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Safe Coverage of Moving Domains for Vehicles

with Second Order Dynamics
Juan Chacon, Mo Chen, and Razvan C. Fetecau

Abstract—Autonomous coverage of a specified area by robots
operating in close proximity with each other has many potential
applications such as real-time monitoring of rapidly changing
environments, and search and rescue; however, coordination and
safety are two fundamental challenges. For coordination, we
propose a distributed controller for covering moving, compact
domains for two types of vehicles with second order dynamics
(double integrator and fixed-wing aircraft) with bounded input
forces. This control policy is based on artificial potentials and
alignment forces designed to promote desired vehicle-domain
and inter-vehicle separations and relative velocities. We prove
that certain coverage configurations are locally asymptotically
stable. For safety, we establish energy conditions for collision
free motion and utilize Hamilton-Jacobi (HJ) reachability theory
for last-resort pairwise collision avoidance. We derive an ana-
lytical solution to the associated HJ partial differential equation
corresponding to the collision avoidance problem between two
double integrator vehicles. We demonstrate our approach in
several numerical simulations involving the two types of vehicles
covering convex and non-convex moving domains.

Index Terms—Artificial potentials, autonomous robots, cover-
age control, decentralized control, Hamilton-Jacobi reachability,
swarm intelligence.

I. INTRODUCTION

Autonomous systems have many potential applications in

almost every part of society; however, these systems still

typically operate in controlled environments in the absence

of other agents. Two major challenges – coordination and

safety – arise when autonomous systems cooperate in close

proximity with each other. In this paper, we consider specifi-

cally the problem of controlling multiple autonomous systems

to cover a desired possibly moving area in a decentralized

and safe manner. Applications of this problem include real-

time surveillance of dynamic environments, efficient search

and rescue, and multi-agent aerobatics.

The objective of coverage control problems is to deploy

agents to a possibly moving target area such that they can

achieve an optimal sensing of the domain of interest. A

common solution is through minimizing a coverage functional

involving a Voronoi tessellation and the locations of vehicles

within the tessellation [1], [2]. This is a high-dimensional

optimization problem which needs to be solved in real time.

In our approach we achieve coverage1 through swarming by

artificial potentials [3]–[5]. In a related problem, artificial
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1Alternative terminologies are balanced or anti-consensus configurations

(a) t = 0(s) (b) t = 9(s)

(c) t = 24(s) (d) t = 60(s)

Fig. 1: Vehicles covering and following a moving triangular

domain, when N = 10, cr = 2 (m), vmax = 10 (m/s), umax =
3 (m/s2), tsafety = 5 (s), aI = 1 (m/s2), ah = 2 (m/s2),
av = 0.2 (m/s2), Cal = 0.2 (m/s2), lal = 7.79 (m), vd =
(√

2
2 ,

√
2
2

)

(m/s), A = 292.28 (m2) and rd =
√

A
N

= 5.4 (m).

Vehicles start in linear formation.

potentials have been used for containment of follower agents

within the convex hull of leaders [6], [7].

Reachability analysis has been studied and used extensively

in the past several decades as a tool for providing guarantees

on performance and safety of dynamical systems [8]–[10],

as well as controller synthesis in many cases. In particular,

Hamilton-Jacobi (HJ) reachability [11], [12] has seen success

in collision avoidance [13], [14], air traffic management [15],

[16], and emergency landing [17]. HJ reachability analysis

is based on dynamic programming, and involves solving an

HJ partial differential equation (PDE) to compute a backward

reachable set (BRS) representing states from which danger

is inevitable. By using the derived optimal controller on the

boundary of the BRS, safety can be guaranteed despite the

worst-case actions of another agent.

In this paper we develop a new approach to self-collective

coordination of autonomous agents that aim to reach and
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cover a moving target domain. We consider two types of

planar vehicle dynamics which differ in nature by the allowed

control actions. The first, double integrator dynamics, allows

the controller to specify the x and y accelerations at any

time; among others, it is a simplified model for quadrotors.

The second, planar fixed-wing aircraft dynamics, in which the

vehicle controls the acceleration and turn rate, is a natural

model for cars, bicycles or planes.

Our approach aims to enable the following: i) reaching and

spreading over a target domain without having set a priori

the coverage configuration and the final state of each vehicle,

ii) the use of a distributed control policy from which self-

organization and intelligence emerges at the group level, and

(iii) guarantee of collision-avoidance throughout the coordina-

tion process.

In this aim, we consider a control policy that includes both

a coverage and a safety controller. The coverage controller

brings vehicles inside a target domain, spreads them over the

target domain, and aligns vehicle and domain velocities with

each other. On the other hand, the safety controller guarantees

collision avoidance of vehicles. A simulation of the emergent

behaviour resulting from our controller is shown in Figure 1,

where N = 10 vehicles move to cover a moving triangular

domain.

The proposed coverage controller uses two types of ar-

tificial potentials and velocity alignment terms resembling

the Cucker-Smale model with single leader [18], [19]. One

artificial potential is for inter-individual forces which are

designed to achieve a certain desired inter-vehicle spacing

as in [3]. Such controller enables emergent self-collective

behaviour of the vehicles, similar to the highly coordinated

motions observed in biological groups such as flocks of birds

and schools of fish [20]. The other artificial potential is used

for vehicle-target forces by which vehicles reach the target

and cover it. The Cucker-Smale terms promote the vehicles

to match the velocity of the target domain, which acts as a

leader.

We emphasize that the proposed coverage controller, which

also drives vehicles inside the target domain, is done through

agent swarming; there is no leader and no order among the

agents. This means that the controller does not rely on the

well functioning of each individual agent. Such self-collective

and cooperative behaviour is present in systems of interacting

agents in the physics and biology literature [21]–[25]. An agent

search and target-locating algorithm based on a swarming

model was studied in [26].

Unlike first-order models, where agents directly control their

velocities, our vehicle models are second-order: agents are

implicitly or explicitly controlled through their acceleration.

In addition, We set a priori bounds on the control forces,

making our controller more realistic than previous approaches,

in which infinite forces may be needed to guarantee collision

avoidance [3], [27].

The safety controller for vehicles with double integrator

dynamics is derived from HJ reachability analysis. Instead

of numerically solving an associated Hamilton-Jacobi-Isaacs

(HJI) PDE, we derive the analytical solution to the PDE to

eliminate numerical errors and the need to specify compu-

tation bounds. While multi-vehicle collision avoidance is in

general intractable, incorporating pairwise collision avoidance

drastically reduced the collision rate.

The paper is organized as follows. Section II presents some

background on Hamilton-Jacobi reachability. In Section III we

study the safe coverage problem for static domains with double

integrator dynamics. In Section IV we generalize the study

to moving domains following inertial trajectories. In Section

V we formulate a control algorithm for coverage of moving

domains with fixed-wing aircraft dynamics. Finally, we make

concluding remarks and discuss open problems and potential

future directions of research.

II. BACKGROUND: HAMILTON-JACOBI REACHABILITY

We review here some basic Hamilton-Jacobi reachability

theory, which will be used in the paper to address pairwise

collision avoidance.

Consider the two-player differential game described by the

joint system

ż (t) = f (z (t) , u (t) , d (t)) ,

z (0) = x,
(1)

where z ∈ R
n is the joint state of the players, u ∈ U is the

control input of Player 1 (hereafter referred to as “control”)

and d ∈ D is the control input of Player 2 (hereafter referred

to as “disturbance”) .

We assume f : Rn×U ×D → R
n is uniformly continuous,

bounded, and Lipschitz continuous in z for fixed u and d, and

u (·) ∈ U , d (·) ∈ D are measurable functions. Under these

assumptions we can guarantee the dynamical system (1) has

a unique solution.

In this differential game, the goal of player 2 (the distur-

bance) is to drive the system into some target set using only

non-anticipative strategies [11], while player 1 (the control)

aims to drive the system away from it.

We introduce the time-to-reach problem as follows.

(Time-to-reach) Find the time to reach a target set ΓD
while avoiding the obstacle ΓS from any initial state x, in

a scenario where player 1 maximizes the time, while player

2 minimizes the time. Player 2 is restricted to using non-

anticipative strategies, with knowledge of player 1’s current

and past decisions. Such a time is denoted by φ (x).

Following [11], given u (·) and d (·), the time to reach a

closed target set ΓD with compact boundary, while avoiding

the obstacle ΓS , is defined as

Tx [u, d] = min {t| z (t) ∈ ΓD and z (s) /∈ ΓS , ∀s ∈ [0, t]} .

Then, the Time-to-reach problem reduces to finding:

φ (x) = min
θ∈Θ

max
u∈U

Tx [u, θ [u]] ,

where Θ represents the set of non-anticipative strategies. The

collection of all the states that are reachable in a finite time

is the capturability set R∗ = {x ∈ R
n| φ (x) < +∞}.
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Applying the dynamic programming principle, as done in

[28], one can obtain φ as the viscosity solution of the following

stationary HJ PDE:

min
u∈U

max
d∈D

{−∇φ (z) · f (z, u, d)− 1} = 0 in R∗\ (ΓD ∪ ΓS) ,

φ (z) = 0 on ΓD, φ (z) =∞ on ΓS .
(2)

In applications, this PDE is typically solved using finite

difference methods such as the Lax-Friedrichs method [11].

Also, from the solution φ (x) one can obtain the control input

for optimal avoidance as:

u∗ (z) = argmin
u∈U

max
d∈D
{−∇φ (z) · f (z, u, d)− 1} . (3)

III. COVERAGE OF A STATIC DOMAIN

A. Problem formulation

We consider a group of N vehicles, denoted by Qi, i =
1, . . . , N , with the double integrator dynamics given by

ṗi = vi, v̇i = ui; ‖vi‖ ≤ vmax, ‖ui‖ ≤ umax. (4)

Here, pi = (pi,x, pi,y) and vi = (vi,x, vi,y) are the position

and velocity of Qi respectively, and ui = (ui,x, ui,y) is the

control force applied to this vehicle.

Given a predefined collision radius cr, a vehicle is consid-

ered safe if there is no other vehicle within distance cr to it,

i.e., if

‖pi − pj‖ > cr, for any j 6= i. (5)

In this paper we are interested in certain configurations of

the agents in the domain Ω. Specifically, we set the following

definitions.

Definition III.1 (r-Subcover). A group of agents is an r-
subcover for a compact domain Ω ⊆ R

2 if:

1) The distance between any two vehicles is at least r.
2) The signed distance from any vehicle to Ω is less than

equal to − r2 .

Definition III.2 (r-Cover). An r-subcover for Ω is an r-cover

for Ω if its size is maximal (i.e., no larger number of agents

can be an r-subcover for Ω).

The r-subcover definition is closely related to the packing

problem for circular objects of radius r
2 in a container with

shape Ω. Having an r-cover implies the container is full and

there is no room for more of such objects.

The following safe domain coverage problem is of main

interest to our work in this chapter.

Safe-domain-coverage by vehicles with double integrator

dynamics: Consider a compact domain Ω in the plane and N
vehicles each with dynamics described by (4), starting from

safe initial conditions. Find the maximal r > 0 and a control

policy that leads to a stable steady state which is an r-cover

for Ω, while satisfying the safety condition (5) at any time.

The controller we design and present below has two compo-

nents: a coverage controller and a safety controller, the latter

being based on Hamilton-Jacobi reachability. We will present

them separately.

Fig. 2: Illustration of control forces acting on two vehicles

located at pi and pj .

B. Coverage controller

Define pij := pi − pj , and denote by P∂Ω (pi) the closest

point of ∂Ω to pi (i.e., the projection of pi on ∂Ω). Also,

define hi := pi − P∂Ω (pi), and denote by [[hi]] the signed

distance of pi from ∂Ω – see Figure 2.

The proposed control force is given by:

ui =−
N∑

j 6=i
fI (‖pij‖)

pij
‖pij‖

− fh ([[hi]])
hi

[[hi]]
− avvi, (6)

where the three terms in the right-hand-side represent inter-

vehicle, vehicle-domain, and braking forces, respectively. We

assume each vehicle is able to measure its distance to the

target domain, its speed, as well as its position relative to the

other vehicles. In (6), av is a fixed positive constant.

Figure 2 illustrates the control forces for two generic

vehicles located at pi and pj . Shown there are the unit vectors

in the directions of the inter-vehicle and vehicle-domain forces

(yellow and blue arrows, respectively), along with the resultant

that gives the overall control force (red arrows). Note that due

to the nonsmoothness of the boundary, different points may

have different types of projections: pi projects on the foot of

the perpendicular to ∂Ω, while pj projects on a corner point

of ∂Ω.

Figure 3 shows the specific forms of the functions fI and fh
that we consider in this paper. Note that fI(r) is negative for

r < rd, and zero otherwise. This means that for two vehicles

within distance 0 < r < rd from each other, their inter-vehicle

interactions are repulsive, while two vehicles at distance larger

than rd apart do not interact at all. The vehicle-domain force

fh(r) is zero for r < − rd2 , and positive for r > − rd2 . For a

vehicle i outside the target domain, i.e., with [[hi]] > 0, this

results in an attractive interaction force toward ∂Ω. On the

other hand, for a vehicle inside the domain, where [[hi]] < 0,

one distinguishes two cases: i) the vehicle is within distance rd
2

to the boundary, in which case it experiences a repulsive force

from it, or ii) the vehicle is more than distance rd
2 from the

boundary, in which case it does not interact with the boundary

at all.

Lemma III.3. The inter-vehicle and vehicle-domain forces are

conservative.
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Fig. 3: Inter-vehicle and vehicle-domain control forces.

Fig. 4: Inter-vehicle and vehicle-domain potentials.

Proof. Define the potentials:

VI (pij) =

∫ ‖pij‖

rd

fI (s) ds, Vh (pi) =

∫ [[hi]]

− rd
2

fh (s) ds.

Then,

∇iVh (pi) = fh ([[hi]])∇([[hi]]) = fh ([[hi]])
hi

[[hi]]
,

where we have used the identity ∇([[hi]]) = hi

[[hi]]
(see

Theorem 5.1(iii) in [29]). Similarly, the inter-vehicle force is

the negative gradient of the potential VI .

The potentials VI and Vh are shown in Figure 4. Their

explicit expressions are given by:

VI(x) =

{
aI
2 (‖x‖ − rd)2 for ‖x‖ < rd,

0 for ‖x‖ ≥ rd,
(7)

and

Vh(x) =

{

0 for [[x− P∂Ωx]] ≤ − rd
2
,

ah

2
([[x− P∂Ωx]] +

rd
2
)2 for [[x− P∂Ωx]] > − rd

2
,

(8)

where aI > 0 is the slope of the function fI on [0, rd] and

ah > 0 is the slope of the function fh on
[
− rd2 ,∞

)
. Note

that as aI and ah are positive, both potentials VI and Vh are

non-negative.

By Lemma III.3, the control given in Equation (6) becomes

ui =

N∑

j 6=i
−∇iVI (pij)−∇iVh (pi)− avvi. (9)

Asymptotic behaviour of the controlled system. Consider

the following candidate for a Lyapunov function, consisting in

kinetic plus (artificial) potential energy:

Φ =
1

2

N∑

i=1

(

ṗi · ṗi +
N∑

j 6=i
VI (pij) + 2Vh (pi)

)

. (10)

Note that each term in Φ is non-negative, and Φ reaches

its absolute minimum value when the vehicles are totally

stopped. Also, at the global minimum Φ = 0, the equilibrium

configuration is an rd-subcover of Ω; in particular, all vehicles

are inside the target domain.

The time derivative of Φ can be calculated as:

Φ̇ =

N∑

i=1

ṗi ·
(

ui +

N∑

j 6=i
∇iVI (pij) +∇iVh (pi)

)

= −
N∑

i=1

av‖vi‖2,

where we used the dynamics (4) and equation (9). Note that Φ̇
is negative semidefinite and equal to zero if and only if vi = 0
for all i (i.e., all vehicles are at equilibrium).

We first show that the group of vehicles remains within

a compact set through time evolution. The key idea is that

the vehicle-domain potential Vh is confining the vehicles, and

keeps them as a group [30].

Proposition III.4. Solutions of (4), with control law given by

(9) remain cohesive through time, i.e., there exists an R > 0
such that ‖pi(t)‖ ≤ R, for all i and t ≥ 0.

Proof. Using that the kinetic energy and the potential VI are

non-negative, and Φ given by (10) is non-increasing, we have:

N∑

i=1

Vh (pi(t)) ≤ Φ(t) ≤ Φ(0).

To show the boundedness of pi we only need to consider the

case pi /∈ Ω, as otherwise the vehicles are inside the compact

set Ω. Using the expression (8) for Vh, we then find:

ah
2

N∑

i=1

(

‖pi(t)− P∂Ω
pi(t)‖+

rd
2

)2

≤ Φ(0).

This shows that the distances from pi(t) to the domain Ω

remain bounded for all t ≥ 0 by

√
2Φ(0)
ah

when pi /∈ Ω.

Remark III.5. From LaSalle Invariance Principle we can

conclude that the controlled system approaches asymptotically

an equilibrium configuration. By the expressions (9) of the

control force and (10) of the Lyapunov function, these are

equilibria that are critical points of the artificial potential

energy 1
2

∑N

i=1

(
∑N

j 6=iVI (pij)+2Vh (pi)
)

. We expect that any

critical point other than the local minima (e.g., saddles or

local maxima) are unstable [30], and hence, almost every

solution of the system will approach asymptotically a local

minimum of the potential energy.

For certain simple setups (e.g., a square number of vehicles

in a square domain – see Figure 6f, or a triangular number

of vehicles in a triangular domain), the rd-covers are isolated

equilibria. Hence, together with the fact that such equilibria

are global minimizers for Φ, their local asymptotic stability

can be inferred. The formal result is given by the following

proposition.
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Proposition III.6. Consider a group of N vehicles with

dynamics defined by (4), and the control law given by (9). Let

the equilibrium of interest be of the form ṗi = 0, ‖pij‖ ≥ rd
and [[hi]] ≤ − rd2 for i, j = 1, · · · , N (see Definitions III.1

and III.2), and assume that this equilibrium configuration is

isolated. Also assume that there is a neighborhood about the

equilibrium in which the control law remains smooth. Then,

the equilibrium is a global minimum of the sum of the artificial

potentials and is locally asymptotically stable.

Proof. The proof follows from LaSalle invariance principle

and the arguments made above.

Choosing an adequate rd when solving the safe-domain-

coverage problem leads to a nonlinear optimization problem

(see [31]), which in general can be quite difficult. We set

the value of this parameter based on the assumption that any

vehicle is covering roughly the same square area, i.e.,

rd =

√

Area (Ω)

N
. (11)

Note that (11) gives the exact maximal radius when both the

number of vehicles and the domain are square. The numerical

experiments presented in this paper, which also involve target

domains in the shape of a triangle or an arrowhead, show that

(11) leads indeed to the desired covers.

C. Collision avoidance

An important component of our study is the guarantee that

vehicles do not collide through the time evolution. For small

initial energies, collision avoidance can be shown directly. For

general cases, we introduce a safety controller based on HJ

reachability analysis.

Small initial energy. The following results hold for initial

data with small energy Φ.

Proposition III.7. Consider a target domain Ω and a group

of N vehicles with dynamics defined by (4) and (9). Assume

the energy Φ(0) of the initial configuration satisfies

Φ(0) <

∫ cr

rd

fI(s) ds =
aI
2
(cr − rd)2.

Then, no vehicle collision can occur for all t ≥ 0.

Proof. Suppose by contradiction that there is a time t∗ at

which vehicles k and l are at collision radius from each other,

that is, ‖pk(t∗)− pl(t∗)‖ = cr. Given that VI is non-negative,

the inter-vehicle potential energy at the collision time can be

bounded below as:

1

2

N∑

i=1

N∑

j 6=i
VI (pij(t∗)) ≥ VI(pk(t∗)− pl(t∗)) =

∫ cr

rd

fI(s) ds.

On the other hand, using that the kinetic energy and the

potential Vh are non-negative, we have:

1

2

N∑

i=1

N∑

j 6=i
VI (pij(t∗)) ≤ Φ(t∗) ≤ Φ(0).

By combining the two sets of inequalities above one finds

Φ(0) ≥
∫ cr
rd
fI(s) ds, which contradicts the assumption on the

initial energy Φ(0).

The result above can be generalized as follows.

Proposition III.8. Consider a target domain Ω and a group

of N vehicles with dynamics defined by (4) and (9). Assume

the energy Φ(0) of the initial configuration satisfies

Φ(0) < (k + 1)

∫ cr

rd

fI(s) ds,

for some k ∈ Z+. Then, at most k distinct pairs of vehicles

could be possibly unsafe (k = 0 guarantees a safe motion) for

all t ≥ 0.

Proof. Assume by contradiction that k+1 pairs of vehicles are

unsafe at time t∗, i.e., their relative distances are less than or

equal to cr at t∗. Then, on one hand, following the argument

in Proposition III.7, we have:

1

2

N∑

i=1

N∑

j 6=i
VI (pij(t∗)) ≥ (k + 1)

∫ cr

rd

fI(s) ds,

where we use the fact that VI(pij) is non-negative and non-

increasing.

On the other hand,

1

2

N∑

i=1

N∑

j 6=i
VI (pij(t∗)) ≤ Φ(t∗) ≤ Φ(0),

leading to a contradiction.

Note that the two last results assume that the control law (9)

is applied as it is, that is, it does not take into account the input

force constrains in (4). The following HJ reachability analysis

deals with the input force bounds to guarantee pairwise safety.

Collision avoidance via Hamilton-Jacobi theory. To guar-

antee pairwise collision avoidance for general configurations,

we design a safety controller based on HJ reachability analysis.

Consider the dynamics between two vehicles Qi, Qj defined

in terms of their relative states

pr,x = pi,x − pj,x, vr,x = vi,x − vj,x,

pr,y = pi,y − pj,y, vr,x = vi,x − vj,x,
where the vehicle Qi is the evader, located at the origin, and

Qj is the pursuer, the latter being considered as the model

disturbance. The relative dynamical system can be written as:

ṗr,x = vr,x, v̇r,x = ui,x − uj,x,

ṗr,y = vr,y, v̇r,y = ui,y − uj,y, (12)

with ‖ui‖,‖uj‖ ≤ umax, where ui = (ui,x, ui,y) and uj =
(uj,x, uj,y) are the control inputs of the agents Qi and Qj ,
respectively. From the perspective of agent Qi, the control

inputs of Qj are treated as worst-case disturbance.

System (12) can be put in the general form (1) from

Section II, with z = (pr,x, pr,y, vr,x, vr,y), u = (ux, uy) :=
(ui,x, ui,y), d = (dx, dy) := (uj,x, uj,y), and f (z, u, d) being

the right-hand-side of (12).
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Fig. 5: Geometric illustration for solving HJI PDE (2). Here

cp represents the collision point.

According to (5), the unsafe states are described by the

target set ΓD =
{
z : p2r,x + p2r,y ≤ c2r

}
. For now, the obstacle

set ΓS is the empty set as it is not needed until Section V-B.

Consider ψ (z) as the time it takes for the solution of the

dynamical system (12), with starting point z in R∗ \ ΓD, to

reach ΓD when the disturbance and control inputs are optimal.

As the two vehicles have the same capabilities we make the

educated guess that the optimal non-anticipative strategy for

the pursuer is to copy the evader accelerations, having so a zero

relative acceleration. This implies that the relative velocity vr
will remain constant through time.

If pr and vr are such that a collision can occur, there

exist a collision point cp, see Figure 5. This will be one

of the intersection points of the line crossing through pr
with direction parallel to vr and the circle of radius cr
centered at the origin. To get the collision time we replace

the coordinates of cp = (pr,x + ψ (z) vr,x, pr,y + ψ (z) vr,y)
into the canonical equation of the circle. Using this geometric

argument one can show that this time is the minimum of the

two solutions of the quadratic equation:

(
v2r,x + v2r,y

)
ψ2 (z) + 2 (pr,xvr,x + pr,yvr,y)ψ (z)

+
(
p2r,x + p2r,y − c2r

)
= 0. (13)

It was shown in [32] that the collision time computed as

above satisfies indeed the HJI PDE (2). The formal result is

the following.

Proposition III.9. Consider the function ψ (z) defined as

ψ (z) :=
− (pr,xvr,x + pr,yvr,y)−

√
∆

v2r,x + v2r,y
in R∗ \ ΓD,

where

∆ = (pr,xvr,x + pr,yvr,y)
2−

(
v2r,x + v2r,y

) (
p2r,x + p2r,y − c2r

)
.

Also define ψ (z) to be 0 on ΓD. Then ψ (z) satisfies equation

(2).

Proof. We refer to [32, Prop. 5] for the proof of this result. We

only note that the proof there is based on an explicit calculation

of the argminmax of the expression in equation (2), which

was found to be:

u∗ = d∗ = umax

(
∂ψ(z)
∂vr,x

, ∂ψ(z)
∂vr,y

)

∥
∥
∥
∂ψ(z)
∂vr,x

, ∂ψ(z)
∂vr,y

∥
∥
∥

. (14)

By implicit differentiation of (13) we find:

∂ψ

∂vr,x
=

−vr,xψ
2 (z)− pr,xψ (z)

(

v2r,x + v2r,y
)

ψ (z) + (pr,xvr,x + pr,yvr,y)
(15a)

∂ψ

∂vr,y
=

−vr,yψ
2 (z)− pr,yψ (z)

(

v2r,x + v2r,y
)

ψ (z) + (pr,xvr,x + pr,yvr,y)
, (15b)

and hence, from (14) we can derive a closed expression for

the optimal avoidance controller. Note that to use this pairwise

avoidance strategy we require each vehicle to know its speed

and position relative to the other vehicles.

The static HJI PDE (2) is typically approximated by finite

difference methods such as the one presented in [11]. Our

approach, using an analytic solution, leads to two main ad-

vantages. First, we do not have to deal with large amounts of

memory and long computational times involved in refinements

of the numerical resolution. Second, while numerical methods

can only compute the solution in a bounded domain, an ana-

lytical solution allows us to have the best possible resolution

in unbounded domains. This allows us to predict and react to

possible collisions arbitrarily far into the future.

D. Overall control logic

In this subsection we describe how to switch between the

two controllers presented above.

We will consider that vehicle Qi is in potential conflict with

vehicle Qj if the time to collision ψ (zi) (here zi denotes the

relative current state of the two vehicles), is less than or equal

to a specified time horizon tsafety . In such a case Qi must

use the safety controller, otherwise, the coverage controller is

used.

In the case that a vehicle detects more than one conflict, it

will apply the control policy of the first conflict detected at

that particular time. Algorithm 1 describes the overall control

logic for a generic vehicle Qi.
In Algorithm 1, lines 6 and 7 can be obtained from equations

(14), (15a) and (15b) (also note the normalization step in line

14), while line 12 comes from the explicit coverage control

(6).

Remark III.10. By thresholding the force (Algorithm 1 line

14), the theoretical results may not necessary hold anymore.

However, when close to the desired operation point, the cov-

erage forces are small enough to not need to be thresholded,

in which case the theoretical results are indeed valid.

E. Numerical simulations

Square domain. We consider the coverage problem for

a square domain. We present two strategies: both use the

coverage controller described in Section III-B, but only one

strategy switches to the safety controller when necessary,

according to Section III-D. In both cases 16 vehicles start from

a horizontal line setup outside of the target square domain; see

the starting locations of the trajectories in Figures 6a and 6b.

The simulations from the left and right columns in Figure 6

do not include, and respectively include, the safety controller.
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Algorithm 1 Overall control logic for a generic vehicle Qi.

IN: State xi of a vehicle Qi; states {xj}j 6=i of other vehicles

{Qj}j 6=i; a domain Ω to cover.

PARAMETER: A time horizon for safety check tsafety;

OUT: A control ui for Qi.

1: safe← True;

2: for j 6= i do

3: z ← xi − xj ;
4: if ψ (z) ≤ tsafety then

5: safe← False;

6: Uix = − vr,xψ
2(z)+pr,xψ(z)

(v2r,x+v2r,y)ψ(z)+(pr,xvr,x+pr,yvr,y)
;

7: Uiy = − vr,yψ
2(z)+pr,yψ(z)

(v2r,x+v2r,y)ψ(z)+(pr,xvr,x+pr,yvr,y)
;

8: break for;

9: end if

10: end for

11: if safe then

12: (Uix, Uiy) =

-
∑N

j 6=i fI (‖pij‖)
pij

‖pij‖ -fh ([[hi]])
hi

[[hi]]
− avvi;

13: end if

14: ui = umax
(Uix,Uiy)

‖(Uix,Uiy)‖ ;

RETURN: ui

The large coloured dots represent the position of the vehicles,

the dashed tails are past trajectories (shown for the previous

5 seconds), and the arrows indicate the movement direction.

Note that we do not show the arrows when the velocities are

too small.

At t = 0 (s) the only contributions come from the vehicle-

domain forces, which pull the mobile agents toward the

interior of the square; see initial trajectory tails in Figures

6a and 6b. At t = 5 (s) the vehicles without safety controller

are more prone to collisions due to the symmetry of the initial

condition. The safety controller breaks down the symmetry

and enables the vehicles to enter the crowded area without

collisions.

The presence of overshoots at later times (Figures 6c and

6d) is expected, being due to the piece-wise linear vehicle-

domain forces (i.e., spring-like forces). However, Figure 6d

indicates that in addition to preventing collisions, the use of the

safety controller also reduces the overshoots. After t = 50 (s)

both control strategies reach a steady state which is an rd-

cover for the square . We note that the system with collision

avoidance reaches the equilibrium faster; compare Figures 6e

and 6f.

A collision event starts when the distance between two

vehicles is less than or equal to the collision radius cr, and

ends when the distance becomes greater than cr. The collision

event count for the square domain coverage with and without

the safety controller, for various number of vehicles, is shown

in Table I. We point out that in the absence of the safety

controller, the collision count increases significantly with the

number of vehicles, while it remains zero or very low when

the safety controller is used.

(a) t = 5(s)  

 

(b) t = 5(s)

(c) t = 10(s) (d) t = 10(s)

(e) t = 50(s)

 

(f) t = 50(s)

Fig. 6: Square domain coverage at different time instants,

without (left) and with (right) safety controller, when N = 16,

cr = 2 (m), vmax = 10 (m/s), umax = 3 (m/s2), tsafety =
5 (s), side length l = 20 (m), domain area A = l2 = 400 (m2)

and rd =
√

A
N

= 5 (m). Vehicles start in a horizontal line

configuration and reach a square grid steady state which is

an rd-cover of the domain (see Definition III.2). The use of

the safety controller reduces both the collision count and the

overshoot, and helps reach the steady state faster.

TABLE I: Square coverage collision count.

number of vehicles without avoidance with avoidance

9 8 0
16 51 0
25 146 2

Safety issues may also arise when a vehicle needs to

avoid two or more vehicles at the same time. Our safety

controller does not guarantee collision avoidance in such cases.

Guaranteed collision avoidance for more than two vehicles is

an unsolved problem, as explored for example in [14].
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IV. COVERAGE OF A MOVING DOMAIN

A. Problem formulation

We consider now the coverage problem when the target do-

main moves with prescribed constant velocity vd. Specifically,

let Ω ⊆ R
2 be a compact domain and define Ωt = Ω + tvd,

representing the moving domain at time t. Alternatively, if one

sets an arbitrary marker point pd (e.g., the centre of mass) in

Ω, its motion is given by pd(t) = pd + tvd.

We are interested in covering the domain Ωt (see Definitions

III.1 and III.2), which changes through time. For this reason

we want the vehicles to reach asymptotically, as t → ∞, the

velocity of the target domain, while maintaining a cohesive

group through dynamics. This is expressed by the concept of

flocking [24], [30], [33].

Consider a group of N vehicles, each of them governed by

the double integrator dynamics, i.e.,

ṗi = vi, v̇i = ui, i = 1, . . . , N, (16)

with control ui to be specified later. We adapt below the

definition of flocking from [34] to the problem of moving

target.

Definition IV.1 (Flocking with a moving target). A group of

vehicles has a time-asymptotic flocking with a target domain

moving with constant velocity vd if its positions and velocities

{pi, vi} , i = 1, · · · , N satisfy the following two conditions:

1) The relative positions with respect to the marker point

in the domain are uniformly bounded in time (forming

a group):

sup
0≤t<∞

N∑

i=1

‖pi (t)− pd (t)‖2 <∞.

2) The relative velocities with respect to the moving domain

go to zero asymptotically in time (velocity alignment):

lim
t→+∞

N∑

i=1

‖vi (t)− vd‖2 = 0.

In this case, our safe domain coverage problem of interest

is the following:

Safe-domain-coverage by vehicles with double integrator

dynamics for moving domains: Consider a compact domain

Ωt that moves with constant velocity vd in the plane, and N
vehicles with dynamics described by (16), starting from safe

initial conditions. Find the maximal r > 0 and a control policy

that leads to an r-cover for Ωt that flocks with the moving

target, while satisfying the safety condition (5) at any time.

B. Coverage controller with alignment

Using the same coverage controller (6) for this problem

makes the vehicles lag behind the domain, reacting only when

they are outside of it. This suggests that the vehicles require

a mechanism to align their velocities with that of the target

domain, as well as with the velocities of their neighbors.

Inspired by the Cucker-Smale model with rooted leadership

(see [18], [19]), we propose a control force with inclusion of

inter-vehicle and vehicle-domain alignment forces, given by:

ui = −
N∑

j 6=i
fI (‖pij‖)

pij
‖pij‖

− fh ([[hi]])
hi

[[hi]]

−
N∑

j 6=i
fal (‖pij‖) vij

︸ ︷︷ ︸

inter-vehicle

− av (vi − vd)
︸ ︷︷ ︸

vehicle-domain

.
(17)

Here, pij := pi−pj , vij := vi−vj , and P∂Ωt
(pi) denotes the

projection of pi on ∂Ωt. Also, hi := pi−P∂Ωt
(pi), and [[hi]]

denotes the signed distance of pi from ∂Ωt. In addition, fal
is a non-negative communication function and av is a positive

constant.

The inter-vehicle alignment force, which controls the align-

ment of vehicle i’s velocity with the velocities of the rest of

the vehicles, depends on the relative distance ‖pij‖ between

the interacting vehicles. For a communication function fal that

is non-increasing (this is a typical assumption in the literature

[33], [34]), vehicles align stronger with their neighbours, and

less with vehicles that are further apart. The results presented

in this paper correspond to a communication function in the

form:

fal (‖pij‖) = Cale
− ‖pij‖

lal ,

where Cal and lal are constants associated to the alignment

strength and alignment range, respectively. This function was

considered in [25] in the context of honeybee swarms.

The vehicle-domain alignment force drives the velocity of

the vehicles to the domain’s velocity vd. In this regard, the

braking force in the static domain model (see (6)) can also be

interpreted as an alignment force that brings the vehicles to

a stop. Also, while for simplicity we have taken a common

constant av for all vehicles, the considerations that follow

apply to the more general alignment forces av,i(vi−vd), with

av,i > 0.

By changing to relative coordinates with respect to the frame

of the moving domain, one can recover the case of a stationary

domain (vd = 0). Indeed, change variables to:

p̃i := pi − tvd, ṽi := vi − vd, (18)

and note that the inter-vehicle positions and velocities are

invariant to this change of coordinates, i.e.,

p̃ij := p̃i − p̃j = pij , ṽij := ṽi − ṽj = vij .

Also, by translation, the distance to the target domain satisfies

hi = (pi − tvd)− P∂Ωt−tvd (pi − tvd)

= p̃i − P∂Ω (p̃i) .

Hence, in the new variables, the signed distances [[h̃i]], where

h̃i := p̃i − P∂Ω (p̃i) , (19)

are with respect to the initial (fixed) domain Ω.
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The observations above allow us to rewrite the control (17)

in the new variables. We find that in the moving coordinate

frame the dynamics of the N vehicles is given by:

˙̃pi = ṽi, ˙̃vi = ũi, i = 1, . . . , N,

where

ũi = −
N∑

j 6=i
fI (‖p̃ij‖)

p̃ij
‖p̃ij‖

− fh([[h̃i]])
h̃i

[[h̃i]]

−
N∑

j 6=i
fal (‖p̃ij‖) ṽij − avṽi.

Note that this corresponds to the dynamics in the original

variables for a stationary domain.

C. Asymptotic behaviour

We first investigate the dynamics with control (17) for a

stationary target (vd = 0), using the same interaction functions

fI and fh from Section III, corresponding to potentials (7) and

(8). Consider the same candidate for a Lyapunov function,

consisting in kinetic plus (artificial) potential energy:

Φ =
1

2

N∑

i=1

(

ṗi · ṗi +
N∑

j 6=i
VI (pij) + 2Vh (pi)

)

.

Note that each term in Φ is non-negative, and Φ reaches its

absolute minimum value when the vehicles are totally stopped.

The time derivative of Φ can be calculated as:

Φ̇ =

N∑

i=1

ṗi ·
(

ui +

N∑

j 6=i
∇iVI (pij) +∇iVh (pi)

)

=

N∑

i=1

vi ·
(

−
N∑

j 6=i
fal(‖pij‖)(vi − vj)− avvi

)

. (20)

For the inter-vehicle alignment term, write

N
∑

i=1

vi ·
N
∑

j 6=i

fal(‖pij‖)(vi − vj) =

1

2

N
∑

i=1

vi ·
N
∑

j 6=i

fal(‖pij‖)(vi−vj)+
1

2

N
∑

j=1

vj ·
N
∑

i6=j

fal(‖pji‖)(vj−vi),

where in the second term in the right-hand-side we simply

renamed i↔ j as indices of summation. From there, use that

‖pij‖ = ‖pji‖ to get:

N∑

i=1

vi ·
N∑

j 6=i
fal(‖pij‖)(vi−vj) =

1

2

N∑

i=1

N∑

j 6=i
fal(‖pij‖)‖vi−vj‖2.

Hence, from (20), we find:

Φ̇ = −1

2

N∑

i=1

N∑

j 6=i
fal(‖pij‖)‖vi − vj‖2 − av

N∑

i=1

‖vi‖2.

In the case of a target domain moving with velocity vd, one

can change to relative coordinates (18) as explained in Section

IV-B, and set:

Φ =
1

2

N∑

i=1

(

˙̃pi · ˙̃pi +
N∑

j 6=i
VI (p̃ij) + 2Vh (p̃i)

)

. (21)

Then, by the calculations for the stationary target above,

Φ̇ = −1

2

N∑

i=1

N∑

j 6=i
fal(‖p̃ij‖)‖ṽi − ṽj‖2 − av

N∑

i=1

‖ṽi‖2

= −1

2

N∑

i=1

N∑

j 6=i
fal(‖pij‖)‖vi − vj‖2 − av

N∑

i=1

‖vi − vd‖2.

(22)

Note that Φ̇ is negative semidefinite and equal to zero if

and only if ṽi = 0 (or equivalently vi = vd) for all i, i.e.,

when vehicles’ velocities are aligned with the velocity of the

domain. The construction of this Lyapunov function leads to

the following flocking result.

Theorem IV.2 (Flocking with the moving target). Consider a

target domain Ωt that moves with constant velocity vd, and a

group of N vehicles with smooth dynamics governed by (16),

with the control law given by (17). Then, the group of agents

has a time-asymptotic flocking with the moving target Ωt.

Proof. We have to check the conditions in Definition IV.1.

Group cohesiveness (condition 1) can be shown exactly as

for Proposition III.4, by using relative coordinates. Indeed,

since in relative coordinates the distances to the target are with

respect to the fixed domain Ω (see (19)), a similar argument

shows that the distances from p̃i(t) to the domain Ω remain

bounded by
√

2Φ(0)/ah when p̃i /∈ Ω. Restoring the original

variables, we can then conclude that there exists R > 0 such

that ‖pi(t)− pd(t)‖ ≤ R, for all i and t ≥ 0.

To show velocity alignment (condition 2), we first note that

the velocities are also uniformly bounded in time. Indeed,

since the potentials VI and Vh are non-negative and Φ is non-

increasing, we have:

N∑

i=1

‖ṽi(t)‖2 ≤ 2Φ(t) ≤ 2Φ(0).

Hence, the solutions (p̃i(t), ṽi(t)) of the relative system are

confined within a compact set through dynamics. By LaSalle

Invariance Principle we conclude that the solutions approach

asymptotically the largest invariant set in {Φ̇ = 0}. Con-

sequently, we infer by (22) that as t → ∞, the vehicles’

velocities approach the velocity of the target domain.

Remark IV.3. The asymptotic states are critical points of

Φ that satisfy ṽi = 0 for all i. Alternatively, these equi-

libria are critical points of the artificial potential energy
∑N
i=1

(
∑N
j 6=iVI (p̃ij)+2Vh (p̃i)

)

. We expect that almost every

solution of the relative system will approach asymptotically a

local minimum of this potential energy.

Most relevant to our study are the rd-covers discussed in

Section III, now in the context of these configurations being
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equilibria in the moving frame of the target. Since the potential

energy vanishes at such configurations, these relative equilibria

are global minimizers. As discussed in the stationary case,

in some certain simple geometries, such equilibria are also

isolated. For such states, by similar arguments to those used

for Proposition III.6, the following local asymptotic result can

be established.

Proposition IV.4. Consider a target domain Ωt that moves

with constant velocity vd, and a group of N vehicles with

dynamics defined by (16) and (17). Let the relative equilibrium

of interest be of the form ˙̃pi = 0, ‖p̃ij‖ ≥ rd and [[h̃i]] ≤
− rd2 for i, j = 1, · · · , N (see Definitions III.1 and III.2), and

assume that this equilibrium configuration is isolated. Also

assume that there is a neighborhood about the equilibrium

in which the control law remains smooth. Then, the relative

equilibrium is a global minimum of the sum of all the artificial

potentials and is locally asymptotically stable.

Remark IV.5. All considerations in this subsection apply to

the case of zero inter-individual alignment forces (fal = 0).

In such case, by working in the moving frame of the domain,

the problem reduces in fact to the one studied in Section III.

As mentioned in Remark III.10, the previous theoretical

results can only be guaranteed if the control force remains

sufficiently small, in other words, if it is threshold free.

D. Numerical simulations

In this subsection, we show three numerical simulation

scenarios for vehicles using the coverage controller (17).

While the first two scenarios are covered by the theory, the last

one illustrates how our strategy still leads to appropriate final

configurations even when the domain follows non-inertial tra-

jectories. The possible safety issues are addressed as described

in Section III-C.

Triangular domain. We consider the scenario in which an

equilateral triangular domain moving with constant velocity,

vd =
(√

2
2 ,

√
2
2

)

, is covered by a triangular number of vehicles,

i.e. N = n(n+1)
2 , n ∈ N. At the start of the simulation the

vehicles lie on a line outside the domain (see Figure 1a).

The evolution for a group of N = 10 agents, each of them

using the coverage with velocity alignment and pairwise safety

strategies discussed above, is illustrated in Figures 1b-1d. The

tails represent the 15-second history of the vehicle positions.

Some of the effects of strong alignments, that is, large av
or Cal values, include vehicles spreading slowly inside the

domains or in some cases not reaching the target formation,

as pointed out in [35].

On the other hand, weak alignments, i.e. small av and Cal
values, cause undesired overshoots, and slower asymptotic

flocking. Therefore, it is important to maintain a good balance

between the strength of the alignment and coverage forces.

Non-convex domain. We now study the scenario in which

vehicles cover and follow a moving non-convex domain in

the shape of an arrowhead. While the domain preserves its

shape, it moves with a constant velocity vd =
(√

2
2 ,

√
2
2

)

.

(a) t = 18(s)

 

(b) t = 60(s)

Fig. 7: Vehicles covering and following a moving, non-convex

domain, when N = 9, cr = 2 (m), vmax = 10 (m/s), umax =
3 (m/s2), tsafety = 5 (s), aI = 1 (m/s2), ah = 2 (m/s2), av =
0.2 (m/s2), Cal = 0.1 (m/s2), lal = 7.21 (m), domain area

A = 225 (m2) and rd =
√

A
N

= 5 (m). The vehicles start

in linear formation, approach and cover the domain, while

following it. The vehicles lagging behind exhibit oscillations

due to a bouncing effect in the narrow corners.

Different time instants of the simulation are shown in Figure

7, where the tails represent the vehicle positions during the

last 20 seconds of the simulation. Initially, all the 9 vehicles

lie on a line perpendicular to the movement direction of the

target domain, as shown by the tails of the vehicles in Figure

7a.

We distinguish two main behaviours: during a first phase

of the simulation (Figure 7a) the vehicles cover the domain

approximately evenly, adopting the arrow shape, while in a

second phase (Figure 7b), a clearer domain-following be-

haviour is observed. The oscillations of the two vehicles that

are lagging behind are the effect of their proximity to the

corners. Indeed, as one of the line segments of the boundary

wedge gets closer to the vehicle near the corner, it pushes

it towards the other segment of the wedge, a back-and-forth

motion that causes the zigzagging. These oscillations can be

reduced by reinforcing the velocity alignment.

Unlike the convex case, in non-convex domains the projec-

tion on the boundary for points outside of the domain may not

be unique; this is the case for instance of the green vehicle

in the middle of the initial setup – see start of the tails in

Figure 7a. Although the chance for a vehicle to lie in one of

these states is extremely unlikely (the set of points where this

happens has zero measure), this fact may yield ambiguity in

the definition of the domain-vehicle force. We mitigate this

issue by considering the contribution from only one of the

multiple projection points; consequently, the numerical time

evolution may depend on the chosen projection method.

Domain moving in a circle. Finally, we include the case

of a target domain moving with non-zero acceleration, more

specifically, an equilateral triangular domain moving on a

circular path. The triangular domain moves so that its centre

of mass describes a circular motion of radius 30 with constant

angular velocity 2π
40 , while aligning its heading to be tangent
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 (a) t = 9(s)  
 

(b) t = 24(s)

(c) t = 48(s) (d) t = 70(s)

Fig. 8: Vehicles covering and following a non-zero

acceleration triangular domain moving over the path
(
30 cos

(
2π
40 t

)
, 30 sin

(
2π
40 t

))
. Here, N = 6, cr = 2 (m),

vmax = 10 (m/s), umax = 3 (m/s2), tsafety = 5 (s), aI =
10 (m/s2), ah = 10 (m/s2), av = 1 (m/s2), Cal = 1.2 (m/s2),
lal = 10.06 (m), domain area A = 292.28 (m2) and rd =√

A
N

= 6.97 (m). The vehicles start in linear formation,

approach and cover the domain, while following it.

to this circle (see Figure 8). Note that this non-inertial path is

not covered by our previous theoretical results (Theorem IV.2

and Proposition IV.4).

The vehicles’ time evolution is illustrated in Figure 8, where

the tails represent the vehicle positions during the last 20

seconds of the simulation. At the beginning, the N = 6
vehicles are in the line formation as shown by the beginning of

the tails in Figure 8a. As in previous simulations, the vehicles

try to reach the moving domain, this time rotating around the

domain’s circular path (Figures 8a and 8b). Then, the vehicles

reach coverage of the domain (Figure 8c) which is maintained

by each vehicle by remaining in a circular movement of

constant radius (Figure 8d).

When a vehicle describes a uniform circular movement

with angular velocity ω and radius r, its speed remains

constant over time and is given by rω. As the vehicles move

asymptotically along circles with different radii, they have

different velocities, and hence, this type of ”flock” does not

satisfy Definition IV.1. In contrast to the case when the domain

is moving along inertial paths, in this case each vehicle’s

control force magnitude does not go asymptotically to zero,

but it approaches its centripetal acceleration rω2 instead.

V. PLANAR FIXED-WING AIRCRAFT

A. Problem formulation

In this section, we consider the flocking coverage problem

for N vehicles governed by the planar fixed-wing aircraft

dynamics, given by:

ṗi = si (cos (θi) , sin (θi)) ,
(

θ̇i, ṡi

)

= (ui,θ, ui,s) ;

0 < smin ≤ ‖ṗi‖ ≤ smax, |ui,θ| ≤ uθmax
, |ui,s| ≤ usmax

.
(23)

Here, θi is the heading angle, si is the vehicle speed and

pi = (pi,x, pi,y) is the position of the i-th agent. The variables

ui,s and ui,θ are the acceleration and turn rate applied to

this vehicle respectively; these are the control inputs to be

specified later. In addition to the bounds for the controls, we

also impose maximum and minimum speed limits, the latter

being particularly relevant for aerial vehicles.

In this case, our safe domain coverage problem of interest is

the same as for the double integrator dynamics, but considering

fixed-wing vehicles.

B. Coverage controller and safety controller

The goal is to find expressions for each agent’s control

law based on the proposed coverage policy with inter-vehicle

and vehicle-domain alignment forces (17), while satisfying the

constraints given in (23).

By differentiation of the vehicle dynamics (23) with respect

to time, one can find that the acceleration in Cartesian coor-

dinates of the i-th agent in terms of the control inputs are as

follows: (
¨pi,x
¨pi,y

)

= R (θi, si)

(
ui,θ
ui,s

)

, (24)

where R (θi, si) :=

(
−si sin (θi) cos (θi)
si cos (θi) sin (θi)

)

.

This relation allows us to compute an expression for the

vehicle control inputs in terms of its acceleration in Cartesian

coordinates whenever si 6= 0:
(
ui,θ
ui,s

)

= (R (θi, si))
−1

(
¨pi,x
¨pi,y

)

. (25)

Using this correspondence, one can obtain the necessary con-
trols (ui,θ, ui,s) to achieve the same acceleration in Cartesian
coordinates produced by the proposed control force (17) as:

(

ui,θ

ui,s

)

= (R (θi, si))
−1



−

N
∑

j 6=i

fI (‖pij‖)
pij

‖pij‖

−fh ([[hi]])
hi

[[hi]]
−

N
∑

j 6=i

fal (‖pij‖) vij − a (vi − vd)



 . (26)

The changes of coordinates (24) and (25) guarantee that all

the stability results in Chapter IV are still valid in the case

of the planar fixed-wing aircraft model when no constraints

are applied, as long as none of the vehicles stop along their

trajectories. This seems to be a very plausible assumption in

practice, as the minimum speed is supposed to be greater than

zero.
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Fig. 9: Thresholded fixed-wing aircraft control input ûi for

vehicle with speed si and heading θi computed from its set

of admissible accelerations in Cartesian coordinates S (θi, si)
and a reference acceleration dvi

dt
.

Thresholding the control force. While finding an admissi-

ble force satisfying the constraints for the double integrator

model (16) is done by simply normalizing the vehicles’

control input (17), obtaining a suitable fixed-wing control input

satisfying the constraints (23) is not as straightforward.

In order to obtain the appropriate fixed-wing aircraft control

inputs we use relation (24), which allows us to represent the

set of admissible accelerations from the Cartesian perspective:

S (θi, si) =

{

R (θi, si)

(

uθ

us

)

:

(

uθ

us

)

∈
[−uθmax

, uθmax
]

× [−usmax , usmax ]

}

.

This set can be understood as a stretch and rotation of the

rectangle containing the admissible vehicle control inputs.

The input constraints affect the magnitude of the vehicle’s

acceleration, however, we intend to preserve its direction. Let

us define the Cartesian admissible force associated to the

control (26) as
(
ûi,x
ûi,y

)

= τ (θi, si)R (θi, si)

(
ui,θ
ui,s

)

,

where

τ (θi, si) = sup

{

t ∈ R : tR (θi, si)

(

ui,θ

ui,s

)

∈ S (θi, si)

}

.

In other words, ûi us the largest acceleration in the set

of admissible accelerations in Cartesian coordinates that is

parallel to the desired acceleration – see Figure 9.

Finally, the thresholded fixed-wing aircraft control inputs

can be obtained by using (24) as
(
ûi,θ
ûi,s

)

= (R (θi, si))
−1

(
ûi,x
ûi,y

)

= τ (θi, si)

(
ui,θ
ui,s

)

.

Collision avoidance. As mentioned above, the changes of

coordinates (24) and (25) guarantee that the unconstrained

fixed-wing aircraft dynamics satisfies the vehicles safety con-

ditions when the initial energy is small enough, as established

in Proposition III.7.

As the set of control inputs and non-anticipative distur-

bances differ from those in the double integrator dynamics,

the collision avoidance via Hamilton-Jacobi reachability for

Fig. 10: Relative coordinate system for pairwise collision

avoidance in the fixed-wing model. Figure adapted from [36]

© [2005] IEEE with authors’ permission.

this type of vehicles requires a different study than the one

carried out in Section III-C.

Similarly to the double integrator case, we consider the

relative dynamics between a pair of vehicles, where one acts as

evader and the other as pursuer. Using as reference Figure 10,

to obtain the relative dynamics we consider the evader fixed

at the origin, and facing the positive x1 axis. In the figure,

x1 is the projection of the vector connecting the vehicles’

positions on the axis parallel to the evader’s heading, and x2 is

its projection on the orthogonal direction. Also, x3 represents

the difference of the two agents’ headings, while x4 and x5
represent the evader and pursuer speeds, respectively.

The pursuer’s speed, relative location and heading, along

with the evader’s speed, are described by the following dy-

namical system:

ẋ = f (x, u, d) =









x5 cos (x3)− x4 + uθx2
x5 sin (x3)− uθx1

dθ − uθ
us
ds









.

Here u := (uθ, us) and d := (dθ, ds), where uθ, us and dθ ,

ds are the evader’s, respectively the pursuer’s, turn rate and

acceleration, with the latter being treated as disturbances.

By the dynamic programming principle, the time φ to reach

collision is the viscosity solution for the stationary HJ PDE

(2) where

ΓD =
{
z : z21 + z22 ≤ c2r or z4 < smin or z4 > smax

}

is the union of a five dimensional cylinder of radius cr on the

first two dimensions, with two half-spaces, and

ΓS = {z : z5 < smin or z5 > smax}

is the union of two half-spaces.

Note that unlike the typical time-to-reach setting, we con-

sider ΓD to be the set of dangerous states, and ΓS to be the

set of unsafe states that “invalidates” danger. Specifically, ΓS
ensures that the pursuer does not violate its speed constraints

while trying to cause a collision.

Obtaining an analytical solution for the HJ PDE associated

to this problem seems to be much more difficult than in the

double integrator case, and we opt for solving it numerically.
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The challenges of solving numerically this HJ PDE are

two-fold. First, the memory requirements to store the solu-

tion are large even for coarse resolutions, and second, the

computational time scales poorly as the grid size grows.

This is particularly problematic when the algorithm specifi-

cations are not optimized for the hardware architecture. We

alleviate the second issue by using the new python toolbox

https://github.com/SFU-MARS/optimized dp for solving HJ

PDEs, which yields faster executions by decoupling the al-

gorithm from the hardware specifications.

C. Numerical simulations

In this subsection we consider two simulation scenarios

related to those investigated in Section IV-D, and illustrate how

our control strategy leads to similar coverage configurations.

We do not intend to compare the systems’ evolution, as they

are two distinct types of vehicles with different capabilities.

Triangular domain. In the first scenario, we consider an

equilateral triangular domain moving with constant velocity

vd =
(√

2
2 ,

√
2
2

)

, which is covered by a triangular number of

vehicles. The minimum for vehicles’ speed is set at 0.5 (m/s),

while the maximum is 5 (m/s). Each of the fixed-wing agents

uses the coverage controller with velocity alignment (26)

discussed in Subsection V-B.

Figure 11 shows four different time steps of the evolution

of the vehicles. The tails represent the last 15 seconds of the

vehicles’ position history. At the start of the simulation the

N = 10 vehicles lie on a line outside the domain, moving with

the minimum allowed speed and random headings (see Figure

11a). As time evolves, the vehicles approach the domain

(Figure 11b), and then cover it by taking a triangular formation

moving with constant velocity as expected, see Figures 11c

and 11d.

In this particular case, the same coverage controller param-

eters used for the double integrator vehicles seem to work

well. However, it is not a rule of thumb, as the thresholding

strategies are very different. We also note that the collisions

count goes from 2, when no collision avoidance is included,

to 0, when the safety controller is used.

Domain moving in a circle. The vehicles start in a line

formation as shown in Figure 12a. They reach the target

domain and spread inside it (Figures 12b and 12c). Once they

cover the domain, each of the fixed-wing agents follows a

circular path with constant angular velocity ω = 3π
80 (Figure

12d). Under this configuration the vehicles have reached their

terminal speed and do not require extra acceleration, i.e.

us = 0, however they should maintain a turn rate of uθ = ω.

The collision count goes from 7 to 1 by including collision

avoidance. Similar to previous sections, we note that our

approach based on pairwise collision avoidance does not

guarantee safety when a vehicle has to avoid two or more

vehicles at the same time.

VI. CONCLUSION

A. Summary of results

Our proposed controller for multi-vehicle coordination al-

lows a swarm of vehicles to cover moving planar shapes.

(a) t = 0(s) (b) t = 2.4(s)

(c) t = 12(s) (d) t = 48(s)

Fig. 11: Vehicles with planar fixed-wing aircraft dynamics

covering and following a moving equilateral triangular do-

main, when N = 10, cr = 2 (m), smax = 10 (m/s),

smin = 0.5 (m/s), uθmax
= π/2 (rad/s), usmax

= 3 (m/s2),
aI = 1 (m/s2), ah = 2 (m/s2), av = 0.2 (m/s2), Cal =

0.2 (m/s2), lal = 7.79 (m), vd =
(√

2
2 ,

√
2
2

)

(m/s), domain

area A = 292.28 (m2) and rd =
√

A
N

= 5.4 (m). Collision

avoidance controller is included. The vehicles start in linear

formation.

Unlike previous coverage controllers that assumed first-order

vehicle models, our coverage controllers use more realistic

second-order models – double integrator and fixed-wing air-

craft. We prove that our coverage controller achieves coverage

and flocking with moving planar domains, and that the cover

configurations of interest are locally asymptotically stable.

Using HJ reachability analysis, we guarantee pairwise collision

avoidance while accounting for bounded control inputs. In ad-

dition, we also derive the analytical solution to the associated

HJ PDE for the double integrator model.

Our numerical simulations illustrate successful coverage of

static and moving domains on four representative scenarios:

static square, non-accelerated moving triangular and arrow-

head (non-convex) domains, and a triangular domain following

a circular path. While the first three scenarios are covered by

our theoretical results, the last is not. Nevertheless, we find

satisfactory numerical results in this case as well, suggesting

some generality of the proposed technique. For simulations

involving the double integrator, we observe drastic reduction

of collisions when using the HJ-based collision avoidance

controller.

https://github.com/SFU-MARS/optimized_dp
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(a) t = 0(s) (b) t = 12(s)

(c) t = 20(s) (d) t = 40(s)

Fig. 12: Vehicles with planar fixed-wing aircraft dynamics

covering and following a non-zero acceleration triangular

domain moving over the path
(
30 cos

(
3π
80 t

)
, 30 sin

(
3π
80 t

))
.

Here, N = 6, cr = 2 (m), smin = 0.5 (m/s), smax = 5 (m/s),

uθmax
= π/2 (rad/s), usmax

= 3 (m/s2), av = 1.2, lal = 3.679,

Cal = 1.5, aI = 5, ah = 2.7, domain area A = 73.07 (m2)

and rd =
√

A
N

= 3.489 (m). The vehicles start in a linear

formation, approach and cover the domain, while following it.

The collision avoidance controller is included.

B. Future work

Immediate future work includes parameter tuning to re-

duce oscillations in the vehicles’ movement, studying three-

dimensional coverage, investigating geometrical properties of

steady states, investigating scenarios involving partial infor-

mation, and implementing our approach on robotic platforms.
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