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1. INTRODUCTION.

Finally, the reader will probably observe the conspicuous absence of the time-honored topic
in calculus courses, the “Riemann integral.” It may well be suspected that, had it not been
for its prestigious name, this would have been dropped long ago, for (with due reverence to
Riemann’s genius) it is certainly quite clear to any working mathematician that nowadays such
a “theory” has at best the importance of a mildly interesting exercise in the general theory of
measure and integration. Only the stubborn conservatism of academic tradition could freeze
it into a regular part of the curriculum, long after it had outlived its historical importance. Of
course, it is perfectly feasible to limit the integration process to a category of functions which
is large enough for all purposes of elementary analysis, but close enough to the continuous
functions to dispense with any consideration drawn from measure theory; this is what we have
done by defining only the integral of regulated functions. When one needs a more powerful
tool there is no point in stopping halfway, and the general theory of (Lebesgue) integration is
the only sensible answer.

Jean Dieudonné, Foundations of Modern Analysis (1960)

This well-known quotation from a formidable mathematician with an equally formi-
dable personality should, by now, have rung the death knell for the Riemann integral.
North American calculus courses, naturally, have not responded, but one could have
expected no further elementary analysis texts to appear with a “serious” treatment of
an inadequate integral. The sentiment, however, seems to be that, since measure theory
would be inappropriate in a first analysis course, the only alternative is to develop the
Riemann integral. Certainly, the student will set it aside at some later date, like training
wheels on a bicycle, but how else can any integration theory be done?

Even in 1960, when Dieudonné launched this attack, there was an alternative avail-
able. The full range of classical integration theories on the real line (Newton, Riemann,
Lebesgue, Denjoy-Perron) had found a simple formal expression that could easily be
developed in a suitable manner for a first course. The Henstock-Kurzweil integral, as
it came to be known (see [5] and [7]), is not just easier to present (at least at the early
formal stages) than the Lebesgue integral. It is easier to present than the Riemann in-
tegral. It is also, arguably, the correct integral for the calculus program, but that might
be harder for the reader to accept.

The time may be right again for a return to these ideas. The late Bob Bartle joined
the ranks of the supporters of the alternative integration theory by publishing a note
in this MONTHLY [1]. As this received the Mathematical Association of America’s
Lester R. Ford Award, we can presume that there is now greater sentiment for trying
out such a program.

In this article we address some of the concerns that a designer of an elementary
real analysis course should confront when choosing to throw off the Riemann integral.
Our thesis is not at all that the Henstock-Kurzweil integral should be included. Instead
we promote a simpler viewpoint: that the use of Cousin covering arguments could be
made the centerpiece of the course. If that is accepted, the right integration theory is
inescapable and emerges naturally and simply.
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2. AN ANALYSIS EXERCISE IN SEARCH OF A METHOD. The typical calcu-
lus text of our times avoids, or consigns to a remote appendix, any use of compactness
arguments. In particular then, while much use is made of the facts that continuous
functions have maxima and minima on compact intervals and possess the Darboux
property, such facts are beyond proof. A first analysis course is invariably called upon
to make these compactness arguments. But which form should take center stage?

We illustrate the question with an exercise appropriate to the level.

1. A function f : R → R is constant on a set E if f (x) = f (y) for all x and y in
E .

2. A function f : R → R is locally constant at a point x if there is a δ > 0 so that
f (x) = f (y) for every y with |x − y| < δ.

Exercise 1. Show that a function that is locally constant at each point of an interval
[a, b] is constant on [a, b].

A calculus student might “solve” this by spotting that such a function would have to
have a zero derivative everywhere. Thus, by a familiar calculus principle, the function
is constant. But the proof of that principle requires a compactness argument anyway,
and the exercise should be attempted from first principles.

The following arguments are all equivalent since any one of them can be used to
prove the others. In spite of the equivalence, some have advantages over the others.

Sup/Inf Argument. Define the set C as follows:

C = {x ∈ [a, b] : f (t) = f (a) whenever a ≤ t ≤ x}.
Verify that C is nonempty and bounded. The sup/inf principle demands that C have a
supremum (a least upper bound). The existence of the supremum and the fact that f is
locally constant at that point will solve the exercise.

This principle is usually taken as an axiom. It is, in any case, an inescapable tool in
elementary analysis.

Dedekind Cuts. If f is not constant then there are points x and y in [a, b] (x < y)

with f (x) �= f (y). Define the sets A and B by

A = {t : t ≤ x or x < t and f is constant on [x, t] }

B = {t : x < t and f (z) �= f (x) for some x < z ≤ t }
Verify that A and B are nonempty and exhaust the real line. Dedekind’s principle
asserts that there is a cut number, a number separating the two sets. That number must
be in the interval [x, y]. The fact that f is locally constant at that point will show that
it cannot belong to either set A or B. This contradiction solves the exercise.

Nested Interval Argument. Suppose that f is not constant on [a, b]. Subdividing that
interval in equal subintervals, we produce at least one subinterval [a1, b1] of [a, b] with
half the length on which, again, f is not constant. We continue inductively, producing a
nested sequence of intervals whose lengths shrink to zero. The nested interval principle
ensures that there is a unique number that belongs to all of the intervals. The fact that
f is locally constant at that point produces a contradiction for the intervals that have
been constructed.

470 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114



Sequential Compactness Argument. If f is not constant on an interval [a, b], then
there are points x1 and y1 from that interval with f (x1) �= f (y1) and |x1 − y1| ≤ 1.
Argue so as to produce points xn and yn from [a, b] with f (xn) �= f (yn) and |xn −
yn| ≤ 1/n. The Bolzano-Weierstrass property of sequences in compact sets allows us
to extract a convergent subsequence from {xn}, and hence a point which is a limit of
subsequences from both {xn} and {yn}. The fact that f is locally constant at that point
leads to a contradiction to the way in which the sequences have been constructed.

Heine-Borel Argument. Let G be the collection of all open intervals on which f is
constant. By the Heine-Borel principle there must a finite collection of intervals from
G that covers [a, b], so f would have to be constant on [a, b].

This is a first-class compactness argument whose greatest merit is that it is exactly
the technique used in most advanced settings. On the other hand, our goal is not to
select the technique used by professionals, but to select the one that is most useful and
simple for an elementary analysis course.

Lebesgue Chains. We note that for every point x of [a, b) there is an interval [x, x +
h] on which f is constant. A chain of such intervals (see [10]) joining a to b will verify
that f is constant.

Start off with

[a, a1], [a1, a2], [a2, a3], . . .

always selecting intervals on which f is constant. Eventually one reaches b in a count-
able numbers of steps. Well, more correctly, if aω = limn an is less than b then carry
on with [aω, aω+1], . . . in a transfinite sequence. Transfinite induction, using local con-
stancy at each limit ordinal, completes the proof.

Perhaps this might be a bit too mysterious for a first course in analysis! In fact,
though, one of the covering arguments we ultimately use is closely related to this, but
has the decided advantage of replacing a transfinite sequence of intervals with a finite
one.

Covering Argument. We think about the nature of locally constant functions by con-
sidering pairs (I, x), where I is a closed interval containing the point x . Collections
of pairs are called relations and, because we use only pairs (I, x) with I an interval
containing x , these are commonly called covering relations.

The pairs that describe the situation of the exercise are these:

All pairs (I, x), where I is a closed subinterval of [a, b], x is a point of I , and f is constant
throughout the whole interval I .

Visualize the collection β of all such pairs: in your imagination you see many little
pieces describing how the function is constant close to each point. The collection β is
a covering relation that describes the geometry of our problem. The covering relation
β has the following simple local structure: if x is an arbitrary point of [a, b], there
must be a δ > 0 so that a pair (I, x) belongs to β whenever x belongs to I and the
length of I is smaller than δ.

The resolution of the problem depends on putting the pieces together. The Cousin
covering lemma (Lemma 1) asserts there is a partition of the interval [a, b] formed
of a finite number of elements (Ii , xi ) from β. On each interval Ii the function f is
constant. Since the intervals {Ii } cover [a, b], it follows that f is constant on the entire
interval.
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Selecting the Right Compactness Argument. The choice of the Bolzano-Weierstrass
property or the Heine-Borel property would seem to be dictated, both by the needs
of more advanced courses that the student will subsequently take and by the obvious
predilection of the instructor for the more familiar methods that he uses daily. Admit-
tedly, the covering argument producing partitions of compact intervals is very peculiar
to the geometry of the real line. No such geometry would be available in metric spaces
or general topological spaces.

Still, it is the very fact that the method is tailored to apply to the real line that gives
it its merit. Much of the nature of the study of derivatives, integrals, and limits on
the real line can be expressed by these covering notions. Many of the properties of
these concepts are clarified by the two covering lemmas in the next section. We ask
the reader to accept this premise for the moment in order to see where it leads.

The name of the covering lemma originates from a paper in the late nineteenth
century by the Belgian mathematician Pierre Cousin. It seems entirely unreasonable to
attribute the lemma to him, but so far no earlier volunteer has stepped forward. For a
while it looked like his more famous French colleague, Edouard Goursat, could claim
the honors for a paper published in 1900, but Cousin’s paper was found and predates
Goursat’s by a little bit.

The lemma has a peculiar and persistent habit of rediscovery. An avid reader of
twentieth century copies of this MONTHLY will find that it reappears with nearly the
regularity and twice the frequency of the cicadas. A friend of mine who used it in a
basic analysis course claims that the lemma is perhaps too successful in early courses:
the students become so enamored in using the machinery of the lemma that they avoid
learning any other techniques.

3. COVERING RELATIONS. A covering relation is a family β of interval-point
pairs ([a, b], c), where a < b and c is an element of [a, b]. A covering lemma is a
statement that from some covering relation β a subset β1 can be extracted with certain
desired properties.

The most famous of covering lemmas is due to Vitali and can be presented only
with a good bit of measure theory, not what we have in mind for this elementary
development. The simplest and most elementary of covering lemmas are those that
concern covering relations arising in connection with compact sets.

Definition 1. A covering relation β is a Cousin cover of a compact interval [a, b] if
for each x in [a, b] there is a δ > 0 with the property that ([c, d], x) belongs to β

whenever x ∈ [c, d] ⊂ [a, b] and d − c < δ.

While the Cousin covers are designed to address the situation that we saw in our
elementary exercise, we require also some more general covers that require only a
weak condition to hold on the right-hand side at each point provided a strong condi-
tion holds on the left. These covers first arose in a study of right-hand derivatives of
continuous functions in Hagood [3], where they are used to give an elementary proof
of the Lebesgue differentiation theorem. We shall reproduce that proof in Section 7.

Definition 2. Let K be a compact subset of the real numbers with a = inf K and
b = sup K . A covering relation β is a quasi-Cousin cover of K provided that the
following conditions are met:

1. There is at least one pair ([a, d], a) in β with a < d ≤ b.
2. For each x in K ∩ (a, b) there is a δ > 0 and a d satisfying x < d ≤ b such that

([c, d], x) belongs to β whenever x − δ < c ≤ x .
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3. There is a δ > 0 so that ([c, b], b) belongs to β whenever b − δ < c < b.

Our two main covering lemmas establish that Cousin and quasi-Cousin covering
relations contain partitions. Suppose that

a = a0 < a1 < a2 < · · · < ak−1 < ak = b

and that xi is a point in [ai−1, ai ] for each i = 1, 2, . . . , k. Then we would call the
covering relation

π = {([ai−1, ai ], xi ) : i = 1, 2, . . . , k}
a partition of [a, b]. Any subcollection of a partition is called a subpartition. Note that
for a covering relation π to be a subpartition it need only be a finite collection such
that the intervals I1 and I2 do not overlap for distinct pairs (I1, x1) and (I2, x2) in π .

Lemma 1 (Cousin Covering Lemma). If β is a Cousin cover of a compact interval
[a, b], then β contains a partition of every compact subinterval of [a, b].
Lemma 2 (Quasi-Cousin Covering Lemma). If β is a quasi-Cousin cover of a com-
pact set K with a = inf K and b = sup K , then β contains a subpartition π such that

K ⊂
⋃

(I,x)∈π

I ⊂ [a, b].

In particular, if K is itself a compact interval [a, b], then β must contain a partition
of [a, b]. The most economical line of proof is to establish Lemma 2 first using a
sup/inf argument and then appeal to Exercise 4 to prove Lemma 1. (The exercises are
given for reference, not as assignments to the reader.)

Exercise 2. Let K be a compact set, and let β be a covering relation with the property
that for each x in K there exist positive numbers s and t so that ([x ′, x + s], x) belongs
to β whenever x − t ≤ x ′ ≤ x . Show that β contains a subpartition π for which

K ⊂
⋃

(I,x)∈π

I .

Exercise 3. Show that if β1 and β2 are both Cousin covers of [a, b], then β1 ∩ β2 is
also a Cousin cover of [a, b].
Exercise 4. Show that every Cousin cover of an interval [a, b] is a quasi-Cousin cover
of any subinterval [c, d] of [a, b].
Constructing Covering Arguments. The key advice in constructing covering argu-
ments is to keep things simple. Make sure that a cover reflects the geometry of the
problem. It is an error to construct highly technical devices with lots of εs and δs. The
only technical step in each argument should be the actual checking of the fact that the
cover satisfies the hypotheses of the lemma invoked. The construction of the covering
relation and its role in solving the problem should always be transparent.

There will be a grade of “C−” if the description of the covering relation is framed
in such a way to verify the fact that it is a Cousin cover. The literature abounds with
clumsy formulations of these ideas. If you see mention of anything being “δ-fine” you
can consider yourself in “C−” territory.
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Example 1. Let G be a family of open sets with the property that each point of a
compact set K is contained in at least one member of the family. Show that there is a
finite subcollection G0 of G with the same property.

The geometry of this problem is expressed in the covering relation

β = {(I, x) : x ∈ I and I ⊂ G for some G in G}.
Just check that β is a quasi-Cousin cover of K . The subpartition guaranteed by
Lemma 2 immediately solves the problem.

Example 2. Let E be an infinite, bounded set. Show that E must have a point of
accumulation.

The geometry of this problem is captured by the covering relation

β = {(I, x) : x ∈ I and I ∩ E is finite}.
Assuming that E has no point of accumulation, check that β is a Cousin (or quasi-
Cousin) cover of any compact interval.

Example 3. Let f : R → R be a continuous function. Show that f is uniformly con-
tinuous on every compact subinterval of R.

Let ε > 0. The geometry of the problem reduces to the covering relation

β = {(I, x) : x ∈ I and ω f (I ) < ε},
where ω f (I ) = supx,y∈I | f (x) − f (y)| is the oscillation of the function f on the in-
terval I .

Example 4. Let f : R → R be a continuous function with f ′(x) = 0 at all but a
countable number of points. Show that f is constant.

The geometry of this problem involves two covering relations, namely,

β1 = {([y, z], x) : x ∈ [y, z] and | f (z) − f (y)| < ε(z − y)/2}
and

β2 = {(I, x) : x = ci ∈ I and ω f (I ) < ε2−i−1}.
Here {c1, c2, c3, . . . } is the set of exceptional points at which we do not know the
existence of the derivative. The union β1 ∪ β2 is a Cousin (or quasi-Cousin) cover
of any compact interval. The promised partition can be split into two parts for easy
handling.

Example 5. Let f : R → R be a function that satisfies the Lipschitz condition
| f (x) − f (y)| ≤ M|x − y| for a positive real number M and all real numbers x
and y. Suppose that f ′(x) = 0 at all x excepting only a set of measure zero. Show that
f is constant.
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Although the statement of the exercise would seem to require some measure theory,
its solution can be accomplished with very little. All we need is that for ε > 0 there is
an open set G whose Lebesgue measure is smaller than ε and f ′(x) = 0 for all x not
in G.

The geometry of this problem is again expressed in two covering relations:

β1 = {([y, z], x) : x ∈ [y, z] and | f (y) − f (z)| < ε(y − z)/2}
and

β2 = {(I, x) : x ∈ I and I ⊂ G},
where G is an open set chosen so that the Lebesgue measure of G is smaller than
ε/(2M), and where f ′(x) = 0 if x is not in G. (For a more ambitious exercise, with
nearly the same proof, advanced readers may assume instead that f is absolutely con-
tinuous.)

4. INTEGRALS. The integral of choice for our course is determined by two fac-
tors: the inversion of derivatives and the covering relation that expresses that process.
The driving force behind the development of the integral on the real line has always
been the problem of recovering a function from its derivative. Some presentations of
Lebesgue’s integral can easily obscure this, even though Lebesgue himself claimed it
was his motivation. Thus one can find textbook complaints about the Riemann integral
that it lacks appropriate limiting properties or doesn’t integrate “enough” functions,
but with no genuine indication of why more functions would be needed.

By contrast, a natural and compelling motivation is offered by a return to the fa-
miliar calculus problem of inverting a derivative. The following lemma is an entirely
elementary expression of the geometry of the relation F ′(x) = f (x) in the language
of covering relations. (We use I to denote a compact interval, �(I ) to denote its length,
and �F(I ) to denote the increment of a function F on I .)

Lemma 3. If F : R → R is a differentiable function with F ′(x) = f (x) everywhere,
then for each ε > 0 and compact interval [a, b] there is a Cousin cover β of [a, b]
such that ∣∣∣∣∣

∑
(I,x)∈π

f (x)�(I ) − �F([a, b])
∣∣∣∣∣ < ε

and ∑
(I,x)∈π

|�F(I ) − f (x)�(I )| < ε

for every partition π of [a, b] contained in β.

The proof is trivial: merely take

β =
{
(I, x) : x ∈ I and

∣∣∣∣�F(I )

�(I )
− f (x)

∣∣∣∣ < ε/(b − a)

}
.

But the lemma contains a serious clue as to how one can (formally) recover �F([a, b])
from f , as well as the fundamental characterization of the integral itself (see Hen-
stock’s criterion in Section 5).
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The Integral. A function f is integrable (in the sense appropriate to the present dis-
cussion) on a compact interval [a, b] if there is a number c so that for each ε > 0 a
Cousin cover β of [a, b] can be found with the property that∣∣∣∣∣

∑
(I,z)∈π

f (z)�(I ) − c

∣∣∣∣∣ < ε

for all partitions π of [a, b] contained in β. This number c is denoted, naturally, by the
symbol

∫ b
a f (x) dx .

This definition is just a copy of the property of derivatives expressed in Lemma 3.
The definition is designed to accomodate derivatives, and so it does: it is immediate
(from Lemma 3) that, if F ′ = f everywhere, then f is integrable on any interval [a, b]
and ∫ b

a
f (x) dx = F(b) − F(a).

Upper and Lower Integrals. For most presentations it is preferable to introduce up-
per and lower integrals and then deduce the definition just given as a theorem.

Definition 3. For a function f defined on an interval [a, b] we define an upper integral
by

∫ b

a
f (x) dx = inf

β
sup
π⊂β

∑
(I,z)∈π

f (z)�(I ),

where the supremum is taken over all partitions π of [a, b] contained in a fixed Cousin
cover β of [a, b] and the infimum extends over all such covers.

Similarly, we define a lower integral as a sup/inf. If the upper and lower integrals
are identical we write the common value as

∫ b
a f (x) dx . If this value is also finite, then

we say f is integrable. It is easy to check that the two methods of defining the integral
agree.

5. PROPERTIES OF THE INTEGRAL. The integral (it is advised to call it merely
the integral rather than attach some person’s name to it) can now be developed as far
as is needed for the course design. Those who are of the sentiment that their students
need scarcely anything more than the Riemann integral just don’t have to go so deep.
If the goal is to get the student as far only as the rudiments of the Lebesgue integral,
then again push only that far. The view that this integral is peculiar or recondite should
be suppressed. Restricted to the class of functions that you usually use this is just the
same integral; the fact that more functions can be integrated simplifies many arguments
and assertions, for unnecessary hypotheses can be dropped and no longer play roles
in proofs. We have seen one example already: if F ′(x) = f (x) everywhere, then f is
integrable over each compact interval [a, b] and∫ b

a
f (x) dx = F(b) − F(a).

The proof, as we have seen, is completely trivial. In the setting of the Riemann integral
this is false without also assuming that f be integrable. That complicates the proof.
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In the setting of the Lebesgue integral, again integrability must be assumed and the
considerable apparatus of measure theory then used to verify the identity.

The elementary properties of the integral can be stated and proved much as in a
typical analysis course. Exercise 3 plays a role in most of the easy proofs, but other-
wise things look quite familiar. While it has a moderately more complicated definition
than the Riemann integral, this integral has much the same structure and the simplest
properties flow from that fact.

Improper Integrals? In the usual calculus course, we treat an integral such as∫ 1
0 x−1/2 dx by the familiar device:

∫ b

a
f (x) dx = lim

c↘a

∫ b

c
f (x) dx . (1)

Here, if the left-hand side does not exist in the usual sense it is to be interpreted as the
right-hand side, provided that exists.

It is not because the integrand is undefined at the endpoint that this is needed (as
some students think): values of a function at a single point do not influence integrability
in a Riemann-type theory and so any value could be assumed at a troublesome point.
The calculus integral applies only to bounded functions. This is the reason that the
student is obliged to announce the existence of the integral in “an improper sense” and
justify that existence by several comments.

The integral that we have defined needs no such justifications. The identity in (1)
always holds: the improper extension of the integral is no longer needed. The course
designer should keep in mind that the Lebesgue integral does not have this property and
different formulations are needed to check integrability at points of unboundedness.

Establishing this property is not difficult but could be avoided in a simple course.
For most applications (certainly for the integral

∫ 1
0 x−1/2 dx) the following lemma

would be preferred anyway:

Lemma 4. If F is a continuous function on an interval [a, b] for which F ′(x) = f (x)

everywhere there with at most countably many exceptions, then f is integrable on
[a, b] and ∫ b

a
f (x) dx = F(b) − F(a).

The proof is easy: verify that that the conclusion of Lemma 3 holds (mimic the cover-
ing argument in Example 4).

Summing Inside the Integral. We wish now to establish the formula

∫ b

a

( ∞∑
n=1

fn(x)

)
dx =

∞∑
n=1

(∫ b

a
fn(x) dx

)
.

Such a formula would never be proved in a first course for the Riemann integral except
under the assumption of uniform convergence. For the Lebesgue integral the proof
would require some serious measure-theoretic tools. It is part of the tradition of the
Henstock-Kurzweil integral that such theorems can be handled without many prelimi-
naries; the version here, using upper and lower integrals, is particularly simple because
so few hypotheses are involved.
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The covering argument chops up and then puts together the fragments of Cousin
covers; while somewhat detailed, this should be accessible in a first course.

Theorem 1. Suppose that f and fn (n = 1, 2, . . . ) are nonnegative functions on a
compact interval [a, b]. If

f (x) ≤
∞∑

n=1

fn(x)

for each x in [a, b], then

∫ b

a
f (x) dx ≤

∞∑
n=1

(∫ b

a
fn(x) dx

)
. (2)

If

f (x) ≥
∞∑

n=1

fn(x)

for each x in [a, b], then

∫ b

a
f (x) dx ≥

∞∑
n=1

(∫ b

a
f (x) dx

)
. (3)

Proof. Inequality (3) is the easiest to prove: armed with Exercise 3 the reader will
have no troubles. To prove (2) requires some manipulations of the covering relations
and a bit of bookkeeping. Let t < 1 and ε > 0. For x in [a, b] let N (x) signify the first
integer such that

t f (x) ≤
N (x)∑
n=1

fn(x).

Choose Cousin covers βn of [a, b] (n = 1, 2, . . . ) so that β1 ⊃ β2 ⊃ β3 . . . and

∑
π

fn(x)�(I ) ≤
∫ b

a
fn(x) dx + ε2−n

whenever π is a partition of [a, b] contained in βn . (If any of the integrals here is not
finite then there is nothing to prove, since the right-hand side of (2) will be infinite.)

Let

En = {x ∈ [a, b] : N (x) = n}.
We use these sets to split up the covering relations. Write

βn[En] = {(I, x) ∈ βn : x ∈ En}
and

β =
∞⋃

n=1

βn[En].
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It is straightforward to check that β is a Cousin cover of [a, b]. Consider any partition
π of [a, b] contained in β. Let N be the largest value of N (x) for the finite collection of
pairs (I, x) in π . We need to divide the partition π into a finite number of subpartitions
by writing

π j = {(I, x) ∈ π : x ∈ E j }
and

σ j = π j ∪ π j+1 ∪ · · · ∪ πN

for j = 1, 2, . . . , N . Note that σ j is a subcollection of β j and that π = π1 ∪ π2 ∪ · · ·
∪ πN .

Keeping in mind that

t f (x) ≤ f1(x) + f2(x) + · · · + fi (x) (x ∈ Ei ),

we check the following computations:

∑
π

t f (x)�(I ) =
N∑

i=1

(∑
πi

t f (x)�(I )

)

≤
N∑

i=1

∑
πi

[ f1(x) + f2(x) + · · · + fi (x)] �(I ) =
N∑

j=1

(∑
σ j

f j (x)�(I )

)

≤
N∑

j=1

(∫ b

a
f j (x) dx + ε2− j

)
≤

∞∑
j=1

(∫ b

a
f j (x) dx

)
+ ε.

This gives an upper bound for all these sums and, since ε is arbitrary, shows that

∫ b

a
t f (x) dx ≤

∞∑
n=1

(∫ b

a
fn(x) dx

)
.

As this is true whenever t < 1, (2) follows.

Integrability Criteria. The theoretical development of the integral depends on the
following three criteria relating to a function f defined on an interval [a, b]:
• (Cauchy Criterion) For each ε > 0 a Cousin cover β of [a, b] can be found with

the property that ∣∣∣∣∣
∑

(I,z)∈π

∑
(I ′,z′)∈π ′

[ f (z) − f (z′)]�(I ∩ I ′)

∣∣∣∣∣ < ε

for all partitions π and π ′ of [a, b] contained in β.
• (McShane’s Criterion) For each ε > 0 a Cousin cover β of [a, b] can be found with

the property that ∑
(I,z)∈π

∑
(I ′,z′)∈π ′

∣∣ f (z) − f (z′)
∣∣ �(I ∩ I ′) < ε

for all partitions π and π ′ of [a, b] contained in β.

June–July 2007] THE ELEMENTARY REAL ANALYSIS COURSE 479



• (Henstock’s Criterion) There is a function F (called the indefinite integral) with the
property that for each ε > 0 there exists a Cousin cover β of [a, b] with the property
that ∑

(I,x)∈π

|�F(I ) − f (x)�(I )| < ε,

for every partition π of [a, b] contained in β.

Cauchy’s criterion is just the usual expression of a necessary and sufficient condi-
tion in order for a limit to exist. It is easily proved to be equivalent to integrability in a
familiar manner.

We have already seen Henstock’s criterion in Lemma 3. It becomes, in the present
setting, a necessary and sufficient condition for f to be integrable. Simultaneously, it
establishes that there must be an indefinite integral F associated with any integrable
function that stands in this tight relation to f .

McShane’s criterion (from [13]) is transparently stronger than the Cauchy criterion.
All continuous functions (indeed, all bounded, measurable functions) satisfy this crite-
rion. It is easy to see that if f satisfies this property then so too does | f |. The designer
of the course should know (but keep that knowledge from the students no doubt) that
the following assertions are equivalent:

1. f satisfies McShane’s criterion on [a, b];
2. f and | f | are integrable on [a, b];
3. f is Lebesgue integrable on [a, b].

Because of the second of these, it is appropriate to say that a function f is absolutely
integrable on an interval if it satisfies McShane’s criterion there. A natural second
definition is that f is nonabsolutely integrable if f is integrable but | f | is not.

We know that the lion’s share of modern analysis is centered on absolutely inte-
grable functions; relatively little light is cast on nonabsolutely integrable functions.
There is a similar situation with convergent series: absolutely convergent series have
the most robust properties and the most important applications. Even so, nonabso-
lutely convergent series and integrals belong naturally to our study and should not be
avoided.

An Elephant in the Room? It is the fate of all mathematics that, as it gets more
general, it becomes more trivial. The connection between a function and its indefi-
nite integral expressed by Henstock’s criterion might appear somewhat profound. The
identical connection between a function and its derivative expressed in Lemma 3 was
completely trivial. So too is this criterion.

While we have restricted the integral concept to a limit of Cauchy sums of the form∑
(I,x)∈π

f (x)�(I ),

there is an elephant in the room that we have carefully suppressed. The integral is
more natural and compelling a concept if applied to real-valued functions h defined on
covering relations. Thus an integral

∫ b
a h is defined for such a function h in the same

way, namely, as the limit of sums ∑
(I,x)∈π

h(I, x).
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Then there are three rather simple facts that clarify the Henstock criterion:

(1)
∫ d

c h = 0 for all subintervals [c, d] of [a, b] if and only if
∫ b

a |h| = 0.

(2) The statement that F is an indefinite integral of f on [a, b] is merely the obser-
vation that ∫ d

c
(�F − f �) = 0

for all subintervals [c, d] of [a, b].
(3) The statement that F is an indefinite integral of f on [a, b] is, because of (1)

and (2), equivalent to the integration statement that∫ b

a
|�F − f �| = 0.

The designer of the course should be aware that a natural exegesis would ultimately
lead to this looser approach to what an integral is but that an elementary course would
likely be muddied by this extra generality. Having opened up the integral concept, how
could we then resist Stieltjes integrals or more exotic devices?

Perhaps even more seductive is the clarity that such an integral brings to the Jordan
decomposition theorem. The expression

∫ b

a
|� f |

is precisely the total variation of f on [a, b]. If f is continuous and has bounded
variation, then two easy identities,∫ b

a
� f =

∫ b

a
[� f ]+ −

∫ b

a
[� f ]−

and ∫ b

a
|� f | =

∫ b

a
[� f ]+ +

∫ b

a
[� f ]−,

contain all one needs to know about the Jordan decomposition.

6. MEASURE THEORY. Our goal has not been to suppress the measure theory,
but rather to refrain from advancing to techniques that are beyond the scope of the
covering lemmas. If we do inject a smattering of measure theory we can introduce
ideas that are fundamental to later courses, as well as state and prove significant facts
about the derivative and integral, all at this elementary level.

We can begin by allowing a measure theory for open sets and compact sets. This
does not exceed our reach since only elementary covering lemmas are needed.

Measure Theory of Open Sets. The measure L(G) of an arbitrary open subset G of
R is defined as follows:

1. L(∅) = 0;
2. L((a, b)) = b − a;
3. L(G) = ∑

i (bi − ai ), where (ai , bi ) are the component intervals of G.
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The following lemma asserts the most basic of the measure properties for open sets.
While most professional mathematicians can hardly resist an appeal to the Heine-Borel
theorem to prove this, we remain with our stated goal of unifying as much as possible
by applying covering arguments.

Lemma 5. If G and Gn (n = 1, 2, . . . ) are open subsets of R for which G ⊂⋃∞
n=1 Gn, then L(G) ≤ ∑∞

n=1 L(Gn).

Proof. Let {(ak , bk)} be the collection of component intervals of G, fix an integer N
no larger than the number of such intervals, and consider the compact set

K =
N⋃

k=1

[ck, dk] ⊂
∞⋃

n=1

Gn

where ck and dk (k = 1, 2, . . . , N ) are arbitrary numbers such that ak < ck < dk < bk .
The most natural covering relation in this situation is

β = {(I, x) : x ∈ I and I ⊂ Gn for some n}.
Checking that β is a quasi-Cousin cover of K , we use Lemma 2 to extract a subparti-
tion π from β for which

K ⊂
⋃

(I,x)∈π

I .

We collect the intervals I with (I, x) in π that are subsets of a particular set Gn and
observe that the total length of these intervals I cannot exceed L(Gn). There are only
a finite number of pairs (I, x) in π to handle, so we see that

N∑
k=1

(dk − ck) ≤
∑

(I,x)∈π

�(I ) ≤
∞∑

n=1

L(Gn).

As this is true for all choices of [ck, dk], we conclude that

N∑
k=1

(bk − ak) ≤
∞∑

n=1

L(Gn).

Since this is true for all relevant N , the inequality of the lemma follows.

Measure of Compact Sets. One step further and we can introduce the measure for
compact sets: For an arbitrary compact subset K of R define

L(K ) = inf{L(G) : G open and G ⊃ K }.
Measure theory seems to be creeping in to the presentation, but since we have not pro-
gressed beyond compact sets, we are no more advanced in our methods than Peano and
Jordan were in their late nineteenth century theory of content. We have also avoided
their blunder: failing to distinguish between the measure of an open set and the mea-
sure of its closure.

While it need play no role in the theory under discussion, it would be interesting
for the student to see that the measure L does have close connections with the integral,
even at this early stage.
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Lemma 6. If K is a compact subset of an interval [a, b], then its characteristic func-
tion χK is integrable on [a, b] and

L(K ) =
∫ b

a
χK (x) dx .

Proof. Let G1 be the open set complementary to K in R and consider the covering
relation

β1 = {(I, x) : x ∈ K and I ⊂ [a, b] or x �∈ K and I ⊂ G1}.
This is a Cousin cover of [a, b]. Let π be a partition of [a, b] in β1. Note that for any
(I, x) in π either x ∈ K and χK (x) = 1 or x �∈ K , χK (x) = 0, and I ∩ K = ∅. Set
π[K ] = {(I, x) ∈ π : x ∈ K }. Thus ⋃

(I,x)∈π[K ]
I ⊃ K ,

whence ∑
(I,x)∈π

χK (x)�(I ) =
∑

(I,x)∈π[K ]
�(I ) ≥ L(K ).

This gives a lower bound for the lower integral:

L(K ) ≤
∫ b

a
χK (x) dx . (4)

In the other direction take an arbitrary open set G2 that contains K and consider the
covering relation

β2 = {(I, x) : x ∈ K and I ⊂ G2 or x �∈ K and I ⊂ [a, b]}.
This, too, is a Cousin cover of [a, b]. If π is a partition of [a, b] in β2, observe that for
any (I, x) in π either x ∈ K , χK (x) = 1, and I ⊂ G2, or x �∈ K and χK (x) = 0. Thus∑

(I,x)∈π

χK (x)�(I ) =
∑

(I,x)∈π[K ]
�(I ) ≤ L(G2).

This yields an upper bound of L(G2) for the upper integral. Since G2 is an arbitrary
open set containing K , we infer that

L(K ) ≥
∫ b

a
χK (x) dx . (5)

Together, (4) and (5) complete the proof.

Null Sets and Null Functions. A subset E of R is said to be a null set if for every ε >

0 there is an open set G containing E with L(G) < ε. We need only one simple feature
of null sets. The proof is little more than an application of the identity

∑∞
n=1 ε2−n = ε

and Lemma 5.
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Lemma 7. If {En} is a sequence of null sets and E ⊂ ⋃∞
n=1 En, then E is also a null

set.

A function f : R → R is a null function if {x : f (x) �= 0} is a null set. That null
functions are integrable is an essential feature of Lebesgue’s theory of integration,
easily included in our elementary course.

Theorem 2. Every null function is integrable on any compact interval, and the value
of the integral is zero.

Proof. The student can be given the case where f is bounded as an exercise along with
a hint to mimic the argument in Example 5. The extension to unbounded functions uses
a device familiar in measure theory. Fix an interval [a, b]. For m = 1, 2, 3, . . . write

Em = {x ∈ [a, b] : m − 1 < | f (x)| ≤ m}.
Each set Em is a null set, and f is bounded on each. An application of Theorem 1
reveals that ∫ b

a
| f (x)| dx ≤

∞∑
i=1

∫ b

a
|χEi (x) f (x)| dx . (6)

As each integrand in the sum on the right is a bounded null function, it follows that
each term in the sum is zero. From this we easily conclude that f is integrable on [a, b]
with a zero integral.

In many presentations of the Henstock-Kurzweil theory some odd pride is taken
in the fact that so much can be done (for example this lemma) without introducing
the tools of measure theory. In fact, however, this proof does implicitly use some rec-
ognizable tools of the measure theory: the splitting up of the set {x : f (x) �= 0} into
the sequence {Em}, followed by computations similar to outer measure estimates. We
are beginning to introduce measure theoretical tools without acknowledging the fact.
Inequality (6) should really be expressed as

∫ b

a
| f (x)| dx ≤

∞∑
i=1

∫ b

a
|χEi (x) f (x)| dx ≤

∞∑
i=1

iL(Ei) = 0, (7)

where L now signifies Lebesgue outer measure. We offer the student no service by
burying the concepts deep in the proof and not exposing the underlying measure theo-
retic facts that actually make the proof more transparent. The moral we should take for
our elementary course is to launch the study of measure theory when it is appropriate
and otherwise to hold off on obtaining the most general results.

7. THE LEBESGUE DIFFERENTIATION THEOREM. The Lebesgue differen-
tiation theorem is commonly considered outside the scope of an elementary course,
usually waiting for the arrival of the Vitali covering theorem. A proof of this theorem
has been given by John Hagood [3] that uses the basics of measure theory but replaces
an appeal to the Vitali theorem with a simple covering lemma. For convenience we
reproduce that here.

Theorem 3. If f : R → R is a continuous, nondecreasing function, then f has a
derivative everywhere outside of a null set.
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Proof. We prove first that the set of points at which f has no right-hand derivative is
a null set. We use the notation

D
+

F(x) = lim
t→0+

sup

{
F(x + s) − F(x)

s
: 0 < s < t

}

for the upper right-hand derivative (Dini derivative) of F at x with a similar definition
for the lower right-hand derivative D+F(x). Recall that F has a right-hand derivative
at a point x precisely when these two derivatives agree and are finite.

Thus examination of the set of points at which f has no right-hand derivative leads
to an analysis of the set where the upper right Dini derivative exceeds the lower right
Dini derivative:

E = {x ∈ R : D+F(x) < D
+

F(x)}.
This set is, in turn, the countable union of the collection of sets

E pq = {x ∈ R : D+ f (x) < p < q < D
+

F(x)}
taken over all rational numbers p and q with p < q. If each of these is a null set then
Lemma 7 allows to infer that E is a null set. The only further fact from measure theory
we require is the key observation that, in order to verify that E pq is a null set, it is
sufficient to show that all its compact subsets are null. (This would require checking
for the measurability of Dini derivatives of continuous functions.)

The keys to the proof are the following two growth lemmas, familiar enough, but
stated only for compact sets because of our self-imposed limitation of using only
simple covering arguments:

Lemma 8. If f : R → R is a continuous, nondecreasing function and K a compact
subset of R with the property that D+ f (x) < p for each x in K , then

L( f (K )) ≤ pL(K ). (8)

Lemma 9. If f : R → R is a continuous, nondecreasing function and K is a compact
subset of R with the property that D

+
f (x) > q for each x in K , then

L( f (K )) ≥ qL(K ). (9)

To prove these lemmas we exploit the geometry of the derivative, expressed in the
following two covering relations

βp =
{
(I, z) : z ∈ K ∩ I,

� f (I )

�(I )
< p

}

and

βq =
{
(I, z) : z ∈ K ∩ I,

� f (I )

�(I )
> q

}
.

These are not precisely quasi-Cousin covers of K , but they do satisfy the slightly
weaker condition expressed in Exercise 2. To verify these local properties, we merely
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use the fact that D+ f (x) < p (for the first lemma) or D
+

f (x) > q (for the second
lemma) at each point x of K and make use of the continuity of f .

For Lemma 8, let G be an arbitrary open set containing K . Prune out unnecessary
parts of βp by defining

β ′
p = {(I, x) ∈ βp : I ⊂ G}.

This does not change the covering properties so we can invoke Exercise 2. Thus there
is a subpartition π contained in β ′

p with the property that

K ⊂
⋃

(I,x)∈π

I .

Using this, we compute

L( f (K )) ≤
∑

(I,x)∈π

� f (I ) ≤
∑

(I,x)∈π

p�(I ) ≤ pL(G).

Since this is true for all such open sets G, we deduce (8).
To establish Lemma 9, consider an arbitrary open set G containing f (K ) and re-

move unnecessary parts of βq by passing to

β ′
q = {(I, x) ∈ βq : I ⊂ f −1(G)}.

This does not change the covering properties and again Exercise 2 supplies a subparti-
tion π contained in β ′

q covering K that leads to the computation

qL(K ) ≤
∑

(I,x)∈π

q�(I ) ≤
∑

(I,x)∈π

� f (I ) ≤ L(G).

Since this holds for all such open sets G, we infer the correctness of (9).
The two growth lemmas are used to check that each compact subset of either of the

following sets is a null set:

{x ∈ R : D+ f (x) < p < q < D
+

F(x)} (10)

and

{x ∈ R : D
+

f (x) = ∞}. (11)

Every compact subset K of the first set (10) must satisfy L( f (K )) = L(K ) = 0 be-
cause of properties (8) and (9). Also every compact subset K of the second set (11)
must satisfy

qL(K ) ≤ L( f (K )) ≤ f (b) − f (a)

for all positive values of q, as a result of property (9). But this can hold only if
L(K ) = 0.

We are now in a position to complete the proof of Theorem 3. We know that, except
for points in a null set (say N1), the function f has a finite right-hand derivative every-
where in R. Applying that observation to the function − f (−x) shows that, except for
points in a null set (say N2) the function f has a finite left-hand derivative everywhere
in R. Thus f has both a left and a right derivative at every point of R not in the null
set N1 ∪ N2. An old and elementary theorem of Dini from the late nineteenth century
finishes off the proof: it asserts that left-hand and right-hand derivatives can differ only
on a countable set.
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8. DIFFERENTIATION OF THE INTEGRAL. If f is integrable on an interval
[a, b] and F is an indefinite integral of f there (in the sense of the Henstock criterion)
then

F ′(x) = f (x)

for every x in [a, b] excepting a null set. For the Riemann integral it is common to
prove this at points of continuity, since except for a null set every point for a Riemann
integrable function is a point of continuity. For the Lebesgue integral this requires
some nontrivial measure theory.

A nearly elementary proof, however, is possible provided that we are willing to
add the hypothesis that the function f is measurable and to invoke the same measure
theory basics as just used in Section 7. We might be tempted to advertise this as a
proof that makes no use of the Vitali covering theorem, but there are aspects of Vitali
covers in the details. What we have done is make the quasi-Cousin covering lemma
handle the job that, in a more general presentation, the Vitali covering theorem would
tackle.

Theorem 4. If f : [a, b] → R is a measurable function that is integrable on an inter-
val [a, b] and F is an indefinite integral on [a, b], then F ′(x) = f (x) for every x in
[a, b] outside of a null set.

Proof. We show that D
+

F(x) = D+F(x) = f (x) for each x in [a, b] outside of a
null set. The set of points where D+ F(x) < f (x) can be analysed (as before) by
considering the sets

E pq = {x ∈ [a, b] : D+ F(x) < p < q < f (x)}

for rational numbers p and q with p < q. If each of these sets is a null set, then

E = {x ∈ [a, b] : D+ F(x) < f (x)} (12)

is also a null set. As before, we use the principle that if every compact subset of E pq

is a null set then E pq is as well. (Usual measure theoretic arguments allow this once it
is noted that both f and D+ F are measurable functions.)

To this end, let ε > 0 and select a Cousin cover β0 of [a, b] with the property that
the Henstock criterion in Section 5 is satisfied. Let K be any compact subset of E pq ,
and let

β1 = {(I, x) : x ∈ K , �F(I ) < p�(I ) < q�(I ) < f (x)�(I )}.

While β1 falls a little short of being a quasi-Cousin cover of K , we can check that it
satisfies the hypotheses of Exercise 2 for the set K by using the inequalities

D+ F(x) < p < q < f (x)

and the continuity of F at each point.
The intersection β0 ∩ β1 also satisfies these same hypotheses. We invoke Exercise 2

to choose a subpartition π from β0 ∩ β1 covering K that allows the following compu-
tation:
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(q − p)L(K ) ≤ (q − p)
∑

(I,x)∈π

�(I ) ≤
∑

(I,x)∈π

[q�(I ) − p�(I )]

≤
∑

(I,x)∈π

| f (x)�(I ) − �F(I )| < ε.

As ε > 0 is arbitrary and q − p > 0 it follows that L(K ) = 0. Since this is true for
any compact subset K of E pq , we infer that E pq is a null set. As announced earlier,
this shows that the set E in (12) is a null set.

Exactly the same argument, with suitable modifications, shows that the set of points
where D

+
F(x) > f (x) is a null set. Consequently

D+ F(x) = D
+

F(x) = f (x)

at every point x of [a, b] outside of a null set.
This result can be applied to the functions f (−x) and F(−x) to show that, again

outside of a null set,

D−F(x) = D
−

F(x) = f (x).

The theorem follows.

9. TAGGED, GAUGED, GAGGED, AND MUGGED. Presentations of the
Henstock-Kurzweil integral seem to have settled into a routine language over the
years, a language that has done little to promote its use. Originally there was an enthu-
siastic portrayal of the integral as an obvious generalization of the Riemann integral:
just change the δ in the freshman calculus course to a δ that changes from point-to-
point. Call δ a “gauge.” Call it the “gauge integral.” Partitions used to be collections
{Ii } of subintervals; since they must now assume the form {(Ii , xi )}, call them “tagged
partitions.” The xi are the “tags.” Tagged partitions are “δ-fine.”

Every proof has a gauge or several gauges, many tags, and nearly everything is
δ-fine. Detailed manipulations of the gauges and tags consume the attention of the
reader. Since the gauges are in the driver’s seat, most concepts arise from them. Con-
vergence criteria, variational notions, absolute continuity, all of the most vital concepts
are gauged and tagged to death. For the reader unwilling to enter into this world, there
are few rewards and little encouragement. On how many of my students would I be
willing to impose this tagged and gauged language knowing that, when they escape
into graduate analysis, they will never need it again?

In its place we have substituted the language of covering relations. Covering rela-
tions have many merits as a fundamental concept. Proofs, freed from a need to relate
everything to a gauge, are much more transparent. The Cousin covering lemma is a
reasonable centerpiece for a first analysis course. It has the special merit that it can be
used for all of the compactness arguments in that course and serve, at the same time,
as the central concept used to define the integral. Will the professional reader be any
more pleased now or will he feel equally assaulted and mugged as by the tagged and
gauged crowd?

Several generations have now shown little interest in moving these ideas into the un-
dergraduate curriculum. Is the Riemann integral here to stay? Will any better notation
or presentation change things?

10. FINAL REMARKS. Let me close with a quotation from a 1981 Mathematical
Reviews report on an earlier work [11] that attempted an analysis text along the lines
suggested here:
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Proofs and methods of notation are very detailed, occasionally almost pedantic and rather
lengthy. The circumvention of the compactness arguments via “Cousin’s theorem” seems ar-
tificial to the reviewer; many of the familiar inferences thus appear rather awkward here. It is
probably—and with good reason, in the reviewer’s opinion—rather unusual to introduce the
Perron integral instead of the Lebesgue integral into class lectures; and for the students who
were given a concise approach to the Lebesgue integral this book would naturally not be very
suitable for supplementary reading.

It is easy to imagine that a similar book published today would receive an identically
dismissive treatment. (A later version of this same author’s analysis text was given an
enthusiastic write-up in Mathematical Reviews by Bob Bartle, but we already know
that Bartle was a sympathetic audience.)

These ideas deserve to be aired and considered by future writers of elementary real
analysis texts. There are many viewpoints possible, and many, very different, treat-
ments are possible. A recent posting by Smithee [14] offers one possibility. An alter-
native solution has been available in Zakon’s on-line text [16] where all constructive
integration techniques have been dropped in favor of a Newton-type integral which
includes most applications that one would reasonably require at this level. (The key
lemma that would justify this integral is a simple application of the covering argu-
ments of Section 3.)

In spite of a detailed knowledge of the Henstock-Kurzweil integral for many years
and a long friendship with Ralph Henstock, I have always been reluctant to promote
the integral for the undergraduate curriculum. For one thing it was clear from the outset
that there would be resistance, and I had no crusading inclinations. More importantly, I
have never agreed that this integral should be an excuse to avoid measure theory. There
is much to say about it, but one obvious point should be made. The integral is purely
formal, not constructive. While it includes Lebesgue’s integral, no real understanding
of the integral and technical facility in using it are possible without incorporating all
of Lebesgue’s methods. The true advantage possessed by this newer theory is that it
allows for a better and clearer presentation of the standard material, not a dilution.

The same goes for the nonabsolutely integrable functions. Quite transparently the
integral is formally simpler than Denjoy’s totalization process, but were Denjoy here
to defend himself (and he would!), he would insist that to understand this integral
requires an understanding of the extension processes he used and an account of the
nature of the integral along constructive lines using transfinite ordinals.

DEDICATION.

Dedicated to Robert G. Bartle (1927–2003).
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Young Drumgoole, or Drum as they called him, was brought up with the same
narrowness of view which his mother had so painstakingly implanted in his sister.
From the beginning his father had fondly hoped that the youth would carry on the
war-like strain and had envisioned the proud day when he should be a candidate
for West Point. And eventually the proud day came, and Drum was sent away
into the very heart of the enemy’s country with many fond flourishes of fatherly
advice and admonition. But it was all to no purpose. He never saw the conclusion
of his first term at the great academy on the Hudson. He was a casualty to the
rapid fire of trigonometry. He was cut down the first charge. He never even heard
the booming of the heavy guns upon the distant front of calculus.

After this, of course, there was nothing left for him to do except to go to Char-
lottesville and enroll himself among the princelings of the blood at the University
of Virginia. Any other alternative was clearly impossible. A gentleman could still
attend the United States Military Academy without dishonor, for Lee himself had
been a West Point man, but to submit his person to the Yankee degradations of
Harvard, Yale, or Princeton was, in the eyes of the Colonel and his wife, unthink-
able.

So Drum was sent to Charlottesville as the next-best thing to West Point.
Of his life there, there is little to record save that he finally scraped through
and learned to “hold his liquor like a gentleman”—which apparently has always
been one of the stiffest requirements of the curriculum at that famous university.
At length Drum came home again wearing a small blonde mustache, and was
instantly appointed a Major in his father’s celebrated corps, and second in com-
mand, the appointment also carrying with it an instructorship in mathematics,
trigonometry and calculus included.

Thomas Wolfe, The Hills Beyond
New American Library, New York & Toronto, 1941, pp. 216–217

—Submitted by Robert Haas, Cleveland Heights, OH

490 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114


