APMA 990 Wavelets — Problem Set 1

Report by Monday, January 28, 2002

Problem 1 Calculate the Fourier series expansions of the following functions, and verify the symmetry properties of the coefficients:

- (i) f has period 2, and f(t) = |t| for |t| < 1.
- (ii) f has period a, and f(t) = t/a for $0 \le t < a$.
- (iii) $f(t) = |\sin t|$.
- (iv) $f(t) = \sin^3 t$.

Problem 2 Let c_n be the Fourier coefficients of the periodic function f: $t \to f(t)$. What are the Fourier coefficients of the "delayed" function g: $t \to f(t-t_0)$?

Use your result, and the first problem to find the Fourier coefficients of $f(t) = |\cos t|$.

Problem 3 Let f be periodic with period a, and denote by c_n its Fourier coefficients. Then f is also periodic with period 2a, and corresponding Fourier coefficients c'_n . What is the relationship between c_n and c'_n ? Verify that the two Fourier series are identical.

Problem 4 Show that for a periodic, twice continuously differentiable function f we have

$$|c_n(f)| \le \frac{K}{n^2}.$$

Problem 5 We define the convolution of two 2π -periodic functions f and g by

$$(f * g)(s) := h(s) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(s - t)g(t)dt.$$

(a) Show that f * g = g * f.

- (b) Assuming all quantities in question exist, what are the Fourier coefficients of f * g in terms of the Fourier coefficients of f and g?
- (c) If both f and g are in L^2 , is the convolution f * g defined?

Problem 6 Consider two consecutive discrete Fourier transforms:

$$(y_k) \to (Y_n), \qquad (Y_n) \to (z_q).$$

Compute (z_q) as a function of (y_k) .

Problem 7 Let (x_k) and (y_k) be two complex N-periodic sequences with

$$x_{N-k} = \bar{x}_k, \qquad y_{N-k} = \bar{y}_k,$$

for all k. Show that the discrete Fourier transforms (X_n) and (Y_n) are real, and that they can be computed with a single transform of order N.

Problem 8 Compute the succesive powers of the Fourier matrix Ω_N .

Problem 9 Calculate the discrete Fourier transform of the vector (x_k) in \mathbb{C}^N with $x_k = k$, for $k = 0, \dots, N-1$.