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Abstract

The Swedish mathematician Gösta Mittag-Leffler (1846–1927) is well-known for founding

Acta Mathematica, the first international mathematical journal. A “post-doctoral” student

in Paris and Berlin (1873-76), Mittag-Leffler built on Karl Weierstrass’ work by proving

the Mittag-Leffler theorem, roughly: a meromorphic function is specified by its poles, their

multiplicities, and the coefficients in the principal part of its Laurent expansion.

In this thesis, I explore the evolution of the Mittag-Leffler theorem, from its initial (1876)

state to its final (1884) version. Aspects of the details of Mittag-Leffler’s work at various

stages are analyzed to demonstrate the evolution of Mittag-Leffler’s technique. A key finding

of the thesis is that Mittag-Leffler’s research on infinite sets of singular points attracted him

to Georg Cantor’s set-theoretic work. The incorporation of Cantor’s theory was controversial,

but demonstrates Mittag-Leffler’s important role in the promotion of abstract mathematics

over the more concrete mathematics of the previous era.

iii



Acknowledgments

The research behind this thesis was supported financially by a Natural Sciences and Engi-

neering Research Council of Canada (NSERC) Canada Graduate Scholarship (2005–2007).

I would like to thank my supervisor Dr. T. Archibald for all of his guidance and en-

couragement, and for helping me to find a topic that, though we stumbled upon it almost

accidentally, turned out to be so rich and interesting.

I would also like to thank the Institut Mittag-Leffler in Djursholm, Sweden, for their

assistance with the archival research during my stay there.

Regarding translations: I would like to thank Dr. T. Archibald for his translations of the

writings of Weierstrass, Cantor, etc., from the German. I am grateful to both Dr. Archibald

and K. Hegelund for their assistance with the translations of Mittag-Leffler’s early work from

the Swedish.

Finally, I would like to thank all of the individuals who supplied me with good questions

and helpful comments. In particular: Dr. Archibald, Dr. J. Barrow-Green, K. Andersen

and H. K. Sørensen, and the members of the History of Mathematical Sciences Research

Colloquium of the California Institute of Technology.

Personal thanks are extended to my family, friends, and K. Hegelund for their support.

iv



Contents

Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Weierstrass’s Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The first versions of Mittag-Leffler’s theorem . . . . . . . . . . . . . . . . . . 14

4 Contact with Cantor’s ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Mittag-Leffler’s “pre-Cantorian” Comptes Rendus publications . . . . . 26

4.1.1 First Letter: Theorem statement and proof . . . . . . . . . . 26
4.1.2 Second Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Georg Cantor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Mittag-Leffler’s Comptes Rendus publications using Cantorian termi-

nology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 The Cantor/Mittag-Leffler correspondence . . . . . . . . . . . . . . . . . . . . 49

6 The final version of Mittag-Leffler’s theorem . . . . . . . . . . . . . . . . . . . 54

7 Reception and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 64
7.1 Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.1 The reactions of Hermite and Weierstrass prior to the intro-

duction of Cantor’s set theory . . . . . . . . . . . . . . . . . 65
7.1.2 Reception of the Cantorian version . . . . . . . . . . . . . . . 67

7.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C Note for “The Final Version of Mittag-Leffler’s Theorem” . . . . . . . . 75
D Modern Statement and Proof . . . . . . . . . . . . . . . . . . . . . . . 77

v



E Table of important publications . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



List of Figures

Fig. 4.1: An example of singular points arranged in a “double series”. . . . . . . 46

Fig. 6.1: A set of singular points for a non-monogenic function. . . . . . . . . . . 61

vii



List of Tables

Table 7.1: Important publications pertaining to the Mittag-Leffler theorem, 1876

– 1877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 7.2: Important publications pertaining to the Mittag-Leffler theorem, 1878

– 1884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



Chapter 1

Introduction

Magnus Gösta Mittag-Leffler was born March 16, 1846 in Stockholm, Sweden. His childhood

education was greatly enriched by close contact with his father and frequent visits from family

friends, and this addition to his traditional schooling proved to be fruitful in developing a

multi-faceted set of talents. However, when he entered the Gymnasium in Stockholm his

teachers recognized in particular his aptitude for higher mathematics, which he studied after

training as an actuary. [Går94], pp. 73–74

His post-secondary mathematical pursuits began in 1865 when he became a student at

the University of Uppsala, where he defended his doctoral thesis on applications of the

argument principle in 1872. His subsequent appointment (1872) as a lecturer at this school

did a great deal to further his mathematical career, as the salary awarded to this position

was paid through an endowment with the attached condition that the holder must spend

three years abroad. This gave Mittag-Leffler the opportunity to connect with and learn from

many influential mathematicians of his day, and in fact his travels began in October 1873

when he left for Paris to study with Charles Hermite. He remained in Paris until the spring

of 1875, when Hermite’s glowing description of the German mathematical community (and

Karl Weierstrass in particular) resulted in Mittag-Leffler’s decision to travel to Berlin.1 In

fact, Mittag-Leffler later remarked that Hermite had encouraged the young Swede to travel
1Interestingly, though Mittag-Leffler later suggested that Hermite expressly advised him to make this

journey, his diary entries of this time make no reference to a direct suggestion on the part of Hermite
[Går94], p. 90.
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CHAPTER 1. INTRODUCTION 2

to Berlin from the very outset:

I will never forget the amazement that I experienced at the first words [with

which] he [Hermite] addressed me: “You have made a mistake, Sir, I tell you; you

would have to follow the courses of Weierstrass in Berlin. He is the master of all

of us.2 [Mit02], p. 131

Thus during 1875 Mittag-Leffler frequented Weierstrass’ lectures and was heavily influenced

by the German mathematician’s work in complex function theory, particularly the mate-

rial which was to become Weierstrass’ 1876 paper On the theory of single valued analytic

functions3. A survey of Weierstrass’ relevant mathematical work has been compiled by U.

Bottazzini (see [Bot86] and [Bot03]), but a summary follows in the next section.

Mittag-Leffler’s contact with Weierstrass’ research in complex analysis proved to be fun-

damental to his own mathematical research for the next eight years. In 1876 and 1877 he

elaborated upon Weierstrass’ 1876 factorization theorem and proved a slightly less-general

version of the now-familiar theorem associated with Mittag-Leffler’s name which states that

given a set each of poles, corresponding multiplicities, and Laurent coefficients, it is al-

ways possible to find a function which is analytic except at those poles, with the correct

multiplicities and Laurent coefficients, up to the addition of an entire function.

Prior to the first publication of the above theorem, while he was still in Berlin Mittag-

Leffler heard of an opening chair of mathematics post at Helsingfors (now Helsinki), Finland

and left for the University of Helsingfors in 1876. This occurred despite Weierstrass’ wishes

to find for him a professorial position at Berlin, a superior institution with respect to a

career in mathematical research. Mittag-Leffler remained at Helsingfors for five years and

then returned to Stockholm to become the first mathematics chair at the new university

Stockholms Högskola. He subsequently met and married the wealthy Signe af Lindfors and

upon the urging of Sophus Lie he began the organization of his Acta Mathematica, the

first truly international journal of mathematics and the first to remain independent of all

institutions [Bar02].
2“[J]e n’oublierai jamais la stupéfaction que j’éprouvai aux premiers mots qu’il m’adressa: “Vous avez fait

erreur, Monsieur, me dit-il; vous auriez du suivre les cours de Weierstrass à Berlin. C’est notre maître á
tous.”

3“Zur Theorie der eindeutigen analytischen Funktionen.”
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During these years, Mittag-Leffler attempted further generalizations of his 1876 theorem.

The first version dealt only with the case of a function having at most one essential singu-

larity, which could only occur at infinity. His mentors Weierstrass and Hermite were excited

by this result, and each provided an alternate proof in 1880. Mittag-Leffler adopted Weier-

strass’ suggestions, and in 1882 had a stream of eight publications in the Comptes Rendus de

l’Académie des Sciences of Paris between February and April. These were excerpts of letters

written from Mittag-Leffler to Hermite, and during the course of these letters the reader can

observe the steps taken by Mittag-Leffler to realize his goal of generalization to the case of

a function having an infinite number of essential singularities. During the period of time

covered by these publications, Mittag-Leffler also published a certain number of papers con-

cerning the theory of interpolation and approximation, an interest he shared with Hermite.

These publications will not be discussed in this paper; though they are, to some extent,

linked to the Mittag-Leffler theorem, the two issues are sufficiently distinct to be treated

separately. Furthermore, Mittag-Leffler’s work on interpolation and approximation does not

involve Cantor’s work on infinite sets of points, and thus highlights an entirely different set

of issues in the history of analysis. I hope to return to this work at a later date.

The Mittag-Leffler theorem is historically interesting for several reasons. As Mittag-

Leffler was a student of Weierstrass, the theorem provides insight into key issues in analysis

at that period, particularly the relationship between Weierstrass’ research and that of his

immediate successors. The evolution of the hypotheses of the Mittag-Leffler theorem is also

worthy of study; there were several variant publications of the theorem between 1876 and

1884, the majority of which were by Mittag-Leffler himself, and there is a noticeable evolution

of the ideas which is marked by changes in notation from the original Weierstrassian style and

the simplification of proofs. In particular, the later versions of Mittag-Leffler’s theorem differ

markedly from those of his initial papers. Specifically, in 1882 we see that there is a rather

abrupt appearance of Georg Cantor’s recently developed theory of transfinite sets in Mittag-

Leffler’s theorem statements and proofs, despite the generally negative reception of Cantor’s

work by the prominent mathematicians of that period. I will later discuss this reception

to provide the context in which Mittag-Leffler developed his ideas, as it also coloured the

reaction to the Swedish mathematician’s work, particularly in France.
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Mittag-Leffler published the final version of his theorem in 1884, in his newly-established

journal Acta Mathematica. This paper served as a comprehensive account of essentially all of

his work on the subject. After this publication, Mittag-Leffler’s focus turned to mathematical

organization, though he continued to publish actively. He served as the editor in chief of Acta

for 45 years, until his death on July 7, 1927 in Stockholm. During his life he received many

honours. He was an honorary member of almost every existing scientific society, including

the Cambridge Philosophical Society, the Royal Institution, the Royal Irish Academy, the

London Mathematical Society, and the Institut de France. He also received honorary degrees

from six different universities, and in 1886 was elected a Fellow of the Royal Society of

London. [Går94]

There has been considerable historical work on various aspects of Mittag-Leffler’s career

and activities. A full-length biography by A. Stubhaug, intended for a broad audience, is

currently in progress and expected to appear next year. L. Gårding is the author of a shorter

study including both biographical and technical material [Går94]. U. Bottazzini has written

about the relationship of Mittag-Leffler’s work to that of Weierstrass’ in [Bot86] and [Bot03];

he has also forthcoming work with J. Gray. In addition, J. Barrow-Green has investigated

Mittag-Leffler’s role as founder of Acta Mathematica [Bar02]. She has also described his role

in creating a prize competition in Sweden, in connection with her study of Poincaré’s work on

the three-body problem [Bar97]. Portions of Mittag-Leffler’s extensive correspondence have

also been published: the letters from Hermite to Mittag-Leffler, edited by Dugac [Her84];

the correspondence with Henri Poincaré edited by Nabonnand [Nab99], and portions of

correspondence with Cantor and Kovalevskaya. Mittag-Leffler has been mentioned in studies

of Kovalevskaya, most notably by A. Hibner Koblitz and R. Cooke, due to his role in her

career; it was due to his efforts that she received a lectureship appointment in mathematics

at the university in Stockholm, and then later a life professorship [Kra73]. I. Grattan-

Guiness has published various articles on Cantor’s work, and J. Dauben, who has published

extensively on Cantor’s work and philosophy (in particular, see [Dau79]), has written about

Mittag-Leffler’s relationship to the German mathematician. As well, the actual material

upon which this paper is based was deemed sufficiently important to be partially translated

and published in the Birkhoff/Merzbach source book in classical analysis [Bir73].
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However, the literature just mentioned does not provide a comprehensive account of the

evolution of the Mittag-Leffler theorem, nor does it focus on Mittag-Leffler’s mathematical

relationship with Cantor with respect to this theorem. The intent of this thesis is then to pro-

vide a substantially fuller picture of the development of the hypotheses of the Mittag-Leffler

theorem, and the subsequent reception and interpretation of the work, using Mittag-Leffler’s

correspondence with members of both the French and German mathematical communities

(among them Hermite, Poincaré, Cantor, Weierstrass, and Kronecker), and in doing so,

demonstrate Mittag-Leffler’s role in the promotion of abstract objects in mathematics from

the more concrete and “formula-based” mathematics of the previous era.4

4Refer to [Sø05] for a discussion of formula-based versus concept-based mathematics.



Chapter 2

Weierstrass’s Influence

In order to contextualize Mittag-Leffler’s achievements in the field of complex analysis, we

must turn to those of his mentor Weierstrass.

Karl Weierstrass (1815–1897) was born at Ostenfelde, Germany. His early education

was conducted in Münster and Paderborn, and in 1834, upon the wishes of his father, he

commenced studies in Kameralwissenschaft1 at Bonn University. He left after four years

without even attempting to obtain a degree or even pass an examination. Returning to

Münster in 1839, he studied at the local Academy to become a teacher. It was here that

he attended lectures given by Gudermann on the theory of elliptic functions; Weierstrass

was immediately transfixed, and commenced his own work on the subject, writing an essay

about it during the summer of 1840 which would only be published in full 54 years later in

his Werke. After receiving his teaching diploma he taught in a Münster Gymnasium, all the

while continuing to work on his own mathematical research. He taught at the Progymnasium

in West Prussia (this included lower classes such as gymnastics and penmanship), and then at

the Gymnasium in Braunsberg in 1848. The following year he published a work on the theory

of Abelian functions in the program of the Gymnasium. He further developed his theory and

published two articles in Crelle’s Journal (1854 and 1856) which generated a great deal of

excitement within the mathematical community. As a result, he was awarded an honorary

doctorate at Königsberg University, and in 1856 became an extraordinary professor at Berlin
1A predecessor of the modern study of public administration.

6
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University. Shortly thereafter, he was elected a member of the Berlin Academy of Science,

and in 1864 finally became a professor Ordinarius at the same institution. [Bot03], pp. 247

– 249

Weierstrass, now known as a master of rigour, did not become interested in the founda-

tions of analysis until 1859, when he first lectured on the subject. Between the early 1860s

and 1890, he developed his theories in analysis into a series of four courses of lectures which

were given in cycles [Arc]. In 1863 he taught a course on the general theory of analytic func-

tions. Interestingly, it was only at this time that Weierstrass began to think that greater

rigour was necessary in analysis. His work on this subject was published in his On the theory

of single valued analytic functions several years later, the main focus of which was complex

analysis [Bot03], pp. 250–252. Regarding Weierstrass’ theory of analysis, the following point

should be emphasized. To Weierstrass, the way to study analysis was to work with (general)

representations of functions. This should be kept in mind throughout the discussion of his

representation theorem and Mittag-Leffler’s continuation of the work.

Before turning to Weierstrass’ On the theory of single valued analytic functions, we must

introduce some of Weierstrass’ terminology. The definitions presented here are actually

taken from Mittag-Leffler’s work [Mit76], and are based upon those of Weierstrass’ lectures

[Wei88].

Definition 2.1 A function of the independent [complex] variable x has, for a finite value a,

the character of an entire function if it can be expressed by a power series of only whole and

positive powers of (x − a). If the function has, for every finite value of the variable x the

character of an entire function, we say that it is a function of entire character. [Mit76], pp.

3–4

In present-day mathematics we do not differentiate between entire functions and functions

of entire character, and use the term “entire” for functions which are analytic everywhere.

However, when Weierstrass and Mittag-Leffler worked with these definitions, an entire func-

tion was strictly a polynomial, where a function of entire character contained infinitely many

non-zero terms in its power series expansion.
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Definition 2.2 A function of the independent variable x has, for a finite value a, the char-

acter of a rational function if it can be expressed by a power series of whole and positive

powers of (x− a) and a finite number of negative powers of (x− a). If the function has, for

every finite value of the variable x the character of a rational function, we say that it is a

function of rational character. [Mit76], pp. 3–4

Hence a function is of rational character at a pole of finite order or a regular point. To be

clear, to Weierstrass and Mittag-Leffler a rational function was a quotient of two polynomials,

while a function of rational character was a quotient of two Taylor series, where the series in

the numerator could be infinite. As one further type of function will later become important,

it will be defined now in present-day terminology. The following definition is taken directly

from Rudin.

Definition 2.3 A function f(x) is meromorphic in an open set C if there is a set A ⊂ C

such that

(a) A has no limit point in C,

(b) f(x) is analytic in C \A, and

(c) f(x) has a pole at each point of A. [Rud74], p. 241

Thus a meromorphic function is analytic everywhere except at possibly isolated poles. Note

that from (a), no compact subset of C has infinitely many points of A, and so A is at most

countable.

It is important to understand that the term “meromorphic” was not used in mathematics

during the development of the Mittag-Leffler theorem. Though the present-day statement

of the theorem (refer to Appendix D) indicates that it is a meromorphic function that is

specified by its poles, their corresponding multiplicities, and the coefficients in the principal

part of its Laurent expansion, by 1882 Mittag-Leffler was actually dealing with a larger class

of functions. This will be mentioned again in Chapter 4.

With that in mind, I will work with Mittag-Leffler’s terminology in what follows.

With respect to the power series expansions themselves, Weierstrass refers to the coef-

ficients of the terms (x − a) with negative powers as the constants; of course, a is then a
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singularity (infinite point). It is interesting to note that in the pre-Cantor era of mathemat-

ics, the point at infinity was thought of as a very valid, though special, value for a function

to take. It was thought of as actually having meaning, and not just existing as a symbol.

Definition 2.4 A series
∑
an is absolutely convergent when the corresponding series

∑
|an|

is convergent. Suppose a series of functions
∑
fn(x) converges to the function f(x) in some

neighbourhood of the complex plane. We say that the convergence is uniform if, for any ε > 0

there is an N such that n > N makes |fn(x)− f(x)| < ε for every x in the neighbourhood.

To Weierstrass, the issue of uniform convergence was of utmost importance; that this form of

convergence should be distinguished from ordinary convergence was a key feature of his lec-

tures. Weierstrass, who essentially thought of functions as power series representations, saw

the key feature of uniform convergence: if a series of analytic functions converges uniformly,

the sum is then analytic. [Arc]

It is also useful to discuss briefly the concept of monogenicity. A function may be

represented by a Taylor series that converges to that function in a neighbourhood of a point

x0 of the domain. Weierstrass referred to such series representations as function elements

and denoted them by P (x|x0). Given two values x0 and x1, it may be possible to represent

the function as a set of Taylor series, or function elements, on a chain of disks at points in

between. These various representations are analytic continuations of each other (note that

running into singularities imposes size limits on the disks about each point). Within a region

where it is possible to conduct such analytic continuation without obstacles, the function

is said to be monogenic, since all of the function elements represent the same function and

have the same values.

Definition 2.5 If a function f(x) is single-valued and if the fact that it can be represented

by a power series in a neighbourhood of x0 of its domain implies that all of its elements

P (x|x′) can be derived from a single element, then f(x) is monogenic. [Wei88], p. 114

Weierstrass created power series converging to different functions in different regions of the

plane, thus showing that there is a difference between being analytic (or meromorphic) and

being monogenic.
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Weierstrass published his On the theory of single valued analytic functions in 1876, the

year after Mittag-Leffler had studied with him in Berlin. This was a study regarding the

foundations of analytic functions in which Weierstrass aimed to tackle the problem of repre-

sentation and classification of single-valued complex functions. Enrico Betti had previously

(1860) dealt with this problem to some extent, and was able to prove that entire functions

(those which are analytic everywhere) can be broken down into a product of infinitely many

factors of degree one and of exponential functions [Bot86], pp. 280–281. Weierstrass discov-

ered this result independently, but was able to further generalize it. He interested himself

in several general and directly related questions concerning the extent to which a function

is determined by its zeros. By the fundamental theorem of algebra, it is well-known that

any polynomial can be broken into linear factors, one for each zero. In this vein, Weierstrass

took the idea of factorization and asked the following question: is it possible to write a

representation of other entire functions as a product of factors in a way that reveals their

zeros? Furthermore: given an infinite sequence of constants {an} with the limit of terms

approaching infinity, can one always find a function whose zeros are given by this sequence?

These questions arose in conjunction with several examples Weierstrass presented in his

lectures. To clarify these ideas, some of these will be discussed now, the first being the

identity

cot z =
1
z

+
∞∑
n=1

[
1

z − nπ
+

1
z + nπ

]
,

originally found in Euler’s Introductio in analysin infinitorum (1748). With appropriate

convergence arguments we can rearrange the summand into

1
z − nπ

+
1
nπ

where we now sum over all the nonzero integers.

Integrating the left side, we have∫
cot zdz = log sin z;

if we also integrate the series on the right side term by term, we find∫
cot zdz = log z +

∫ z

0

∞∑
n=−∞,n6=0

[
1

z − nπ
+

1
nπ

]
dz.
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Equating the two,2

log sin z = log z +
∑[

log(z − nπ)− log(nπ) +
z

nπ

]
+ c,

and through exponentiation

sin z = kz
∏[

1− z

nπ

]
e
z
nπ (n 6= 0).

It can then be argued that k = ec = 1.

Weierstrass also described a similar kind of expansion which can be found for the recip-

rocal of the gamma function, namely

1
Γ(z)

= z

∞∏
1

(
1 +

z

n

)
e−z log n+1

n ,

which had previously been studied by both Euler and Gauss. Gauss’ 1812 paper on hyperge-

ometric series, the aim of which was to develop a representation for a large class of functions

as quotients of power series, was particularly influential on Weierstrass. That Gauss was

able to change one of these quotients into a factorization (in other words, a product expan-

sion) led Weierstrass to the natural question which followed: could this be done in general?

[Bot03], pp. 95–96, 251

Thus product expansions of the type seen above led Weierstrass to explore the question

of how to create a standard representation of this type for analytic functions. There is one

important thing to notice about the above examples. The expansions of these two different

entire functions have one important common feature: they display clearly the zeros (there

are of course no poles) but have an additional term in the form of an exponential factor.

These exponential terms are the key to making the products convergent.

Weierstrass worked with these concepts, and by defining his “prime functions”

E(z, 0) = 1− z,

E(z, p) = (1− z) exp
(
z

1
+
z2

2
+ · · ·+ zp

p

)
,

he was able to prove his famous factorization theorem which states that given the sequence

{an} and a sequence {mn} of positive integers, there exists an entire function G(z) with a
2Note that the c in the line below serves to take care of the fact that the integral is indefinite.
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zero at x = an for each n with corresponding multiplicity mn and no other zeros. As well,

if an is nonzero for every n, G(z) can be represented by the product

G(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)e z
an

+1
2( z

an )2
+...+ 1

mn ( z
an )mn

,

where g(z) is an entire function, for certain integers {mn}. It is notable that the results

were considered sufficiently important that they were translated into French by E. Picard

[Wei79]. For a modern proof, one can refer to [Ahl79].

These results were published while Mittag-Leffler was still in Berlin. Having attended

Weierstrass’ lectures during the previous year, he was very familiar with the work of the

famous mathematician and chose to elaborate upon some of his representation theorems for

entire functions. The next logical step was, of course, to try to apply these concepts to the

class of meromorphic functions. Weierstrass himself had attempted this, but had difficulty

in developing a similar generalized representation for meromorphic functions. Mittag-Leffler

was aware of this difficulty, and decided to attempt the problem himself. In fact, in a passage

from the first publication of his theorem Mittag-Leffler mentions the fact that he actually

heard Weierstrass’ lectures in Berlin and from them was led to his work on the subject:

The author of the present work [Mittag-Leffler’s [Mit76]], who had the fortune

to be in Weierstrass’ lecture audience at that time [Winter 1875], was led by

this communication [i.e. the lectures] to pose himself a problem analogous to

Weierstrass’ . . . 3 [Mit76], p. 15

Mittag-Leffler thus began with Weierstrass’ factorization theorem, a topic which Weier-

strass had also discussed in his lectures. However, where Weierstrass began with polynomials

and generalized, using the idea of factorization, to the case of entire functions, Mittag-Leffler

began with rational functions and attempted to generalize them to meromorphic functions

using the concept of partial fraction decomposition.
3“Författaren till föreliggande arbete, hvilken hade den lyckan att vid denna tidpunkt tillhöra Herr Weier-

strass åhörarekrets, föranleddes af detta meddelande att ställa sig det med det Weierstrassiska analoga
problem . . . ”
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His question was the following: Given arbitrary poles {an}, does there exist a meromor-

phic function F (z) having arbitrarily assigned principal parts (at each pole)

Gn

(
1

z − an

)
=

ν(n)∑
k=1

Cnν(n)

(z − an)k

with arbitrary poles the sequence of terms {an}? [Mit76], p. 4

Such a meromorphic function must have a sequence of poles that tends to infinity, and

the principal part Gn(z) of the Laurent series of this function about a singularity an must

be a polynomial in 1
z−an without a constant term, so that the difference F (z) − Gn(z) is

regular in an. To construct such a function (with given poles and principal parts), one must

ensure that the sum
∑
Gn(z) converges.

Thus Mittag-Leffler sought to prove the existence of such a function F (z), and succeeded

in doing so later that year.



Chapter 3

The first versions of Mittag-Leffler’s

theorem

Mittag-Leffler presented the paper containing what would later become known as the Mittag-

Leffler theorem to the Royal Swedish Academy of Science on June 7, 1876. The accompanying

article was entitled “A method to analytically represent a function of rational character,

which becomes infinite exactly at certain prescribed infinite points, whose constants are given

beforehand”1[Mit76]. As noted above, the italicized phrases indicate terminology developed

by Weierstrass. Mittag-Leffler defines these terms immediately (refer to Chapter 2) and then

poses the following question: is a function of rational character completely defined by its

singularities and their (respective) constants, or can we find more than one similar function

when the singularities and constants are given? In other words, is a function uniquely

specified by its singular points and the coefficients of its Laurent series?

Noting that if two different such functions can be found, their difference must necessarily

be an entire function, and thus possesses a power series expansion that converges to the

function everywhere, Mittag-Leffler proceeds to tackle the question.

He first supposes given both an infinite sequence

a1, a2, a3, . . . , ap, . . .

1“En metod att analytiskt framställa en funktion af rationel karakter, hvilken blir oändlig alltid och endast
uti vissa föreskrifna oändlighetspunkter, hvilkas konstanter äro påförhand angifna.”

14
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of different singular points approaching infinity and the constants in their respective principal

parts

c11 c12 c13 . . . c1λ1

c21 c22 c23 . . . c2λ2

c31 c32 c33 . . . c3λ3

. . . . . . . . . . . . . . .

cp1 cp2 cp3 . . . cpλp

. . . . . . . . . . . . . . .

Mittag-Leffler indicates that the singularities in the sequence {an} are to be ordered by

increasing distance from the origin. That is, if we fix an arbitrary positive value r, the

preceding terms in the sequence will have a modulus less than r, and the following terms

will have a modulus greater than r. If several terms happen to have an equal modulus

(and thus they fall on a circle), say r, they are ordered by tracing the circle in a particular

direction. This ordering will play an important role in Mittag-Leffler’s argument for the

construction of the sought function.

Now, in order to produce a function that is analytic everywhere except at the prescribed

poles, it is necessary that in the neighbourhood of a pole ap, the principal part at that point

cp1
(x− ap)

+
cp2

(x− ap)2
+ . . .+

cpλp
(x− ap)λp

is absolutely convergent within that neighbourhood. If this is true for every p = 1, 2, 3, . . .,

Mittag-Leffler notes that certainly the easiest way to create a function f(x) having the poles

{an} is to define it as the sum of its prescribed principal parts

f(x) =
∑
p

[
cp1

(x− ap)
+

cp2
(x− ap)2

+ . . .+
cpλp

(x− ap)λp

]
,

which can be rewritten as

f(x) =
cp1

(x− ap)
+

cp2
(x− ap)2

+ . . .+
cpλp

(x− ap)λp

+
∑
r 6=p

cr1 1

(ap − ar)
(
x−ap
ap−ar + 1

) + . . .+ crλr
1

(ap − ar)λr
(
x−ap
ap−ar + 1

)λr

 .



CHAPTER 3. THE FIRST VERSIONS OF MITTAG-LEFFLER’S THEOREM 16

However, in most cases this is unlikely to converge. It will do so, however, if the sum∑
p

(
cp1 + cp2 + . . .+ cpλp

)
is absolutely convergent, a requirement which is not necessarily satisfied by an arbitrary

choice of constants c. This is a consequence of Abel’s test2, as adapted for uniform conver-

gence. That is, if
∑

p

(
cp1 + cp2 + . . .+ cpλp

)
converges uniformly, then since 1

(ap − ar)
(
x−ap
ap−ar + 1

) +
1

(ap − ar)2
(
x−ap
ap−ar + 1

)2 + . . .+
1

(ap − ar)λr
(
x−ap
ap−ar + 1

)λr


forms a decreasing sequence (due to Mittag-Leffler’s ordering of the sequence {an}), by Abel’s

test f(x) converges uniformly as well. This uniform convergence guarantees analyticity, and

thus is f(x) the desired representation. If the sum
∑

p

(
cp1 + cp2 + . . .+ cpλp

)
does not

converge, it may be possible to construct functions gpk(x) to replace the constants c. If then∑
p

(
gp1(x) + gp2(x) + . . .+ gpλp(x)

)
is everywhere uniformly convergent, the sum of principal parts

f(x) =
∑
p

[
gp1(x)

(x− ap)
+

gp2(x)
(x− ap)2

+ . . .+
gpλp

(x− ap)λp

]
,

plus an entire function, is the general analytic representation of the sought function. It is

necessary that the series of functions gpk(x) converges uniformly, as this is what guaran-

tees that the series of differentiable functions converges to another differentiable, and hence

analytic, function.

To simplify the problem somewhat and determine the appropriate functions g(x), Mittag-

Leffler chooses to temporarily consider only sequences {an} of simple poles. In other words,

for every p, λp = 1, making the sum of principal parts equal to

f(x) =
∑
r

gr(x)
(x− ar)

.

2Consider the series a0c0 + a1c1 + . . .. If cn is a positive decreasing sequence and
∑
an converges, then∑

ancn converges [Bro08], pp. 245–247. In other words, if we multiply a convergent series by a sequence of
positive and decreasing terms, the resulting series will also be convergent. Note that for uniform convergence
of the sum

∑
ancn, the sequence

∑
an must be uniformly convergent as well.
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He then suppose further that the origin is not a singular point. Then setting

gr(x) = cr

(
x

ar

)νr
where νr is finite and whole for every r produces the desired function, provided that the sum

∑
r

cr

(
x

ar

)νr
is everywhere convergent. Mittag-Leffler states that this can always be accomplished through

the appropriate choice of νr.

An analogous but more complex argument is provided for the case in which the poles are

not required to be simple. This involves replacing the initially prescribed constants c with

functions

grq(x) = krq

(
x

ar

)νrq
.

These values k, which are defined in terms of the coefficients c by a system of linear equations,

are now used to produce convergence everywhere. At this point, only one limitation remains

to Mittag-Leffler: he has not yet allowed the origin to be a singular point of the sought

function. However, he quickly remedies this by noting that, in that case, by adding

c01

x
+
c02

x2
+ . . .+

c0λ0

xλ0

to the sum of the principal parts the desired function is produced.

In summary, we see that the theorem statement of his 1876 text is essentially that one

can always construct a meromorphic function f(x) with prescribed principal parts Gn(z) of

the Laurent expansion at an infinite sequence of prescribed poles {an} provided that the

sequence of poles approaches infinity. As well, any such function can be written as

φ(z) +
∞∑
1

(Gn(z) + Pn(z)),

where φ(z) is an entire function and {Pn(z)} are polynomials that guarantee the convergence

of the expansion.

I note for clarity, and Mittag-Leffler understood, that such a function has one essential

singular point at infinity, the accumulation point of the set of poles. Such an accumulation
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point a is necessarily an essential singularity, as the cluster of poles around a makes it

impossible to find a neighbourhood of a in which the function has a Laurent series expansion

(and hence analyticity fails in every neighbourhood of a).

One interesting point follows. Toward the end of his paper, Mittag-Leffler observes that

by restricting the sequence of singularities to only simple poles (i.e. letting λ0 = λ1 = . . . =

λr = . . . = 1), and specifying that every coefficient of each principal part be equal to 1

(i.e. letting c01 = c11 = . . . = cr1 . . . = 1), it can be seen that the Weierstrass factorization

theorem is a special case of the theorem that Mittag-Leffler has just described.

By restricting the coefficients as above, and recalling that

∑
p

[
gp1(x)

(x− ap)
+

gp2(x)
(x− ap)2

+ . . .+
gpλp

(x− ap)λp

]
is the form of the general analytic representation of a function with poles {an}, we see that

1
x

+
∑
r=1

[
1

(x− aν)

(
x

ar

)νr]
+ P (x)

is the function we seek (note that the term 1
x indicates that the origin is also a singular

point). This can be easily rewritten as

1
x

+
∑
r=1

[
1

(x− aν)
+

1
ar

(
1 +

x

ar
+
(
x

ar

)2

+ . . .+
(
x

ar

)νr−1
)]

+ P (x),

which is the logarithmic derivative of the product

x · eP (x)
∏
r=1

[
(x− ar) · e

x
ar

+ 1
2

(
x
ar

)2
+ 1

3

(
x
ar

)3
+...+ 1

νr

(
x
ar

)νr]
.

It is clear that this product is a function of entire character that disappears when x = 0

or any of the points {an}, and thus the arbitrarily specified poles have become zeros of the

logarithmic antiderivative. As well, by looking at the product expansion we can see that two

functions of entire character which have the same zeros and corresponding orders can differ

only by a factor of the form eQ(x) where Q(x) is a power series in x. This fact follows from

Mittag-Leffler’s observation that two such representations must differ by an entire function.

Thus the product expansion gives the general analytic expression of a function of entire

character whose zeros and their respective orders are prescribed arbitrarily (provided that
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in any finite neighbourhood there is at most a finite number of zeros). Mittag-Leffler was to

stress the importance of this relationship between his work and the Weierstrass factorization

theorem in his later publications on this subject as well.

Over the next year Mittag-Leffler produced a handful of papers in Swedish containing

several variations on the theme of his 1876 paper. Each paper concerns a progressively more

complicated sequence of essential singularities than the previous: [Mit76], as just mentioned,

deals with the case of one essential singularity at infinity; [Mit77b] with the case of a finite

number of essential singularities; and [Mit77a] with one essential singularity which has been

moved from infinity to a finite value. This step-by-step progression parallels Weierstrass’

procedure for generalization in his [Wei76], in which Weierstrass had asked precisely the

analogous questions, namely: how is a function determined by its sequence of zeros? Then,

given a sequence {an} increasing in absolute value to infinity, does there exist a function

that has this sequence as its zeros? [Wei79], p. 116

Under Mittag-Leffler’s hypotheses, this kind of progression leads to the natural question

of the representation of functions with an infinite set of essential singularities. Mittag-

Leffler’s interest in Cantor’s work arose from the desire to answer this question. Cantor,

whose work distinguished different kinds of infinite point sets, would turn out to provide

exactly the help and information that Mittag-Leffler needed.

It may seem unusual that Mittag-Leffler published these exciting results in Swedish, and

not in the French or German that would have made his work accessible to a much wider

audience. However, though Mittag-Leffler had studied in both France and Germany, it is

reasonable to believe that his skills in those languages would have been weaker than his

abilities in Swedish. More interesting, however, is his eagerness to leave Finland, where he

was lecturing, to return to the Stockholm area. On June 8, 1878, Mittag-Leffler wrote to

Weierstrass:

. . . I have over 50 students and I lecture on everything alone. Besides that these

damned “Fennomanen” [Finnish nationalists] do everything possible to make my

life quite sour. They value only things that have a relationship to Finnish na-

tionality. Such a cosmopolitan science as mathematics naturally can’t enjoy any

sympathy from them, and Weierstrassian mathematics seems to be especially
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unsympathetic to them. All this doesn’t bother me very much otherwise, but

the worst is that these constant struggles take up so much time.3 [Mita]

For this reason, Mittag-Leffler’s choice of Swedish may also have served to help him become

noticed and gain a greater reputation amongst Stockholm’s mathematicians in order to find

a professorial position in the area.

The next publication of Mittag-Leffler’s work was a compilation of results from 1876 and

1877. Hermite, with whom Mittag-Leffler had been corresponding since his time in Paris as

a student, wrote to Mittag-Leffler on September 29, 1879, with the following request:

The French geometers and especially Misters Briot and Bouquet will be very

interested in your analytic discovery, likewise I allow myself to ask you, for all

those who would be stopped by the obstacle of Swedish, to be so kind as to give,

to the Bulletin of Mr. Darboux, a description of your work that we can read and

understand.4 [Her84], p. 58

Mittag-Leffler complied with this request, and sent an outline of his work (this did not

include proofs) in a letter to Hermite, which was published in the Bulletin des Sciences

Mathématiques in 1879, and entitled Extract of a letter to Mr. Hermite5 [Mit79]. The letter

appears to be the outline of the main results of a German paper6 sent to Weierstrass. This

German memoir never appeared, due to the fact that Weierstrass felt it was not wise to

publish Mittag-Leffler’s results in their present form; this will be discussed in Chapter 4.

The letter to Hermite contains four theorems. The first states that given sequences of

values {xν} and {mν}, where {xν} approaches infinity and mν is whole and positive for all
3“Ich habe über 50 Schüler und ich muss allein alles vortragen. Daneben machen diese verfluchte “Fenno-

manen” alles mögliches um mir das Leben recht sauer zu machen. Sie verehren nur das was auf die Finnische
Nationalität eine Beziehung hat. Eine so kosmopolitanische Wissenschaft wie die Mathematik kann bei Ih-
nen natürlicherweise keine Sympathien geniessen und die Weierstrassische Mathematik scheint Ihnen ganz
special unsympathetisch zu sein. Dies alle kümmert mich sonst sehr wenig, aber das schlimme ist dass diese
ewigen Streiten so viel Zeit nehmen.”

4“Les géomètres français et surtout MM. Briot et Bouquet s’intéresseront vivement à votre découverte
analytique, aussi je me permets de vous demander pour tous ceux qu’arrêtera l’obstacle de suédois de vouloir
bien donner, au Bulletin de Mr. Darboux, un exposé de vos travaux que nous puissions lire et comprendre.”

5“Extrait d’une lettre à M. Hermite.”
6Apparently titled “Arithmetische Darstellung eindeutiger analytischer Functionen einer Veränderlichen”

[Mit79].
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values ν, when given the expression

F (x) =
∞∑
ν=1

(x− xν)−mνGmν−1(x− xν)
(
x

xν

)µν
. . . ,

it is always possible to determine the whole positive numbers {µν} and the entire and rational

functions {Gmν−1} in such a way that the function F (x) is analytic in x, has exactly the

poles {xν} and one essential singularity at infinity. Adding an entire function H(x) to

the above representation of F (x) thus gives the general representation for such a function.

Furthermore, when given the coefficients of the principal part, within the neighbourhood of

the pole xν F (x) can be expressed as a Laurent series. Notice that the above equation can

thus be written as

F (x) =
∞∑
ν=1

(x− xν)−mνGmν−1(x− xν)
(
x

xν

)µν
. . .+ Π(x)H(x),

where H(x) is an arbitrary entire function and Π(x) = 1 for all x.

This is identical to Mittag-Leffler’s 1876 result, though it is phrased in a slightly different

manner. Once again, the terms
(
x
xν

)µν
are used to ensure convergence.

The second theorem of [Mit79] states that given sequences of values {xν}, {mν}, and

{nν}, where {xν} approaches infinity and mν and nν are whole and positive for all values ν,

when given the expression

F (x) =
∞∑
ν=1

(x− xν)−(mνnν)Gmν+nν−1(x− xν)
(
x

xν

)µν
. . .+ Π(x)H(x),

where H(x) is a known but arbitrary entire function, it is always possible to determine

the entire function Π(x), the whole and positive numbers {µν}, and the entire and rational

expressions {Gmν+nν−1} (of degree mν + nν − 1) such that F (x) is entire in the variable x,

and has exactly the poles {xν} and one essential singularity at infinity. Furthermore, when

given the coefficients of the principal part, within the neighbourhood of the pole xν F (x)

can be expressed as a Laurent series.

Thus the second theorem is very similar to the first, but is slightly more general as Π(x)
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represents an arbitrary entire function. Mittag-Leffler notes that, according to the Weier-

strass Factorization Theorem, the function Π(x) is determined according to the equation

Π(x) =
∞∏
ν=1

(1− x

xν

)e xxν +1
2( x

xν )2
+...+ 1

λν ( x
xν )λν


nν+1

.

The third theorem is also similar: if given an infinite sequence of quantities {xn} ap-

proaching infinity, and sequences {mν} and {nν} of whole and positive numbers, it is possible

to represent arithmetically a function of x that is uniform and entire, and whose zeros are ex-

actly the terms of the sequence {xn}. No explicit representation is given, but Mittag-Leffler

comments that such a function can be written as a power series of the form

cν,pν (x− xν)pν + cν,pν+1(x− xν)pν+1 + . . .+ cν,pν+nν (x− xν)pν+nν+1P (x− xν)

in the neighbourhood of any xn, provided the appropriate coefficients are also given. Thus

in the case of the third theorem, Mittag-Leffler is looking to specify the zeros of a function

and not its poles.

The fourth theorem in [Mit79] is somewhat different from the others. It states that when

given sequences of values {xν} which approaches infinity, whole and positive numbers {pν}

and {qν} such that for each ν at least one of the values pν , qν will always equal zero, and

whole and positive numbers {nν}, it is always possible to determine two entire functions

which will never equal zero at the same time and such that their quotient is a function of x.

This quotient will be uniform (single-valued), and its poles and/or zeros will be determined

exactly by the sequence {xν} with the only essential singularity at infinity. Furthermore,

when given the coefficients of the principal part, within the neighbourhood of the pole xν the

quotient can be expressed as having a function of entire character in both the numerator and

the denominator. Note that in today’s language this quotient is a meromorphic function.

Mittag-Leffler concludes this paper with a passage that is key in foreshadowing his further

work:

I want to give a general arithmetic representation of uniform functions, which

have a multiple infinity of essential singular points.7 [Mit79], p. 275
7“Je veux donner une représentation arithmétique générale de fonctions uniformes, qui aient une infinité

multiple de points singuliers essentiels.”
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Mittag-Leffler’s use of the phrase “multiple infinity” is somewhat vague, but it is clear

that he is referring to an infinite collection of points; the very fact that this is initially ill-

defined demonstrates how much clarity Cantor’s language would later bring to his theorem.

Despite the words, however, the meaning of the statement is unproblematic, and thus by

1879 Mittag-Leffler aimed to generalize his theorem in such a way that the function f(x) may

possess an infinite number of essential singularities. It would take three years for Mittag-

Leffler to finally express in print that he had further generalized his theorem, though he

would still fall short of his goal of generalization to the case of a function having infinitely

many essential singularities. It was during this period that Mittag-Leffler made serious

contact with Cantor’s ideas.



Chapter 4

Contact with Cantor’s ideas

The next publication of a version of Mittag-Leffler’s theorem occurred in 1880, when Weier-

strass produced a version which improved both its notation and proof [Wei80a]. He explained

to Mittag-Leffler in a letter dated June 7, 1880, his reason for these revisions:

I am so impressed by the importance of your theorem, that on a closer ex-

amination I can’t conceal that the establishment of the theorem must be made

significantly shorter and simpler if it is to find its place in the elements of anal-

ysis, where it belongs [emphasis mine]. The large apparatus of formulas that

you apply would, I fear, scare off many readers; in any case it makes it harder to

penetrate into the essence of the matter. I therefore believed that it did not lie in

your interest for the memoir to be published in the present form, and wanted to

suggest to you that you give me permission to present the theorems in question

in a free treatment to our Academy, the more so since they are already published

and your property rights to them are in any case secured.1 [Wei]
1“So sehr ich aber von der Wichtigkeit Ihres Satzes durchdrungen bin, so konnte ich mir doch bei genauere

Durchsicht Ihrer Abhandlung nicht verkehlen, dass die Begründung des Satzes erheblich kürzer und einfacher
gestaltet werden müsse, wenn derselbe seinen Platz in den Elementen der Analysis, wohin er gehört, finden
soll. Der grosse Apparat von Formeln, den Sie anwenden, würde manchen Leser, wie ich fürchte, abschrecken;
jedenfalls erschwert er das Eindringen in das Wesen der Sache. Ich habe deshalb geglaubt, dass es nicht in
Ihrem Interesse liege, wenn die Abhandlung in der vorliegenden Form veröffentlicht würde, und wollte Ihnen
vorschlagen, dass Sie mir die Erlaubniss geben möchten, die in Rede stehenden Sätze in freien Bearbeitung
unserer Akademie vorzulegen, zumal da sie bereits publicirt sind und Ihr Eigenthumsrecht daran jedenfalls
gesichert ist.”

24
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Weierstrass published the new and concise version of this under the title On a function-

theoretic theorem of Mr. Mittag-Leffler2 which appeared in theMonatsbericht der Königlichen

Akademie der Wissenschaften zu Berlin [Wei80a]. Weierstrass’ proof method was immedi-

ately adopted by Mittag-Leffler and actually remains the basis of the treatment in Ahlfors

[Ahl79].

The news of Weierstrass’ treatment of Mittag-Leffler’s work spread, and on December

24, 1880, Hermite mentioned in a letter to Mittag-Leffler the following:

It is from Mr. Picard that I learned, before having the translation of the most

recent work of Mr. Weierstrass (which we are still awaiting), in how profound

and simple a way the great geometer proves the important theorem that will

henceforth bear your name: that the sum of rational functions which correspond

to the infinitely many poles of a single-valued function, forms a convergent series.3

[Her84], p. 86

In his next letter to Mittag-Leffler, dated the following day, Hermite provided a variant

proof of the theorem and presented an application to finding series expansions for the beta-

function, an important tool in applied mathematics. However, Mittag-Leffler continued to

use Weierstrass’s method,4 which will be outlined in Section 4.1 as it was used in Mittag-

Leffler’s subsequent publications of his theorem, the first of which occurred two years later

in the Comptes Rendus de l’Académie des Sciences of Paris.

At around this point in time, Mittag-Leffler appears to have made serious contact with

Cantor’s work for the first time. This is indicated by a letter from Hermite written on May

9, 1881, which closes with the following request:

Could you satisfy my great curiosity on the subject of infinites of a new kind
2“Über einen functionentheoretischen Satz des Herrn Mittag-Leffler.”
3“C’est par Mr Picard que j’ai appris, avant d’avoir la traduction du dernier travail de Mr Weierstrass,

qui se fait attendre, de quelle manière si profonde et si simple le grand géomètre démontre l’importante
proposition, qui désormais portera votre nom, que la somme des fractions rationelles, correspondant aux
pôles en nombre infini d’une fonction uniforme, forme une série convergente.”

4In fact, several years later, in a letter written on September 2, 1884, Hermite himself even admitted that
Weierstrass’ argument was preferable to his version: “. . . the principle of Weierstrass, for the demonstration of
your theorem, is infinitely superior to my process . . . ”. (“. . . le principe de Weierstrass, pour le démonstration
de votre théorème, est infiniment supérieur à mon procédé . . . ”) [Her85], p. 93.
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considered by Mr. Cantor in the theory of functions?5 [Her84], p. 122

Mittag-Leffler answered on June 22 of that year that as soon as he had further studied

Cantor’s work he would report on it to Hermite [Her84], p. 250. Thus it seems as though

Cantor’s work on this subject was initially met with curiosity and interest from Hermite.

This also indicates that by 1881, Mittag-Leffler had become aware of Cantor’s work, and if

he had not yet begun to study it he intended to do so.

Hermite’s letter of May 9 concluded with a note stating that he [Hermite] had already

begun to teach Mittag-Leffler’s theorem in the Sorbonne, and that it would begin to appear

in examinations. This is a clear demonstration of the importance of Mittag-Leffler’s work,

and the excitement with which it was greeted by his peers and mentors.

4.1 Mittag-Leffler’s “pre-Cantorian” Comptes Rendus publica-

tions

Between February and April of 1882, Hermite submitted to the Comptes Rendus de l’Académie

des Sciences eight excerpts of letters written to him by Mittag-Leffler, each one entitled On

the theory of uniform functions of one variable. Extract of a letter addressed to Mr. Her-

mite6 [Mit82b]. This method of announcing and detailing mathematical or scientific results

in a letter written to a member (Hermite was one) was the standard way for non-members

of the Académie to publish announcements of their research in the Comptes Rendus [Arc02],

p. 135.

The first of these letters was published on February 13, 1882, and it serves to recapitulate

the breakdown of Mittag-Leffler’s work between 1876 and 1877.

4.1.1 First Letter: Theorem statement and proof

The proof sketched in this article differs from that found in Mittag-Leffler’s earlier work,

as Weierstrass’ letter of 1880 provided a more elegant version which Mittag-Leffler adopted
5“. . . pourriez vous satisfaire ma vive curiosité au sujet des infinis d’un genre nouveau considérés par Mr

Cantor dans la théorie des fonctions?”
6“Sur la théorie des fonctions uniformes d’une variable. Extrait d’une lettre adressée à M. Hermite.”
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thereafter and began to use in his lessons at the University of Helsingfors. Curiously, however,

he claims to have begun his teachings of “that same method” (“cette même méthode”) at

the beginning of 1879 [Mit82b], p. 415. This is puzzling, as he could not have learned

of Weierstrass’ results prior to June 7, 1880. It seems unlikely that Mittag-Leffler would

intentionally make an erroneous statement in a letter he knew would be widely read, and

thus it is not entirely clear which method he claims to have been teaching.

The statement of the theorem itself, however, is unproblematic, and follows:

If given an infinite sequence of distinct complex numbers a1, a2, a3, . . . approaching in-

finity and an infinite sequence of entire rational or transcendental functions

G1(γ) = c
(1)
1 γ + c

(1)
2 γ2 + c

(1)
3 γ3 + . . . ,

G2(γ) = c
(2)
1 γ + c

(2)
2 γ2 + c

(2)
3 γ3 + . . . ,

...

Gν(γ) = c
(ν)
1 γ + c

(ν)
2 γ2 + c

(ν)
3 γ3 + . . .

that vanish when γ = 0, it is always possible to find an analytic function F (x) such that:

1. its only singular points are the terms a1, a2, a3, . . ., and

2. for every fixed value of ν, the difference

F (x)−Gν
(

1
x− aν

)
is finite at x = aν such that in the neighbourhood of x = aν F (x) may be expressed

under the form

Gν

(
1

x− aν

)
+ P (x− aν).

To be clear, Mittag-Leffler intends the sequence {aν} to represent the singularities (infinitely

many poles and one essential singularity at infinity) of such a function F (x), making the

function

Gν

(
1

x− aν

)
the principal part of F at aν . The function P (x−aν) is then a power series in (x−aν); this,

combined with the function Gν , completes the Laurent series at the point aν .
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Mittag-Leffler outlines the construction of such a function in the following way. To

begin, we take arbitrarily an infinite sequence of positive numbers {εi} having a finite sum.

This series {εi} will actually be used as a comparison series in what we would now call the

Weierstrass M-test for uniform convergence. This was taught by Weierstrass in his lectures,

which is doubtless where Mittag-Leffler learned of the technique. We take also another

number ε < 1. For brevity, we consider here only the case aν 6= 0 for all indices ν. In this

case, since

Gν

(
1

x− aν

)
is analytic except at x = aν it can be expanded in a Taylor series of the form

∞∑
µ=0

A(ν)
µ xµ

about the origin (in fact, it’s already written as a Taylor series) inside its radius of conver-

gence |x| < |aν |. Because Gν is analytic everywhere except at the specified poles, its Taylor

series about x = 0 for

Gν

(
1

x− aν

)
converges for all |x| < |aν |, and thus it is possible to find a whole number mν large enough

that ∣∣∣∣∣
∞∑

µ=mν

A(ν)
µ xµ

∣∣∣∣∣ < εν

when |x| < ε|aν |. We know that this is possible, because this convergence indicates that

the sum of the tail end of the series must approach zero, and so we can make it as small

as we want. This is the argument provided by Mittag-Leffler. He later received, however,

a communication from H. A. Schwarz in Göttingen indicating that the proof needed to

be modified because the assumption that the same ε would always work was incorrect.

Mittag-Leffler then altered his original proof to deal with this small problem. Mittag-Leffler

published Schwarz’ correction in the August 14, 1882 Comptes Rendus [Mit82c].

After finding such a number mν , we set

Fν(x) = Gν

(
1

x− aν

)
−
mν−1∑
µ=0

A(ν)
µ xµ,
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thus making Fν(x) equal to the tail end of the Taylor series, which we know to have a finite

sum.Then

F (x) =
∞∑
ν=1

Fν(x),

which converges uniformly because it is less than the sum of all εν (a finite value), gives us

a function having the poles in the sequence {aν}. It is because of this uniform convergence

that the functions Fν are analytic, and thus F (x) is also analytic except at the specified

singular points. The result is that in the neighbourhood of each aν , F (x) has a Laurent

expansion allowing it to be written in the form

Gν

(
1

x− aν

)
+ P (x− aν)

(the principal part plus an entire function expressed as a Taylor series).

This first publication in the Parisian Comptes Rendus indicates that it is possible to

construct a function with a specified set of (infinitely many) poles and one essential sin-

gularity at infinity, having principal parts (rational or transcendental entire functions) with

specified coefficients. The content itself differs little from the first theorem of Mittag-Leffler’s

1879 Bulletin des Sciences Mathématiques publication, though the newer article contains the

sketch of a proof and is somewhat more generalized than the earlier writings as the terms

in the infinite sequence of entire functions G may now be transcendental as well as rational;

Mittag-Leffler himself comments that if one restricts the functions Gν to only those which

are rational and entire, the two results are identical. However, the proof of this 1882 version

is noticeably different from Mittag-Leffler’s earlier versions; it was thanks to Weierstrass

that by the time the Mittag-Leffler theorem was published in the Comptes Rendus its proof

had been pared down, making it into a clear and concise result. It should also be noted that

Mittag-Leffler has not yet dealt with the construction of a function having poles with more

than one accumulation point, or one shifted from infinity; in fact, there was just not room

to do so in the Comptes Rendus, which had a three-page article limit. These would have to

wait until later articles which deal with exactly those cases.
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4.1.2 Second Letter

The second letter in the series of eight was published the following week (February 20,

1882), and addresses the converse problem: given a known function, is it always possible to

express it as a series of the type Mittag-Leffler’s theorem prescribed? This is in parallel with

what Weierstrass did in 1876, as mentioned earlier. Hermite found this result particularly

interesting, and wrote to Mittag-Leffler on February 14, 1882, to say:

I am extremely excited by your announcement that you can, in a large number

of cases, obtain the fractions [principal parts] G(x), and deduce the proposed

function f(x) . . . 7 [Her84], p. 143

The reader will soon see that obtaining the actual representation of a function is in

general more difficult than actually proving theorem of its existence. I will provide some

detail in order to demonstrate the flavour of Mittag-Leffler’s methods, but I will not delve

into specific applications.

To obtain a representation for a given function, Mittag-Leffler begins by supposing the

existence of a function of the type considered in his last letter, namely one of the form

F (x) =
∞∑
ν=1

Fν(x) +G(x),

where G(x) is entire and rational or transcendental.8 Notice that the function F (x) con-

sidered in the previous letter was simply of the form F (x) =
∑∞

ν=1 Fν(x); however, as an

entire function will have no poles except possibly one at infinity, this function F (x) (with

the added entire function G(x)) will possess exactly the same poles as that of the previous

letter.

Now, when F (x) is known, the problem of expressing it as a series of type
∑∞

ν=1 Fν(x) +

G(x) amounts to finding the natural numbers mν (one for each aν) such that the series∑∞
ν=1 Fν(x) is uniformly convergent (or at the very least, to show that these mν exist), as

well as determining G(x). Mittag-Leffler aims to develop a method for solving this problem
7“Vous m’avez extrèmement intéressé en m’annonçant que vous pouvez dans un grand nombre de cas

obtenir les fractions G(x), en les déduisant de la fonction proposée f(x). . . ”
8To be clear, when Mittag-Leffler uses the term entire rational function, he is referring strictly to a

polynomial. When he uses the term entire transcendental function, he is indicating that the Taylor series
expansion of said function has an infinite number of terms, such as that of the function ex.
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in a very general case, though it will become clear that this method will not work for every

such function F (x).

To begin, Mittag-Leffler considers the (positively-oriented) simply connected contour S,

which contains the origin, the singular points a1, a2, . . . , an of the known function F , and

the nonzero complex number x which is not a singular point. His aim, at this point, is to

construct a function having the same poles as F (x), but also having poles at the origin and

the specified point x considered above, all of which are included in the contour S. This

function is
F (z)
z − x

(x
z

)m
.

Mittag-Leffler now applies a standard method for the calculation of contour integrals in

regions containing several poles to the function he has just created, in order to split the

integral into contours which each contain exactly one of the singular points a1, a2, . . . , an,

0, and x. We now have∫
S

F (z)
z − x

(x
z

)m
dz =

∫
(x)

F (z)
z − x

(x
z

)m
dz +

∫
(0)

F (z)
z − x

(x
z

)m
dz +

n∑
ν=1

∫
(aν)

F (z)
z − x

(x
z

)m
dz,

where the notation (a) indicates the simply connected contour containing only the singular

point a. If the origin happens to belong to the set of poles a1, a2, . . . , an of F (z) it is to be

considered separately and not taken under the summation sign. By multiplying each term

by 1
2πi , the above can be rewritten as

1
2πi

∫
(x)

F (z)
z − x

(x
z

)m
dz =

− 1
2πi

∫
(0)

F (z)
z − x

(x
z

)m
dz −

n∑
ν=1

1
2πi

∫
(aν)

F (z)
z − x

(x
z

)m
dz +

1
2πi

∫
S

F (z)
z − x

(x
z

)m
dz.

Mittag-Leffler’s next step is to apply the Cauchy integral formula9 to the function

F (z)
z − x

(x
z

)m
,

9Let f be analytic everywhere within and on a simple closed contour C, taken in the positive sense. If z0
is any point interior to C, then

f(z0) =
1

2πi

∫
C

f(z)dz

z − z0
.

[Bro96], p. 123
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since x is obviously a point interior to the curve around x. We then have, when we evaluate

the function at the point z = x,

F (x) = F (x)
(x
x

)m
=

1
2πi

∫
(x)

F (z)
z − x

(x
z

)m
dz

= − 1
2πi

∫
(0)

F (z)
z − x

(x
z

)m
dz︸ ︷︷ ︸

(A)

−
n∑
ν=1

1
2πi

∫
(aν)

F (z)
z − x

(x
z

)m
dz︸ ︷︷ ︸

(B)

+
1

2πi

∫
S

F (z)
z − x

(x
z

)m
dz.

We have now isolated the function F (x). Determining the Mittag-Leffler series for F (x)

then amounts to calculating the parts labeled (A) and (B). Notice now that the contour in

(A) contains exactly one singular point of the function F (z)
z−x

(
x
z

)m, and thus by the Cauchy

residue theorem10 calculating (A) is equivalent to determining the residue at the point z = 0.

Similarly, calculating (B) is equivalent to determining the sum of residues at the points a1,

a2, . . . , an.

The calculations of each residue are not particularly complicated. To determine (A), the

residue

− 1
2πi

∫
(0)

F (z)
z − x

(x
z

)m
dz,

in the neighbourhood of zero, Mittag-Leffler writes F (z) as its Taylor series or Laurent

series, depending on whether or not zero is actually an element of the set a1, a2, . . . , an. For

instance, if we suppose that z = 0 is not a singular point of the function F (z), then when z
10Let C be a positively oriented simple closed contour. If a function f is analytic inside and on C except

for a finite number of singular points zk (k = 1, 2, . . . , n) inside C, then∫
C

f(z)dz = 2πi
n∑
k=1

Resz=zkf(z).

[Bro96], p. 183
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is close to zero, by using the Taylor series for F (z) we can expand our function F (z)
z−x

(
x
z

)m as

− F (z)
z − x

(x
z

)m
=

1
x

[
1

1− z
x

](x
z

)m
F (z)

=
1
x

[
1 +

( z
x

)
+
( z
x

)2
+ . . .

](x
z

)m
F (z)

=
1
x

[
1 +

( z
x

)
+
( z
x

)2
+ . . .

](x
z

)m [
F (0) + F ′(0)z +

F ′′(0)z2

2!
+ . . .

]
.

It is then easy to find the coefficient of the term 1
z−0 . By expanding the right side of the

above equation, we note that the terms containing 1
z are

1
x

(x
z

)
F (0) +

1
x

(x
z

)2
F ′(0)z +

1
x

(x
z

)3
F ′′(0)

z2

2!
+ . . .+

1
x

(x
z

)m
F (m−1)(0)

zm−1

(m− 1)!

and thus

− 1
2πi

∫
(0)

F (z)
z − x

(x
z

)m
dz = F (0) + F ′(0)x+ F ′′(0)

x2

2!
+ . . .+ F (m−1)(0)

xm−1

(m− 1)!

which we will abbreviate by the function G1(x).

On the other hand, if z = 0 is contained in a1, a2, . . . , an, the steps to calculating the

residue are almost identical, with the Taylor series being replaced by a Laurent expansion.

Mittag-Leffler now needs to determine each residue of (B). He begins by considering the

general residue at the point z = aν , namely

− 1
2πi

∫
(aν)

F (z)
z − x

(x
z

)m
dz.

He rewrites it as

− 1
2πi

∫
(aν)

F (z)
z − x

(x
z

)m
dz =

− 1
2πi

∫
(aν)

F (z)
z − x

dz︸ ︷︷ ︸
(C)

+
m−1∑
µ=0

1
2πi

1
aν

(
x

aν

)µ ∫
(aν)

(
z

aν

)−(µ+1)

F (z)dz︸ ︷︷ ︸
(D)

by replacing the geometric series
m−1∑
µ=0

(x
z

)µ
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in (D) by its sum
1−

(
x
z

)m
1−

(
x
z

) ,
and in this way splits (B) into two parts, (C) and (D), which he then proceeds to calculate.

To calculate (C), Mittag-Leffler rewrites F (z)
z−x as

F (z)
z − x

=
(
− 1
x− aν

)
F (z)

1− z−aν
x−aν

.

Then, close to the pole aν it is possible to replace F (z) by its Laurent series

F (z) = Gν

(
1

z − aν

)
+ Pν(z − aν)

and to replace the sum 1
1− z−aν

x−aν
by its geometric series

∑∞
n=0

(
z−aν
x−aν

)n
. As Pν(z−aν) is a Tay-

lor series in z−aν , the coefficient of the term 1
z−aν indicates that the residue − 1

2πi

∫
(aν)

F (z)
z−x dz

is thus equal to the function Gν
(

1
x−aν

)
, which is the principal part at aν .

The calculation of the residues

m−1∑
µ=0

1
2πi

1
aν

(
x

aν

)µ ∫
(aν)

(
z

aν

)−(µ+1)

F (z)dz

of (D) still remains. Two steps are required to accomplish this. For the first, Mittag-Leffler

uses the rather clever trick of translating a binomial series. That is, letting x = u − 1 the

series (1 + x)k becomes (u)k = 1 + k(u− 1) + k(k−1)
2! + . . .. Mittag-Leffler uses this to write(

z

aν

)−(µ+1)

F (z) =
[
1 +

(
z

aν
− 1
)]−(µ+1)

using its binomial expansion. Then

− 1
aν

(
z

aν

)−(µ+1)

= − 1
aν

[
1−

(
µ+ 1

1!

)(
z − aν
aν

)
+
(

(µ+ 1)(µ+ 2)
2!

)(
z − aν
aν

)2

− . . .

]

×
[
Gν

(
1

z − aν

)
+ Pν(z − aν)

]
,

and thus

− 1
2πi

∫
(aν)

(
z

aν

)−(µ+1)

F (z)dz = − c1
aν

+
c2(µ+ 1)

1!a2
ν

− c−3(µ+ 1)(µ+ 2)
2!a3

ν

+ . . . .
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Mittag-Leffler then sums over all the points aµ to get

m−1∑
µ=0

1
2πi

1
aν

(
x

aν

)µ ∫
(aν)

(
z

aν

)−(µ+1)

F (z)dz =
m−1∑
µ=0

(
x

aν

)µ
×

[
− c1
aν

+
c2(µ+ 1)

1!a2
ν

− c−3(µ+ 1)(µ+ 2)
2!a3

ν

+ . . .

]
= −

m−1∑
µ=0

A(ν)
µ

(
x

aν

)µ
,

and thus (D) = −
∑m−1

µ=0 A
(ν)
µ

(
x
aν

)µ
. Putting this together with (C), we see that a general

residue of (B) is equal to

Gν

(
1

x− aν

)
−
m−1∑
µ=0

A(ν)
µ

(
x

aν

)µ
.

Letting then mν = m, and summing all residues of (B), it is clear that

(B) =
n∑
ν=1

Fν(x).

Mittag-Leffler was thus able to show that

F (x) = − 1
2πi

∫
(0)

F (z)
z − x

(x
z

)m
dz −

n∑
ν=1

1
2πi

∫
(aν)

+
1

2πi

∫
S

F (z)
z − x

(x
z

)m
dz

can be expressed in the form

F (x) = G(x) +
n∑
ν=1

Fν(x) +
1

2πi

∫
S

F (z)
z − x

(x
z

)m
dz

where G(x) is is entire, and rational or transcendent, which is the result Mittag-Leffler

sought.11 Evidently Mittag-Leffler’s letter to Hermite containing these results exceeded the

page limit of Comptes Rendus publications. Hermite wrote to him on February 23, 1882, to

say that he was forced to suppress 22 lines [Her84], p. 149.

One important thing to note at this point is that using this argument Mittag-Leffler has

prevented himself from considering functions F (x) having infinitely many singular points

due to his use of the Cauchy residue theorem, which allows only a finite number of singular
11It is interesting to note that in his Swedish publications, Mittag-Leffler used the modern notation x! to

represent x(x − 1)(x − 2) · · · (2)(1). However, in a letter of February 23, 1882, Hermite advised a switch to
the notation familiar to the French, namely |x , for works to be published in the French Comptes Rendus.
This is true also for the notation |x|; the French represented this by mod.x. [Her84], p. 149
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points a1, a2, . . . , an within a simply connected contour S. Mittag-Leffler has also only

dealt with one essential singularity, at infinity. However, we know that he certainly wants

to deal with more; he had explicitly mentioned this in his 1879 publication in the Bulletin

des Sciences Mathématiques.

As well, it can be seen that the method provided here will not work for every function

F (x), as it may not be possible to evaluate the integral in the last term of the above

expression. However, the fourth letter in this series presents a very nice example of an

appropriate function, namely f(x) = π cot(πx), a known expansion mentioned earlier. The

third letter also deals with applications of Mittag-Leffler’s theorem to interpolation and

approximation, a shared interest of Mittag-Leffler and Hermite [Mit82b]. This subject will

not be dealt with here.

To this point, Mittag-Leffler’s theorem has been entirely based upon Weierstrass’ foun-

dations and concepts of analysis — Mittag-Leffler is even working with a proof developed by

Weierstrass himself. However, Mittag-Leffler’s next publications make use of the concepts

of another important mathematician of that time.

4.2 Georg Cantor

Georg Cantor (1845–1918) was born St. Petersburg, Russia, but emigrated to Germany

with his family when he was still a child. He attended the Gymnasium in Wiesbaden, but

did not develop an interest in mathematics until studying at the Grossherzoglich-Hessische

Realschule in Darmstadt. His university education commenced in 1862 in Zurich, but his

father’s death in the following year led him back to Germany. Cantor then began university

studies in Berlin under the illustrious Weierstrass, from whom he received a strong and

precise foundation of analysis. [Mes71], p. 53

As a student, Cantor became a member of the Berlin Mathematical Society, and achieved

the status of president from 1864 until 1865. In 1869 he began to teach at the University of

Halle. Shortly thereafter, he was awarded a position as associate professor, and became a full

professor in 1879, a position which he held until his death. Cantor married Vally Guttmann

1874, and they had five children together. With such a large family, it was fortunate that
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Cantor had inherited money from his late father; on the sole income from his professorial

position at Halle, where the faculty was poorly paid, he would not have been able to build a

house and would have been rather dire financial situation. The circumstances were different

in Berlin, where Cantor had dreamed of finding a more financially-sound and ambitious

position, but his professional clashes with the powerful mathematician Kronecker (a staunch

opponent of Cantor’s theory of transfinite sets) prevented this goal from becoming a reality.

Kronecker was not Cantor’s only opponent, and by the end of his mathematical career Cantor

had severed ties with almost every one of his former colleagues and correspondents, including

his confidant Mittag-Leffler. Cantor suffered from depression from 1884 on, and on several

occasions spent time in a sanatorium. According to Schoenfliess, this was perhaps due to

his exhausting mathematical efforts and, perhaps more significantly, to the fact that his

avant-garde work was rejected by virtually all of his contemporaries. [Mes71], p. 53

Though he is primarily remembered for single-handedly founding the theory of sets,

Cantor also made significant contributions to classical analysis, such as his work on real

numbers and on Fourier series. He was also the first president (1890 – 1893) of the Association

of German Mathematicians, an organization which he succeeded in founding in 1890, and

worked for the organization of the first ever international congress of mathematicians, held

in Zurich in 1897. [Mes71], p. 53

Today we associate Cantor with set theory as a whole. However, this did not become

a general framework for mathematics until significantly after Cantor began to write on the

subject. His work initially inspired a great deal of controversy in both France and Germany

due to traditional and longstanding opposition to the concept of the actual infinite [Dau79],

p. 120. To be specific, the body of work for which Cantor faced the greatest disapproval

was his Foundation of the theory of manifolds12. Published in 1883, it laid the foundation

for the theory of transfinite sets, the culmination of his work of the previous decade. This

built upon the concepts published in his On infinite and linear sets of points13, a series of

papers crucial to the development of the Mittag-Leffler theorem which will be discussed in

Chapter 7.
12“Grundlagen einer allgemeinen Mannigfaltigkeitslehre”
13“Ueber unendliche lineare Punktmannigfaltigkeiten”
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This opposition to Cantor’s work was rooted in the great controversy about the nature

of the infinite itself. Aristotle had classically opposed the idea of completed infinities, and

arguments to make analysis rigorous had focused on potential infinities. Some Christians felt

that the concept of an actual infinity challenged the “unique and absolute infinite nature” of

God [Dau79], p. 120. The majority of mathematicians simply refused to apply the concept

of the actual infinite, and instead dealt only with the idea of a potential infinite. Cantor,

however, faced this dispute head-on in his writings. Mathematics and philosophy played

equal roles in his Foundation, as he felt the two disciplines to be deeply connected. Moreover,

Cantor actually believed that his Foundation served as not only a mathematical treatment

of this new theory of transfinite sets, but as a defense of the actual infinite [Dau79], p. 120.

In light of the popular sentiment of Cantor’s time, it is not unreasonable to believe that,

with respect to Cantor’s desire to shake the basic foundation of mathematics and philosophy,

he was doomed from the beginning. Indeed, the majority of his contemporaries14 denounced

his new theory, believing it to be an empty abstraction. This was to change over time.

There were already some exceptions amongst the naysayers: in 1882 Mittag-Leffler found

the mathematical concepts outlined by Cantor of direct use in his own work, and by 1926,

Hilbert even felt that Cantor had created a new “paradise” for mathematicians [Dau79], p.

1. In general, however, this opposition led Cantor to feel increasingly isolated amongst his

contemporaries.

4.3 Mittag-Leffler’s Comptes Rendus publications using Can-

torian terminology

It can be observed that in the published portions of the first four Comptes Rendus letters

there is no obvious usage of Cantor’s theory of transfinite sets. However, a letter sent from

Mittag-Leffler to Hermite on February 13 of 1882 opens with the following paragraph:

You ask me of which type are the new theorems that I announced to you in my

letter of 19 June 1879, published by you in the third volume of the second series

of the “Bulletin des Sciences Mathématiques”. The theorems are essentially the
14Kronecker, Hermite, and Poincaré are some notable examples.
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same as the four theorems that I describe to you there but they include, to use Mr.

Cantor’s terminology, all the uniform, monogenic functions whose singularities

are a collection of values (mass of values? Werthmenge) of the first type. To

give you an idea of my research, I will describe to you a theorem that can serve

as the foundation of the entire theory.15 [Mitb]

It is interesting to note Mittag-Leffler’s difficulty in expressing the concept of a set. Cantor

used the term Werthmenge or simply Menge, which imply the concept of an amount. The

uncertainty with this concept will surface again when Mittag-Leffler incorporates Cantor’s

terminology and theory into his work in the following letter to Hermite. In any case, it

is clear that prior to the publication of the first Comptes Rendus letter Mittag-Leffler had

begun to consider Cantor’s ideas, specifically that of a function of the first type (premier

genre), though he does not noticeably take advantage of this definition until the fifth letter

to appear in the Comptes Rendus.

This letter does nothing more than rephrase the contents of the theorem presented in the

first letter in terms of Cantor’s terminology. This structural change took some work on the

part of Mittag-Leffler; approximately two of the paper’s two and a half printed pages were

devoted to stating the theorem in terms of sets of singular points, and no indication of a

proof was given (presumably it would follow steps similar to those of the former letter). It is

interesting to observe Mittag-Leffler’s exchange of sequence for set. The awkwardness with

which he discusses the concept of a set seems surprising now, as the set has since become a

very standard mathematical entity.

This was not, however, Mittag-Leffler’s first publication in which his theorem was phrased

in Cantorian notation. In this fifth Comptes Rendus letter he comments that this new

formulation has already appeared in the February 8 publication of the Översigt of the Royal

Swedish Academy of Science, and thus the intention of this later French letter was to provide
15“Vous me demandez dans quel genre sont les théorèmes nouveaux que je vous annonce dans ma lettre du

29 juin 1879 publiée par vous dans le tome III de la deuxième série de ‘Bulletin des Sciences mathématiques’.
Les théorèmes sont au fond les mêmes que les quatre théorèmes que je vous y expose mais ils embrassent
pour employer la terminologie de M. Cantor toutes les fonctions uniformes et monogènes dont les singularités
présentent un nombre de valeurs (une masse de valeurs? Werthmenge) de la première éspèce. Pour vous
donner une idée de mes recherches je vous exposerai un théorème qui peut servir comme fondement de toute
la théorie.”
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an excerpt of the more detailed Swedish text. As the Comptes Rendus publication was the

first such appearance of these ideas in a milieu generally accessible to the French and German

mathematicians, it will be discussed in detail here.

Mittag-Leffler’s fifth publication in the French Comptes Rendus is dated April 3, 1882.

It begins with a paragraph describing his work on the theorem to that date. In it, Mittag-

Leffler indicates that he has been able to generalize a part of his 1877 results which appeared

in the Översigt of the Royal Swedish Academy of Science and that he will now present a

portion of this work to Hermite [Mit82d], pp. 938–939.

The use of Cantor’s ideas is immediately obvious. Instead of beginning the theorem

statement with an infinite sequence of distinct singularities (poles) {aν}, these distinct sin-

gular points of a uniform and monogenic function F (x) are defined to be the values which

comprise the set P . The following definitions are then given.

Definition 4.1 If Q is then a collection of terms belonging to P , a limit point of Q is a

point which has, in all of its neighbourhoods, other values also belonging to Q. [Mit82d], p.

939

With this in mind, Mittag-Leffler then defines P ′ (the derived set).

Definition 4.2 Let P be a set. Its derived set, P ′, is then the set of limit points of P . This

process can be continued: P ′′ is the set of limit points of P ′, . . . , and in the same way, P (r)

is the set of limit points of P (r−1). [Mit82d], p. 939

Note that these sets P are nested so that P ⊇ P ′ ⊇ . . . ⊇ P (r−1) ⊇ P (r) ⊇ . . .. The fact

that P ⊇ P ′ applies because of the way in which Mittag-Leffler is assuming the singularities

are located; it is not true in general.

Mittag-Leffler then states Cantor’s distinction between sets of the “first type” (“premier

genre”) and “second type”, and his definition for sets of the “rth kind” (“rth espèce”).

Definition 4.3 A set P of the first type is one such that successive derivations of the set

lead eventually to the case where P (r) is the empty set (= 0 in Cantor’s words) for some r.

If no such r exists, then P is a set of the second type. [Mit82d], p. 939

If P is a set of the first type, then a further classification exists.
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Definition 4.4 If the P (r−1) is nonempty but P (r) = ∅, we say that P is of the first type

and the (r − 1)th kind. [Mit82d], p. 939

All of the above definitions can be found in Cantor’s [Can83], a French translation of Cantor’s

1879 article [Can79]. One will notice that the translations into English of Mittag-Leffler’s

Cantorian terminology are not literal. The Comptes Rendus publication contains the phrases

premier genre and rth espèce, of which the literal translations would be, respectively, genus

and species. I have chosen not work with the literal translations, and instead to use more

general terms.

Mittag-Leffler’s theorem is then stated in the following manner. Suppose given

1. A set of distinct elements P , such that P is of the first type and the nth kind and that

Pn = {a1, a2, . . . , am}. The other elements of P should be partitioned into sets so

that P (n) \ P (n+1) = {aµν} where µ = 1, 2, . . . ; ν = 1, 2, . . . , m; and

lim
µ→∞

aµν = aν .

Similarly, P (n−2) \ P (n−1) = {aλµν} where λ = 1, 2, . . . ; µ = 1, 2, . . . ; ν = 1, 2, . . . ,

m; and

lim
λ→∞

aλµν = aµν

and so on such that P \ P ′ = {aαβγ...λµν} where α = 1, 2, . . . ; β = 1, 2, . . . ; γ = 1, 2,

. . . ; . . . ; λ = 1, 2, . . . ; µ = 1, 2, . . . ; ν = 1, 2, . . . , m; and

lim
α→∞

aβγ...λµν = aµν ,

and

2. A series of entire rational or transcendental functions with no constant term (so that

each function equals zero for y = 0)

Gαβγ...λµν(y) = cαβγ...λµν−1 y + cαβγ...λµν−2 y2 + . . .

where α = 1, 2, . . . ; β = 1, 2, . . . ; γ = 1, 2, . . . ; . . . ; λ = 1, 2, . . . ; µ = 1, 2, . . . ;

ν = 1, 2, . . . , m.
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Then it is always possible to construct an analytic function F (x; aαβγ...λµν) where α = 1, 2,

. . . ; β = 1, 2, . . . ; γ = 1, 2, . . . ; . . . ; λ = 1, 2, . . . ; µ = 1, 2, . . . ; ν = 1, 2, . . . , m with

exactly the singular points contained in P and such that for each value of (αβγ . . . λµν) the

difference

F (x)−Gαβγ...λµν
(

1
x− aαβγ...λµν

)
is finite when x = aαβγ...λµν and can be expressed under the form

Gαβγ...λµν

(
1

x− aαβγ...λµν

)
+ Pαβγ...λµν(x− aαβγ...λµν)

in the neighbourhood of x = aαβγ...λµν . [Mit82d] The argument for the proof of this theorem

is virtually identical to that of [Mit76].

Notice as well that this theorem statement requires that the set of poles P of a function

be of the first type, and not the second. Mittag-Leffler claims that his proof allows only for

the former case. However, the proof is not included, likely due to the limited page count as

mentioned earlier.

Mittag-Leffler also claims that this is by no means the most general theorem of its type.

He indicates that there are others which embrace a whole class of functions of the second

type, and comments:

To be able to state those, I am initially forced to account for the classification

which Mr. Cantor has introduced for a number of real points located between

finite limits and which belong to the second class16 [Mit82d], p. 941

which refers to Cantor’s distinction between countable and uncountable sets.

A few comments must be made at this point.

First, Mittag-Leffler is clearly dealing only with countable sets of poles, as his use of

subscripts running through the positive integers can provide at most a countably infinite

set of essential singularities, though it is certainly possible to construct a function with

uncountably many singular points which form a set of the first type (for example, the Cantor
16“Pour pouvoir énoncer ceux-ci, je suis d’abord forcé de rendre compte de la classification qu’a introduite

M. Cantor pour un nombre de points réels et situés entre des limites finies et qui appartient à la seconde
classe.”
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set). It may seem as though Mittag-Leffler has overlooked such cases, but it will later become

clear that his proof technique only applies for countable sets of poles.

Second, Mittag-Leffler has made a rather large step in his process of generalization: this

use of derived sets now allows Mittag-Leffler to deal not only with sets of poles having more

than one limit point, but with sets of poles having even infinitely many of them, which would

occur if the derived set P ′ is infinite. The significance of this accomplishment should not be

overlooked — an infinite set P ′ indicates that the corresponding function must have infinitely

many essential singularities. Mittag-Leffler does not mention this in the publication, which

is strange unless he himself was not yet aware of it.

By the Spring of 1882, Mittag-Leffler was thus on his way to the generalization of his

theorem to the case of infinitely many essential singularities (in fact, as just mentioned he had

essentially found the key to dealing with an arbitrary number of essential singularities, though

he either did not realize it or did not make it clear to the reader), but he had not yet dealt

with functions having sets of singular points of the second type. However, this new statement

of the Mittag-Leffler theorem in a widely-read journal did spark a correspondence between

Mittag-Leffler and Cantor which would prove instrumental in the theorem’s generalization.

This correspondence will be discussed in the following section, as it didn’t appear to affect

the contents of the Comptes Rendus publications.

The sixth Comptes Rendus letter was published one week later, on April 10, 1882. It

presents a modification of the theorem given in [Mit82b].17

In this sixth publication, Mittag-Leffler still supposes given a sequence of entire rational

or transcendental functions G(y) without a constant term, but instead of supposing given an

infinite sequence of values {aν} increasing to infinity, these terms are subject to the condition

lim
ν→∞

|aν | = R,

where R is an arbitrary positive number. Thus the sequence of poles still has a single

accumulation point, but it can now occur at a positive finite number. An example of a set
17Mittag-Leffler actually referred to the version of his theorem which appeared in the February 18 edition

of the Comptes Rendus. However, this weekly publication was printed on February 13 and February 20 of
1882. The close relation of this theorem to work printed on February 13 (and the fact that the work on
February 20 concerns the converse statement of the theorem) seems to indicate that 18 février should have
been 13 février.
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of singularities which possesses accumulation points at a finite distance from the origin R is

{ank} =
(

1 +
(−1)n+1

n+ 1

)
e

2πki
n+1 ,

where k = 1, 2, . . . , n and n = 1, 2, . . . ,∞. This set will be discussed further in Chapter 6.

It appears that the construction of the function F (x) is unchanged from the first letter;

the sketch of the procedure is identical. However, at the end of this letter Mittag-Leffler

comments that it can happen that every portion of the circle |x| = R contains an infinite

number of singular points. In that case, it is not possible to continue to create power series

expansions for such a function (one for each radius of convergence), and so such a function

must exist only in the domain |x| < R. (If this is not the case, however, the function can

be extended beyond this domain by analytic continuation.) He also notes that though there

is not necessarily a simple and direct method for the general case, it is easy to extend the

procedure to R =∞ for a wide class of functions.

Curiously, Mittag-Leffler has phrased this modification in terms of a sequence of poles

{aν} and not a set. It is unclear as to why he has dropped Cantor’s terminology after having

used it in the previous letter to Hermite.

The seventh and eighth Comptes Rendus letters were inadvertently switched in their order

of publication, and in a letter to Mittag-Leffler dated May 8, 1882, Hermite acknowledges

the error and is apologetic:

I regret extremely the unfortunate inversion of your last notes in the publication;

I do not doubt that the reader will recognize it himself, but I will ask, to answer

your intention, if the inversion can be indicated in an errata at the end of the

volume.18 [Her84], p. 159

These last two letters serve to inductively prove that the Mittag-Leffler theorem holds under

the Cantorian notation for an infinite set of poles and a finite set of essential singularities.

The pair is doubtless easier to understand when the letters are viewed in their intended

progression, as the first letter demonstrates the basis case and the second provides the

inductive argument, and so the error is, in fact, obvious to the reader.
18“Je regrette extrêmement l’inversion malheureuse dans la publication de vos deux dernières notes; le

lecteur je n’en doute point la reconnaîtra de lui-même, mais je demanderai, pour répondre à votre intention,
si l’inversion peut être indiquée dans un errata à la fin du volume.”
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Mittag-Leffler first supposes that the set of singular points P is of the first kind and first

type, such that the only limit value (and hence essential singularity) occurs at a, and that

P \ P ′ = {a1, a2, . . . }. He notes that if this one singular point occurs at a = ∞, this is

reduced to the theorem of his first letter; if the essential singularity occurs at a finite value

a, he notes that the argument is almost identical, but that one must develop the function

Gν

(
1

x− aν

)
in a series

∞∑
ρ=0

A(ν)
ρ

(
aν − a
x− a

)ρ
in order to develop a series expansion about the point x = a when a is an essential singularity.

Note that because a is an essential singularity, infinitely many of the coefficients are not zero.

This establishes the result for a set P of the first kind and type, if there is exactly one

essential singularity.

Mittag-Leffler then sketches the extension to a finite number of essential singularities,

which requires the construction of functions Fν(x; aµν ;µ = 1, 2, . . .); ν = 1, 2, . . . ,m so that

the sum
m∑
ν=1

Fν(x; aµν ;µ = 1, 2, . . .)

is a uniform and monogenic function having poles aµν and essential singularities aν .

Mittag-Leffler then describes the case in which P is still of the first kind and type but

now contains a set of m limit points. The construction of such a function F is similar to

the case in which there exists only one essential singularity. In this case, P \ P ′ is ordered

in a “double series” {aµν} such that µ = 1, 2, . . . and ν = 1, . . . , m such that the series aµν

ranging through µ has only the limit point aν . For a visual representation, refer to Figure

4.1, in which the singular point amn is represented by am,n. For each pole aµν , a function

Fµν(x; aµν ;µ = 1, 2, . . . ; ν = 1, 2, . . . ,m) = Gµν

(
1

x− aµν

)
−
mµν−1∑
ρ=0

Aρµν

(
aµν − aν
x− aν

)ρ
is created. These are used to form the m functions

Fν(x; aµν ;µ = 1, 2, . . .) =
∞∑
µ=1

Fµν(x); ν = 1, 2, . . . ,m
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Figure 4.1: An example of singular points arranged in a “double series”.

and thus the function

F (x) =
m∑
ν=1

∞∑
µ=1

Fµν(x)

is a uniform and monogenic function of the first type and first kind having exactly the

singular points P .

The inductive step occurs in what should have been Mittag-Leffler’s eighth publication

in the Comptes Rendus. Supposing that the theorem holds in the case where P is of the

first type and the (n− 2)th or (n− 1)th kind, Mittag-Leffler demonstrates that it must also

be true when P is of the nth kind. Supposing that P (n) = {a1}, and P (n−1) = {aµ1} for

µ = 1, 2, . . ., it is possible to form a sequence of positive values ρµ for µ = 1, 2, . . . such that

aµ1 is the only value of x belonging to P (n−1) that satisfies the conditions |x − aµ1| ≤ ρµ

and there is no value of x which satisfies the inequality for two different values of µ. The

singularities are then divided into two groups, P1 and P11 such that P1 contains all elements

of P which do not satisfy any of the conditions |x− aµ1| ≤ ρµ. P1 is clearly a subset of P ,

and thus P (n−1)
1 ⊂ P (n−1). However, since P1 is a set of singularities it contains all of its

limit points. Thus it is also true that P (n−1)
1 ⊂ P1. Since P1 ∩ P (n−1) = ∅, P (n−1)

1 is empty

and thus P1 is a set of the (n− 2)th kind. Under the original supposition, it is then possible

to construct an entire monogenic function f having singular points aαβγ...λµ1 in P1, which
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has a Laurent expansion

Gαβγ...λµ1

(
1

x− aαβγ...λµ1

)
+ Pαβγ...λµ1(x− aαβγ...λµ1).

The remaining singular points belong to the set P11 which contains all elements of P

satisfying at least one of the inequalities. Since P11 ⊂ P it must be true that P (n−1)
11 ⊂

P (n−1). Inside the circle of radius ρµ, however, exists exactly one value aµ1 ∈ P (n−1), and

thus P (n−1)
11 = aµ1 or is empty, and thus P11 is of the (n − 1)th or (n − 2)th type. In this

way, under the supposition it is possible to form a function Fµ having the singular points

contained in the circle of radius ρµ. The desired function F , which is of the (n + 1)th kind

and has exactly the singular points of P = P1 + P11 is thus of the form

F (x) = f(x) +
∞∑
µ=1

Fµ(x).

This completes the inductive proof, and thus any function with a set of singularities of the

first kind can be expressed in a series of the type prescribed by the Mittag-Leffler theorem.

It is important to observe now that Mittag-Leffler has actually constructed a function F

having infinitely many essential singularities. This arose rather naturally through the use

of the Cantorian notation; any derived set of a set of singularities is itself a set of essential

singularities. This is so because a limit point of a set of singularities contains a singularity

in any neighbourhood, thus preventing it from being a pole.

Therefore, if P is a set of the nth type, each of the sets P ′, P ′′, . . . , P (n−1) contains

infinitely many essential singularities of F . This of course cannot be the case for a set of

the first type, as dealt with in the basis case of the inductive proof. In that situation, all

essential singularities must be contained in P ′ as it is only possible to derive P one time

before arriving at the empty set. That said, P ′ must then contain a finite number of elements

and thus a set of singular points P of the first kind and first type can contain only finitely

many essential singularities.

Though this introduction of infinitely many essential singular points arose almost with-

out notice, it should be emphasized as a significant moment in the history of this theorem

— this had been Mittag-Leffler’s goal at least as early as 1879 when he expressed this desire

in his 1879 Bulletin des Sciences Mathématiques publication. Of course, a function with



CHAPTER 4. CONTACT WITH CANTOR’S IDEAS 48

more than one essential singularity (or simply one with an essential singularity anywhere

other than infinity) is not meromorphic. It is clear that by 1882 the Mittag-Leffler theorem

encompassed a much larger class of functions than indicated in modern textbooks. Further-

more, as mentioned in Chapter 2, the term “meromorphic” was not used during the course

of Mittag-Leffler’s work. The fact that most modern statements treat only meromorphic

functions is due to the use of Runge’s theorem (refer to Appendix D) in the accompanying

proof.

Meanwhile, Georg Cantor was about to contact Mittag-Leffler with his own thoughts

pertaining to Mittag-Leffler’s work.



Chapter 5

The Cantor/Mittag-Leffler

correspondence

It is well-known that Mittag-Leffler did a great deal to promote Cantor’s work in (transfinite)

set theory through his journal Acta Mathematica and translations of the material into French

(see [Dau79]); Dauben notes that, as we have just seen, this interest in Cantor’s work was

due in part to its importance to the formulation of the Mittag-Leffler theorem [Dau79]. One

valuable source from which it is possible to glean information pertaining to Mittag-Leffler’s

use of Cantor’s set theory is a collection of Cantor’s letters as edited by Meschkowski and

Nilson. Though the text is not complete and contains only excerpts of the letters from

Mittag-Leffler to Cantor, it has been very useful in creating a fuller picture of this history

[Can91], p. 80. For this chapter, the work by Meschkowski and Nilson is supplemented with

archival material.

As mentioned above, prior to February 8, 1882, Mittag-Leffler became aware of Cantor’s

work and began to use the Cantorian idea of a derived set. In fact, on that date a short paper

appeared in the Stockholm Academy Proceedings that shows his awareness of an 1879 paper

of Cantor that deals with exactly this issue. In this 1882 paper, Mittag-Leffler mentions

that Cantor has introduced a terminology for “infinite linear point sets”1 and footnotes two

papers by Cantor. The first paper was published in 1871 under the title On the expansion of
1“Oändliga lineera punktmångfalder.”

49
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a theorem from the theory of the trigonometric series2, and the second was published in two

parts, one each in 1879 and 1880, entitled On infinite and linear sets of points3. [Mit82a]

While it is not clear exactly when Mittag-Leffler learned of Cantor’s work, it seems certain

that it was after Mittag-Leffler’s 1879 paper in the Bulletin des Sciences Mathématiques. As

well, as Cantor’s 1871 paper was published several years prior to the initial version of the

Mittag-Leffler theorem, it seems more likely that Mittag-Leffler’s knowledge of Cantor’s

theory of infinite sets came from Cantor’s 1879 and 1880 publications. In any event, the

ideas about derived sets and nowhere dense sets that Mittag-Leffler cites in 1882 are all to

be found in Cantor’s 1879 paper [Can79].

A letter from Hermite of December 24, 1881, also seems to indicate that Mittag-Leffler

had mentioned Cantor in an earlier letter, as it states that Hermite, at this time, was very

eager to learn from Mittag-Leffler about Cantor’s new research4 [Her84], p. 138.

Cantor noticed Mittag-Leffler’s Comptes Rendus paper of April 3 and responded to

Mittag-Leffler. The first such response is dated April 21, 1882.

In this letter, Cantor comments upon the content of Mittag-Leffler’s April 3, 1882

Comptes Rendus article. It appears that he believed Mittag-Leffler to have misunderstood

some of the theory. In particular, Cantor believed Mittag-Leffler to be under the incorrect

impression that the derived set must always be contained in the set from which it derived,

and he wrote to Mittag-Leffler with the response that this is only true after the first such

derivation. He also commented that he had extended his research on point sets and planned

to send Mittag-Leffler a portion of his new works, to be printed in the Mathematische An-

nalen in the near future. [Can91], p. 68

Mittag-Leffler’s response, as summarized by Meschkowski and Nilson, indicated that he

was not in error, as it was true for the sets with which he was concerned, namely those con-

sisting of singularities of a single-valued function of a complex variable. Evidently, Mittag-

Leffler then complimented Cantor on his work and indicated that he would like to visit Halle.

[Can91], p. 68

In return, on May 1, 1882, Cantor acknowledged that he, and not Mittag-Leffler, had
2“Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen” (see [Can71]).
3“Ueber unendliche lineare Punkt mannichfaltigkeiten” (see [Can79] and [Can80]).
4“Vous me ferez le plus grand plaisir en me donnant l’idée des nouvelles recherches de Mr Cantor . . . ”
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made the oversight. He was enthusiastic about Mittag-Leffler’s work in this area and com-

mented that it was very close to his own. He also shared with Mittag-Leffler his thoughts

pertaining to further work on the subject:

As far as the real (most comprehensive) generalization of your theorem and that

of Weierstrass is concerned, I fear that you will not get there by the path you

have started out on. One must, I believe, have in view the common distinguishing

feature of all point sets P which are singular points of a single valued monogenic

function. These distinguishing features are, I believe, the following:

1. countability so that all singular points can be placed in the form of a series

π1, π2, . . .

2. P is in not everywhere dense5 in any continuous one or two dimensional

domain of the plane.

Perhaps these two characteristics suffice so that based on them one can create

a function with the given singular points π1, π2, . . . and can specify the general

form of it.6 [Can91], p. 69

Cantor gave no explanation as to why he believed these features to be significant, and

concluded the letter in a friendly tone by saying

I hope with joy that you will visit me this summer as you say in your letter you

intend; then we can discuss thoroughly [these matters] . . . 7 [Can91], p. 69

Thus as Mittag-Leffler attempted to use the theory of infinite sets to extend his theorem,

Cantor gave him a place at which he could begin. This enthusiasm for Mittag-Leffler’s work
5If the union of P and its limit points is equal to a set R, then P is everywhere dense in R.
6“Was die eigentliche (umfassendste) Verallgemeinerung Ihrer und der Weierstraßschen Sätze anbetrifft,

so fürchte ich. dafl Sie auf den eingeschlagenen Wegen nicht dazu kommen werden. Man muß, wie ich
glaube, die gemeinschaftlichen Merkmale oller Punctmengen P . die von singulären Stellen einer eindeutigen
monogenen Function gebildet werden. ins Auge fassen; diere Merkmale sind, wie ich glaube, folgende:

1. Abzählbarkeit, so daß alle singulären Puncte sich in der Form einer Reihe: π1, π2, . . . setzen lassen.

2. P ist in keinem stetigen ein-oder zweidimensionalen Gebiete der Ebene überalldicht.

vielleicht reichen diese beiden Merkmale aus, um auf Grund derselben eine Function herzustellen, die die
gegebenen Singularitätsstellen π1, π2, . . . besitzt und die allgemeine Form derselben zu bestimmen.”

7“Ich hoffe mit Freuden, dafl Sie in diesem Sommer, wie in Ihrem Briefe in Ausicht genommen, mich
besuchen werden; . . . ”
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was likely quite encouraging, as Cantor was already an established mathematician, and it

seems reasonable that this alone might encourage a less-established individual to run with the

suggestion. Mittag-Leffler wisely did so, as it would later become clear that Cantor’s theory

and particularly the notion of a derived set would be significant in not only generalizing his

theorem, but also in tidying up the theorem statement itself.

Mittag-Leffler did follow Cantor’s advice, as he apparently questioned Cantor about

everywhere dense sets in a letter dated June 21, 1882. Cantor responded in a letter of June

25, 1882. They continued to correspond about this topic, and Mittag-Leffler visited Cantor

at Halle in July, 1882. [Can91]

Later that year, Cantor provided Mittag-Leffler with the following theorem:

Theorem 5.1 If P is a countably infinite set of singular points of a single-valued analytic

function of a complex variable, then there always exists an α such that Pα = 0.

Cantor encouraged Mittag-Leffler to use this theorem to extend his own and Weierstrass’

theorems on the existence of single-valued analytic functions with a restricted set of singu-

larities to the existence of those having an arbitrary countable set of singularities P . He

noted that more work (which he was already considering) was necessary to extend the result

to an uncountable set P . [Can91], p. 88

Mittag-Leffler, in a letter of October 22, 1882, was very pleased and wished to see the

proof. He wrote that Weierstrass and Poincaré did not believe that such a theorem existed,

and he commented that his theorems could be generalized to countable sets of singularities

such that P r = 0 for some r, but that he had felt that this was of little interest until one

knew exactly which countable sets had this property. [Can91], pp. 88–89

It should be emphasized that Mittag-Leffler’s interest in Cantor’s ideas was quite excep-

tional at this time. The general opinion of Cantor’s set theory was negative in both Germany

and France. Cantor, in a letter to Mittag-Leffler dated September 9, 1883, quotes Kronecker,

who visited him during July, as saying that Cantor’s theory of infinite sets and infinite num-

bers was “Humbug” (referring to the concept of different orders of infinity). [Can91], p.

127

The French side of the story was not much better. Hermite, who may or may not have
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been influenced by Kronecker (as their correspondence is lost it is difficult to be sure), told

Mittag-Leffler in a letter dated April 13, 1883, that:

The impression that Mr. Cantor’s papers produce in us is pitiful. Reading them

seems to all of us a real chore. [Her84], pp. 209–210

Yet Mittag-Leffler continued to work in the direction suggested by Cantor. Mittag-Leffler

felt very close to generalizing his theorem to the fullest extent through the use of Cantor’s

language. It seems likely that by this point Mittag-Leffler felt a personal loyalty to Cantor,

with whom he had formed a friendship, and it is clear that he was happy about Cantor’s

praise for his work. Indeed, his result appeared to show a concrete use for Cantor’s work

that might be seen to justify it to mathematicians such as Kronecker and Hermite. I will

discuss other aspects of Mittag-Leffler’s relationship with Cantor and his work in Chapter

7.



Chapter 6

The final version of Mittag-Leffler’s

theorem

The final version of the Mittag-Leffler theorem appeared in his journal Acta Mathemat-

ica, under the title On the analytical representation of uniform monogenic functions of an

independent variable1 [Mit84].

The main feature of this text, which is the final generalization of Mittag-Leffler’s theorem

and includes complete proofs, is a slightly altered use of Cantor’s set theory. The concept

of a “derived set”, or collection of limit points of another set, remains fundamental. In the

1884 version, however, Cantor’s idea use nowhere dense sets has given way to the notion

that the set of singularities should be an isolated set. This definition appears in a lengthy

introduction which sets the stage for the newest and last version of his theorem.

Definition 6.1 A point is isolated in a given set Q if it has a neighbourhood that contains

no other point of the set. A set is isolated when all of its points are isolated. [Mit84], p. 4

To see what this means in the context of singularities, suppose P is an arbitrary set and

P ′ ⊂ P . It can happen that P contains elements not included in P ′; we denote this set

P \ P ′ by Q. As the elements of Q are not limit points of P , there belongs, to each point

in Q, a neighbourhood in which no other point of Q can be found. That is, the elements of
1“Sur la représentation analytique des fonctions monogènes uniformes d’une variable indépendante”

54
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Q form an isolated set. Of course, as Q ⊂ P , it follows that Q′ ⊂ P ′; when P is the set of

singular points of a function F (x), then Q′ ⊂ P as well.

Another new addition to the theorem is the concept of a continuum, a term which, at that

point in time, had different meanings amongst mathematicians. To Weierstrass, a continuum

was a connected region in the complex plane. If we let infinitely many rational functions of

the (complex) variable x be given in a specific sequence f0(x), f1(x), f2(x), . . . , we can define

the domain of convergence to be the collection of all values of x for which the series

∞∑
ν=0

fν(x)

is finite. We denote the domain of convergence by A. If then a is contained in this domain,

it is possible to find a (two-dimensional) neighbourhood of a in the complex plane within

which the series above converges uniformly for all x. Of course, the domain of convergence

of the series may consist of several (two-dimensional) areas of the plane which are separated

from each other. With this in mind, we can now define Weierstrass’ concept of a continuum.

Definition 6.2 (Weierstrass) Take arbitrarily a point in A, in a neighbourhood of which

there is an arbitrary second point, in a neighbourhood of which there is an arbitrary third,

and so on in this manner. A continuum (A1) is then the collection of points of A which one

can get to by this means. In this way, (A1) is a connected piece of the complex plane, and

has a boundary which consists of either points, lines, or a combination of the two. [Wei80b],

pp. 201–203

Of course, by this definition there may exist points of A outside of (A1); this could be caused

by a set of singularities that blocks analytic continuation. If this is the case, it indicates

that there exists in this domain at least one other continuum (A2). (A2) has thus no points

in common with A1 except possibly on their boundaries which may coincide partially or

completely. In the same way, if there are further points of A which are contained neither in

(A1) nor (A2) there must exist at least a third continuum (A3) . . . 2

2Continua are directly connected to the concept of monogenicity. Under Weierstrass, a function is essen-
tially a collection of power series representations at different points within its domain. The domain is then
divided into continua depending on whether or not the function is monogenic. If it is monogenic, there is
only one continuum. More generally, inside each continuum, a function is monogenic.
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It is significant that to Weierstrass, neighbourhoods and continua should be defined in

terms of the domains within which power series converge. The idea that series are key to

learning about the functions they represent is central to his entire theory of the foundations

of analysis, which can certainly be seen in, for example, his famous factorization theorem.

Not all mathematicians echoed Weierstrass’ thoughts. Some, such as Georg Cantor, had

entirely different agendas. Cantor, though his studies had begun in function theory, was now

concerned with general sets of points. He therefore sought concepts that were independent

of ideas about functions and that went beyond the complex plane. In particular, he was

interested in learning about countability and dimensionality of point sets. The following

remark on continua is taken from a letter addressed to Mittag-Leffler written on February

10, 1883:

. . . the system of all real numbers ≥ a and ≤ b is a continuum in my sense and

conversely I can prove that every linear continuum is a complete interval (a . . . b)

and can not be anything else.3 [Can91], p. 114

Thus in Cantor’s sense, linear continua are one-dimensional intervals on the real number

line, which can be generalized to higher dimensions. Cantor’s ideas were more general than

those of Weierstrass. In fact, Cantor felt that Weierstrass’ strong connection of continua to

the convergence of power series was preventing him from achieving full generality. In a letter

dated February 7, 1883, Mittag-Leffler asked Cantor the following question:

What do you have against the following definition of the straight line between

zero and one: this line is the set of points that contains all rational and irrational

numbers that are greater than 0 and less than one. One could in an analogous

way give the definition of any continuum.4 [Can91], p. 115

Cantor’s response was the following:
3“Allerdings ist das System aller rellen Zahlen ≥ a und ≤ b ein Continuum in meinem Sinne und auch

umgekehrt kann ich beweisen jede lineare (d.h. in einer geraden Linie enthaltene) Punctmenge, die meiner
Definition eines Continuums genügt, ist ein vollständiges Intervall (a . . . b) und kann nichts anders sein.”

4“Was haben Sie gegen die folgende Definition der geraden Linie zwischen Null und Eins einzuwenden:
diese Linie ist die Punkt-Menge, welche alle rationalen oder irrationalen Zahlen, die grösser als Null und
kleiner als Eins sind, umfasst. Auf analoge Weise könnte man dann die Definition irgend welches Continuum
erhalten.”
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If however you go to point sets that belong to a space Gn, where n > 1, the

usual definition will not work if you want to have the most general concept of

continuum; and only with this, as I will describe later, do you get to the most

general definition of lines, surfaces, bodies.

In your way [as proposed in Mittag-Leffler’s question above] and also on the path

that Weierstrass follows in his lectures, you don’t get to generally valid concepts,

because you are dependent on analytic representations, which never provide the

conviction that you have not overlooked something. Likewise I hold everything

that we have from Riemann on this to be completely insufficient. 5 [Can91], p.

114

It is not particularly clear what Cantor saw as problematic in Mittag-Leffler’s definition.

However, Weierstrass’ definition requires the existence of a function before the set, a sharp

contrast to Cantor’s belief that the set was the most general object and the key concept.

Thus Cantor felt that the emphasis on the representation of functions interfered with the

generality of this concept, and in fact the generality of all concepts in this vein. Cantor

advocated a general shift from dealing with functions, and in particular the representations

of functions, to dealing with set of points (of their domain and range) and this discussion

clearly illustrates this fact. Mittag-Leffler seems to have agreed with Cantor about this

issue, but maintained that Weierstrass’ definitions were still important. On February 27 of

the same month he wrote to the Cantor:

I very much agree with your definition of continuum, and would however like to

refer to what Weierstrass calls a continuum as a “completely connected point set”.

I am thinking of using this terminology in my work and I think this will serve the

purpose very well. It will follow sufficiently from my work that such completely
5“Wenn Sie aber übergehen zu Punctmengen, welche einem Raum Gn angehören, wo n > 1, so reichen Sie

meit der gewöhnlichen Definition nicht aus, wenn Sie den allgemeinsten Begriff des Continuums haben wollen;
und erst fon diesem aus komment Sie, wie ich später ausf|"uhren werde, zu den allgemeinsten Definitionen
von Linien, Flächen, Körpern.
“ Auf Ihrem Wege und auch auf dem Wege, welchen Weierstrass in seinen Vorlesungen befolgt, kommt

man nicht zu allgemeingültigen Begriffen, weil man von analytischen Darstellungen abhängig ist, die einem
niemals die Ueberzeugung liefern, dass man nichts vergessen hat. Ebenso halte ich Alles was man von
Riemann darüber hat für gar night ausreichend.”
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connected point sets have their necessary place in the theory of analytic functions

and can’t be replaced by your continua.6 [Mitc]

With this discussion in mind, we now prepare to state the Mittag-Leffler theorem as it

appeared in Acta Mathematica.

We begin as in [Mit82d] by letting P be an infinite set of elements in the complex plane,

and then constructing the derived set P ′. However, at this point in [Mit84] Mittag-Leffler

makes use of the concept of an isolated set.

We are now ready to look at the new formulation of the Mittag-Leffler theorem.

Let Q = {a1, a2, . . . , aν , . . .} be an isolated set belonging to the domain of a variable x,

and let

G1

(
1

x− a1

)
, G2

(
1

x− a2

)
, . . . , Gν

(
1

x− aν

)
, . . .

be a series of uniform, monogenic functions, entire and rational or transcendental in 1
x−aν ,

disappearing when 1
x−aν = 0. It is always possible to form an analytic expression which

behaves regularly in the vicinity of the points belonging to Q+Q′ (under Cantor’s notation,

this refers to the union of the sets Q and Q′) and which, for each value of ν, can be developed

under the form

Gν

(
1

x− aν

)
+ P (x− aν)

where P is a power series in (x− aν).

That is, the newest version of Mittag-Leffler’s theorem states that if the collection of

poles of a function F (x) form an isolated set Q whose limit points form the set of essential

singularities Q′ of F (x), then the function specified by the Mittag-Leffler theorem can be

formulated in the usual way, analytic everywhere except at the points of Q+Q′.

Assuming that Q = {a1, a2, . . . , aν , . . .} is an infinite set of points, Mittag-Leffler states

that it is always possible to adjoin to each value aν ∈ Q not equal to zero or infinity another

value bν ∈ Q′, where bν is chosen so that

lim
ν→∞

|aν − bν | = 0.

6“Ich bin mit Ihrem Definition von Continuum sehr einverstanden, möchte aber dann das was Weierstrass
Continuum nennt, eine “vollkomen zusammenhängende Punktmenge” nennen. Ich denke diese Terminologie
in meiner Arbeit zu brauchen und glaube dass dies sehr zweckmässig wird. Dass solche volkommen zusam-
menhängende Punktmenge in der Theorie der analytischen Funktionen ihre nothwendige Stellung haben und
nicht durch ihre Continua ersetzt werden können wird aus meiner Arbeit genügend hervorgehen.”
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A paragraph follows on how these points bν are to be selected, the details of which are omitted

for brevity. We then choose arbitrarily a positive quantity ε < 1, and a series of positive

terms ε1, ε2, . . . such that
∑
εn is finite. We see that this is exactly the technique developed

by Weierstrass in 1880 that Mittag-Leffler used in his earlier work, with the exception that

it has been adjusted to deal with new terminology and collections of singularities. Thus to

form the analytic expression sought, I will present only the case in which aν and bν are finite.

In this situation, it is necessary to find a whole number mν such that

∞∑
µ=mν+1

A(ν)
µ

(
aν − bν
x− bν

)µ
< εν

when ∣∣∣∣aν − bνx− aν

∣∣∣∣ ≤ ε.
Once mν is found, as usual we let

Fν(x) = Gν

(
1

x− aν

)
−

mν∑
µ=0

A(ν)
µ

(
aν − bν
x− bν

)µ
,

and thus

F (x) =
∞∑
ν=1

Fν(x)

is the desired function.

Mittag-Leffler then indicates to the reader that to findmν it is first necessary to determine

the coefficients Aν in terms of the given coefficients c(ν)−1 , c
(ν)
−2 , . . .. The necessary steps in

accomplishing this can be found in Appendix C.

Mittag-Leffler notes that if one restricts the set Q′ to include only the point at infinity,

and restricts the functions Gν
(

1
x−aν

)
to polynomials (thus entire and rational functions),

then this result is identical to that found in his 1876 publication in the Öfversigt of the Royal

Swedish Academy; if the functions Gν
(

1
x−aν

)
are allowed to be transcendental, the result is

identical to that of his 1877 Swedish publication, and the April 13 Comptes Rendus letter.

Mittag-Leffler then changes his tactics and rephrases his theorem using the notion of

a continuum in order to demonstrate that his techniques apply to situations in which the

singularities of the desired function impose a natural boundary upon its domain which pre-

vents analytic extension to the remainder of the complex plane. In this case, Q must form
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an isolated set in the complex plane such that Q + Q′ is the complete limit (i.e. the set of

all limit points of Q, and not the boundary of Q as one would expect in the present day) of

a continuum A. This follows Weierstrass’ notion of a continuum; we would think of A as a

connected subset of the complex plane representing the domain of Mittag-Leffler’s function

F (x). The functions Gν
(

1
x−aν

)
may then be entire rational or transcendental functions of

1
x−aν without constant terms.

As an example of singularities which establish a natural boundary, Mittag-Leffler con-

siders the set

{ank} =
(

1 +
(−1)n+1

n+ 1

)
e

2πki
n+1 ,

where k = 1, 2, . . . , n and n = 1, 2, . . . ,∞, and the functions Gnk
(

1
x−ank

)
. The term

e
2πki
n+1 consists of points (these turn out to be essential singularities) which fall on the unit

circle centered at the origin; however, the negative sign in the term 1 + (−1)n+1

n+1 causes the

singularities to fall alternately inside and outside of the circle. In this situation, we see that

Q = {ank} and Q′ = {bnk} = e
2πki
n+1 . Refer to Figure 6.1 to see the plot of the first 3600

points of {ank}.

However, at this point something must be noted — this set of singularities is not a set

of type one, but a set of type two; as its singularities have all the points of the unit circle

as limit points, further derivations will produce exactly the unit circle as values. This raises

the question as to how deeply Cantor’s theory of infinite sets of points is actually being used

— at this point, it is only to order and organize the singular points of a function. The fact

that Mittag-Leffler’s work was thought to be verging on the dubious, even with this almost

insignificant use of Cantor’s work, is something that will be discussed in Chapter 7.

The last main theorem of [Mit84] concerns the Weierstrass factorization theorem. Mittag-

Leffler outlines this theorem in the following way:

Let Q be an infinite isolated set of points in the domain of the variable x, such that the

set Q + Q′ forms the complete limit of a continuum A under the Weierstrassian definition.

Let now a1, a2, . . . , aν , . . . form the different points (i.e. poles) of Q, and let n1, n2, . . . , nν , . . .
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Figure 6.1: A set of singular points for a non-monogenic function.

exist as a series of integers. It is then always possible to form an analytic expression repre-

senting a uniform monogenic7 function which behaves regularly inside the continuum A and

which does not become zero inside that domain. Moreover, in the neighbourhood of each

point aν , the function can be represented under the form

(x− aν)νeP (x−aν).

Each point of Q′ is then an essential singularity of that function.

The steps taken by Mittag-Leffler to prove this theorem are essentially identical to those

given for the theorem presented at the beginning of [Mit84]. That is, to each singularity aν

of Q, we “adjoin” a point bν of Q′, and choose a sequence {εν} having finite sum. As before

we consider the case where aν is neither zero nor infinity.8 If this is the case, provided∣∣∣∣aν − bνx− bν

∣∣∣∣ < 1

7Inside this continuum.
8The steps are only slightly different for the case where aν equals zero or infinity; for brevity, these cases

will be omitted here.
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it is possible to construct the equations

nν
x− aν

=
nν

x− bν
+

nν
x− bν

∞∑
µ−1

(
aν − bν
x− bν

)µ
.

It is not difficult to show that the equation above, for finite9 b is the logarithmic derivative

of (
1− aν − bν

x− bν

)nν
= e
−nν

∑∞
µ=1

1
µ

(
aν−bν
x−bν

)µ
,

which can be rewritten as(
1− aν − bν

x− bν

)nν
e
nν
∑mν
µ=1

1
µ

(
aν−bν
x−bν

)µ
e
−
[
−nν

∑∞
µ=mν+1

1
µ

(
aν−bν
x−bν

)µ]
= 1,

or (
1− aν − bν

x− bν

)nν
e
nν
∑mν
µ=1

1
µ

(
aν−bν
x−bν

)µ
= e
−nν

∑∞
µ=mν+1

1
µ

(
aν−bν
x−bν

)µ
.

Mittag-Leffler claims that it is always possible to select a number mν such that the absolute

value of the exponent on the right side is less than the previously specified value εν ; it is this

mν that should be used.

Then, if we set

Eν(x) =
(

1− aν − bν
x− bν

)nν
e
nν
∑mν
µ=1

1
µ

(
aν−bν
x−bν

)µ
,

the product
∞∏
ν=1

Eν(x)

has the properties specified at the beginning of the theorem. Specifically, inside the contin-

uum A, it is monogenic and uniform, behaves regularly, and in the neighbourhood of each

pole aν the function can be put into the appropriate form.

According to Mittag-Leffler, this result was presented by Picard to the members of the

Académie des Sciences on March 21, 1881, for the case in which Q contains the zeros of

the function considered, and in which the continuum A + Q represents the domain of the

variable x contained entirely either within the interior of a circle centered at the origin, or

outside of this circle [Mit84], p. 38.
9If b is infinite, aν−bν

x−bν is replaced by x
aν

.
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He then comments that if the domain A+Q is contained entirely within the circle given

above, and bν =∞ for all ν, the above representation can be rewritten as

∞∏
ν=1

Eν(x) =
(

1− x

aν

)nν
e
nν
∑mν
µ=1

1
µ

(
x
aν

)µ
,

as given by the Weierstrass Factorization Theorem [Mit84]. This indicates that even though

Mittag-Leffler is giving serious consideration to, and making use of, Cantor’s theory of infinite

set of points, he is still as tightly bound to Weierstrass’ research program as he was in 1876.



Chapter 7

Reception and Concluding Remarks

7.1 Reception

The reception of the Mittag-Leffler theorem is somewhat complicated. On one hand, his

results were perceived by many readers as being important and exciting, especially while they

adhered strictly to Weierstrass’ theory of functions and had not yet incorporated Cantor’s

new ideas. Hermite summarizes this sentiment in a letter written to Mittag-Leffler on April

19, 1881, with the statement:

What you say to me of the general formulas that you have, and which give the

general analytic expression of uniform functions having “an infinity of singular

points”, either on a line, or in a surface, interests me extremely, and I wait

impatiently to be able to study your results on such an important and so difficult

question.1 [Her84], p. 119

On the other hand, when Mittag-Leffler began to make use of Cantor’s theory of infinite sets

of points, the controversy surrounding Cantor’s work settled on Mittag-Leffler’s as well.

We’ll begin to study the reception of the Mittag-Leffler theorem by looking at the reac-

tions of his mentors, particularly Hermite, to Mittag-Leffler’s work on the subject prior to
1“Ce que vous me dites des fonctions générales que vous possédez, et qui donnent l’expression analytique

des fonctions uniformes ayant une ‘infinité des points essentiels’, soit sur une ligne, soit dans une aire,
m’intéresse extrêmement, et j’attends avec impatience de pouvoir étudier vos résultats sur une question si
importante et si difficile.”

64
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the inclusion of Cantor’s notation.

7.1.1 The reactions of Hermite and Weierstrass prior to the introduction

of Cantor’s set theory

As mentioned earlier in this paper, after Mittag-Leffler published his work in Swedish in

1876 and 1877 he sent a German version of his results to Weierstrass entitled Arithmetic

representation of single-valued analytic functions of one variable.2 When Hermite learned

of this, he wrote to Mittag-Leffler to say that he had asked the mathematician and journal

editor Carl Borchardt3 (1817–1880), who would be meeting with Weierstrass and his sisters

in Berchtesgaden shortly, to get Weierstrass’ opinion of Mittag-Leffler’s memoir. Reporting

on Borchardt’s response, Hermite noted that “[t]he judgement of the illustrious analyst on

your [Mittag-Leffler’s] research will be very interesting for me to know”4, as he (Hermite) was

not able to penetrate the Swedish in order to determine Mittag-Leffler’s method. Hermite

then requested that a French exposition of the work be presented in Darboux’s Bulletin.

[Her84], p. 58

Hermite wrote back to Mittag-Leffler on November 10, 1879, with Borchardt’s report that

Weierstrass’ opinion was quite favourable. Weierstrass felt that result obtained by the young

Swedish mathematician was extremely interesting and demonstrated a remarkable talent,

but that the work was far too long and especially too charged with calculations [Her84], p.

61. Weierstrass’ response is certainly not surprising, as he wrote as much to Mittag-Leffler

himself. However, Hermite’s desire to learn of Weierstrass’ opinion demonstrates his opinion

about the significance of these results.

Thus it is clear that Mittag-Leffler’s work attracted a great deal of attention from several

prominent mathematicians of that time; this fact is further emphasized when we consider

that Weierstrass and Hermite each published an alternate proof in 1880.

Weierstrass and Hermite were interested in different aspects of Mittag-Leffler’s work.

Weierstrass, who had already been working on theorems for the representation of functions,
2“Arithmetische Darstellung eindeutiger analytischer Functionen einer Veränderlichen”.
3Bortchardt (1817–1880) was the second editor of the journal founded by Crelle, the journal Für die reine

und angewandte Mathematik, and a professor at the university in Berlin.
4“Le judgement de l’illustre analyste sur vos recherches me sera d’autant plus intéressant à connaître . . . ”
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felt that Mittag-Leffler’s theorem was an important part of the foundations of analysis.

Hermite, on the other hand, had little interest in abstract mathematics, of the kind referred

to by Sørensen as concept-based, and was more interested in the theorem’s potential for

application to his areas of interest. In 1882 Hermite published a paper entitled Extract of

a letter addressed to Mr Mittag-Leffler, of Stockholm, by Mr Ch Hermite, of Paris, on an

application of [the] Theorem of Mr Mittag-Leffler in the Theory of Functions5 in Crelle’s

Journal [Her82]. This letter focused on finding a representation for the beta function

F (x) =
Γ(x)Γ(α)
Γ(x+ α)

,

which has poles at negative integers and residues

Rn =
(−1)n(α− 1)(α− 2) · · · (α− n)

n!
,

and for other related expressions. Hermite was particularly interested in the idea of forcing

a divergent series to converge by adding a constant or another function, a key aspect of

Mittag-Leffler’s proof. [Her82]

Even more indicative of the esteem for Mittag-Leffler’s work, however, is the fact that

his contemporaries felt it was important enough to teach. In particular, Hermite lectured

on Mittag-Leffler’s theorem in his course on analysis at the Faculté des Sciences in Paris

(Sorbonne). This is fairly significant, as this was an introductory course, typically for first

and second year students [Her91]. The class included the crème de la crème of French

undergraduates, since the students at the Ecole Normale Supérieure attended lectures at the

Faculté des Sciences of the Sorbonne due to the close proximity of the two schools. [Arc02]

Hermite was not the only French mathematician teaching this material. On June 29,

1882, Hermite wrote a letter to Mittag-Leffler containing the passage:

My dear friend,

I hasten to offer you my warmest and sincere congratulations. A good provi-

dence certainly watches over your destiny and gives you, at the moment of your

marriage, a position [the mathematics chair at the newly-founded University of
5“Extrait d’une lettre adressée a M. Mittag-Leffler, de Stockholm, par M. Ch Hermite, de Paris, sur une

Application du Théorème de M. Mittag-Leffler dans la Théorie des Fonctions.”
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Stockholm] that is not inferior to your talent and your work. Instead of others,

and long before I did, you will have a suitable chair, and students who will reap

the fruits of your efforts and follow your path. You will keep me abreast, I hope,

of all the circumstances of your teaching which will not be without some con-

nection to that of the Sorbonne. The students of Ecole Normale have studied

your theorem with great zeal, as Mr Darboux tells me, and I may say without

exaggeration that it has now become classic among us. 6 [Her84], p. 123

This text makes us aware of several points. First, it indicates that Mittag-Leffler’s work had

also entered the classrooms of Ecole Normale by the Spring of 1881, and that the students

there were eager to learn the material.7 More importantly, we learn that the Mittag-Leffler

theorem was already considered a standard result in analysis among the next generation

of mathematicians. Finally, Hermite’s warm remarks regarding Mittag-Leffler’s professional

capabilities emphasize the value Mittag-Leffler was felt to have as a lecturer and researcher

within the European mathematical community.

It is clear, then, that with its Weierstrassian proof and notation the Mittag-Leffler the-

orem was seen as an exciting and important result to be studied by great mathematicians

and beginners alike. We will now look at the role of the theorem upon Mittag-Leffler’s

introduction of Cantor’s notation.

7.1.2 Reception of the Cantorian version

Interestingly, as mentioned in Chapter 4, when Mittag-Leffler mentioned to Hermite Cantor’s

new treatment of the theory of infinite point sets, the idea was not greeted with suspicion,

but rather with interest and curiosity. Hermite was not the only French mathematician who
6“Mon cher ami,

Je m’empresse de vous offrir mes sincères, mes plus vives félicitations. Il y a certainement une bonne
providence qui veille sur votre destinée en vous donnant au moment de votre mariage une position non
inférieure à votre talent et à vos travaux. Plutôt que d’autres et bien avant moi vous aurez eu une chaire
à cotre concenance, et des élèves qui recueilleront le fruit de vos efforts et suivront votre trace. Vous me
tiendrez j’espère au courant de toutes les circonstances de votre enseignement qui ne sera point sans quelque
connexion avec celui de la Sorbonne. Les élèves de l’Ecole Normale ont mis un très grand zèle, dont Mr
Darboux m’a fait part, à etudier votre théorème, devenu maintenant classique parmi nous, je puis le dire
sans exagération.”

7At this time, Gaston Darboux (1842–1917) held a position akin to an assistant professor or tutor at the
Ecole. He held tutorials for the students there, which included lectures on the Mittag-Leffler theorem.
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wished to learn of this new work. As he wrote to Mittag-Leffler on December 24, 1881:

You produce in me the greatest pleasure by giving me the idea of new research of

Mr. Cantor, and as for what you announce to me on the uniform functions having

an “infinity of essential [singular] points” you cannot imagine how impatient Emile

Picard and I are to know it.8 [Her84], p. 138

Later in the same letter, Hermite commented that “the name[s] of you and Mr. Weierstrass

have been repeated from mouth in mouth in all the Ecole [Normale Supérieure], where you

are now as well-known as in the Sorbonne.”9

Clearly, then, Mittag-Leffler’s fame connected to his theorem was not in decline. Indeed,

his work remained popular and useful even after Mittag-Leffler published his fifth letter

in the Comptes Rendus and begun to make use of Cantor’s set-theoretic language. In fact,

many French mathematicians seem to have been open to the possibility of adopting Cantor’s

concepts. In the April 24, 1882 publication of the Comptes Rendus Poincaré published a pa-

per in which he cited an example of a function of the deuxième genre under the classification

presented to the Académie by Mittag-Leffler on April 3. [Poi82], p. 1167

Thus it seems as though Mittag-Leffler’s work continued to be widely read and even

influential throughout the course of his publications in the French Comptes Rendus. However,

as the French acquaintance with Cantor’s work deepened, Hermite and others began to show

concern over the reliance Mittag-Leffler was placing on Cantor’s methods.

In the winter of 1882 Hermite told Mittag-Leffler that the French mathematicians would

help Mittag-Leffler in translating into French the German work deemed by him to be the

most important. In particular, Hermite mentions in a letter of January 26, 1882, that Paul

Appell had indicated he would be working to translate the first memoir of Cantor [Her84],

p. 192.

The work to which Appell was referring was originally published in 1879, and is the

first of the six-part series entitled On infinite and linear sets of points10. This work was
8“Vous me ferez le plus grand plaisir en me donnant l’idée des nouvelles recherches de M Cantor, et quant

à ce que vous m’annoncez sur les fonctions uniformes possédant une infinité de points essentiels vous ne
pouvez vous imaginer à quel point Emile Picard et moi nous sommes impatients de le connaître.”

9“. . . le nom de M Weierstrass et le vôtre ont été répétés de bouche en bouche dans toute l’Ecole, où vous
êtes maintenant aussi connu qu’à la Sorbonne.” [Her84], p. 138

10“Ueber unendliche lineare Punktmannigfaltigkeiten.”
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mentioned in Chapter 4 for its significance to Mittag-Leffler, who used it, along with [Can80],

in developing his early knowledge of Cantor’s theory of infinite point sets as used in [Mit82d]

and [Mit82a]. The French had agreed to translate this work of Cantor’s on Mittag-Leffler’s

suggestion, so that it may be made available to a greater audience. When the translation

began, however, the work was greeted with uncertainty due to its extensive philosophical

content.

Hermite reported to Mittag-Leffler in a letter dated March 5, 1883, that:

Mr. Poincaré judges that the French readers will almost all be completely repelled

by the both philosophical and mathematical research of Mr. Cantor, where the

arbitrary has too much of a role, and I do not believe that he is mistaken.11

[Her84], p. 199

Mittag-Leffler seemed sympathetic to this concern, though he still believed Cantor’s work to

have merit. His response to Hermite three days later requested that Cantor’s last large report

not be translated. Mittag-Leffler indicated that he would ask that the memoir be written in

another manner, one which excluded philosophy [Her84], p. 276. He then commented:

I am persuaded for my part that this mathematical piece is of great importance

and I believe that Mr. Poincaré himself would draw at once from them from it

considerable advantages. But we will see!12 [Her84], p. 276

Cantor evidently agreed to modify the work accordingly, when Mittag-Leffler told him that

it would be “more easily appreciated in the mathematical world” [Her84], p. 276.

Nonetheless, the French mathematicians generally resisted Cantor’s concepts. There were

a few exceptions to this statement, however. Picard seems to have felt that Cantor’s new

theory could be useful, but had some reservations. On May 15, 1884, Mittag-Leffler wrote

to Cantor quoting a letter he had received from Picard:

I acknowledge that in the beginning Cantor’s conjectures seemed uninteresting

to me, if only from the philosophical point of view, I am now beginning to believe
11“Mr Poincaré juge que les lecteurs français seront à peu près tous absolument réfracteurs aux recherches

à la fois philosophiques et mathématiques de Mr Cantor, où l’arbitraire a trop de part, et je ne crois pas
qu’il se trompe.”

12“Je suis persuadé pour ma part que cette partie mathématique est d’une grand importance et je crois
que M. Poincaré lui-même en tirerait une fois des advantages considérables. Mais nous verrons!”
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that all of this will be able to have applications in analysis: some of his theorems

on trigonometric series, where it is a question of points of the first type, really

struck me. Aren’t you going to publish something on these questions soon? That

will complete my conversion to point sets.13 [Mitd]

When Mittag-Leffler published his On the analytical representation of uniform monogenic

functions of an independent variable in 1884, the reader will recall that he had maintained

his use of Cantor’s concepts in dealing with the singular points of the function he wished to

specify or represent. From today’s standpoint, the role of Cantor’s theory in Mittag-Leffler’s

argument (the steps of which still adhered closely to Weierstrass’ initial revision) is almost

insignificant. The continued protest from the French mathematicians, then, indicates that

to them it really wasn’t insignificant.

Perhaps this is explained by the following passages, taken from letters written by Hermite

to Mittag-Leffler in August of 1884.

. . . I will make the critical study of your recent report of which Picard and Ap-

pell already tell me the best things, their only reservations concerning the same

concepts which are due to Mr. Cantor; we all wonder if the definitions of the new

singularities would not have something a bit artificial and factitious, instead of

resulting from the nature of things, as we would like it.14 [Her85], p. 91

Then, in October of 1884 Hermite sent Mittag-Leffler some critical remarks regarding the

substance and style of his work:

Two things are to be distinguished in your work: the propositions, the results at

which you arrived, then the exposition that you have made, that is to say, the

substance and the style. For the substance, I am certainly the echo of all ana-

lysts by recognizing that it constitutes, with the famous theorems of Weierstrass,
13“Je vous avoue qu’au début les spéculations de Cantor m’avaient paru sans intérêt, si ce n’est au point de

vue philosophique, je commence a croire maintenant que tout cela pourra avoir des applications en analyse:
quelques uns de ses théorèmes sur les séries trigonométriques, où il est question de points du premier genre,
m’ont extrêmement frappé. N’allez-vous pas aussi publier bientôt quelque chose sur ces questions, cela va
achever de me convertir aux ensembles de points. ”

14“C’est là que je ferai l’étude critique de votre récent mémoire dont Picard et Appell m’ont déjà dit le plus
grand bien, leur seule réserve concernant les notions mêmes qui sont dues à M Cantor; nous nous demandons
tous si les définitions des nouvelles singularitiés n’auraient point quelque chose d’artificiel et de factice, au
lieu de résulter de la nature des choses, comme nous le voudrions.”
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the very base of the theory of single-valued functions, and Picard with whom I

discussed it shares my opinion entirely . . . [but regarding the style,] we both are

agreed that, in proceeding by that way which consists of starting from entirely

new abstract concepts to arrive through a sequence of deductions at realities of

analysis, you obeyed the German tendency, with a mentality that is not ours.

What is an imperative need for the French mind is to proceed in the opposite

sense, by taking all possible care to show how a new concept results from the

former concepts, and to make the reader at the outset, at the birth of the more

general propositions, as a continuation of known particular cases, never leaving,

if I may say, objective reality.15 [Her84], p. 94

This necessity for new concepts to be born of previously-existing and accepted ideas stems

from the French belief that mathematics was tightly bound to the natural laws of the uni-

verse. To Hermite and his school, mathematics was not a social or human construct but

existed independently. Several years earlier, Hermite had summarized exactly this senti-

ment in the context of the recent interest in discontinuous functions. In a letter to Paul du

Bois-Reymond dated February 1, 1881, he wrote:

. . . the study of the functions of analysis is also the study of the laws of nature;

I believe for my part that all the facts of analysis exist outside of us, and are

imposed on us just as necessarily as the properties of matter and the phenomena

of the real world. Consequently I see in the study of functions a study of objective

reality, and in the laws relative to functions [I see] a reflection of physical laws.16

15“Deux choses sont à distinguer dans votre travail: les propositions, les résultats auxquels vous êtes
parvenu, puis l’exposition que vous en avez faite, c’est-à-dire le fond et la forme. Pour le fond, je suis
certainement l’écho de tous les analystes en reconnaissant qu’il constitue, avec les théorèmes célèbres de
Weierstrass, le fondement même de la théorie des fonctions uniformes, et Picard avec qui je m’en suis
entretenu partage entièrement mon opinion. Il n’est pas non plus d’un avis opposé au mien pour ce qui
concerne la forme sous laquelle vous les présentez et les exposez. Tous deux nous sommes convenus que, en
procédant par cette voie qui consiste à partir des notions abstraites entièrement nouvelles pour arriver par un
enchaînement de déductions aux réalités de l’analyse, vous avez obéi à la tendance allemande, à une nature
d’esprit qui n’est point la nôtre. Ce qui est un besoin impérieux pour l’esprit francais, c’est de procéder en
sense inverse, en mettant tout le soin possible à montrer de quelle manière une nouvelle notion résulte des
notions antérieures, et à faire assister le lecteur à l’origine, à la naissance des propositions plus générales,
comme suite des cas particuliers connus, sans jamais quitter, si je puis dire, la réalité objective.”

16“. . . l’étude des fonctions de l’analyse est aussi l’étude des lois de nature; je crois pour mon compte que
tous les faits analytiques existent en dehors de nous, et s’imposent à nous tout aussi nécessairement que les
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[Her16], p. 203

It seems that to the French mathematicians of the time, Mittag-Leffler’s use of Cantor’s

transfinite sets (clearly of the “German tendency”) went against their very nature. Mittag-

Leffler was acutely aware of this discrepancy, though he continued to believe that Cantor’s

work was of significant worth. To remedy this situation he attempted (as mentioned earlier)

to make Cantor’s publications in Acta Mathematica more appealing to the general math-

ematical community by suggesting reductions in the amount of philosophical content and

more indications of the utility of Cantor’s work in science [Dau79], p. 291. However, Cantor

grew tired of such compromises. By 1887 Cantor had completely severed his professional

relationship with Mittag-Leffler and refused to publish his work in Acta, after Mittag-Leffler

suggested that it was unwise to print a premature version of Cantor’s general theory of order

types [Dau79], p. 3. This caused a serious rift in their friendship which never quite recovered.

Despite the concerns about Mittag-Leffler’s use of Cantorian ideas, the Mittag-Leffler

theorem itself continued to be taught, notably by Hermite. Picard was later to recall an

event that illustrates the impact of the theorem among students in the 1880s. In 1937,

when Picard was awarded the Prix Mittag-Leffler at the Institut de France, he made an

acceptance speech at the award ceremony which recounted the fame of both Weierstrass and

Mittag-Leffler:

It even happened that in the ceremony called the Shadows, where the Polytech-

niciens make innocent fun of their professors, someone announced the discovery

of a new verse of Genesis, where it was written: “God created Weierstrass, then,

not finding it good that Weierstrass should be alone, He created Mittag-Leffler.17

[Pic38], pp. xxii–xxiv

propriétés de la matière et les phénomènes du monde réel. Par conséquent, je vois, dans l’étude des fonctions,
une étude de la réalité objective, et dans les lois relatives aux fonctions, un reflet des lois physiques.”

17“Il arriva même que dans une de ces cérémonies, dites les Ombres, oú les Polytechniciens font d’innocentes
plaisanteries sur les professeurs, on annonça la d’ecouverte d’un nouveau verset de la Genèse, où il était écrit:
“Dieu créa Weierstrass, puis, ne trouvant pas bon que Weierstrass fût seul, il créa Mittag-Leffler.”
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7.2 Concluding Remarks

The Mittag-Leffler theorem began as an extension of Weierstrass’ 1876 factorization theo-

rem. As it was a direct continuation of Weierstrass’ work and was undertaken with exactly

the tools acquired from Weierstrass’ 1875–1876 lectures, it is clear that Mittag-Leffler was

an important contributor to Weierstrass’ research program concerning the foundations of

analysis. In addition, the rather complicated publication history of the Mittag-Leffler the-

orem, spanning eight years and with many publications in Swedish, German, and French,

illustrates the relative complexity of scientific communication at the time and underlines

why an international journal was a good idea.

The evolution of the Mittag-Leffler theorem was somewhat complicated. Several con-

tributions were instrumental to its development, notably the alternate proof provided by

Weierstrass in 1880 which Mittag-Leffler subsequently adopted. This version was far more

concise than Mittag-Leffler’s proofs of the 1870s, and Mittag-Leffler’s later versions remained

tightly-linked to Weierstrass’ work in analysis throughout the entire course of its develop-

ment. The introduction of Cantor’s controversial work in the theory of infinite sets of points

marks another pivotal moment in the evolution of the Mittag-Leffler theorem. Through his

correspondence with Cantor, Mittag-Leffler gained the necessary tools to bring his work to

its final and most-generalized version, allowing for the representation of functions having

an infinite number of essential singularities. Around this time, Mittag-Leffler was one of

very few advocates of Cantor’s transfinite set theory. The majority of the European mathe-

matical community favoured concrete mathematics based on formulas, and Mittag-Leffler’s

promotion of Cantor’s unorthodox work through his own research and through his journal

Acta Mathematica indicates the important role played by Mittag-Leffler in promoting the

kind of abstract mathematics that would later be praised as a major achievement. One of

the most significant findings of this thesis concerns Mittag-Leffler’s relationship to Cantor’s

set theory: his desire to deal with infinite sets of singular points attracted him to Cantor’s

work.

Despite the uncertain reception of Cantor’s work, the Mittag-Leffler theorem was seen

as a classical element of the theory of analysis. It remained popular and widely-studied
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within both French and German mathematical circles even in its latest version. Hermite

played a significant role in distributing Mittag-Leffler’s work to the French mathematical

community. That Mittag-Leffler’s theorem generated research in the following generation

of mathematicians (including the well-known figures Picard, Appell, and Poincaré) is due,

in large part, to Hermite’s promotion of Mittag-Leffler’s work in French classrooms. This

teaching of the Mittag-Leffler theorem to the undergraduate elite of France is perhaps the

most important indication of its status at that time. Furthermore, though the theorem

statements and accompanying proofs taught today tend to differ slightly fromMittag-Leffler’s

work of the late nineteenth-century, this work remains a fundamental part of the repertoire

in complex analysis. The theorem appears in current standard textbooks such as [Ahl79]

and [Rud74], and even in [Spi99] of the Schaum’s Outlines series.

Future work on this subject falls into several categories. I would like to return to Mittag-

Leffler’s publications on interpolation and approximation between 1876 and 1884 in order

to more fully understand their connection to the Mittag-Leffler theorem. Regarding Mittag-

Leffler’s role as a promoter of Cantor’s work, in [Can79] Cantor claims that both Ulisse Dini

and Giulio Ascoli found applications for his theory of infinite and linear sets of points. I

would like to investigate these applications.

I would also like to determine how the Mittag-Leffler theorem was used in analysis in

the late 1880s. In particular, Mittag-Leffler’s work generated some research by a handful of

Hermite’s students, notably Appell, Poincaré, and Picard.

Finally, I would like to examine more extensively Mittag-Leffler’s promotion of mathe-

matical work (such as Cantor’s set theory) by investigating the following questions: what

other mathematical work did Mittag-Leffler actively support, as a mathematician, but more

specifically as a journal editor? What sorts of mathematical research did Mittag-Leffler sup-

port through his journal? What subjects did he consider to be important and interesting,

and how and how much did his position as the editor of Acta Mathematica influence the

sorts of mathematics studied in Europe around that time? More generally, what was the

overall influence of Mittag-Leffler’s editorial policy and related activities on the evolution

and development of mathematical research in Europe?
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C Note for “The Final Version of Mittag-Leffler’s Theorem”

Determining mν

In Chapter 6 we discussed the fact that Mittag-Leffler thought it necessary to give his readers

a precise account of how to explicitly calculate the exponents mν such that
∞∑

µ=mν+1

A(ν)
µ

(
aν − bν
x− bν

)µ
< εν

when ∣∣∣∣aν − bνx− aν

∣∣∣∣ ≤ ε.
To determine an appropriate value for mν , Mittag-Leffler begins by writing the series

G
(

1
x−a

)
in the form (x 6= b)

G

(
1

x− a

)
=

c−1

(x− b)− (a− b)
+

c−2

[(x− b)− (a− b)]2
+ . . .

=
1

a− b
c−1

1− a−b
x−b

a− b
x− b

+
1

(a− b)2
c−2[

1− a−b
x−b

]2 (a− b)2

(x− b)2
+ . . .

Recognizing that 1
1− a−b

x−b
is the sum of a geometric series, we can rewrite the above as

G

(
1

x− a

)
=

c−1

a− b
a− b
x− b

∞∑
n=0

(
a− b
x− b

)n
+

c−2

(a− b)2
(a− b)2

(x− b)2

( ∞∑
n=0

(
a− b
x− b

)n)2

+ . . .

By expanding and rearranging,

G

(
1

x− a

)
=
[
c−1

a− b

](
a− b
x− b

)
+
[
c−1

a− b
+

c−2

(a− b)2

](
a− b
x− b

)2

+ . . .

and thus the coefficients Aν can be found to be

Aµ =
c−1

a− b
+
µ− 1

1!
c−2

(a− b)2
+

(µ− 1)(µ− 2)
2!

c−3

(a− b)3
+ . . .

+
(µ− 1)(µ− 2) · · · (µ− [r − 1])

(r − 1)!
c−r

(a− b)r
+ . . .

Because the function Gν
(

1
x−aν

)
is entire and absolutely convergent,

∞∑
k=1

|c−k|
(x− a)k

<∞;
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letting x− a = ξ, we write the above as

|c−1|
ξ

+
|c−2|
ξ2

+
|c−3|
ξ3

+ . . . = gξ <∞.

Noticing that the above implies |c−r| ≤ gξξ
r for every value of r, we can write, using the

triangle inequality,

Aµ ≤
gξξ

|a− b|
+
µ− 1

1!
gξξ

2

|a− b|2
+ . . .+

(µ− 1)(µ− 2) · · · (µ− [r − 1])
(r − 1)!

gξξ
r

|a− b|r
+ . . .

=
gξξ

|a− b|

(
1 +

µ− 1
1!

ξ

|a− b|
+ . . .+

(µ− 1)(µ− 2) · · · (µ− [r − 1])
(r − 1)!

ξr−1

|a− b|r−1
+ . . .

)
=

gξξ

|a− b|

(
1 +

ξ

|a− b|

)µ−1

.

We define now two positive values α and β such that β < 1, (1 + α)ε < 1, and ε
1−β < 1.

It is then always possible to find a positive quantity ε′ such that (1 + α)ε < ε′ < 1 and
ε

|1−β| < ε′ < 1. We can then choose ξ for the function Gν such that ξ
|a−b| < α. Then when b

is finite and such that
∣∣∣a−bx−b

∣∣∣ < ε,

∞∑
µ=mν+1

Aµ

∣∣∣∣a− bx− b

∣∣∣∣µ ≤
∞∑

µ=mν+1

gξξ

|a− b|

(
1 +

ξ

|a− b|

)µ−1

≤
∞∑

µ=mν+1

gξα(1 + α)µ−1εµ

≤
∞∑

µ=mν+1

gξα(1 + α)µ−1

(
ε′

1 + α

)µ
= gξ

α

1 + α

∞∑
µ=mν+1

ε′µ.

By factoring out the common term ε′mν+1, this can be written as

gξ
αε′mν+1

1 + α

∞∑
µ=0

ε′µ,

and thus
∞∑

µ=mν+1

Aµ

∣∣∣∣a− bx− b

∣∣∣∣µ ≤ gξαε′mν+1

1 + α

1
1− ε′

.

One can then choose mν such that

gξ
αε′mν+1

1 + α

1
1− ε′

< εν



CHAPTER 7. RECEPTION AND CONCLUDING REMARKS 77

and then set, for a finite and nonzero,

Fν(x) = Gν

(
1

x− aν

)
−

mν∑
µ=1

A(ν)
µ

(
aν − bν
x− bν

)µ
,

or, for aν zero or infinite,

Fν(x) = Gν

(
1

x− aν

)
making the desired function

F (x) =
∞∑
ν=1

Fν(x).

The general form of such a function is of course

F (x) = F (x) +G(x),

where G(x) represents an entire function. To expound these calculations of such a value

mν is certainly unnecessary by today’s standards, as the concern is simply to ensure that

such a value exists. In fact, Mittag-Leffler’s detailed instructions appear to serve no purpose

whatsoever, as there is no constructive use of the actual values of mν in the text which

follows. This sort of analytic exercise likely served solely to demonstrate to the reader that

it could actually be done explicitly, and to show Mittag-Leffler’s mastery of the technique.

D Modern Statement and Proof

In modern language, the Mittag-Leffler Theorem may be expressed as:

Theorem. Suppose Ω is an open set in the plane, A ⊂ Ω, A has no limit point in Ω, and to

each α ∈ A there are associated a positive integer m(α) and a rational function

Pα(z) =
m(α)∑
j=1

cj,α(z − α)−j .

Then there exists a meromorphic function f ∈ Ω, whose principal part at each α ∈ A is Pα

and which has no other poles in Ω. [Rud74]

The standard proofs of this theorem used today rely heavily upon Runge’s theorem, which

states that if K is a compact set in the plane and {aj} is a set containing one point in each

component of S2 − K (where S2 represents the Riemann Sphere R2 ∪ {∞}), then if Ω is
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open, K ⊂ Ω, f ∈ H(Ω) (where H(Ω) represents the class of all holomorphic functions in

Ω), and ε > 0, there exists a rational function R(z), all of whose poles lie in {aj}, such that

|f(z)−R(z)| < ε for all z ∈ K. [Rud74] Using Runge’s theorem, we proceed as follows.

Proof. Let {Kn} be a sequence of compact sets in Ω such that:

1. Kn ⊂ Kn+1 for n = 1, 2 = 3, . . . (so the Kns are nested)

2. Every compact subset of Ω lies in some Kn (so as n→∞, Kn → Ω)

3. Every component of S2 −Kn contains a component of S2 − Ω, for n = 1, 2, 3, . . . (in

other words, Kn must have no holes except those which are forced upon it by holes in

Ω, where there is no requirement for connectivity of Ω).

Now, let A1 = A ∩K1 and An = A ∩ (Kn −Kn−1) for n = 2, 3, . . .. Since An ⊂ Kn and

A has no limit point in Kn ⊂ Ω (that is, there is no value ω in Ω such that a sequence in A

converges to ω) it follows that each An is a finite set. Now set

Qn(z) =
∑
α∈An

Pα(z)

for n = 1, 2, 3, . . .. Since An is finite, it is clear that each Qn is a rational function, with

poles of Qn lying in Kn − Kn−1 for n ≥ 2 (since α ∈ An ⊂ (Kn − Kn−1)). In particular,

Qn is holomorphic in an open set containing Kn−1, and so by Runge’s theorem there exist

rational functions Rn with all poles in S2−Ω such that |Rn(z)−Qn(z)| < 2−n for z ∈ Kn−1.

Claim:

f(z) = Q1(z) +
∞∑
n=2

(Qn(z)−Rn(z))

for z ∈ Ω has the desired properties (namely that F is meromorphic in Ω with principle part

Pα at each α and no other poles in Ω). To show this, we fix N . On KN we have

f = Q1 +
N∑
n=2

(Qn −Rn) +
∞∑
N+1

(Qn −Rn).

By Runge’s theorem, each term in the second sum of the above equation for F is less than 2−n

on KN and so the last series converges uniformly on KN to a function which is holomorphic

inside KN . As well, since we have assumed that the poles of each function Rn lie outside

Ω, we know that f − (Q1 + · · ·+QN ) is holomorphic inside KN , and so f has the assigned

principal parts inside of KN (and hence inside Ω), since N was arbitrarily selected.
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