

# MATH 416 — Problem set #3

Due, Friday, November 8, 2002

**Problem 1** Let  $f$  be a 1-periodic function, with  $f(x) = 1$  for  $x \in (0, 1/2)$ , and  $f(x) = -1$  for  $x \in (1/2, 1)$ . Draw the graph of  $f$ , and compute its Fourier coefficients.

**Problem 2** Let  $\delta, \mu: \ell_h^2 \rightarrow \ell_h^2$  be the discrete differentiation and smoothing operators defined by

$$(\delta v)_j := \frac{1}{2h}(v_{j+1} - v_{j-1}), \quad (\mu v)_j := \frac{1}{2}(v_{j+1} + v_{j-1}).$$

(a)  $\delta$  and  $\mu$  can be expressed as convolutions with appropriate sequences  $d, m \in \ell_h^2$ . What are  $d$  and  $m$ ?

(b) Compute the Fourier transforms  $\hat{d}$  and  $\hat{m}$ . Compare  $\hat{d}$  to the transform of the exact differentiation operator for functions defined on  $\mathbf{R}$ . Draw a sketch.

(c) Compute  $\|d\|, \|\hat{d}\|, \|m\|$ , and  $\|\hat{m}\|$ , and verify Parseval's equality.

(d) Compute the Fourier transforms of the convolution sequences corresponding to the iterated operators  $\delta^p$ , and  $\mu^p$  ( $p \geq 2$ ). How do these results relate to the rule of thumb “the smoother the function, the narrower its Fourier transform”?

**Problem 3** *Numerical solution of the model problems.* The goal of this problem is to explore finite difference methods for the parabolic and hyperbolic (model) problems. In all parts below, your mesh should extend over an interval  $[-M, +M]$  large enough to be “effectively infinite”. For simplicity, impose the boundary conditions  $u(-M, t) = u(M, t) = 0$ . The initial function is  $u_0(x) = \max(0, 1 - |x|)$  (the hat function extending over the interval  $[-1, +1]$ ), and the computations should be carried until  $t = T = 1$ .

You will probably find it easiest to program all parts together (this does not mean “at once”) in a single collection of subroutines, accepting various input parameters to control  $h, k, M$ , the choice of the finite difference formula, etc. Do **all** your computations for the space step  $h$  being equal to negative powers of 2,

$$h = \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}.$$

Include plots when appropriate, but to see accuracy it may not be sufficient to just produce graphs of the solution profiles.

(a) Upwinding for  $u_t = u_x$ .

Write a program to solve  $u_t = u_x$  by the UW formula with  $k = h/2$ , and with  $k = 5h/4$ . Plot the results (i.e.  $v(x, 1)$ ), and comment on them (how do the results relate to our stability theory). Make a table of the computed values  $v(-.5, 1)$ , for each pair  $(h, k)$ . Estimate the order of accuracy from your experiment.

(b) Lax-Wendroff for  $u_t = u_x$ .

Repeat (a) for the LW formula, and for  $k = 2h/5$ .

(c) Euler for  $u_t = u_{xx}$ .

Extend the program to solve  $u_t = u_{xx}$  by the EU<sub>xx</sub> formula with

(i)  $k = h/2$ .

(ii)  $k = 2h^2/5$ .

Tabulate  $v(1, 1)$  for each  $(h, k)$ .

(d) Tridiagonal system of equations.

Write a routine for solving a tridiagonal system of equations. We want to take advantage that we can solve such an  $N$  by  $N$  system in only  $O(N)$  operations. The method to be employed is Gaussian elimination **without** pivoting. Test your routine carefully on some small systems whose exact solutions are known to you. If you prefer you may restrict your attention to the case of a symmetric positive definite matrix (this allows the use of a Cholesky factorization).

(e) Crank-Nicolson for  $u_t = u_{xx}$ .

Write down the tridiagonal matrix equation that has to be solved at each time step when the CN<sub>xx</sub> formula is used. Apply your routine of (d) to carry out this computation with  $k = h/2$ . Make a table listing  $v(1, 1)$  for each  $h$ , plot the results, and compare with (c).