
MATH 416 — Problem set #3
Due, Friday, November 8, 2002

Problem 1 Let f be a 1-periodic function, with f(x) = 1 for x ∈ (0, 1/2), and f(x) = −1

for x ∈ (1/2, 1). Draw the graph of f , and compute its Fourier coefficients.

Problem 2 Let δ, µ: `2
h → `2

h be the discrete differentiation and smoothing operators

defined by

(δv)j :=
1

2h
(vj+1 − vj−1), (µv)j :=

1

2
(vj+1 + vj−1).

(a) δ and µ can be expressed as convolutions with appropriate sequences d, m ∈ `2
h.

What are d and m ?

(b) Compute the Fourier transforms d̂ and m̂. Compare d̂ to the transform of the

exact differentiation operator for functions defined on R. Draw a sketch.

(c) Compute ||d||, ||d̂||, ||m||, and ||m̂||, and verify Parseval’s equality.

(d) Compute the Fourier transforms of the convolution sequences corresponding to the

iterated operators δp, and µp (p ≥ 2). How do these results relate to the rule of thumb “the

smoother the function, the narrower its Fourier transform”?

Problem 3 Numerical solution of the model problems. The goal of this problem is to explore

finite difference methods for the parabolic and hyperbolic (model) problems. In all parts

below, your mesh should extend over an interval [−M, +M ] large enough to be “effectively

infinite”. For simplicity, impose the boundary conditions u(−M, t) = u(M, t) = 0. The initial

function is u0(x) = max(0, 1 − |x|) (the hat function extending over the interval [−1, +1]),

and the computations should be carried until t = T = 1.

You will probably find it easiest to program all parts together (this does not mean “at

once”) in a single collection of subroutines, accepting various input parameters to control h,

k, M , the choice of the finite difference formula, etc. Do all your computations for the space

step h being equal to negative powers of 2,

h =
1

8
,

1

16
,

1

32
,

1

64
,

1

128
.

Include plots when appropriate, but to see accuracy it may not be sufficient to just produce

graphs of the solution profiles.
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(a) Upwinding for ut = ux.

Write a program to solve ut = ux by the UW formula with k = h/2, and with k = 5h/4. Plot

the results (i.e. v(x, 1)), and comment on them (how do the results relate to our stability

theory). Make a table of the computed values v(−.5, 1), for each pair (h, k). Estimate the

order of accuracy from your experiment.

(b) Lax-Wendroff for ut = ux.

Repeat (a) for the LW formula, and for k = 2h/5.

(c) Euler for ut = uxx.

Extend the program to solve ut = uxx by the EUxx formula with

(i) k = h/2.

(ii) k = 2h2/5.

Tabulate v(1, 1) for each (h, k).

(d) Tridiagonal system of equations.

Write a routine for solving a tridiagonal system of equations. We want to take advantage that

we can solve such an N by N system in only O(N) operations. The method to be employed

is Gaussian elimination without pivoting. Test your routine carefully on some small systems

whose exact solutions are known to you. If you prefer you may restrict your attention to the

case of a symmetric positive definite matrix (this allows the use of a Cholesky factorization).

(e) Crank-Nicolson for ut = uxx.

Write down the tridiagonal matrix equation that has to be solved at each time step when the

CNxx formula is used. Apply your routine of (d) to carry out this computation with k = h/2.

Make a table listing v(1, 1) for each h, plot the results, and compare with (c).


