

MATH 155 — Lecture #7

January 21, 2000 (Lecture was cancelled)

Trigonometric Substitution - more examples. Find the antiderivative of

$$\frac{1}{\sqrt{x^2 - a^2}}, \quad (a > 0).$$

We need $|x| \geq a$ for the square root to be defined.

We use the substitution

$$x = a \sec \theta = a \frac{1}{\cos \theta}.$$

The function $a \sec \theta$ maps the interval $[0, \pi/2)$ onto the interval $[a, \infty)$.

$$\sec^2 \theta - 1 = \frac{1}{\cos^2 \theta} - 1 = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta \quad \Rightarrow \quad \sqrt{x^2 - 1} = \tan \theta \quad (0 \leq \theta < \pi/2).$$

To summarize, here are all the transformation formulas:

$$x = a \sec \theta, \quad \frac{dx}{d\theta} = -\frac{-a \sin \theta}{\cos^2 \theta} = a \tan \theta \sec \theta, \quad \sqrt{x^2 - a^2} = a \tan \theta.$$

After substituting we obtain

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \int \frac{1}{a \tan \theta} a \tan \theta \sec \theta d\theta = \int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta.$$

It is not entirely straightforward to evaluate this integral, but you can check the derivatives:

$$\int \frac{1}{\cos \theta} d\theta = \ln \left(\frac{1 + \sin \theta}{\cos \theta} \right) + C = \ln (\sec \theta + \tan \theta) + C.$$

Backsubstitute, and you obtain

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(\frac{x}{a} + \frac{1}{a} \sqrt{x^2 - a^2} \right) + C \underset{why?}{=} \ln \left(x + \sqrt{x^2 - a^2} \right) + \tilde{C}. \quad (1)$$

Note: This integral can also be attacked using hyperbolic functions. If you have not heard of those, you can ignore them. Briefly,

$$\cosh t = \frac{e^t + e^{-t}}{2}, \quad \sinh t = \frac{e^t - e^{-t}}{2}, \quad \tanh t = \frac{\sinh t}{\cosh t} = \frac{e^t - e^{-t}}{e^t + e^{-t}}.$$

Some interesting formulas are

$$\cosh^2 t - \sinh^2 t = 1, \quad \frac{d}{dt} \cosh t = \sinh t, \quad \frac{d}{dt} \sinh t = \cosh t.$$

You can then substitute $x = a \cosh t$, so $\sqrt{x^2 - a^2} = a \sinh t$. Furthermore, $dx = a \sinh t dt$:

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \int 1 dt = t + C.$$

Backsubstitute to confirm (1), the previous result (left as an exercise: not difficult, but not trivial either).

Footote: Hyperbolic and trigonometric functions are closely related. You can see the similarity when moving to complex numbers. Let $i = \sqrt{-1}$. Then, for real t , we have

$$e^{it} = \cos t + i \sin t, \quad \cos t = \frac{e^{it} + e^{-it}}{2}, \quad \sin t = \frac{e^{it} - e^{-it}}{2}.$$