

MATH 155 — Lecture #9

January 26, 2000

Sums . Notation. We use the greek \sum symbol to express summation.

$$\sum_{k=1}^n x_k = x_1 + x_2 + x_3 + \cdots + x_{n-1} + x_n = \sum_{j=1}^n x_j.$$

Note that the summation index (k or j) can have any name, not changing the value of the sum. You can think of this like a simple computer program:

```
s := 0;
for k = 1 to n do
    s := s + x[k];
end if
```

The empty sum equals zero, e.g. $\sum_{k=1}^0 x_k = 0$. In the next section we will encounter sums of the form

$$\sum_{k=1}^n f(x_k) = f(x_1) + f(x_2) + f(x_3) + \cdots + f(x_{n-1}) + f(x_n).$$

Values for some sums we will be using in the next few sections:

$$\begin{aligned} \sum_{k=1}^n 1 &= n, \\ \sum_{k=1}^n k &= \frac{n(n+1)}{2} = \frac{n^2}{2} + O(n), \\ \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + O(n^2), \\ \sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}{4} = \frac{n^4}{4} + O(n^3). \end{aligned}$$

The symbol $O(n^p)$ describes a term which is bounded by a constant times n^p .

In the lecture we found the formula for $\sum_{k=1}^n k$. Here we demonstrate how to find the formula for $\sum_{k=1}^n k^3$ using telescoping sums, and the formulas for $\sum_{k=1}^n k^2$, $\sum_{k=1}^n k$, and $\sum_{k=1}^n 1$.

Set $S = \sum_{k=1}^n k^3$. We have

$$\begin{aligned} (k+1)^4 - k^4 &= 4k^3 + 6k^2 + 4k + 1 \\ \sum_{k=1}^n [(k+1)^4 - k^4] &= \sum_{k=1}^n [4k^3 + 6k^2 + 4k + 1]. \end{aligned}$$

The left hand side is a telescoping sum

$$\sum_{k=1}^n [(k+1)^4 - k^4] = (n+1)^4 - 1 = n^4 + 4n^3 + 6n^2 + 4n.$$

The right hand side is

$$\begin{aligned}
 \sum_{k=1}^n [4k^3 + 6k^2 + 4k + 1] &= 4 \sum_{k=1}^n k^3 + 6 \sum_{k=1}^n k^2 + 4 \sum_{k=1}^n k + \sum_{k=1}^n 1 \\
 &= 4S + n(n+1)(2n+1) + 2n(n+1) + n \\
 &= 4S + n(n+1)(2n+3) + n.
 \end{aligned}$$

Therefore,

$$\begin{aligned}
 4S &= n^4 + 4n^3 + 6n^2 + 4n - n \underbrace{(n+1)(2n+3)}_{(2n^2+5n+3)} - n \\
 &= n^4 + 4n^3 + 6n^2 + 4n - 2n^3 - 5n^2 - 3n - n \\
 &= n^4 + 2n^3 + n^2 = n^2(n^2 + 2n + 1) = n^2(n+1)^2.
 \end{aligned}$$

Another important sum comes from the geometric series

$$s = \sum_{k=0}^n q^k = 1 + q + q^2 + \cdots + q^{n-1} + q^n.$$

To evaluate this series use the following trick:

$$\begin{array}{r}
 s = 1 + q + q^2 + \cdots + q^{n-1} + q^n \\
 qs = \qquad q + q^2 + \cdots + q^{n-1} + q^n + q^{n+1} \\
 \hline
 s - qs = 1 - q^{n+1}
 \end{array}$$

hence

$$s = \sum_{k=0}^n q^k = \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1} - 1}{q - 1}.$$