

MATH 416 — Problem set #4

Due, Friday, November 29, 2002

Problem 1 Dispersion relations. Consider a “normal mode” or “plane wave” solution

$$u(x, t) = e^{i(\omega t + \xi x)}$$

to a linear p.d.e. with constant coefficients that is first order in t . The wave number ξ is real, but the frequency ω maybe real or complex. The p.d.e. will impose a relationship

$$\omega = \omega(\xi)$$

between ω and ξ , known as the dispersion relation of the p.d.e. Determine the relation for the two model problems

$$(a) \quad u_t = u_x, \quad (b) \quad u_t = u_{xx}.$$

Also compute this dispersion relationship for

$$(c) \text{ LW}_x, \text{ the Lax-Wendroff scheme for } u_t = u_x.$$

Problem 2 Amplification factors. Calculate the amplification factors for EU_x , BE_x , BOX_x , LXF_x , EU_{xx} , and BE_{xx} .

See the notes for the various finite difference formulas.

Problem 3 Generalized Crank-Nicolson.

Consider the heat equation $u_t = u_{xx}$ and the finite difference formula

$$\delta^+ v = (1 - \theta) \delta_x v + \theta \delta_x Z v \quad (4.1)$$

with $0 \leq \theta \leq 1$. For $\theta = 1/2$ this is CN_{xx} , for $\theta = 0$ it is EU_{xx} . (Z is the time-shift operator, δ^+ the forward difference operator in time, and δ_x is the spatial symmetric difference operator approximating the second derivative, as all defined in the lecture notes).

- (a) Compute the amplification factor function $g(\xi)$.
- (b) Let $\sigma = k/h^2$ be constant as $k \rightarrow 0$. For which σ and θ is (GCN) stable?
- (c) Let $\lambda = k/h$ be constant as $k \rightarrow 0$. For which λ and θ is (GCN) stable?