In the papers referred to, Lord Rayleigh has further investigated

various cases of flow between parallel walls, with the view of throwing light

on the conditions of stability of linear motion in a pipe. The main result is

that if d2
U/dy* does not change sign, in other words, if the curve with y as

abscissa and U as ordinate is of one curvature throughout, the motion is

stable. Since, however, the disturbed motion involves slipping at the walls,

it remains doubtful how far the conclusions apply to the question at present

under consideration, in which the condition of no slipping appears to be

fundamental.

3. The substitution of (x) for (viii), when d2
U/dy

2= 0, is equivalent to

assuming that the rotation is the same as in the undisturbed motion
;
since

on this hypothesis we have

du dv
., , ,

dfr-dE-
1 *&quot; .................................(XV)

which, with (vi), leads to the equation in question.

It is to be observed, however, that when d2
U/dy

z=0
)
the equation (viii)

may be satisfied, for a particular value of y, by &amp;lt;r-f
7= 0. For example, we

may suppose that at the plane y= a thin layer of (infinitely small) additional

vorticity is introduced. We then have, on the hypothesis that the fluid is

unlimited,

v/ = A**kv ................................. (xvi),

the upper or the lower sign being taken according as y is positive or negative.

The condition (ix) is then satisfied by

................................. (xvii),

if A/-o.. ............. (xviii),

where U denotes the value of U for y=Q. Since the superposition of a

uniform velocity in the direction of x does not alter the problem, we may
suppose U 0, and therefore &amp;lt;r

= 0. The disturbed motion is steady ;
in

other words, the original state of flow is (to the first order of small quantities)

neutral for a disturbance of this kind*.

Lord Kelvin has attacked directly the very difficult problem of

determining the stability of laminar motion when viscosity is taken

*
Cf. Sir W. Thomson, &quot; On a Disturbing Infinity in Lord Kayleigh s solution

for Waves in a plane Vortex Stratum,&quot; Brit. Ass. Rep., 1880.
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into account*. He concludes that the linear flow of a fluid through
a pipe, or of a stream over a plane bed, is stable for infinitely

small disturbances, but that for disturbances of more than a certain

amplitude the motion becomes unstable, the limits of stability

being narrower the smaller the viscosity. A portion of the

investigation has been criticised by Lord Rayleighf ;
and there

can be no question that the whole matter calls for further

elucidation^.

*
&quot;Rectilinear Motion of Viscous Fluid between two Parallel Planes,&quot; Phil.

Mag., Aug. 1887 ;

&quot; Broad River flowing down an Inclined Plane Bed,&quot; Phil. Mag.,

Sept. 1887.

t I. c. ante p. 574.

t The most recent contribution to the subject is a paper by Reynolds,
&quot; On the

Dynamical Theory of Incompressible Viscous Fluids and the Determination of

the Criterion,&quot; the full text of which has not yet been published. Proc. Roy. Soc.,

May 24, 1894.

372



CHAPTER XII.

EQUILIBRIUM OF ROTATING MASSES OF LIQUID.

313. THIS subject had its origin in the investigations on the

theory of the Earth s Figure which so powerfully engaged the

attention of mathematicians near the end of the last and the

beginning of the present century.

Considerations of space forbid our attempting more than a

rapid sketch, with references to the original memoirs, of the case

where the fluid is of uniform density, and the external boundary is

ellipsoidal. With this is incorporated a slight account of some

cognate investigations by Dirichlet and others, which claim notice

not only on grounds of physical interest, but also by reason of the

elegance of the analytical methods employed.

We write down, in the first place, some formulae relating to

the attraction of ellipsoids.

If the density p be expressed in astronomical measure, the

gravitation-potential (at internal points) of a uniform mass en

closed by the surface

IS

where A = {(a
2 + \)(&

2 + X)(c
2 + \)}1 (3).

This may be written

n = 7rp(ci^ + {3 y* + y^- Xo) (4),

where

(5),

* For references see p. 534. The sign of ft has been changed from the usual

reckoning.
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fao
^T^

and x =
a&cj ^-

........................ (6).

The potential energy of the mass is given by

..................... (7),

where the integrations extend over the volume. Substituting

from (4) we find

V= iro

(8).

This expression is negative because the zero of reckoning

corresponds to a state of infinite diffusion of the mass. If we

adopt as zero of potential energy that of the mass when collected

into a sphere of radius a, = (abc)
3

,
we must prefix to the right-

hand of (8) the term

........................... (9).

If the ellipsoid be of revolution, the integrals reduce. If it

be of the planetary form we may put

2c ..................... (10),

and obtain* = &, = (? + 1) footr
1 ?- ?

2
,

......... (12),

provided the zero of V correspond to the spherical form.

For an ovary ellipsoid we put

a = 6 = (g2
&quot; 1

^c ..................... (13),

* Most simply by writing c2 + X= (a
2 - c2

)
tt
2
.
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which leads to

(I*).

(15).

The case of an infinitely long elliptic cylinder may also be

noticed. Putting c = oo in (5), we find

26 2a n .

%-+& ft-j+V 7o
= ............ (16).

The energy per unit length of the cylinder is

Fl-.A^Wfcg^J ............... (17),

if a2 = tt6.

314. If the ellipsoid rotate in relative equilibrium about the

axis of z
t
with angular velocity ?i, the component accelerations

of the particle (#, T/, #) are ?&
2
#, ?i

a

y, 0, so that the dynamical

equations reduce to

1 dp dl 1 dp dl 1 dp dl
-nzx = --- -*, n*y = ---f~T, = ---f-~r

p ax ax p ay ay p az dz

............... (1).

Hence ^ =
\ n? (a* + f) - O + const................ (2).

The surfaces of equal pressure are therefore given by

In order that one of these may coincide with the external

surface

we must have

(5).

In the case of an ellipsoid of revolution (a
=

b), these con

ditions reduce to one :
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Since a?l(a? + \) is greater or less than c
2

/(c
2
4- X), according as

a is greater or less than c, it follows from the forms of
, 7 given

in Art. 313 (5) that the above condition can be fulfilled by a

suitable value of n for any assigned planetary ellipsoid, but not

for the ovary form. This important result is due to Maclaurin*.

If we substitute from Art. 313 (11), the condition (6) takes the

form

-(3f*+l)?cot-&amp;gt;f-8f ............... (7).

The quantity f is connected with the excentricity e of the

meridian section by the relations

The equation (7) was discussed, under slightly different forms,

by Simpson, d Alembert-)-, and (more fully) by Laplace J.
As

f decreases from oo to 0, and e therefore increases from to 1, the

right-hand side increases continually from zero to a certain maxi

mum (-2247), corresponding to e = 9299, a/c
= 2*7198, and then

decreases asymptotically to zero. Hence for any assigned value of

n, such that n*/27rp &amp;lt; 2247, there are two ellipsoids of revolution

satisfying the conditions of relative equilibrium, the excentricity

being in one case less and in the other greater than 9299.

If n9

/2irp &amp;gt; &quot;2247, no ellipsoidal form is possible.

When is great, the right-hand side of (7) reduces to T
4- 1~

2
approximately.

Hence in the case of a planetary ellipsoid differing infinitely little from a

sphere we have, for the ettipticity,

&amp;lt;

= (a-c)/a=K-2=if^
.............................. (i).

If g denote the value of gravity at the surface of a sphere of radius a, of the

same density, we have
&amp;lt;/

=
^7rpa, whence

Putting ?*%/#= say 5
we nnd that a homogeneous liquid globe of the same

size and mass as the earth, rotating in the same period, would have an

ellipticity of TJ|T .

*
I. c. ante pp. 322, 367.

+ See Todhunter, Hist, of the Theories of Attraction, etc., cc. x., xvi.

Mecanique Celeste, Livre 3mc
, chap. iii.
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The fastest rotation which admits of an ellipsoidal form of revolution,
for such a mass, has a period of 2 h. 25 m.

If m be the total mass, h its angular momentum, we have

whence we find

f

m
This gives the angular momentum of a given volume of given

fluid in terms of f, and thence in terms of the excentricity e.

It appears from the discussion of an equivalent formula by

Laplace, or from the table given below, that the right-hand
side increases continually as f decreases from oo to 0. Hence
for a given volume of given fluid there is one, and only one,

form of Maclaurin s ellipsoid having any prescribed angular mo
mentum.

The following table, giving numerical details of a series of Maclaurin s

ellipsoids, is derived from Thomson and Tait*, with some modifications intro

duced for the purpose of a more ready comparison with the corresponding
results for Jacobi s ellipsoids, obtained by Darwin (see Art. 315). The unit of

angular momentum is m^ a^.

e
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315. To ascertain whether an ellipsoid with three unequal

axes is a possible form of relative equilibrium, we return to the

conditions (5). These are equivalent to

(a -/3 )a
2&2 + 7oC

2
(a

2 -&2

)
= ............ (10),

and

If we substitute from Art. 313, the condition (10) may be

written
2

^-o an&quot; -

The first factor, equated to zero, gives Maclaurin s ellipsoids,

discussed in the preceding Art. The second factor gives

(13),

which may be regarded as an equation determining c in terms of

a, b. When c
2 =

0, every element of the integral is positive, and

when c
2 = a26 2

/(a
2 + b2

) every element is negative. Hence there is

some value of c, less than the smaller of the two semiaxes a, 6,

for which the integral vanishes.

The corresponding value of n is given by (11), which takes the

form

so that n is real. It will be observed that as before the ratio

M2

/27r/D depends only on the shape of the ellipsoid, and not on its

absolute size.

The possibility of an ellipsoidal form with three unequal axes

was first asserted by Jacobi in 1834*. The equations (13) and

(14) were carefully discussed by C. O. Meyerf, who shewed that

when a, b are given there is only one value of c satisfying (13),

and that, further, rffairp has its greatest value ( 1871), when

a = 6 = l 7!61c. The Jacobian ellipsoid then coincides with one

of Maclaurin s forms.

* &quot; Ueber die Figur des Gleichgewichts,&quot; Pogg. Ann., t. xxxiii. (1834) ;
see also

Liouville,
&quot; Sur la figure d une masse fluide hoinogeue, eu dquilibre, et douee d un

mouvement de rotation,&quot; Journ. de VEcole Polytechn., t. xiv., p. 290 (1834).

t &quot;De aequilibrii formis ellipsoidicis,&quot; Crelle, t. xxiv. (1842).
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If in the second factor of (12) we put a= b, and write

we find

whence

cot- 1 =

s _n du

u&amp;gt;] 14

13+3 3

(v)*.

It may readily be verified that this has only one finite root, viz. = 7171,

which makes e= *8127.

As n2

/27rp diminishes from the above limit, the ratio of one

equatorial axis of Jacobi s ellipsoid to the polar axis increases,

whilst that of the other diminishes, the asymptotic form being
an infinitely long circular cylinder (a

= oo
, b = c).

Thomson and Tait, Art. 778 . The / of these writers is equal to our f
~ 1

.
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The following table of numerical data for a series of Jacobi s ellipsoids

has been computed by Darwin. The subject is further illustrated by the

annexed figures. The first of these gives the meridian section of the ellipsoid

of revolution which is the starting point of the series. The remainder,

adopted from Darwin s paper*, give the principal sections of two other forms.

Axes
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There is a similar solution for the case of an elliptic cylinder rotating
about its axis*. The result, which may be easily verified, is

2np (a+ b)
2

&quot;

316. The problem of relative equilibrium, ofwhich Maclaurin s

and Jacobi s ellipsoids are particular cases, has in recent times

engaged the attention of many able writers, to whose investi

gations we can here only refer. These are devoted either

to the determination, in detail, of special forms, such as the

annulus*^, and that of two detached masses at a greater or less

distance apart J, or, as in the case of Poincare s celebrated paper ,

to the more general study of the problem, and in particular to the

inquiry, what forms of relative equilibrium, if any, can be obtained

by infinitesimal modification of known forms such as those of

Maclaurin and Jacobi.

The leading idea of Poincare s research may be stated as

follows. With a given mass of liquid, and a given angular

velocity n of rotation, there may be one or more forms of relative

equilibrium, determined by the property that the value of VT
is stationary, the symbols V, T having the same meanings as in

Art. 195. By varying n we get one or more linear series of

equilibrium forms. Now consider the coefficients of stability of

the system (Art. 196). These may, for the present purpose, be

chosen in an infinite number of ways, the only essential being
that V TO should reduce to a sum of squares ; but, whatever

mode of reduction be adopted, the number of positive as well as of

negative coefficients is, by a theorem due to Sylvester, invariable.

Poincare proves that if, as we follow any linear series, one of the

coefficients of stability changes sign, the form in question is as it

*
Matthiessen, &quot;Neue Untersuchungen iiber frei rotirende Fliissigkeiten,&quot;

Schriften der Univ. zu Kiel, t. vi. (1859). This paper contains a very complete list

of previous writings on the subject.

t First treated by Laplace,
&quot; Memoire sur la theorie de 1 anneau de Saturne,&quot;

Mem. de VAcad. des Sciences, 1787 [1789]; Mecanique Celeste, Livre 3mc , c. vi.

For later investigations, with or without a central attracting body, see Matthiessen,

1. c. ; Mine. Sophie Kowalewsky, Astron. Nachrichten, t. cxi. , p. 37 (1885) ; Poincare,

I. c. infra , Basset, Amer. Journ. Math., t. xi. (1888); Dyson, I. c. ante p. 166.

t Darwin, &quot;On Figures of Equilibrium of Rotating Masses of Fluid,&quot; Phil.

Trans., 1887; a full account of this paper is given by Basset, Hydrodynamics,
c. xvi.

&quot;Sur 1 equilibre d une masse fluide animde d un mouvement de rotation,&quot;

Acta Math., t. vii. (1885).
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were the crossing-point with another linear series. For this

reason it is called a form of bifurcation. A great part of

Poincare s investigation consists in ascertaining what members of

Maclaurin s and Jacobi s series are forms of bifurcation.

Poincare also discusses very fully the question of stability, to

which we shall briefly revert in conclusion.

317. The motion of a liquid mass under its own gravitation,

with a varying ellipsoidal surface, was first studied by Dirichlet*.

Adopting the Lagrangian method of Art. 13, he proposes as the

subject of investigation the whole class of motions in which the

displacements are linear functions of the velocities. This has

been carried further, on the same lines, by Dedekindf and

RiemannJ. More recently, it has been shewn by Greenhill and

others that the problem can be treated with some advantage by
the Eulerian method.

We will take first the case where the ellipsoid does not change
the directions of its axes, and the internal motion is irrotational.

This is interesting as an example of finite oscillation of a liquid

mass about the spherical form.

The expression for the velocity-potential has been given in

Art. 107
;

viz. we have

with the condition of constant volume

%M =
a b c

The pressure is then given by

* &quot;

Untersuchungen iiber ein Problem der Hydrodynamik,&quot; Gott. Abh., t. viii.

(1860) ; Crelle, t. Iviii. The paper was posthumous, and was edited and amplified

by Dedekind.

t Crelle, t. Iviii.

J &quot;Beitrag zuden Untersuchungen iiberdieBewegung ernes fliissigen gleicharti-

gen Ellipsoides,&quot; Gott. Alh., t. ix. (1861); Math. Werke, p. 168.

&quot;On the Rotation of a liquid Ellipsoid about its Mean
Axis,&quot; Proc. Camb.

Phil. Soc.
t
t. iii. (1879); &quot;On the general Motion of a liquid Ellipsoid under the

Gravitation of its own parts,&quot; Proc. Camb. Phil. Soc., t. iv. (1880).
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by Art. 21 (4); and substituting the value of O from Art. 313

we find

-
n
= -

\ (-**
+

1 f- + ~

p \U/ U v

.................. (4).

The conditions that the pressure may be uniform over the

external surface
/yi2 rt/2 /y^

J + t + J- 1 ........................
&amp;lt;

5
&amp;gt;&amp;gt;

are therefore

v

g +
2*p,)

a =
fa

+2,rp/3
)

b* = g +
2^-py.)

c* . . . . (6).

These equations, with (2), determine the variations of a, b, c.

If we multiply the three terms of (2) by the three equal magni
tudes in (6), we obtain

ail + 1)b 4- cc + 2?r/) (a ad + fijbb + %cc) = ......... (7).

If we substitute the values of
, /3 , 70 from Art. 313, this has the

integral
r /1\

a2 + 62 + c2 -
4&amp;gt;7rpabc

I -r- = const............. (8).
7 o ^

It has been already proved that the potential energy is

/* /7&quot;X

F= const. - ftTrytfbW I

-^
............... (9),

and it easily follows from (1) that the kinetic energy is

+62 + c
2

) .................. (10).

Hence (8) is recognized as the equation of energy

T+F=const....................... (11).

When the ellipsoid is of revolution (a = b), the equation (8),

with a2
c = a3

,
is sufficient to determine the motion. We find

(l
+ |0 c

2 + F= const (12).

The character of the motion depends on the total energy. If

this be less than the potential energy in the state of infinite
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diffusion, the ellipsoid will oscillate regularly between the prolate

and oblate forms, with a period depending on the amplitude ;

whilst if the energy exceed this limit it will not oscillate, but will

tend to one or other of two extreme forms, viz. an infinite line of

matter coinciding with the axis of z, or an infinite film coincident

with the plane xy*.

If, in the case of an ellipsoid of revolution, we superpose on the

irrotational motion given by (1) a uniform rotation o&amp;gt; about the axis of z
t
the

component angular velocities (relative to fixed axes) are

d d c ...

i(,-=. x w?/, v = y-\-G)X) w := - z \*J
a a c

The Eulerian equations then reduce to

d . d
2 _

1 dp dQ,
^

d d
2

1 dp do,
-y + d&amp;gt;x+ 2-G&amp;gt;x-o&amp;gt;

2y= f- 5-,a* a pdy dy

c I dp do.
-z = f r i

c p dz dz

The first two equations give, by cross-differentiation,

t
+2

a
=

&amp;lt;**&amp;gt;&amp;gt;

or o&amp;gt;a

2=
G&amp;gt; a 2

(iv),

which is simply the expression of von Helmholtz theorem that the strength

of a vortex is constant (Art. 142). In virtue of
(iii), the equations (ii) have

the integral
/n /ri. \ ^&quot;

,(V).

Introducing the value of Q from Art. 313 (4), we find that the pressure will

be constant over the surface

provided + 2irpa -a&amp;gt;

2

In virtue of the relation (iii), and of the condition of constancy of volume

2- + -
a c

*
Dirichlet, /. c. When the amplitude of oscillation is small, the period

must coincide with that obtained by putting n 2 in the formula (10) of Art. 241.

This has been verified by Hicks, Proc. Camb. Phil. Soc., t. iv., p. 309 (1883).
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this may be put in the form

c+ 2 (a)
2ad+ o&amp;gt;oJa

2
)+ 47rpa d -f 2irpyQcc

= ............ (ix),

whence 2a2+ c-
2 + 2o)

2 2
-47rpa

2 c ---
r
= const..... (x).

This, again, may be identified as the equation of energy.

In terms of c as dependent variable, (x) may be written

(xi).

If the initial circumstances be favourable, the surface will oscillate regularly
between two extreme forms. Since, for a prolate ellipsoid, V increases with

e, it is evident that, whatever the initial conditions, there is a limit to the

elongation in the direction of the axis which the rotating ellipsoid can attain.

On the other hand, we may have an indefinite spreading out in the equatorial

plane *.

318. For the further study of the motion of a fluid mass

bounded by a varying ellipsoidal surface we must refer to the

paper by Riemann already cited, and to the investigations of

Brioschi f , Lipschitzj, Greenhill and Basset ||. We shall here

only pursue the case where the ellipsoidal boundary is invariable

in form, but rotates about a principal axis (z)*\\.

If Uy v, w denote the velocities relative to axes #, y rotating in their own

plane with constant angular velocity n, the equations of motion are, by
Art. 199,

Du _ 9 I dp do.
-=r- - znv - nLx f-

- -T- ,

Dt p dx dx

Dv
2

1 dp do,

Dt pdy dy
Dw 1 dp do.

Dt p dz dz

If the fluid have an angular velocity o&amp;gt; about lines parallel to z
t
the actual

velocities parallel to the instantaneous positions of the axes will be

*
Dirichlet, 7. c. f Crelle, t. lix. (1861).

t Crelle, t. Ixxviii. (1874). I.e. ante p. 589.

||
&quot;On the Motion of a Liquid Ellipsoid under the Influence of its own

Attraction,&quot; Proc. Lond. Math. Soc., t. xvii., p. 255 (1886) ; Hydrodynamics, c. xv.

II Greenhill, &quot;On the Rotation of a Liquid Ellipsoid about its Mean Axis,&quot;

Proc. Carnb. Phil. Soc., t. iii. (1879).
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since the conditions are evidently satisfied by the superposition of the irrota-

tional motion which would be produced by the revolution of a rigid ellipsoidal

envelope with angular velocity n eo on the uniform rotation o&amp;gt; (cf. Art. 107).

Hence

Substituting in (i), and integrating, we find

-fl + const

Hence the conditions for a free surface are

a262 262

~ &quot; ~

= -7rpy c2 (v).

This includes a number of interesting cases.

1. If we put ?i=o&amp;gt;,
we get the conditions of Jacobi s ellipsoid (Art. 315).

2. If we put ft= 0, so that the external boundary is stationary in space,

we get

f 2&amp;lt;*

262

Woo-

These are equivalent to

and

It is evident, on comparison with Art. 315, that c must be the least axis

of the ellipsoid, and that the value (viii) of a&amp;gt;

2
/2irp is positive.

The paths of the particles are determined by

262

-

whence x= ka cos
(&amp;lt;rt

+ e), y= ^6sin(o-^+ e), ^=0 ............... (x),

-&quot; .................................

and &, e are arbitrary constants.

These results are due to Dedekind*.

*
I. c. ante p. 589. See also Love, &quot;On Dedekind s Theorem,...,&quot; Phil. Mag.,

Jan. 1888.

L. 38
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3. Let
o&amp;gt;=0,

so that the motion is irrotaticmal. The conditions (v)

reduce to

These may be replaced by

and

The equation (xiii) determines c in terms of a, 6. Let us suppose that

a&amp;gt;6. Then the left-hand side is easily seen to be positive for c= a, and nega

tive for c= b. Hence there is some real value of c, between a and 6, for which

the condition is satisfied ;
and the value of n

t given by (xiv) is then real, for

the same reason as in Art. 315.

4. In the case of an elliptic cylinder rotating about its axis, the condition

(v) takes the form
4a262

If we put n=
a&amp;gt;,

we get the case of Art. 315 (i).

If ft= 0, so that the external boundary is stationary, we have

If o)= 0, i.e. the motion is irrotational, we have

319. The small disturbances of a rotating ellipsoidal mass

have been discussed by various writers.

The simplest types of disturbance which we can consider are

those in which the surface remains ellipsoidal, with the axis of

revolution as a principal axis. In the case of Maclaurin s ellipsoid,

there are two distinct types of this character
;
in one of these the

surface remains an ellipsoid of revolution, whilst in the other

the equatorial axes become unequal, one increasing and the other

decreasing, whilst the polar axis is unchanged. It was shewn by
Biemann

l
that the latter type is unstable when the eccentricity

(e) of the meridian section is greater than &quot;9529. The periods of

*
Greenhill, 1. c. ante p. 589.

t 1. c. ante p. 589. See also Basset, Hydrodynamics, Art. 367. Biemann has

further shewn that Jacobi s ellipsoid is always stable for ellipsoidal disturbances.
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oscillation in the two types (when e &amp;lt; 9529) have been calculated

by Love*.

The theory of the stability and the small oscillations of

Maclaurin s ellipsoid, when the disturbance is unrestricted, has

been very fully worked out by Bryan f, by a method due to

Poincare . It appears that when e &amp;lt; 9529 the equilibrium is

thoroughly stable. For sufficiently great values of e there is

of course instability for other types, in addition to the one above

referred to.

320. In the investigations here cited dissipative forces are

ignored, and the results leave undetermined the more important

question of secular stability. This is discussed, with great

command of mathematical resources, by Poincare.

If we consider, for a moment, the case of a fluid covering a

rigid nucleus, and subject to dissipative forces affecting all relative

motions, there are two forms of the problem. It was shewn in

Art. 197 that if the nucleus be constrained to rotate with constant

angular velocity (n) about a fixed axis, or (what comes to the same

thing) if it be of preponderant inertia, the condition of secular

stability is that the equilibrium value of V T should be station

ary, V denoting the potential energy, and T the kinetic energy of

the system when rotating as a whole, with the prescribed angular

velocity, in any given configuration. If, on the other hand, the

nucleus be free, the case comes under the general theory of

gyrostatic systems, the ignored coordinates being the six co

ordinates which determine the position of the nucleus in space.

The condition then is (Art. 235) that the equilibrium value of

V+K should be a minimum, where K is the kinetic energy of

the system moving, as rigid, in any given configuration, with the

* &quot; On the Oscillations of a Rotating Liquid Spheroid, and the Genesis of the

Moon,&quot; Phil. Mag., March, 1889.

f
&quot; The Waves on a Rotating Liquid Spheroid of Finite Ellipticity,&quot; Phil. Trans.,

1889 ;

&quot; On the Stability of a Rotating Spheroid of Perfect Liquid,&quot; Proc. Roy. Soc.,

March 27, 1890. The case of a rotating elliptic cylinder has been discussed by

Love, Quart. Journ. Math., t. xxiii. (1888).

The stability of a rotating liquid annulus, of relatively small cross-section,

has been examined by Dyson, I. c. ante p. 166. The equilibrium is shewn to

be unstable for disturbances of a &quot;beaded&quot; character (in which there is a periodic

variation of the cross-section as we travel along the ring) whose wave-length exceeds

a certain limit.
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component momenta corresponding to the ignored coordinates

unaltered. The two criteria become equivalent when the disturb

ance considered does not alter the moment of inertia of the

system with respect to the axis of rotation.

The second form of the problem is from the present point of

view the more important. It includes such cases as Maclaurin s

and Jacobi s ellipsoids, provided we suppose the nucleus to be

infinitely small. As a simple application of the criterion we may
examine the secular stability of Maclaurin s ellipsoid for the

types of ellipsoidal disturbance described in Art. 319*.

Let n be the angular velocity in the state of equilibrium, and h the

angular momentum. If I denote the moment of inertia of the disturbed

system, the angular velocity, if this were to rotate, as rigid, would be h//.

Hence

and the condition of secular stability is that this expression should be a

minimum. We will suppose for definiteness that the zero of reckoning of V
corresponds to the state of infinite diffusion. Then in any other configuration

V will be negative.

In our previous notation we have

c being the axis of rotation. Since abc=a?, we may write

where /(a, 6) is a symmetric function of the two independent variables
,
b.

If we consider the surface whose ordinate is / (a, b), where a, b are regarded
as rectangular coordinates of a point in a horizontal plane, the configurations

of relative equilibrium will correspond to points whose altitude is a maximum,
or a minimum, or a minimax, whilst for secular stability the altitude must

be a minimum.

For a=oo, or 6= 00, we have f (a, 6)
= 0. For a=0, we have F=0, and

/(a, 6) oc 1/6
2
,
and similarly for b=Q. For a= 0, &=0, simultaneously, we have

/ (a, b)
= oo . It is known that, whatever the value of h, there is always one

and only one possible form of Maclaurin s ellipsoid. Hence as we follow the

section of the above-mentioned surface by the plane of symmetry (a= 6), the

ordinate varies from QO to 0, having one and only one stationary value in the

*
Poincare, I. c. For a more analytical investigation see Basset,

&quot; On the

Stability of Maclaurin s Liquid Spheroid,&quot; Proc. Camb. Phil. Soc., t. viii., p. 23

(1892).
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interval. It is easily seen from considerations of continuity that this value

must be always negative, and a minimum*. Hence the altitude at this point
of the surface is either a minimum, or a minimax. Moreover, since there

is a limit to the negative value of F, viz. when the ellipsoid becomes a

sphere, there is always at least one finite point of minimum (and negative)

altitude on the surface.

Now it appears, on reference to the tables on pp. 584, 586, that when

h&amp;lt; 304m^a^, there is one and only one ellipsoidal form of equilibrium,

viz. one of revolution. The preceding considerations shew that this corre

sponds to a point of minimum altitude, and is therefore secularly stable (for

symmetrical ellipsoidal disturbances).

When h &amp;gt; &quot;304 m^a^, there are three points of stationary altitude, viz. one

in the plane of symmetry, corresponding to a Maclaurin s ellipsoid, and two

others symmetrically situated on opposite sides of this plane, corresponding to

the Jacobian form. It is evident from topographical considerations that the

altitude must be a minimum at the two last-named points, and a minimax at

the former. Any other arrangement would involve the existence of additional

points of stationary altitude.

The result of the investigation is that Maclaurin s ellipsoid is

secularly stable or unstable, for ellipsoidal disturbances, according
as e is less or greater than 8127, the eccentricity of the ellipsoid

of revolution which is the starting point of Jacobi s series f.

The further discussion of the stability of Maclaurin s ellipsoid,

though full of interest, would carry us too far. It appears that the

equilibrium is secularly stable for deformations of any type so long
as e falls below the above-mentioned limit. This is established by

shewing that there is no form of bifurcation (Art. 316) for any
Maclaurin s ellipsoid of smaller eccentricity.

Poincare has also examined the stability of Jacobi s ellipsoids.

He finds that these are secularly stable provided the ratio a : b

(where a is the greater of the two equatorial axes) does not

exceed a certain limit.

The secular stability of a rotating elliptic cylinder has been in

vestigated directly from the equations of motion of a viscous fluid

by

*
It follows that Maclaurin s ellipsoid is always stable for a deformation such

that the surface remains an ellipsoid of revolution. Thomson and Tait, Natural

Philosophy (2nd ed.), Art. 778&quot;.

t This result was stated, without proof, by Thomson and Tait, 1. c.

t Proc. Camb. Phil. Soc., t. vi. (1888).
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Energy, of long waves, 278

of solid moving through liquid,

130, 172

of surface waves, 378

of vortex-systems, 239, 242

superficial, 442

Equation of continuity, 5, 6, 15

Equations of motion,
of Motionless fluid, 3, 14

of a solid in a liquid, 171, 176, 192

of a viscous fluid, 514, 516

relation to moving axes, 322

Equilibrium of rotating masses of

liquid, 580, 588

Expansion, waves of, 464

Fish-line problem, 455

Flapping of sails and flags, 392

Flow defined, 35, 39

Flow of a viscous fluid through a

crevice, 519

Flow of a viscous fluid through a pipe,

520, 522

Flux defined, 41

Forced oscillations, 269, 329

Fourier s theorem, 380, 395

Generalized coordinates, 197

Gerstner s waves, 412, 416

Globe, oscillations of a liquid, 436

tides on a rotating, 343

Globule, vibrations of a, 461

Green s theorem, 50,

Lord Kelvin s extension of, 60

Group-velocity (of waves), 381, 401,

445, 448

Gyrostatic system, 211, 503

Harmonics, spherical, 117, 316

conjugate property

of, 127

ellipsoidal, 145, 155

zonal, 121, 122

sectorial, 126

tesseral, 125

Helicoid, motion of a, 191

Hydrokinetic symmetry, 181

Hypergeometric series, 121

Ignoration of coordinates, 214

Image of a double-source, 138, 262

Impulse defined, 169

theory of, 169, 173, 194

in vortex-motion, 237, 248

Impulsive motion, 12

Inertia of a solid, effect of fluid in

modifying, 130, 172, 192

Instability of linear flow in a pipe, 573

Irrotational motion defined, 38

Jets, theory of, in two dimensions,

103, 105

capillary phenomena of, 457, 459

Kinematic coefficient of viscosity, 513

Kinetic energy of a solid in a liquid, 173

Kinetic stability, 327

Lagrange s equations, 201, 207

Lagrange s (velocity-potential) theorem,

18, 38

Lamina, impact of a stream on, 94,

107, 109, 112

Laminar motion defined, 34

in viscous fluid, 538,

541, 545

Laplace s tidal problem, 345

Limiting velocity, 24

Lines of motion, see stream-lines.

Minimum energy, 51, 63

Modulus of decay, 497

of water-waves, 545

of sound-waves, 572

Multiple-connectivity, 53, 57

Normal modes of oscillation, 268

Oil, effect of a film of, on water-

waves, 552

Orbits of particles (in wave-motion),

373, 376

Ordinary stability, 327

Orthogonal coordinates, 156

Oscillations, see Small oscillations, and

Waves.

Oscillatingplane,inviscousfluid,538,541

Pendulum, oscillating in air, 490

oscillating in viscous fluid, 568

Periodic motion of a viscous fluid,

538, 555, 559
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Periphractic regions, 43, 70

Pipe, flow of viscous fluid in, 520, 522

Poiseuille s experiments, 521

Pressure-equation, 21

Pressure, resultant, 177

Pressures on solids in moving fluid, 218

Progressive waves, 374

Eeflection of waves, 280

Eesistance of a lamina, 107, 109, 112

(viscous) to moving sphere, 533

Retardation and acceleration of tides

(frictional), 501, 502

Eevolution, motion of a solid of, in

frictionless fluid, 184, 189, 196

Eipples and waves, 447

Eotating liquid, 29

Eotating sheet of water, tides on, 322

Botationar motion, 222

Eotation, electromagnetic, 32

Eotation of a liquid mass under its own

attraction, 580

Sector, rotation of a circular, 97

Secular stability, 327, 595

Ship-waves, 403

Simple-source of sound, 484

Simply-connected regions, 40

Skin-resistance, 575

Slipping, resistance to, at the surface

of a solid, 514, 521

Small oscillations, general theory, 266

relative to rotating solid, 324

Smoke-rings, 261

Solid, motion of, through a liquid, 167

Solitary wave, 418

Sound, velocity of, 466

Sound-waves, plane, 464, 468

energy of, 469

general equation of, 480

of finite amplitude, 470, 471, 473, 475

spherical, 477, 479

Sources and sinks, 63, 118, 128,

129, 135

Source, Simple-, of sound, 484

Speed defined, 268

Sphere, motion of, in infinite mass of

liquid, 130

in liquid bounded by
concentric spheri

cal envelope, 132

Sphere, motion of, in cyclic region, 143,

217

in viscous fluid, 524,

530, 533

Spheres, motion of two, in a liquid,

139, 205, 206

Spherical harmonics, see Harmonics.

Spherical vortex, 264

Spherical mass of liquid, gravitational

oscillations, 436

Spherical sheet of water, waves and

tides on, 314, 440

of air, vibrations of, 489

Stability of a cylindrical vortex, 250

of a jet, 457, 459

of rotating masses of liquid, 326,

594

of a water-surface, with wind, 389,

392, 449

of steady motion of a solid in a

liquid, 178, 188, 189

of the ocean, 362

ordinary and secular, 327

Standing waves, 372, 424

Stationary waves on the surface of a

current, 421

Steady motion, defined, 22

general conditions for, 262

of a solid in a liquid, 178

of a solid of revolution, 190, 196

of a viscous fluid, 519, 528, 536

Stokes theorem, 37

Stream-function, Lagrange s, 70

Stokes
, 133, 255

Stream-lines, 20

of a circular disk, 153

of a circular vortex, 258

of a cylinder, 86

with circulation, 88

of a liquid flowing past an oblique

lamina, 94

of an elliptic cylinder, 93, 99

of a sphere, 137

Stream-lines, of a sphere in viscous

fluid, 532

Stream-lines, of a vortex-pair, 80, 246

Stresses in a viscous fluid, 512

Superficial energy, 442

Surface-conditions, 8, 9, 371, 514

Surface - distributions of sources and

sinks, 65, 66, 235
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Surface disturbance of a stream, 393,

395, 401, 404, 450, 451, 455

Surfaces of discontinuity, 100

instability of, 389, 391

Surface-tension, 442

Surface-waves, 370

Symmetry, hydrokinetic, 181

Tangential stress, 1, 509

Tension, surface-, 442

Terminal velocity of sphere in viscous

fluid, 533

Tidal waves, 266

friction, 499

Tide-generating forces, 364

Tides, canal theory of, 286, 287, 289, 290

change of phase by friction, 501

equilibrium theory of, 365

of second order, 300

on open sheets of water, 301, 303,

304, 312, 314, 320

on rotating sheet of water, 331, 341

on rotating globe, 343, 348, 355, 356

retardation of spring-, 502

Torsional oscillations of a sphere, effect

of viscosity on, 563, 567

Trochoidal waves, 411, 414

Tube, flow of viscous liquid through

a, 520

Turbulent flow of a liquid, 573

Velocity-potential, 18, 40, 56

due to a vortex, 233

Vena contracta, 27, 106

Vibrations of a cylindrical jet, 457, 459

of a spherical globule, 461

of gas in spherical envelope, 483,

487, 488

Viscosity, 508

coefficients of, 512, 513

effect of, on sound-waves, 570

on vibrations of a liquid

globe, 564

on water-waves, 544, 545

Viscous fluid, problems of steady mo
tion, 519

problems of oscillatory motion, 538,

559

Viscous fluid, motion of, when inertia

can be neglected, 526, 528

Vortex, elliptic, 251

spherical, 264

Vortex-filament, 223

Vortex-line, 222

Vortex-pair, 246

Vortex-ring, 257

Vortex-sheet, 234

Vortices, in curved stratum of fluid, 253

persistence of in frictionless fluid,

224

rectilinear, 243

circular, 254

Wave-resistance, 383

Waves, effect of oil on, 552

Waves due to gravity and cohesion,

combined, 445

Waves due to inequalities in the bed

of a stream, 407

Waves, capillary, 443

Waves in uniform canal, general theory

of, 429

(triangular section), 426, 429, 432

Waves, effect of viscosity on, 544, 545

Waves, long, 271, 277, 282

in canal of variable section, 291, 294

of finite amplitude, 297

of expansion, 464

Waves of permanent type, 409, 418, 421

Waves on open sheets of water, 301,

304, 311, 312

on a spherical sheet, 314, 319

on the common surface of two fluids,

385, 446

on the common surface of two cur

rents, 388, 391, 448

Waves, Gerstner s, 412, 416

Waves produced by surface-disturbance

of a stream, 393, 395, 401, 404,

450, 451, 455

Waves, Ship-, 403

Wave, solitary, 418

Wind, effect of, on stability of a water-

surface, 389, 449

operation of, in generating waves, 551
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