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Abstract

We study an intrinsic model for collective behaviour on the hyperbolic space Hn. We
investigate the equilibria of the aggregation equation (or equivalently, the critical points
of the associated interaction energy) for interaction potentials that include Newtonian
repulsion. By using the method of moving planes, we establish the radial symmetry and
the monotonicity of equilibria supported on geodesic balls of Hn. We find several explicit
forms of equilibria and show that one such equilibrium is a global energy minimizer. We
also consider more general potentials and utilize a technique used for Rn to establish the
existence of compactly supported global minimizers. Numerical simulations are presented,
suggesting that some of the equilibria studied here are global attractors. The key tool in
our investigations is a family of isometries of Hn that we have developed for this purpose.

Keywords: swarming on manifolds, hyperbolic space, energy minimizers, Newtonian po-
tential

1 Introduction

In recent years there has been extensive work on investigating minimizers of nonlocal interac-
tion energies, as motivated by a wide range of applications in a variety of disciplines, such as
biology, physics, economics and social sciences [7, 16, 39, 2, 10, 24]. With very few exceptions,
such works have studied the Euclidean case, where individual particles in Rn interact via an
interaction potential that depends on the Euclidean distance between them. Since our goal
in this paper is to consider nonlocal interaction energies set up on Riemannian manifolds (in
particular, on the hyperbolic space), we will present the general setup from the start.

Consider an n-dimensional Riemannian manifold M , and denote by P(M) the set of prob-
ability measures on M . Define the interaction energy E : P(M)→ R ∪ {∞} by

E[ρ] =
1

2

∫∫
M×M

K(x, y)dρ(x)dρ(y), (1)

where K : M × M → R is an interaction potential that models attractive and repulsive
interactions. More precisely, the negative manifold gradient −∇MK(x, y) (the gradient with
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respect to x) of K provides the interaction force that a point mass located at x feels by
interacting with a point mass located at y [7, 23].

The interaction energy (1) is closely related to the following evolution equation for a pop-
ulation density ρ:

∂tρ−∇M · (ρ∇MK ∗ ρ) = 0, (2)

where ∇M · denotes the manifold divergence on M . Here, for a time-dependent measure ρt on
M , the convolution K ∗ ρt is defined by

K ∗ ρt(x) =

∫
M
K(x, y)dρt(y).

Equation (2) is in the form of an active transport equation for the density ρ, with a nonlocal
velocity field given by

v[ρ](x, t) = −∇MK ∗ ρt(x). (3)

Note that v[ρ] = −∇M
δE[ρ]

δρ
, which sets (at least formally) equation (2) as the gradient flow

of the energy (1). One can check by a direct calculation that indeed, formally, the energy E
decays in time along solutions of equation (2) [23]. Equilibria (steady states) of the aggregation
model (2) are the critical points of the interaction energy, and from a dynamical point of view,
we expect that solutions to model (2) approach asymptotically as t→∞, local minimizers of
the energy.

There has been extensive literature in recent years on interaction energies of type (1),
with the vast majority of the works focusing on the case M = Rn. One approach is to use
the techniques developed in [1] and formulate the gradient flow of the energy E on the space
of probability measures with finite second (or other order) moments, equipped with the 2-
Wasserstein metric [13, 9, 41]. Another approach is to use direct methods of the calculus of
variations and establish the existence of global minimizers (ground states) of the interaction
energy [16, 39, 24]. There are also various studies of quantitative and qualitative properties of
minimizers, such as their regularity [8] and compactness and dimensionality of their support
[7, 2, 10].

Model (2) can exhibit a very diverse range of swarming or self-organized behaviour. We
refer to [33, 40, 21, 3, 12] for explicit calculations and numerical illustrations of equilibria for the
model in Rn, which include aggregations on disks, annuli, rings, and soccer balls. The model
on manifolds is far less investigated, but nevertheless, a similarly diverse set of equilibria was
demonstrated in [23] for the hyperbolic plane and also, interesting aggregation patterns were
shown in [19] for the model set up on the rotation group SO(3). Applications of model (2)
are numerous, e.g., to flocking and swarming of biological organisms [11], material science and
granular media [13], self-assembly of nanoparticles [31], robotics [25, 32] and opinion formation
[35].

In our study we will follow the intrinsic approach pursued in various recent papers [23, 19,
22] and assume that K(x, y) only depends on the geodesic distance d(x, y) between the two
points. By an abuse of notation we write K(x, y) = K(d(x, y)). In contrast, when M comes
with a canonical embedding in a larger Euclidean space (e.g., a surface in R3), K(x, y) can be
assumed to depend on the Euclidean distance |x − y| in the ambient space between x and y;
we refer to this case as the extrinsic approach. The two approaches yield very different models
for general manifolds, while for M = Rn the two models are the same. For extrinsic models we
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refer to [41, 36] for studies on well-posedness by gradient flow techniques, and to various works
on the emergent behaviours of the extrinsic models on manifolds, e.g., on sphere [15], unitary
matrices [34, 30, 29], hyperbolic space [27], and Stiefel manifolds [28]. Relevant to the present
paper, we note the work in [27], where the authors study synchronization behaviour on the
hyperbolic space with an extrinsic quadratic potential (i.e., K(x, y) = |x− y|2) for the discrete
analogue of (2). A related study is done in [37]. The emergence of self-synchronization has
been widely studied in the literature, due to its numerous occurrences in biological, physical
and chemical systems (e.g., flashing of fireflies, neuronal synchronization in the brain, quantum
synchronization) – see [34, 27] and references therein.

For intrinsic models, the sign of K ′ determines whether the interactions are repulsive or
attractive in nature. Indeed, provided x and y are not in the cut locus of each other, by chain
rule one gets

−∇MK(d(x, y)) = K ′(d(x, y))
logx y

d(x, y)
,

where logx y denotes the Riemannian logarithm map (i.e., the inverse of the Riemannian ex-
ponential map) on M . Therefore, by interacting with the point mass at y, the point mass
at x is driven by a force of magnitude proportional to |K ′(d(x, y))|, to move either towards
y (if K ′(d(x, y)) > 0) or away from y (if K ′(d(x, y)) < 0). To obtain non-trivial swarming
behaviours, repulsion and attraction must balance each other. Typically, such interaction po-
tentials have short-range repulsion and long-range attraction, i.e., K ′(r) < 0 for small r and
K ′(r) > 0 for large r (see Figure 2).

The interaction energy for intrinsic models is invariant under isometries. Indeed, if f :
M → M is an isometry of M and f#ρ is the push-forward by f of the measure ρ, then it is
immediate to show that

E[f#ρ] = E[ρ]. (4)

Consequently, the energy minimizers can only be expected to be unique up to isometries.
In this paper we are exclusively concerned with studying the nonlocal aggregation model on

the hyperbolic space Hn, represented as a one-sheeted hyperboloid in Rn+1 endowed with the
Lorentzian inner product. Based on the Lorentz transform, we construct a family of isometries
of Hn and a binary operation on Hn×Hn, along with a concept of coordinates on Hn, that are
the key tools in the results we establish in the present work.

In Section 3 we consider attractive-repulsive interaction potentials that include Newtonian
repulsion, i.e., potentials for which the repulsion component is given by the Green’s function
of the negative Laplacian on Hn. We note here that the Green’s function on Hn has an
explicit expression [17] – see (24). For the model on Rn, potentials in this form have been
given extensive attention in recent years [6, 21, 20, 12, 38], and a potential with Newtonian
repulsion was also considered on the hyperbolic plane [23]. In this section we only consider
equilibria that are absolutely continuous with respect to the canonical volume measure on Hn.
This choice is motivated by results in the Euclidean space Rn which have established that for
interaction potentials with Newtonian repulsion, the local minimizers of the interaction energy
are absolutely continuous with respect to the Lebegue measure [12].

We study equilibria supported in geodesic balls of Hn and show that such equilibria must
be radially symmetric and monotone with respect to the centre of the ball. To show this
result (Theorem 3.3) we use the method of moving planes, a well-known method for studying
qualitative properties of positive solutions of elliptic equations [26]. More recently, the method

3



found applications in integral equations [14, 20]. The challenge here is to adapt the method
to the hyperboloid; to the best of our knowledge this the first application of the method of
moving planes to integral equations on manifolds. We also find several explicit forms of radially
symmetric equilibria, corresponding to particular choices of the attractive part of the potential.
For one such attractive potential, we show that the equilibrium we computed is in fact the
global energy minimizer. We also present various numerical simulations in Section 5.

In Section 4 we investigate the existence of compactly supported global minimizers of the
energy (1) for M = Hn. As we apply and follow closely the technique used by Cañizo et al.
[7] for the Euclidean case, we only highlight the main differences from their work. In other
words, we are not aiming for a self-contained presentation in Section 4, as some of results
from [7] would transfer with no modifications to Hn. Nevertheless, we show how the family of
isometries and the concept of coordinates on Hn that we developed, enable a similar approach
as for the Euclidean case. In particular, minimizers cannot have too large gaps, as otherwise,
an isometric displacement of one of the components would decrease the energy (Lemma 4.3).

Finally, we provide some numerical results in Section 5. Using various interaction poten-
tials, we illustrate the dynamical evolution to steady states of radially symmetric solutions to
(2). The equilibria we present are qualitatively different in terms in their monotonicity, in con-
sistency with the analytical findings. Numerics suggest these equilibria are global attractors
for the dynamics (at least for radial initial densities).

The summary of the paper is the following. Section 2 provides key background needed for
the paper, on the variational formalism and on the geometrical properties of Hn. Section 3
contains analytical results for interaction potentials that contain Newtonian repulsion (char-
acterization of monotonicity, explicit forms for equilibria, convexity of energy). In Section 4
we establish the existence of compactly supported global minimizers, following the approach
for Rn from [7]. Proof of various lemmas are deferred to the Appendix.

2 Preliminaries

In this section we provide some background on the variational formalism used in our paper, as
well as on the various geometrical properties of Hn, in particular on a family of isometries of
the hyperbolic space that plays a key role in our studies.

2.1 Variational approach: Euler-Lagrange equations

For the interaction energy set up on the Euclidean space Rn, there exists a well-established
approach to characterize its local minimizers (by Euler-Lagrange equations) in the topology of
transport distances [2]. As this approach extends immediately to arbitrary manifolds, we will
simply list below the main notations and results.

Take p to be a fixed point in M , and denote by P2(M) the set of probability measures that
have finite moments of order 2 (with respect to p), i.e.,

P2(M) =

{
µ ∈ P(M) :

∫
M
d2(x, p)dµ(x) <∞

}
.

The 2-Wasserstein distance between two measures µ, σ ∈ P2(M) is given by:

d2
2(µ, σ) = inf

π∈Π(µ,σ)

∫∫
M×M

d2(x, y)dπ(x, y),
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where Π(µ, σ) ⊂ P(M ×M) is the set of transport plans between µ and σ, i.e., the set of
probability measures on the product space M ×M with first and second marginals µ and σ,
respectively.

A probability measure µ ∈ P2(M) is a local minimizer of E with respect to the d2-distance
provided there exists ε > 0 such that E[σ] ≥ E[µ], for all σ ∈ B(µ, ε), where B(µ, ε) denotes
the open ball (in d2) centred at µ and of radius ε.

We will pay particular attention in this paper to probability measures that are absolutely
continuous with respect to the canonical volume measure dx; we denote this space by Pac(M).
Throughout the paper, we will refer to an absolutely continuous measure directly by its density
ρ, and by abuse of notation write ρ ∈ Pac(M) to mean dρ(x) = ρ(x)dx ∈ Pac(M). Finally,
we denote by Pacc (M) the space of absolutely continuous probability measures with compact
support in M .

The following result, stated originally for M = Rn, extends trivially to arbitrary Rieman-
nian manifolds.

Proposition 2.1 ([2], Theorem 4 and Remark 4). Assume the interaction potential K is
bounded from below and lower semicontinuous. Let ρ ∈ Pac(M) ∩ P2(M) be a local minimizer
of E with respect to d2. Then,

Λ(x) = λ, for a.e. x ∈ supp(ρ), (5a)

Λ(x) ≥ λ, for a.e. on M \ supp(ρ), (5b)

where

Λ(x) :=

∫
M
K(x, y)ρ(y)dy, (6)

and λ = 2E[ρ] is a constant.

Condition (5a) is shown by taking perturbations of ρ supported in supp(ρ). The condition
is equivalent to ρ being a critical point of E, at which the first variation of the energy vanishes.
The constant λ, which plays the role of a Lagrange multiplier in the derivation of (5a), has
a physical interpretation [4]: it represents the energy per unit mass felt by a point mass at
position x due to interaction with all points in supp(ρ).

We also note that critical points of the interaction energy represent equilibrium solutions
(steady states) of the aggregation model (2). This can be inferred from the fact that the
velocity v(x) = −∇MK ∗ ρ(x) = −∇MΛ(x) vanishes for x ∈ supp(ρ), given that Λ is constant
in supp(ρ). We will use these concepts (critical point of the energy, equilibrium solution, steady
state) interchangeably in the sequel.

The necessary condition (5b) is found by taking perturbations of ρ that can be supported
anywhere in M , in particular outside supp(ρ). The interpretation of (5b) is that transporting
mass from the support of ρ into its complement increases the total energy (hence ρ is a local
minimizer, being in a favourably energetic state).

2.2 Geometric properties of the hyperbolic space Hn

In this part, we present some geometric properties of the hyperbolic space Hn which will be
used in the paper.
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2.2.1 Hyperboloid model, polar coordinates and notations

We consider the space Rn+1 endowed with the (negative) Lorentzian inner product:

〈x, y〉 = x0y0 − x1y1 − · · · − xnyn, (7)

where x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1. The inner product (7) induces the
(complex-valued) norm defined by

‖x‖ = 〈x, x〉
1
2 , for x ∈ Rn+1. (8)

We use the hyperboloid model of the hyperbolic space and take:

Hn := {x ∈ Rn+1 : −x2
0 + x2

1 + · · ·+ x2
n = −1, x0 > 0} ⊂ Rn+1,

or, written differently,
Hn = {x ∈ Rn+1 : x>ηx = −1, x0 > 0},

where η = diag(−1, 1, 1, · · · , 1︸ ︷︷ ︸
n−times

) is a matrix of size (n+ 1)× (n+ 1).

The geodesic distance d(x, y) on Hn between two points x and y, is given by:

d(x, y) = cosh−1(〈x, y〉) = cosh−1(x0y0 − x1y1 − · · · − xnyn). (9)

For x ∈ Hn and R > 0, we denote by BR(x) the open geodesic ball in Hn centred at x of radius
R, i.e.,

BR(x) = {y ∈ Hn : d(x, y) < R}.

We use the hyperbolic polar coordinates on Hn, given by:

(θ, ξ) ∈ [0,∞)× Sn−1 7→ (cosh θ, sinh θ ξ) ∈ Hn ⊂ Rn+1,

where Sn−1 denotes the (n− 1)-dimensional unit sphere embedded in Rn. We denote by v the
vertex of Hn, corresponding to θ = 0, i.e., v = (1, 0, . . . , 0) ∈ Rn+1. The vertex v plays the role
of the origin in the Euclidean space.

In polar coordinates, the Laplace–Beltrami operator ∆Hn can be written as:

∆Hnf(θ, ξ) = sinh1−n θ ∂θ
(
sinhn−1 θ∂θf

)
+ sinh−2 θ∆ξf

= ∂θθf + (n− 1) coth θ ∂θf + sinh−2 θ∆ξf,
(10)

where ∆ξ is the Laplace–Beltrami operator on Sn−1, with respect to the variable ξ. Since we
only consider the Laplace–Beltrami operator on the hyperbolic space Hn, we simply denote
∆ := ∆Hn . Also, the canonical volume form on Hn in these coordinates is given by

dx = sinhn−1 θ dθdσξ.

We denote by α(n) the volume of the n-dimensional unit ball in Rn; consequently, nα(n)
is the surface area of Sn−1 in Rn. Finally, we denote the standard Euclidean norm in Rn by
| · |, i.e.,

|w| =
(
w2

1 + · · ·+ w2
n

) 1
2 , for w = (w1, . . . , wn) ∈ Rn.
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2.2.2 Lorentz transform

For a fixed vector w = (w1, . . . , wn) ∈ Rn with |w| < 1, consider the following matrix B(w) of
size (n+ 1)× (n+ 1) with indices 0, 1, . . . , n:

B(w)00 = γ, B(w)i0 = B(w)0i = −γwi, B(w)ij = δij + (γ − 1)
wiwj
|w|2

, ∀i, j = 1, 2, · · · , n,

where γ = (1− |w|2)−1/2. Equivalently, the matrix expression of B(w) is

B(w) =

[
γ −γw>

−γw In + (γ − 1)ww
>

|w|2

]
.

We denote this matrix by B, since the corresponding concept is the Lorentz boost.

Lemma 2.2. For a fixed w ∈ Rn with |w| < 1, B(w) maps Hn into Hn, i.e.,

y = B(w)x ∈ Hn, for all x ∈ Hn ⊂ Rn+1.

Here, y is the matrix product of B(w) ∈ R(n+1)×(n+1) and x ∈ Rn+1.

Proof. By direct calculations (see Appendix A for details) one can show:

y2
0 − y2

1 − · · · − y2
n = x2

0 − x2
1 − · · · − x2

n,

which implies the desired result.

From the proof of Lemma 2.2, for any fixed w ∈ Rn with |w| < 1, it holds that:

x>ηx = (B(w)x)>ηB(w)x = x>(B(w)>ηB(w))x, ∀ x ∈ Rn+1.

This yields
x>(η −B(w)>ηB(w))x = 0, ∀ x ∈ Rn+1,

and hence,

B(w)>ηB(w) = η. (11)

Identity (11) holds for all w ∈ Rn with |w| < 1.

Lemma 2.3. For a fixed w ∈ Rn with |w| < 1, the map Fw : Hn → Hn defined by

Fw(x) := B(w)x, (12)

is an isometry. In particular, F0 is the identity map on Hn.

Proof. The fact that F0 is the identity map follows immediately from B(0) = Id. The general
result follows from a simple calculation that uses (11); see Appendix A for details.

Lemma 2.4. Let x ∈ Hn and w ∈ Rn with |w| < 1. Then, the following are equivalent:

1. Fw(1, 0, · · · , 0) = (x0,−x1, · · · ,−xn),

2. Fw(x) = (1, 0, · · · , 0),

3. wi = xi
x0

, for all 1 ≤ i ≤ n.

Proof. The proof is provided in Appendix A.
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2.2.3 Translation on Hn

In this part, we define the translation on the hyperbolic space using the isometry Fw defined
in (12). For any x = (x0, x1, · · · , xn) ∈ Hn, we define a n-dimensional vector x̂ by

x̂ :=

(
x1

x0
, · · · , xn

x0

)
.

From the definition of x̂ and Lemma 2.4, we have that

Fx̂(x) = v and Fx̂(v) = (x0,−x1, · · · ,−xn).

Definition 2.1. We define a binary operation +′ : Hn ×Hn → Hn as follows:

x+′ y := F−ŷ(x) ∈ Hn, ∀ x, y ∈ Hn.

Since Fw is an isometry for all w ∈ Rn with |w| < 1, we know that the map x 7→ x +′ y
is also an isometry for all y ∈ Hn. The following lemma provides the coordinate expression of
x+′ y.

Lemma 2.5. Let x, y ∈ Hn, then we have

(x+′ y)0 = x0y0 + x1y1 + · · ·+ xnyn,

(x+′ y)j = x0yj + xj +
yj

y0 + 1
(x1y1 + · · ·+ xnyn), ∀ 1 ≤ j ≤ n.

(13)

Proof. The proof follows from direct calculations, see Appendix A.

Remark 2.6. We can also express (x+′ y)j for any 1 ≤ j ≤ n, as

(x+′ y)j = x0yj + xj +
yj

y0 + 1
((x+′ y)0 − x0y0) = xj +

yj
y0 + 1

((x+′ y)0 + x0). (14)

We investigate now the algebraic structure of the operator +′.

(1) Identity of +′. Recall that v = (1, 0, · · · , 0︸ ︷︷ ︸
n−times

) denotes the vertex of Hn. Since v̂ is the

n-dimensional zero vector, we can easily find that

x+′ v = F0(x) = x,

since F0 is the identity map on Hn. Now, we calculate v +′ x. From the definition of +′, we
have

(v +′ x)0 = v0x0 + v1x1 + · · ·+ vnxn = x0

and
(v +′ x)j = v0xj + vj +

xj
x0 + 1

(v1x1 + · · ·+ vnxn) = xj , for j = 1, . . . , n.

This implies that
v +′ x = x.
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We conclude that v is an identity element for +′. The uniqueness of identities can be shown
easily, so v is the unique identity element of +′.

(2) Inverse of +′. We want to find the inverse −x of x, which satisfies

x+′ (−x) = (−x) +′ x = v.

For x = (x0, x1, · · · , xn), set:

−x := (x0,−x1,−x2, · · · ,−xn). (15)

It is easy to check that −x defined above is indeed the inverse of x. In polar coordinates, if
(θ, ξ) ∈ [0,∞) × Sn−1 are the coordinates of x, then −x has coordinates (θ,−ξ). So one can
see that the inverse operator is quite natural. We will prove the uniqueness of the inverse later
(see Corollary 2.9).

Using the definition (15) of the inverse, we define the operation −′ by

x−′ y := x+′ (−y), ∀ x, y ∈ Hn. (16)

We have the following simple lemma which will be used in further calculations.

Lemma 2.7. Let x and y be two points on Hn. Then we have the following relation:

−(x+′ y) = (−x) +′ (−y).

Proof. The proof is provided in Appendix A.

(3) Non-commutativity of +′. Using (13), we can show easily that +′ is not commutative.

(4) Non-associativity of +′. By direct (but tedious) calculations, one can check that in general,
((x+′ y) +′ z)0 6= (x+′ (y +′ z))0. Hence, the operation +′ is not associative.

To prove the uniqueness of the inverse, we provide the following lemma.

Lemma 2.8. For any x, y ∈ Hn, we have

x = (x+′ y)−′ y.

Proof. The proof is provided in Appendix A.

From the previous lemma, we have the uniqueness of the inverse for +′.

Corollary 2.9. Let x, y, z ∈ Hn that satisfy

x+′ y = v, and x+′ z = v.

Then, we have y = z.

Proof. From Lemma 2.8, we have

(x+′ y)−′ y = x, (x+′ z)−′ z = x.

If we use x+′ y = x+′ z = v, we get

v −′ y = x, v −′ z = x.

This relation directly yields y = z.
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Note that one can express the geodesic distance on Hn using −′. Let x, y ∈ Hn, x =
(x0, x1, · · · , xn) and y = (y0, y1, · · · , yn). Then we have

(x−′ y)0 = x0y0 − x1y1 − · · · − xnyn, (17)

and by (9),

(x−′ y)0 = cosh
(
d(x, y)

)
. (18)

2.2.4 Coordinate grid on Hn

In this part, we define a coordinate grid on Hn. In the Euclidean space, the coordinate grid is
set by the hyperplanes xi = const., for all coordinates xi. However, we should be careful when
we define this concept on Hn.

For a fixed k ∈ {1, 2, · · · , n}, we define the hypersurface:

Pk(0) := {x ∈ Hn : xk = 0}.

For a ∈ R, define
uk(a) := (cosh a, 0, · · · , 0, sinh a, 0, · · · , 0) ∈ Hn, (19)

where cosh a is the 0th index and sinh a is the kth index. Then consider translates of Pk(0) by
uk(a):

Pk(a) := Pk(0) +′ uk(a), a ∈ R. (20)

We refer to Figure 1 for an illustration of Pk(0) and some of its translates for the 2-
dimensional hyperbolic space.

Lemma 2.10. Let x ∈ Pk(0) and a, b ∈ R, then we have

(x+′ uk(a)) +′ uk(b) = x+′ uk(a+ b).

Proof. The proof is provided in Appendix A.

Remark 2.11. (1) If we put x = v, we have

uk(a) +′ uk(b) = uk(a+ b), ∀ a, b ∈ R.

(2) Since uk(0) = v, we also have

uk(a) = −uk(−a), ∀ a ∈ R.

The following lemma is key for the concept of coordinate grid on Hn. In particular, it
shows that the family (20) of translates of Pk(0) covers the entire Hn; this is similar to how
translating a hyperplane xi = 0 along the xi-axis covers the Euclidean space.

Lemma 2.12. For any x ∈ Hn there exists a unique pair (a, y) ∈ R× Pk(0) such that

x = y +′ uk(a). (21)

Furthermore, a and y can be expressed as

a = tanh−1

(
xk
x0

)
, y = x−′ uk(a). (22)
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Figure 1: Illustration of the translation (20) on the 2-dimensional hyperbolic space H2. (a)
The curve P1(0) and its translates P1(a) for a = 0.5 and a = 1. The points u1(a) are also
indicated on the plot. (b) Projections of P1(a) on the x1x2-plane for various values of a.

Proof. The proof is provided in Appendix A.

To illustrate the decomposition (21), we show in Figure 1(a) a point x ∈ P1(1) ⊂ H2 and
its corresponding y ∈ P1(0) such that x = y +′ u1(1). In summary, any point x ∈ Hn lies on
the hypersurface Pk(a) with a given by (22), where Pk(a) is the translation of Pk(0) by uk(a).
One can think of uk(a) as the k-th coordinate of x. Given the uniqueness of the decomposition
(21)-(22), we will be using in the sequel the map πk : Hn → R defined by

πk(x) = tanh−1

(
xk
x0

)
. (23)

Corollary 2.13. Let x ∈ Hn with x ∈ π−1
k (a) for some a ∈ R. Then we have

x+′ uk(b) ∈ π−1
k (a+ b), or equivalently, πk(x+′ uk(b)) = a+ b.

Proof. From Lemma 2.12, there exists y ∈ Pk(0) such that

x = y +′ uk(a).

Then, by Lemma 2.10, we get

x+′ uk(b) = (y +′ uk(a)) +′ uk(b) = y +′ uk(a+ b).

Therefore, x+′ uk(b) ∈ π−1
k (a+ b).
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We conclude this section with a simple inequality which will be used later in the paper.

Lemma 2.14. Let x and y be two points in Hn. Then we have

d(x, y) ≥ |πk(x)− πk(y)|, ∀ k = 1, 2, · · · , n.

Proof. The proof is provided in Appendix A.

3 Interaction potentials with Newtonian repulsion

In this section, we consider interaction potentials that include Newtonian repulsion, i.e., po-
tentials for which the repulsion component is given by the Green’s function of the negative
Laplacian on Hn [23].

Define

Φ(θ) :=


− 1

2π
log

(
tanh

θ

2

)
for n = 2,

1

nα(n)

∫ ∞
θ

1

sinhn−1 ζ
dζ for n ≥ 3.

(24)

Note that the case n = 2 can in fact be recovered from the expression for general n, by
calculating explicitly the integral. It was shown in [17] that the Green’s function for −∆ is
given by

G(x, y) := Φ(d(x, y)), (25)

i.e., G satisfies
∆xG(x, y) = −δy. (26)

In (26), and throughout the paper, we use ∆x to denote the Laplace–Beltrami operator with
respect to variable x.

In this section we consider interaction potentials in the form

K(x, y) = G(x, y) +A(d(x, y)), (27)

where G is given by (25) and A : [0,∞)→ R. As discussed in [23], the Green’s function com-
ponent of K (referred to in the sequel as Newtonian potential) models repulsive interactions.
To balance the repulsion, we take the A component to model attractive interactions. We refer
to Figure 2 for an illustration of several interaction potentials in the form (27); the attraction
components are specified later – see (54), (56) and (82).

Our main goals here are to investigate the qualitative properties of critical points of the
interaction energy (1) with K in the form (27), as well as to study explicit forms of minimizers
for certain specific examples of attraction potentials A. All the equilibria investigated in this
section are absolutely continuous probability measures ρ(x)dx, with ρ ∈ L1(dx).

Remark 3.1. Similar to the Euclidean case, the energy (1) corresponding to the Newtonian
potential is the square of the H−1 norm. Indeed, for ρ ∈ H−1(Hn) with compact support, by
definition of the H−1 norm and the divergence theorem, we have:

‖ρ‖2H−1(Hn) =

∫
Hn
‖∇u(x)‖2Hndx = −

∫
Hn

(∆u)(x)u(x)dx,

12



0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

4

5

Figure 2: Interaction potentials in the form (27), with attraction given by (54), (56) and (82),
respectively.

where u satisfies (in the weak sense): −∆u = ρ. Further, using the fundamental solution, write

u(x) =

∫
Hn
G(x, y)ρ(y)dy, to reach

‖ρ‖2H−1(Hn) =

∫∫
Hn×Hn

G(x, y)ρ(x)ρ(y)dxdy. (28)

Regarding the Euler-Lagrange equations, for an interaction potential in the form (27), Λ
defined in (6) reads:

Λ(x) =

∫
Hn

(G(x, y) +A(d(x, y)) ρ(y)dy.

Then, by (26), one finds:

∆Λ(x) =


− ρ(x) +

∫
Hn

∆xA(d(x, y))ρ(y)dy for x ∈ supp(ρ),∫
Hn

∆xA(d(x, y))ρ(y)dy for x /∈ supp(ρ).

(29)

For critical points of the energy (or equivalently, equilibrium solutions of model (2)), Λ(x) is
identically equal to a constant in the support of ρ (see (5a)). Hence, ∆Λ = 0 in supp(ρ), and
the first equation in (29) leads to the following integral equation for equilibrium densities ρ:

ρ(x) =

∫
supp(ρ)

∆xA(d(x, y))ρ(y)dy, for x ∈ supp(ρ). (30)

3.1 Equilibria supported on geodesic balls

We consider equilibria of the aggregation model (2) that are supported on geodesic balls centred
at the vertex v, and study their qualitative properties. To prove the main result (Theorem

13



3.3) on the radial symmetry and the monotonicity of such states, we employ the method of
moving planes by adapting it to the hyperbolic space.

Before we present the main result, we introduce the reflection on the hyperbolic space Hn.
In the Euclidean space Rn, the reflection by a hyperplane x1 = a is given by the map:

(x1, x2, · · · , xn) 7→ (2a− x1, x2, · · · , xn). (31)

The reflection map (31) can be divided into three maps as follows:

(x1, x2, · · · , xn) 7→ (x1 − a, x2, · · · , xn) 7→ (a− x1, x2, · · · , xn) 7→ (2a− x1, x2, · · · , xn).(32)

The first map is the translation in the x1 coordinate by −a, the second map is the reflection
by the hyperplane x1 = 0, and the third map is the translation in the x1 coordinate by a.

We apply now a similar argument to define the reflection on Hn. We present the reflection
corresponding to coordinate x1, the reflections corresponding to coordinates x2, . . . , xn are
similar. First, we define the reference hypersurface for the reflection. For the Euclidean space,
this is a regular flat hyperplane, however, for the hyperbolic space we choose the hypersurface
to be P1(a) defined in (20) (see also Figure 1). For the translation on Hn we use the +′

operation (see Definition 2.1), and take the translation by ±a in the x1 coordinate, to be
x 7→ x±′ u1(a) (see (20)). Finally, analogous to the reflection by the hyperplane x1 = 0 in the
Euclidean space, on Hn we have reflection by the hypersurface P1(0) = {x ∈ Hn : x1 = 0},
which we define it to be:

R1 : (x0, x1, x2, · · · , xn) ∈ Hn p−→ (x0,−x1, x2, · · · , xn) ∈ Hn.

Following the map sequence in (32) (translation by −a, reflection, translation by a), we
express the reflection across an arbitrary hypersurface P1(a) on Hn as:

x p−→ x−′ u1(a) p−→ R1(x−′ u1(a)) p−→ R1(x−′ u1(a)) +′ u1(a).

This sequence of three maps is illustrated schematically in Figure 3. Written compactly, the
reflection map above reads:

x p−→ xa := R1(x−′ u1(a)) +′ u1(a). (33)

For a better understanding of the reflection map, let us express the reflected point xa in
coordinates. From the definition of −′ and u1(a) (see (16) and (19)), we have

(x−′ u1(a))0 = x0 cosh a− x1 sinh a,

(x−′ u1(a))1 = x1 cosh a− x0 sinh a,

(x−′ u1(a))j = xj , ∀ 2 ≤ j ≤ n.

Then, by the definition of the reflection R1, we have
(R1(x−′ u1(a)))0 = x0 cosh a− x1 sinh a,

(R1(x−′ u1(a)))1 = −x1 cosh a+ x0 sinh a,

(R1(x−′ u1(a)))j = xj , ∀ 2 ≤ j ≤ n.

14



Finally, we use the definition of +′ and u1(a) to get

(R1(x−′ u1(a)) +′ u1(a))0 = (x0 cosh a− x1 sinh a) cosh a+ (−x1 cosh a+ x0 sinh a) sinh a

= x0 cosh 2a− x1 sinh 2a,

(R1(x−′ u1(a)) +′ u1(a))1 = (−x1 cosh a+ x0 sinh a) cosh a− (x0 cosh a− x1 sinh a) sinh a

= −x1 cosh 2a+ x0 sinh 2a,

(R1(x−′ u1(a)) +′ u1(a))j = xj , ∀ 2 ≤ j ≤ n.

Therefore, we can express the reflection (33) in coordinates, by:

x = (x0, x1, · · · , xn) p−→ xa = (x0 cosh 2a− x1 sinh 2a,−x1 cosh 2a+ x0 sinh 2a, x2, · · · , xn).

x1

x2

P1(a)

ABC

D

x 7→ x−′ u1(a)(x0, x1, x2) 7→ (x0,−x1, x2)

x 7→ x+′ u1(a)

Figure 3: Schematic illustration (in the x1x2-plane) of the reflection on H2 across the hyper-
surface P1(a) – see (33). Point A reflects into point D, as the result of three maps A 7→ B
(translation by −u1(a)), B 7→ C (reflection across P1(0) = x0x2−plane), and C 7→ D (transla-
tion by u1(a).

Remark 3.2. The following properties can be checked easily:

1. x = (xa)a, for all x ∈ Hn.

2. The set of fixed points for the reflection (33) is P1(a).

3. The reflection map (33) is an isometry on Hn.

We present now the main result of this subsection.

Theorem 3.3. Consider the aggregation model (2) with an interaction potential in the form
(27). Let ρ be a bounded equilibrium solution of model (2) that is supported in the geodesic
ball BR(v), for some R > 0. Let F (d(x, y)) := ∆xA(d(x, y)) and assume F (d(x, ·)) is locally
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integrable for all x. Then, provided F is a monotone function, ρ is radially symmetric and
monotone about the vertex v. Specifically, (i) if F is decreasing, then ρ is radially symmetric
and monotonically decreasing about the vertex v, and (ii) if F is increasing, then ρ is radially
symmetric and monotonically increasing about v.

Proof. Since ρ is an equilibrium solution, we use (30) to write:

ρ(x) =


∫
BR(v)

F (d(x, y))ρ(y)dy for x ∈ BR(v),

0 otherwise.

(34)

We define the reflection ρa of ρ across the plane P1(a) by:

ρa(x) = ρ(xa).

From (34) we have

ρa(x) =


∫
BR(v)

F (d(xa, y))ρ(y)dy x ∈ BR(va),

0 otherwise.

Also, we set
Σa = {x ∈ BR(v) : π1(x) ≥ a}.

We apply the method of moving planes and compare ρ(x) and ρa(x) on Σa. If x 6∈ BR(va),
then we know that ρa(x) = 0. Since ρ(x) ≥ 0, we can conclude that ρ(x) − ρa(x) ≥ 0 for all
x ∈ Σa \BR(va).

Consider the case x ∈ Σa ∩BR(va). By (34) we write ρ(x) as

ρ(x) =

∫
BR(v)∩Σa

F (d(x, y))ρ(y)dy +

∫
BR(v)\Σa

F (d(x, y))ρ(y)dy. (35)

We use that the reflection map (33) is an isometry to rewrite the second integral above in
reflected form (reflect the domain of integration, as well as x and y). The image of BR(v) \Σa

under the reflection map (33) is BR(va) ∩ Σa. Also use ρ(y) = ρa(y
a) to get from (35):

ρ(x) =

∫
BR(v)∩Σa

F (d(x, y))ρ(y)dy +

∫
BR(va)∩Σa

F (d(xa, ya))ρa(y
a)dya

=

∫
BR(v)∩Σa

F (d(x, y))ρ(y)dy +

∫
BR(va)∩Σa

F (d(xa, y))ρa(y)dy,

where for the second equal sign we simply renamed the variable ya to y.
Since ρ and ρa are zero outside BR(v) and BR(va), respectively, we can also write the

expression above as:

ρ(x) =

∫
Σa

F (d(x, y))ρ(y)dy +

∫
Σa

F (d(xa, y))ρa(y)dy. (36)
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By replacing x with xa in (36), we can obtain the following expression for ρa:

ρa(x) =

∫
Σa

F (d(xa, y))ρ(y)dy +

∫
Σa

F (d(x, y))ρa(y)dy. (37)

From (36) and (37) we calculate the difference ρ(x)− ρa(x) for x ∈ Σa ∩BR(va) as:

ρ(x)− ρa(x) =

∫
Σa

(F (d(x, y))− F (d(xa, y)))(ρ(y)− ρa(y))dy. (38)

We can show that
d(x, y) ≤ d(xa, y), for all x, y ∈ Σa. (39)

Indeed, without loss of generality, it is enough to proof the case a = 0. Let x = (x0, x1, · · · , xn)
and y = (y0, y1, · · · , yn). Since x, y ∈ Σ0, we have x1, y1 ≥ 0. This yields that

cosh (d(x, y)) = x0y0 − x1y1 − · · · − xnyn ≤ x0y0 + x1y1 − · · · − xnyn = cosh
(
d(x0, y)

)
,

which implies the desired result.
Consider now the following two cases.

Case (i): F is decreasing. Since F is decreasing and (39) holds, we have

F (d(x, y))− F (d(xa, y)) ≥ 0, for all x ∈ Σa ∩BR(va) and y ∈ Σa. (40)

We will show that
ρa ≤ ρ, on Σa,

for all a ∈ (−R, 0), which implies that ρ is monotonically decreasing about the vertex, in the
x1 direction.

Assume first that there exists a0 ∈ (−R, 0) such that

ρa0(x) ≤ ρ(x), for all x ∈ Σa0 , (41)

and show that a0 can be extended to the origin. Indeed, suppose by contradiction that (41)
holds, but a0 cannot be extended, and take a ∈ (a0, a0 + ε), with ε > 0. Define

Σ−a = {x ∈ Σa : ρ(x) < ρa(x)}.

Then, from (38) and (40), for any x ∈ Σ−a , we have:

0 < ρa(x)− ρ(x) ≤
∫

Σ−a

(F (d(x, y))− F (d(xa, y)))(ρa(y)− ρ(y))dy.

Therefore,

‖ρa − ρ‖L∞(Σ−a ) ≤ ‖ρa − ρ‖L∞(Σ−a ) sup
x∈Σ−a

∫
Σ−a

(F (d(x, y))− F (d(xa, y)))dy. (42)

Note that by (38), it holds that ρ(x) > ρa0(x) in the interior of Σa0 , implying that the

closure of Σ−a0 has measure 0. As lima→a0 Σ−a ⊂ Σ−a0 , we infer that the measure of Σ−a approaches
0 as a→ a0.
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Since the reflection map is an isometry (Remark 3.2, property 3), we have d(xa, za) = d(x, z)
for all x, z. Hence, ∫

Σ−a

F (d(xa, y))dy =

∫
(Σ−a )a

F (d(x, z))dz,

where we used the substitution z = ya, and (Σ−a )a denotes the reflection of Σ−a with respect to
the hyperplane {x ∈ Hn : π1(x) = a}.

Write∫
Σ−a

(F (d(x, y))− F (d(xa, y))) dy =

∫
Σ−a

F (d(x, y))dy −
∫

(Σ−a )a
F (d(x, z))dz.

Since F (d(x, ·)) is locally integrable for all x, and the measure of Σ−a approaches 0 as a→ a0,
we find

lim
a→a0

∫
Σ−a

(F (d(x, y))− F (d(xa, y))) dy = 0.

Therefore, we can choose ε small enough such that

sup
x∈Σ−a

∫
Σ−a

(F (d(x, y))− F (d(xa, y)))dy ≤ 1

2
.

From (42) we then infer that ‖ρa − ρ‖L∞(Σ−a ) = 0, which implies that Σ−a is empty. Conse-
quently, a0 is not maximal and we reached a contradiction.

To show that there exists a0 ∈ (−R, 0) with the property (41), note that (41) holds for
a0 = −R. Then, by an argument entirely similar to the one made in the previous step, one
can infer that the plane a0 = −R can be moved further to the right, while (41) still holds.

A similar argument can be made using hypersufaces with a > 0. Finally, since the direction
x1 can be chosen arbitrarily, we conclude that ρ is radially symmetric and decreasing about
the vertex v. This concludes the proof for case (i).

Case (ii): F is increasing. From a similar argument as for case (i), one can show that ρ is
radially symmetric and increasing about the vertex v.

We now turn the attention on radially symmetric equilibria that are local minimizers of
the energy (see Lemma 2.1).

Proposition 3.4. Let K be an interaction potential in the form (27), and let ρ be a bounded,
radially symmetric equilibrium solution of model (2) that is supported in the geodesic ball BR(v),
for some R > 0. Assume that A : [0,∞) → R satisfies ∆xA(d(x, y)) ≥ 0 for all x, y ∈ Hn.
Then ρ satisfies the necessary condition (5) for being a local energy minimizer.

Proof. Since ρ is an equilibrium solution, it satisfies the first equation of (5). It remains to
show (5b). By using (29), we write:

∆Λ(x) =


0 if x ∈ BR(v),∫
Hn

∆xA(d(x, y))ρ(y)dy, if x 6∈ BR(v).
(43)
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As K and ρ are radially symmetric, Λ has radial symmetry as well. Hence, we can define
Λ̃ : [0,∞)→ R by:

Λ̃(r) := Λ(x), (44)

for some x ∈ ∂Br(v). In particular, by (5a), Λ̃(r) = λ for 0 ≤ r ≤ R.
For r > R, use the divergence theorem in Br(v) to obtain that∫

Br(v)
∆Λ(x)dx =

∫
∂Br(v)

∇Λ(x) · d~n = |∂Br(v)|Λ̃′(r). (45)

From ∆xA(d(x, y)) ≥ 0 and (43), it follows that ∆Λ(x) ≥ 0 for all x. Consequently, using the
equation above, we infer that Λ̃ is a non-decreasing function, and conclude that{

Λ̃(r) = λ if 0 ≤ r ≤ R,

Λ̃(r) ≥ λ if r > R.

This shows that the necessary condition (5b) for a local minimizer is also satisfied.

The following proposition shows that for potentials with ∆A > 0, a bounded and radially
symmetric local minimizer must have, up to a zero measure set, a geodesic ball as its support.
Before we state this result we list a technical lemma that is used in its proof.

Lemma 3.5. Consider the geodesic ball BR(v) for some R > 0, and let A ⊂ BR(v), with A a
zero measure set. Then BR(v)\A = BR(v).

Proof. We first show that A ⊂ BR(v)\A. Let assume that there exists x ∈ A such that
x 6∈ BR(v)\A. It means x is an exterior point of BR(v)\A. Since x is an exterior point, there
exists ε > 0 such that Bε(x) ⊂ (BR(v)\A)c. It implies Bε(x) ∩BR(v) ⊂ A. Since the measure
of set A is zero, we infer that the measure of set Bε(x) ∩BR(v) is also zero. However, the set
Bε(x) ∩ BR(v) is non-empty and it is an intersection of two open balls, hence the measure of
this set is non-zero and we get a contradiction. We conclude that A ⊂ BR(v)\A.

From A ⊂ BR(v)\A and BR(v)\A ⊂ BR(v)\A, we find that BR(v) ⊂ BR(v)\A. By
passing to closures we then find BR(v) ⊂ BR(v)\A. The reverse inclusion BR(v)\A ⊂ BR(v)
is immediate, as BR(v)\A ⊂ BR(v).

Proposition 3.6. Let K be an interaction potential in the form (27), where A : [0,∞) → R
satisfies ∆xA(d(x, y)) > 0 for all x, y ∈ Hn. Assume ρ is a bounded, radially symmetric
local minimizer of the interaction energy. Then, there exists R ∈ (0,∞] such that supp(ρ) =
BR(v) t Z for some measure zero set Z, where t denotes a disjoint union of sets.

Proof. Since ρ has radial symmetry with respect to the vertex v, we can express the support
of ρ as

supp(ρ) =
⋃
r∈C

∂Br(v),

where C is a subset of [0,∞). The measure of C is strictly positive, as otherwise ρ cannot be
bounded. By convention, we also set ∂B0(v) = {v}.

Denote by R the essential supremum of C:

R := ess sup(C) ∈ (0,∞],
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i.e. R = inf{r ∈ R : C ∩ (r,∞) is a measure zero set}. We have R > 0, as otherwise ρ could
not be bounded. Decompose supp(ρ) as

supp(ρ) =
(

supp(ρ) ∩BR(v)
)
t
(

supp(ρ) ∩BR(v)
c
)
, (46)

with supp(ρ) ∩BR(v)
c

being a measure zero set.
Take two distinct points x1, x2 ∈ supp(ρ) such that (see Proposition 2.1)

Λ(x1) = Λ(x2) = 2E[ρ] and d(v, x1) < d(v, x2).

Note that by the boundedness of ρ, we can find such two points. Set r1 := d(v, x1) and
r2 := d(v, x2). As Λ is radially symmetric (see (44)) and by using (45), we write

0 = Λ(x2)− Λ(x1) =

∫ r2

r1

Λ̃′(r)dr =

∫ r2

r1

(
1

|∂Br(v)|

∫
Br(v)

∆Λ(x)dx

)
dr. (47)

By (29) and (30), since ρ is an equilibrium density, it holds that

∆Λ(x) =


0 if x ∈ supp(ρ),∫
Hn

∆xA(d(x, y))ρ(y)dy > 0 if x 6∈ supp(ρ).
(48)

As ∆Λ is sign definite, we infer from (47) that∫
Br(v)

∆Λ(x)dx ≡ 0, for a.e. r ∈ [r1, r2]. (49)

We note that for any small ε > 0, we have∫
BR(v)\BR−ε(v)

ρ(x)dx > 0.

Indeed, if ∫
BR(v)\BR−ε(v)

ρ(x)dx = 0,

for some small ε > 0, then
ess sup(C) ≤ R− ε < R,

which contradicts the definition of R.
By Proposition 2.1, (5a) holds a.e in supp(ρ). From the definition of R, we can then find

a sequence {ym}∞m=1 ⊂ supp(ρ) such that

d(ym, v)→ R as m→∞,

and
Λ(x1) = Λ(ym) = 2E[ρ], for all m ≥ 1.

By convergence of d(ym, v), for any small ε, there exists M such that

m ≥M =⇒ R− ε ≤ d(ym, v) ≤ R.
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Using ym with m ≥M in place of x2 in (49), we then have∫
Br(v)

∆Λ(x)dx ≡ 0, for a.e. r ∈ [r1, d(ym, v)],

which implies ∫
Br(v)

∆Λ(x)dx ≡ 0, for a.e. r ∈ [r1, R− ε].

Hence, there exists r ∈ [R− 2ε, R− ε] such that∫
Br(v)

∆Λ(x)dx = 0.

By the non-negativity of ∆Λ, the above implies

∆Λ(x) = 0 for a.e. x ∈ BR−2ε(v). (50)

Since (50) holds for any small ε > 0, we find

∆Λ(x) = 0 for a.e. x ∈ BR(v). (51)

From (51) and (48), we infer that almost every x ∈ BR(v) is contained in supp(ρ), i.e.,
BR(v) \A ⊂ supp(ρ), where A is a measure zero set. By passing to closures (suppρ is a closed
set) and using Lemma 3.5 we then find

BR(v) = BR(v) \A ⊂ supp(ρ).

Finally, from the result above and (46), we conclude that

supp(ρ) = BR(v) t Z,

where Z is a measure zero set.

3.2 Explicit forms of radially symmetric equilibria

We first find some explicit expressions of equilibria for certain interaction potentials in the
form (27). These equilibria are radially symmetric and with supp(ρ) = DR(v), R > 0.

Denote
ρ̃(d(v, x)) := ρ(x).

Then, the integral equation (30) reads:

ρ̃(θx) =

∫ R

0

∫
Sn

(
A′′(θxy) + (n− 1) coth(θxy)A

′(θxy)
)
ρ̃(θy) sinhn−1 θy dσydθy, (52)

that holds for all x ∈ DR(v), where θx := d(v, x) and θxy := d(x, y). Note that we used (10)
to write:

∆xA(d(x, y)) = A′′(d(x, y)) + (n− 1) coth(d(x, y))A′(d(x, y)). (53)

The two main specific examples of attractive potentials investigated here are:

21



(i) Constant Laplacian attraction:

Ac(θ) =

∫ θ

0

∫ θ∗
0 sinhn−1 ξdξ

sinhn−1 θ∗
dθ∗. (54)

This is a very important example for applications; Ac has the property that

∆xAc(d(x, y)) = 1, (55)

and leads to equilibria that are constant within their support.

(ii) Hyperbolic-cosine attraction:

Ah(θ) =
cosh θ − 1

n
. (56)

This potential satisfies (use (53)):

∆xAh(d(x, y)) = cosh(d(x, y)).

We will show that the energy functional in this case is strictly convex, and we will find explicitly
the global minimizer.

Constant Laplacian attraction. Consider the interaction potential (27) with attraction
given by (54). Since Ac satisfies (55), it is immediate to check that the following density
distribution is a solution of (52):

ρc(x) =

{
1 if d(v, x) ≤ Rc,
0 if d(v, x) > Rc,

(57)

where Rc satisfies

Vol(DRc(v)) = nα(n)

∫ Rc

0
sinhn−1 θdθ = 1.

Hence, ρc is an equilibrium solution, and by Proposition 3.4, it satisfies the necessary conditions
for a local minimizer. This configuration was studied in [23] as an attractor for the aggregation
equation (2).

Hyperbolic-cosine attraction. We consider now the interaction potential (27) with attrac-
tion given by (56). We will show that the following density distribution is a global minimizer
of the interaction energy:

ρh(x) =


cosh(d(v, x))

α(n) sinhnRh
if d(v, x) ≤ Rh,

0 if d(v, x) > Rh,

(58)

where Rh > 0 satisfies

nα(n)

∫ Rh

0
sinhn−1 θ cosh2 θ dθ = 1. (59)
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We will show that (58) is a solution of (52). By rotational symmetry, use notation:

ρ̃h(d(v, x)) := ρh(x).

The hyperbolic law of cosines on Hn states:

cosh(d(x, y)) = cosh(d(x, v)) cosh(d(y, v))− sinh(d(x, v)) sinh(d(y, v)) cos∠(xvy). (60)

From (60) we compute, using polar coordinates for y and the rotational symmetry of ρh:∫
Hn

cosh(d(x, y))ρh(y)dy

=

∫ Rh

0

∫
Sn−1

(cosh(d(x, v)) cosh θ − sinh(d(x, v)) sinh θ cos∠(xvy)) ρ̃h(θ) sinhn−1 θ dσydθ,

where we also used that supp(ρh) = DRh(v). Then, using∫
Sn−1

cos∠(xvy)dσy =
1

2

∫
Sn

(cos∠(xvy) + cos∠(xv(−y))dσy

=
1

2

∫
Sn

(cos∠(xvy) + cos(π + ∠(xvy))dσy

= 0,

in the equation above, we have∫
Hn

cosh(d(x, y))ρh(y)dy = nα(n) cosh(d(v, x))

∫ Rh

0
cosh θρ̃h(θ) sinhn−1 θ dθ.

Consequently, to show that ρh is a solution of (52), we need to show:

ρ̃h(d(v, x)) = nα(n) cosh(d(v, x))

∫ Rh

0
cosh θρ̃h(θ) sinhn−1 θ dθ.

Indeed, by substituting (58) into the right-hand-side above, one computes:

nα(n) cosh(d(v, x))

∫ Rh

0

cosh2 θ sinhn−1 θ

α(n) sinhnRh
dθ

=
cosh(d(v, x))

α(n) sinhnRh
nα(n)

∫ Rh

0
cosh2 θ sinhn−1 θdθ︸ ︷︷ ︸

=1 by (59)

= ρ̃h(d(v, x)).

This shows that ρh is an equilibrium solution of model (2). By Proposition 3.4, it also satisfies
the necessary conditions to be a local energy minimizer. In Section 3.3 we will prove that the
energy functional corresponding to this potential is strictly convex and hence, ρh is a global
energy minimizer.
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3.3 Hyperbolic cosine attraction: convexity of the energy

In this subsection we consider the potential (27) with hyperbolic cosine attraction given by
(56), and show that the equilibrium solution ρh from (58) is a global energy minimizer in
A := Pacc (Hn) ∩H−1(Hn).

Consider the energy (1) defined on A. Then use Remark 3.1 (see (28)) to write the energy
as

E[ρ] =
1

2

∫∫
Hn×Hn

(G(x, y) +Ah(d(x, y)))ρ(x)ρ(y)dxdy

=
1

2
‖ρ‖2H−1(Hn) +

1

2n
K[ρ]− 1

2n
, (61)

where the functional K[ρ] is defined by

K[ρ] =

∫∫
Hn×Hn

cosh(d(x, y))ρ(x)ρ(y)dxdy. (62)

First note that the repulsion component of the energy is given in terms of the square of
the H−1 norm, which is strictly convex. Since the last term in (61) is simply a constant, it
remains to investigate the convexity of the functional K.

By (18), we write

K[ρ] = =

∫∫
Hn×Hn

(x0y0 − x1y1 − · · · − xnyn)ρ(x)ρ(y)dxdy

=

〈∫
Hn

(x0, x1, · · · , xn)ρ(x)dx,

∫
Hn

(y0, y1, · · · , yn)ρ(y)dy

〉

=

∥∥∥∥∫
Hn

(x0, x1, · · · , xn)ρ(x)dx

∥∥∥∥2

,

where we also used (7) and (8).
Denote

cρ :=

∫
Hn

(x0, x1, · · · , xn)ρ(x)dx,

and hence, write
K[ρ] = ‖cρ‖2 .

By a direct calculation, we then have

tK[ρ1] + (1− t)K[ρ2]−K[tρ1 + (1− t)ρ2] = t‖cρ1‖2 + (1− t)‖cρ2‖2 − ‖ctρ1+(1−t)ρ2‖
2

= t‖cρ1‖2 + (1− t)‖cρ2‖2 − ‖tcρ1 + (1− t)cρ2‖2

= t(1− t)‖cρ1‖2 + t(1− t)‖cρ2‖2 − 2t(1− t) 〈cρ1 , cρ2〉

= t(1− t)‖cρ1 − cρ2‖2, (63)
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for any density functions ρ1 and ρ2. Note that the right-hand-side above is not necessarily
non-negative, as the inner product (7) is not positive definite. So the positivity of this term
needs to be shown, which is what we will focus on next.

Consider the following set:

Pac0 (Hn) :=

{
ρ ∈ Pac(Hn) :

∫
Hn
xjρ(x)dx = 0, for all 1 ≤ j ≤ n

}
.

Lemma 3.7. For any ρ ∈ Pac(Hn), define ĉρ to be the normalized cρ, i.e.,

ĉρ =
cρ
‖cρ‖

.

Then,
f#ρ ∈ Pac0 (Hn), where f(x) = x−′ ĉρ.

Proof. Write cρ = (c0, c1, · · · , cn) using coordinates, i.e.,

ck =

∫
Hn
xk ρ(x)dx, for all 0 ≤ k ≤ n. (64)

First note that 〈cρ, cρ〉 > 0, so ‖cρ‖ is real-valued. Indeed, it is easy to show that cρ ∈ conv(Hn),
where conv(Hn) denotes the convex hull of Hn, defined as:

conv(Hn) := {(x0, x1, · · · , xn) ∈ Rn+1 : x2
0 − x2

1 − · · · − x2
n ≥ 1}.

Consequently,
〈cρ, cρ〉 = c2

0 − c2
1 − · · · − c2

n ≥ 1 > 0.

By a change of coordinates, one gets:∫
Hn
xjf#ρ(x)dx =

∫
Hn

(x−′ ĉρ)jρ(x)dx, for all 1 ≤ j ≤ n. (65)

To have f#ρ ∈ Pac0 (Hn), the expression above needs to be 0 for all 1 ≤ j ≤ n.
By (16) and (13), we compute:∫
Hn

(x−′ ĉρ)jρ(x)dx =

∫
Hn

(
xj − x0(ĉρ)j +

(ĉρ)j
(ĉρ)0 + 1

(x1(ĉρ)1 + · · ·+ xn(ĉρ)n)

)
ρ(x)dx.

From here, by the definition of ĉρ and (64), we get:∫
Hn

(x−′ ĉρ)jρ(x)dx = cj − c0(ĉρ)j +
(ĉρ)j

(ĉρ)0 + 1
(c1(ĉρ)1 + · · ·+ cn(ĉρ)n)

= ‖cρ‖(ĉρ)j − ‖cρ‖(ĉρ)0(ĉρ)j +
‖cρ‖(ĉρ)j
(ĉρ)0 + 1

((ĉρ)
2
1 + · · ·+ (ĉρ)

2
n)

= ‖cρ‖
(

(ĉρ)j − (ĉρ)0(ĉρ)j + (ĉρ)j((ĉρ)0 − 1)
)

= 0, (66)

where for the third equal sign we used that ĉρ has norm 1, which implies (ĉρ)
2
1 + · · ·+ (ĉρ)

2
n =

(ĉρ)
2
0 − 1.
The conclusion now follows from (65) and (66).
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From (62) and the fact that the operation −′ is an isometry, we get:

K[f#ρ] =

∫∫
Hn×Hn

cosh(d(x, y))f#ρ(x)f#ρ(y)dxdy

=

∫∫
Hn×Hn

cosh(d(x−′ ĉρ, y −′ ĉρ))ρ(x)ρ(y)dxdy

=

∫∫
Hn×Hn

cosh(d(x, y))ρ(x)ρ(y)dxdy

= K[ρ].

Since K[ρ] = K[f#ρ], we can restrict K to Pac0 (Hn) ⊂ Pac(Hn) for the purpose of investigating
its minimizers.

Lemma 3.8. The functional K defined in (62) is convex on Pac0 (Hn).

Proof. Take ρ1, ρ2 ∈ Pac0 (Hn); also note here that Pac0 (Hn) is a convex set. Then, cρ1 =
α1(1, 0, · · · , 0) and cρ2 = α2(1, 0, · · · , 0), for some positive constants α1, α2 > 0. Therefore,

‖cρ1 − cρ2‖2 = (α1 − α2)2 ≥ 0,

and by using (63), we find that:

tK[ρ1] + (1− t)K[ρ2] ≥ K[tρ1 + (1− t)ρ2], for all 0 < t < 1.

This shows the claim.

Next, we state and prove the main result of this subsection.

Theorem 3.9. Consider the interaction potential (27) with hyperbolic cosine attraction given
by (56). Then, the equilibrium solution ρh from (58) is a global minimizer of the interaction
energy on A.

Proof. As noted above, the square of the H−1 norm, representing the repulsion component of
the energy, is strictly convex on A. Since the attraction component K is convex on Pac0 (Hn),
the sum of the two functionals (and hence E) is strictly convex on Pac0 (Hn)∩A. We conclude
from here that the critical point ρh given by (58) is the unique global minimizer of E in
Pac0 (Hn) ∩ A.

By Lemma 3.7, any density can be translated by an isometry into Pac0 (Hn). Since the
interaction energy is invariant under isometries (see (4)), we infer that the global minimizer
ρh of E[·] on Pac0 (Hn) ∩ A is also a global minimizer of E[·] on A itself.

Remark 3.10. A similar result as in Theorem 3.9 holds in the standard Euclidean space Rn–
see Theorem 2.4 in [16]. There, it is shown that for an interaction potential that consists of
Newtonian repulsion and quadratic attraction (i.e., A(x) = 1

2 |x|
2), the interaction energy is

strictly convex and the global energy minimizer consists in a uniform density supported on a
ball. However, for the model on Hn we could not show the convexity of the energy for the
attractive potential Ac (that leads to constant density equilibria), but we showed it instead for
Ah.
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4 Existence of compactly supported minimizers

In this section we study the existence of compactly supported global minimizers of the energy
(1). The arguments we use here follow the layout and the general technique used by Cañizo et
al. [7] for the Euclidean case. For this reason, we use similar notations, and we only highlight
the main differences.

Consider the interaction energy (1) defined on P(Hn). Retaining the numbering from [7],
we make the following assumptions on the interaction potential K:

(H1): K is bounded from below by a finite constant Kmin < 0.

(H2): K is locally integrable, i.e.,

∫
d(x,v)<R

|K(d(x, v))|dx <∞, for any R > 0.

(H3): Interactions are symmetric, i.e., K(x, y) = K(d(x, y)) (by an abuse of notation), for all
x, y ∈ Hn.

(H4): The limit K∞ = lim
θ→∞

K(θ) ≤ ∞ exists and K is unstable. Here, K is unstable if there

exists ρ ∈ P(Hn) such that E[ρ] < 1
2K∞.

(H5): K is lower semi-continuous.

(H6): There exists R6 > 0 such that K is strictly increasing on [R6,∞).

Note that hypothesis (H3) has been used throughout the entire paper, but we list it here
separately for consistency with the numbering in [7]. In the Euclidean case, this hypothesis
shows in a weaker form in fact, specifically K(x) = K(−x) for all x ∈ Rn.

Assumptions (H1) − (H6) were considered in [7] for the Euclidean space Rn. Under such
assumptions, the main result in [7] (Theorem 1.4) states that there exists a global minimizer of
the energy in P(Rn). Moreover, there exists a uniform bound for the supports of all minimizers
of E. A very similar result holds for Hn. We state the result below and then we sketch its
proof.

Theorem 4.1. Assume that K : [0,∞)→ R∪{∞} satisfies (H1)− (H6). Then, there exists a
global minimizer ρ ∈ P(Hn) of the energy E[ρ] defined in (1). In addition, there exists D > 0
(depending only on K and the dimension n) such that every minimizer of E has compact
support with diameter at most D.

The layout of the proof of the analogous theorem for Rn from [7] is the following (we write
it for Hn instead):

Part 1. Fix R ≥ 0 and set PR(Hn) = {ρ ∈ P(Hn) : supp(ρ) ⊂ BR(v))}. Show the existence
of global minimizers on PR(Hn). This can be done as follows [7, Lemma 2.1]. Consider a
minimizing sequence (ρk)k≥1 of E restricted to PR(Hn). As PR(Hn) is tight and weakly-∗
closed in P(Hn), by Prokhorov’s Theorem, there exists a subsequence (ρkl)l≥1 that converges
weakly-∗ to ρR ∈ PR(Hn). By the weakly-∗ lower semicontinuity of E, ρR is a global minimizer
of E on PR(Hn).

Part 2. Show that there exists D > 0 (depending only on K and n) such that for all R ≥ 0
and any global minimizer ρR of E on PR(Hn), the diameter of the support of ρR is bounded
by D. This is the core of the proof and follows from several key lemmas which we will discuss
after presenting the layout.
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Part 3. Consider ρ′ a global minimizer on PD(Hn), where D is the upper bound on the
diameters of minimizers from Part 2. Show that ρ′ is in fact a global minimizer on P(Hn). This
can be argued as follows [7, Lemma 2.10]. First note that for any ρ ∈ P(Hn) with compact
support, E[ρ] ≥ E[ρ′]. Indeed, for R ≥ 0 fixed, such that ρ ∈ PR(Hn), take ρR a global
minimizer of E on PR(Hn). Then, E[ρ] ≥ E[ρR] ≥ E[ρ′], where the second inequality holds
by the translation invariance of E (as ρR can be translated to a measure in PD(Hn)). Second,
for any ρ ∈ P(Hn), approximate ρ by compactly supported measures ρk with E[ρk] → E[ρ]
as k → ∞. Since E[ρk] ≥ E[ρ′], for all k, infer E[ρ] ≥ E[ρ′] and conclude ρ′ global energy
minimizer on P(Hn).

As noted above, Part 2 is the core of the proof. It is based on two fundamental lemmas.
The first lemma states that for any point in the support of a minimizer ρR on PR(Hn), there
has to be some mass not far from it. Specifically, the following result holds.

Lemma 4.2. [7, Lemma 2.6] Suppose the potential K satisfies hypotheses (H1)− (H5). Then
there exist constants r,m > 0 (depending only on K) such that for all sufficiently large R, and
all global minimizers ρR of the energy on PR(Hn) we have∫

Br(x0)
dρR(x) ≥ m, for all x0 ∈ supp(ρR).

Note that the constants m and r are universal (they do not depend on R). The proof of
the lemma can be immediately adapted from that of [7, Lemma 2.6]. We only point out here
that for its proof, Hypotheses (H1) and (H4) are used in a fundamental way, to bound the
interaction potential K at short and long distances, respectively.

The second fundamental lemma states that minimizers ρR cannot have large gaps. The
general idea of its proof is the same as for [7, Lemma 2.7], but the details are more involved. In
place of the projection on the k-th coordinate (as used in Rn), we will use the map πk defined
in (23). This lemma is the only place where hypothesis (H6) is being used.

Lemma 4.3. (Generalization of [7, Lemma 2.7]) Assume that the potential K satisfies (H1)−
(H6). Let R ≥ 0 and suppose that ρR is a global minimizer of the energy (1) on PR(Hn). Then
the support of ρR cannot have “gaps” larger than 2R6 in each coordinate (R6 is the constant
from (H6)): if k ∈ {1, . . . , n} and ak ∈ R is such that π−1

k ([ak −R6, ak +R6]) ⊆ Hn\supp(ρR),
then either π−1

k ((−∞, ak −R6]) ⊆ Hn\supp(ρR) or π−1
k ([ak +R6,∞)) ⊆ Hn\supp(ρR).

Proof. Suppose by contradiction that there exists an index k ∈ {1, 2, · · · , n} and ak ∈ R with
π−1
k ([ak −R6, ak +R6]) ⊆ Hn\supp(ρR), such that the support of ρR has nontrivial intersec-

tions with both the “left” and “right” parts, defined as

HL := π−1
k ((−∞, ak −R6]) and HR := π−1

k ([ak +R6,∞)),

respectively. Also, fix 0 < ε < R6 and consider

ρ̄R := ρR|HL
+ Tε#

(
ρR|HR

)
,

where Tε is the isometry defined as Tε(x) = x−′ uk(ε) (recall (19)).
It follows immediately that

supp(ρR|HL
) ⊂ HL and supp

(
Tε#

(
ρR|HR

))
⊂ HR −′ uk(ε).
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From Corollary 2.13 we have

HR −′ uk(ε) = π−1
k ([ak +R6,∞))−′ uk(ε) = π−1

k ([ak +R6 − ε,∞)).

Hence, we get

supp(ρR|HL
) ⊂ π−1

k ((−∞, ak −R6]) and supp
(
Tε#

(
ρR|HR

))
⊂ π−1

k ([ak +R6 − ε,∞)).

From this fact and 0 < ε < R6, we infer that supp(ρR|HL
) and supp

(
Tε#

(
ρR|HR

))
are

disjoint. This yields the following calculation:

E(ρ̄R) = E(ρR|HL
) + E(Tε#

(
ρR|HR

)
) +

∫∫
Hn×Hn

K(d(x, y)) dρR|HL
(x) dTε#

(
ρR|HR

)
(y)

= E(ρR|HL
) + E(ρR|HR

) +

∫∫
Hn×Hn

K(d(x, y −′ uk(ε))) dρR|HL
(x) dρR|HR

(y), (67)

where for the second equal sign we used the invariance under isometries of the energy (see (4))
and the change of variable z = y +′ uk(ε) in the integral.

Now take x ∈ HL and y ∈ HR, and recall (18), by which we write

cosh(d(x, y −′ uk(ε))) = (x−′ (y −′ uk(ε)))0.

Next, we will compare (x−′ (y −′ uk(ε)))0 with (x−′ y)0.
Using (13), (15) and (16), we compute

(x−′ (y −′ uk(ε)))0 = x0(y −′ uk(ε))0 −
n∑
l=1

xl(y −′ uk(ε))l

= x0(y0 cosh ε− yk sinh ε)−
n∑
l=1

xl(−y0δkl sinh ε+ yl + ylδkl(cosh ε− 1))

= x0(y0 cosh ε− yk sinh ε) + xky0 sinh ε−
n∑
l=1

xlyl + (1− cosh ε)xkyk.

Furthermore, add and subtract x0y0 to the right-hand-side above and use (17) to get

(x−′ (y −′ uk(ε)))0 − (x−′ y)0

=(cosh ε− 1)(x0y0 − xkyk) + sinh ε(xky0 − x0yk)

=2 sinh2
( ε

2

)
x0y0

(
1− xkyk

x0y0

)
+ 2 sinh

( ε
2

)
cosh

( ε
2

)
x0y0

(
xk
x0
− yk
y0

)
=2 sinh

( ε
2

)
x0y0

(
sinh

( ε
2

)
(1− tanh(πk(x)) tanh(πk(y))) + cosh

( ε
2

)
(tanh(πk(x))− tanh(πk(y)))

)
=2 sinh

( ε
2

)
x0y0(1− tanh(πk(x)) tanh(πk(y)))

(
sinh

( ε
2

)
+ cosh

( ε
2

)
tanh(πk(x)− πk(y))

)
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=

(
2 sinh

(
ε
2

)
x0y0(1− tanhπk(x) tanhπk(y))

cosh(πk(x)− πk(y))

)
sinh

(
πk(x)− πk(y) +

ε

2

)
. (68)

Since
2 sinh

(
ε
2

)
x0y0(1− tanhπk(x) tanhπk(y))

cosh(πk(x)− πk(y))

is always positive for any ε > 0, we only have to study a sign of sinh
(
πk(x)− πk(y) + ε

2

)
. As

x ∈ HL, y ∈ HR, and ε < R6, we have

πk(x)− πk(y) +
ε

2
< (ak −R6)− (ak +R6) +

R6

2
= −3

2
R6 < 0,

which by (68) it implies that

(x−′ (y −′ uk(ε)))0 < (x−′ y)0 ⇐⇒ d(x, y −′ uk(ε)) < d(x, y). (69)

Now apply Lemma 2.14 for x and y−′ uk(x), and use πk(x) < ak−R6 and πk(y−′ uk(ε)) >
ak +R6 − ε, to get

d(x, y −′ uk(ε)) > |(ak +R6 − ε)− (ak −R6)| = 2R6 − ε > R6. (70)

By combining (69) and (70) we now get

R6 < d(x, y −′ uk(ε)) < d(x, y),

and furthermore,
K(d(x, y −′ uk(ε))) < K(d(x, y)),

since K is strictly increasing on [R6,∞) by Hypothesis (H6).
Finally, we substitute this result into (67) to get

E(ρ̄R) = E(ρR|HL
) + E(ρR|HR

) +

∫∫
Hn×Hn

K(d(x, y −′ uk(ε))) dρR|HL
(x) dρR|HR

(y)

< E(ρR|HL
) + E(ρR|HR

) +

∫∫
Hn×Hn

K(d(x, y)) dρR|HL
(x) dρR|HR

(y)

= E(ρR).

However, this is a contradiction to the fact that ρR is a global minimizer on PR(Hn).

Lemmas 4.2 and 4.3 lead to the following last result, that concludes Part 2 of the proof of
Theorem 4.1. The statement and its proof are identical to those of [7, Lemma 2.9].

Lemma 4.4. [7, Lemma 2.9] Assume K satisfies (H1) − (H6). Then there exists D > 0
(depending only on K and n) such that for all R ≥ 0 and any global minimizer ρR of the
energy on PR(Hn), the diameter of the support of ρR is bounded by D.
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Proof. The proof of the lemma follows that of [7, Lemma 2.9] by replacing the k-th coordinate
of a point x by πk(x) as defined in (23). We sketch it here. First, given that there is at least
an amount of mass m in any geodesic ball Br(x) with x ∈ supp(ρR) (by Lemma 4.2), the
support of ρR can be covered by a finite number of geodesic balls B2r(xi), i = 0, 1, . . . , N , with
N + 1 ≤ [1/m] ([·] denotes the ceiling of a number). Note that the points xi are chosen so that
xi /∈ B2r(xj), for any i 6= j, so the balls Br(xi) are disjoint.

With k fixed (1 ≤ k ≤ n), order the points so that πk(x0) < · · · < πk(xN ). Then,

πk(xi+1)− πk(xi) ≤ 4r + 2R6, i = 0, 1, . . . N − 1,

as otherwise this would contradict Lemma 4.3 (gaps larger than 2R6). From here, get that

πk(xN )− πk(x0) ≤ N(4r + 2R6) ≤ ([1/m]− 1)(4r + 2R6). (71)

Now set xl and xm such that

d(xl, xm) = max
0≤i,j≤N

d(xi, xj).

Consider the geodesic curve between xl and xm, and the midpoint between the two points on
this geodesic. Take the isometry T that maps the midpoint into the vertex v, and xl 7→ z,
xm 7→ −z (see (15)), where z = (cosα, sinα, 0, . . . , 0). Then,

d(xl, xm) = d(z,−z) = 2α,

where the second equal sign comes from the fact that (see (9))

d(−z, z) = 2d(v, z) = 2 cosh−1(coshα) = 2α.

On the other hand, by (23), we get

2α = π1(z)− π1(−z).

Finally, by (71) (used for the image under the isometry T of supp(ρR)), one has

π1(z)− π1(−z) ≤ ([1/m]− 1)(4r + 2R6).

Combining these considerations, we find

diam(supp(ρR)) ≤ ([1/m]− 1)(4r + 2R6) + 4r =: D.

5 Numerical simulations

In this section, we provide numerical simulations of the model (2) for some specific interaction
potentials in the form (27). For this purpose, we first write model (2) in characteristic form; this
form of the equation is widely used for both analysis and numerical simulations [5, 18, 20, 23].
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Model (2) in characteristic form. Consider the flow generated by the velocity field v[ρ]
given by (3). The characteristic paths x(t) then satisfy

dx

dt
= v[ρ](x(t), t). (72)

To reach the characteristic form of model (2), expand the divergence

∇ · (ρv[ρ]) = ∇v[ρ]ρ+ ρ∇ · v[ρ],

where ∇v[ρ]ρ denotes the covariant derivative of ρ along v[ρ]. Then write (2) as

∂tρ+∇v[ρ]ρ = −ρ∇ · v[ρ]

= ρ(t, x)

∫
Hn

∆xK(x, y)ρ(t, y)dy, (73)

where for the second equal sign we used (3). Note that the left-hand-side above represents the
material derivative (along characteristic paths) of ρ.

For radially symmetric solutions, the characteristic paths x(t) are geodesic curves passing
through the vertex v. In such case, denote the radial coordinate

θx := d(x, v).

By writing the characteristic equations (72) in radial coordinates, we then find

d

dt
θx(t) = −n̂x · ∇x

∫
Hn
K(x, y)ρ(t, y)dy, (74)

where n̂x := x
θx

.
The interaction potentials in the numerical simulations are in the form (27). Using (27),

the radial symmetry of ρ, the divergence theorem and (26), we compute starting from (74):

d

dt
θx(t) = −n̂x · ∇x

∫
Hn

(G(x, y) +A(d(x, y))ρ(t, y)dy

= − 1

|∂Bv(θx)|

∫
∂Bv(θx)

n̂x · ∇x
∫
Hn
G(x, y)ρ(t, y)dydσx − n̂x · ∇x

∫
Hn
A(d(x, y))ρ(t, y)dy

= − 1

|∂Bv(θx)|

∫
Bv(θx)

∆x

∫
Hn
G(x, y)ρ(t, y)dydσx − n̂x · ∇x

∫
Hn
A(d(x, y))ρ(t, y)dy

= − 1

nα(n) sinhn−1 θx

∫
Bv(θx)

(−ρ(t, x)) dx− n̂x · ∇x
∫
Hn
A(d(x, y))ρ(t, y)dy.

Furthermore, using the notation ρ̃(t, θx) = ρ(t, x) and the hyperbolic law of cosines, we write

d

dt
θx(t) =

1

sinhn−1 θx

∫ θx

0
ρ̃(t, λ) sinhn−1 λ dλ

−
∫
Hn
∂θxA

(
cosh−1 (cosh θx cosh θy − sinh θx sinh θy cos∠xvy)

)
ρ̃(t, θy)dy
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=
1

sinhn−1 θx

∫ θx

0
ρ̃(t, λ) sinhn−1 λ dλ− (n− 1)α(n− 1)

×
∫ π

0

∫ ∞
0

∂θxA
(
cosh−1 (cosh θx cosh θy − sinh θx sinh θy cosβ)

)
ρ̃(t, θy) sinhn−1 θy sinn−2 β dθydβ.

(75)

For the evolution of the density along characteristic paths, we calculate from (73):

d

dt
ρ(t, x(t)) = ρ(t, x)

∫
Hn

∆xK(x, y)ρ(t, y)dy

= ρ(t, x)

(
−ρ(t, x) +

∫
Hn

∆xA(d(x, y))ρ(t, y)dy

)

= −ρ(t, x)2 + ρ(t, x)

∫
Hn

∆A
(
cosh−1 (cosh θx cosh θy − sinh θx sinh θy cos∠xvy)

)
ρ̃(t, θy)dy

= −ρ(t, x)2 + (n− 1)α(n− 1)ρ(t, x)

×
∫ π

0

∫ ∞
0

∆A
(
cosh−1 (cosh θx cosh θy − sinh θx sinh θy cosβ)

)
ρ̃(t, θy) sinhn−1 θy sinn−2 β dθydβ.

(76)

Due to the radial symmetry assumption, the evolution equations (75) and (76) are one-
dimensional. For simplicity, denote θ(t) = θx(t) and use the notation ρ̃, to write (75) and (76)
as a system of two integro-differential equations for θ(t) and ρ̃(t, θ(t)):



d

dt
θ(t) =

1

sinhn−1 θ

∫ θ

0
ρ̃(t, λ) sinhn−1 λ dλ− (n− 1)α(n− 1)

×
∫ π

0

∫ ∞
0

∂θA
(
cosh−1 (cosh θ cosh θy − sinh θ sinh θy cosβ)

)
ρ̃(t, θy) sinhn−1 θy sinn−2 β dθydβ

d

dt
ρ̃(t, θ(t)) = −ρ̃(t, θ)2 + (n− 1)α(n− 1)ρ̃(t, θ)

×
∫ π

0

∫ ∞
0

∆A
(
cosh−1 (cosh θ cosh θy − sinh θ sinh θy cosβ)

)
ρ̃(t, θy) sinhn−1 θy sinn−2 β dθydβ,

(77)

where ∆A(θ) = A′′(θ) + (n− 1)A′(θ) coth θ.

Radially symmetric solutions: numerical simulations. We use the equations (77) in
characteristic form to solve numerically for radially symmetric solutions. The numerical results
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we present are for the hyperbolic plane (n = 2), for which (77) simplifies to

d

dt
θ(t) =

1

sinh θ

∫ θ

0
ρ̃(t, λ) sinhλ dλ

−2

∫ π

0

∫ ∞
0

∂θA
(
cosh−1 (cosh θ cosh θy − sinh θ sinh θy cosβ)

)
ρ̃(t, θy) sinh θy dθydβ

d

dt
ρ̃(t, θ) = −ρ̃(t, θ)2

+2ρ̃(t, θ)

∫ π

0

∫ ∞
0

∆A
(
cosh−1 (cosh θ cosh θy − sinh θ sinh θy cosβ)

)
ρ̃(t, θy) sinh θy dθydβ.

(78)

The radially symmetric initial density ρ̃ is taken to be

ρ̃0(θ) = e−5θ(0.01 + θ − θ2)/C, (79)

where C is a normalization constant which satisfies
∫∞

0 ρ̃0(θ) sinh θdθ = C. We use the classical
fourth order Runge-Kutta method with ∆t = 0.02 to evolve (78) in time. The initial particle
positions are set at θi(0) = (i − 1)∆x with ∆x = 0.02, i = 1, . . . , N , with N = 51. To
approximate the integrals we use the trapezoidal rule.

We consider the interaction potentials (in the form (27)) from Section 3.2, for which we
have explicit expressions of the equilibria. First, take attraction given by (54) and (56), for
which we computed the explicit solutions (57) and (58). In n = 2 dimensions, these solutions
(written in the radial notation, using the tilde symbol) read

ρ̃c(θ) =

1 if 0 ≤ θ < cosh−1
(

1 +
1

2π

)
,

0 otherwise,
(80)

and

ρ̃h(θ) =


cosh θ

π
((

1 + 3
2π

)2/3 − 1
) if 0 ≤ θ < cosh−1

((
1 +

3

2π

)1/3
)
,

0 otherwise.

(81)

Note the monotonicity of these equilibria, which is consistent with Theorem 3.3.
The time evolution of the model with Newtonian repulsion and attraction (54) and (56),

is illustrated in Figure 4. In both cases, the solution approaches the equilibria in (80) and
(81), respectively. The simulation confirms the theoretical findings in Section 3.3 (see also
Theorem 3.9): the energy functional is strictly convex and solutions approach asymptotically
the global energy minimizer. On the other hand, numerical simulations with a variety of other
initial conditions suggest that the equilibrium (80) is also a global attractor; this was first
conjectured in [23].

For numerical simulations, we also considered linear combinations of the potentials Ac and
Ah, i.e., potentials in the form

Am := b0Ac + b1Ah, (82)
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Figure 4: Time evolution of a radially symmetric solution to the aggregation model (2) on H2,
for K in the form (27), with attraction given by (a) A = Ac and (b) A = Ah – see (54) and
(56). The initial density (blue dashed-line marked with circles) is given in (79). The solutions
approach asymptotically the equilibria (80) and (81), respectively, indicated by red solid lines.

with b0, b1 constants. Note that ∆Am(θ) = b0 + b1 cosh θ.
The following proposition provides an explicit expression for the equilibria corresponding

to mixed attraction Am.

Proposition 5.1. Consider the aggregation model (2) on H2, with K(x, y) = G(x, y) +
Am(d(x, y)), and b0, b1 ≥ 0 such that (b0, b1) 6= (0, 0). Then, there exists a unique radially
symmetric equilibrium in the form

ρ̃m(θ) =


b0 +

(
1− 2πb0αb0b1

παb0b1(αb0b1 + 2)

)
cosh θ if 0 ≤ θ ≤ cosh−1(αb0b1 + 1),

0 if θ > cosh−1(αb0b1 + 1),

where αb0b1 is a solution of the polynomial

1− 2π(b0 + b1)x− 2πb1x
2 − 2πb1

3
x3 +

π2b0b1
3

x4 = 0.

Proof. See Appendix B.

Remark 5.2. While we cannot prove Proposition 5.1 for general (b0, b1) ∈ R2\{(0, 0)}, similar
arguments can be used for some specific cases. For example, the result in Proposition 5.1
holds for (b0, b1) = (2,−1), although b1 < 0. We will present below numerical simulations for
(b0, b1) = (2,−1), as in this case the equilibrium solution ρ̃m is qualitatively different from
ρ̃c and ρ̃h. Indeed, ρ̃m is monotonically decreasing, following the monotonicity of ∆Am (see
Theorem 3.3).
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For (b0, b1) = (2,−1), the equilibrium in Proposition 5.1 can be calculated as

ρ̃m(θ) '

{
2− 1.0956 cosh θ if 0 ≤ θ < 0.6227,

0 otherwise.
(83)

Figure 5(a) shows the time evolution of the initial density (79), for a potential with mixed
attraction (82), and (b0, b1) = (2,−1). The solution approach asymptotically the steady state
ρ̃m. Simulations with a variety of other initial densities (including non-symmetric ones) suggest
that ρ̃m is in fact a global attractor. We clarify here that for non-symmetric densities we use
a particle method and evolve in time the discrete analogue of (2) – see discussion and results
below.

Finally, we provide a simulation with an interaction potential in the form (27) for which
∆A is not monotone (so Theorem 3.3 does not hold). Specifically, we take

A(θ) =
1

6
sinh2 θ − 3

2
cosh θ + 6 ln

(
cosh

θ

2

)
, (84)

for which ∆A(θ) = cosh2 θ − 3 cosh θ + 8/3. Figure 5(b) shows this simulation, starting from
the same initial density (79). Note that in this case, the steady state is not monotone, as in
the previous examples. Also, we do not have any explicit form for the steady state, or any
result about its uniqueness; this is simply a numerically obtained equilibrium. Nevertheless,
simulations with various other symmetric and non-symmetric initial data (see particle simul-
tions below) suggest a large basin of attraction for this equilibrium, possibly being a global
attractor as well.

Particle methods and non-radially symmetric solutions. For non-radially symmetric
solutions, the previous approach (in particular, system (77)) does not apply. In such cases,
one can resort to the discrete formulation of model (2) [11, 23], given by

dxi
dt

= − 1

N

N∑
j=1
j 6=i

∇iK(xi, xj), 1 ≤ i ≤ N, (85)

where ∇i represents the gradient with respect to variable xi. System (85) governs the evolution
of N particles xi of identical masses (= 1/N), as they interact via the interaction potential K.

Using polar coordinates, we express the location of particles on H2 as

xi = (cosh θi, sinh θi cosφi, sinh θi sinφi), 1 ≤ i ≤ N,

where θi ∈ [0,∞) and φi ∈ [0, 2π). Writing the system (85) in the variables (θi, φi), one finds
[23]:

dθi
dt

= − 1

N

N∑
j=1
j 6=i

∂K

∂θi
(xi, xj),

dφi
dt

= − 1

N

N∑
j=1
j 6=i

1

sinh2 θi

∂K

∂φi
(xi, xj), 1 ≤ i ≤ N.

We solve numerically the system above to approximate the time evolution of the discrete
model (85) with non-symmetric initial data. Figure 6 shows the steady states resulted from
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Figure 5: Time evolution of a radially symmetric solution to the aggregation model (2) on H2,
for K in the form (27), with attraction given by (a) A = Am with (b0, b1) = (2,−1) – see (82),
and (b) A given by (84). The initial data is given by (79). For simulation (a), the solution
approaches asymptotically the equilibrium (83); note that the steady state is monotonically
decreasing about the vertex, consistent with the result in Theorem 3.3. The steady state for
the simulation (b) is not monotone; this case is not covered by Theorem 3.3.

one such non-symmetric initial configuration (plot (a)), with different interaction potentials in
the form (27). For these simulations we used N = 500 particles and the fourth order Runge-
Kutta method with ∆t = 0.02 to advance the solution in time. All plots in Figure 6 show
the projection of the particle configuration from the one-sheeted hyperboloid to the horizontal
coordinate plane. Plots (b)-(d) in Figure 6 are the steady states corresponding to potentials
used for Figures 4(a), 5(a) and 5(b), respectively. We do not show particle simulations with
attraction Ah, as in that case the energy is strictly convex and solutions approach the global
minimizer.

The steady states in Figure 6(b)-(d) are supported on geodesic disks. We calculate the radii
of these disks and compare them, respectively, with the values 0.5570, 0.6227, and 0.7474, where
the first two values are known by the explicit expressions (80) and (83) of the equilibria, and
the third is the radius of the support of a more refined (∆x = 0.005) numerical computation of
the equilibrium from Figure 5(b). For N = 500 particles the first set of radii is within 3.5% of
the corresponding values from the second set. Increasing the number of particles to N = 1000
the error decreases to within 2.5%. These simulations and various other similar ones suggest
that the radially symmetric equilibria in Figures 4(a), 5(a) and 5(b) are global attractors (not
just with respect to symmetric densities, but across general non-symmetric densities).
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(a) Initial configuration (b) A = Ac

(c) A = 2Ac −Ah (d) A given by (84)

Figure 6: Particle method simulations on H2 with N = 500 particles, for non-radially symmet-
ric initial data and with K in the form (27). The initial configuration (a) evolves into steady
states (b)-(d) that are supported on geodesic disks. The radii of these disks agree within 3.5%
with, respectively, the radii of the equilibria given by the explicit expressions (80) and (83),
and the radius of the support of a more refined numerical computation of the equilibrium from
Figure 5(b). The numerical simulations suggest that the equilibria in Figures 4(a), 5(a) and
5(b) are global attractors.
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A Proofs of several lemmas from Section 2.2

Proof of Lemma 2.2. From the definition of the matrix product, we have

yα =

n∑
β=0

B(w)αβxβ, ∀ α = 0, 1, · · · , n.

We can simplify it as follows:

y0 =
n∑
β=0

B(w)0βxβ = B(w)00x0 +
n∑
i=1

B(w)0ixi = γx0 − γ
n∑
i=1

wixi,

and for j = 1, . . . , n,

yj =
n∑
β=0

B(w)jβxβ = B(w)j0x0 +
n∑
i=1

B(w)jixi
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= −γwjx0 +
n∑
i=1

(
δij + (γ − 1)

wiwj
|w|2

)
xi

= −γwjx0 + xj + (γ − 1)
wj
|w|2

n∑
i=1

xiwi.

This yields

y2
0 − y2

1 − · · · − y2
n

= γ2

(
x0 −

n∑
i=1

wixi

)2

−
n∑
j=1

(
−γwjx0 + xj + (γ − 1)

wj
|w|2

n∑
i=1

xiwi

)2

= γ2x2
0 − 2γ2x0

n∑
i=1

wixi + γ2

(
n∑
i=1

wixi

)2

−
n∑
j=1

γ2w2
jx

2
0 + x2

j + (γ − 1)2
w2
j

|w|4

(
n∑
i=1

xiwi

)2


−
n∑
j=1

(
−2γwjxjx0 − 2γ(γ − 1)

w2
jx0

|w|2
n∑
i=1

xiwi + 2(γ − 1)
xjwj
|w|2

n∑
i=1

xiwi

)

= γ2x2
0 − 2γ2x0

n∑
i=1

wixi + γ2

(
n∑
i=1

wixi

)2

− γ2x2
0|w|2 −

n∑
j=1

x2
j − (γ − 1)2 1

|w|2

(
n∑
i=1

xiwi

)2

+ 2x0γ
n∑
i=1

xiwi + 2γ(γ − 1)x0

n∑
i=1

xiwi − 2(γ − 1)
1

|w|2

(
n∑
i=1

xiwi

)2

= γ2x2
0 + γ2

(
n∑
i=1

wixi

)2

− γ2x2
0|w|2 −

n∑
j=1

x2
j − (γ2 − 1)

1

|w|2

(
n∑
i=1

xiwi

)2

= γ2(1− |w|2)x2
0 −

n∑
j=1

x2
j = x2

0 − x2
1 − · · · − x2

n.

If we use x ∈ Hn, then we have x2
0 − x2

1 − · · · − x2
n = 1. This implies that

y2
0 − y2

1 − · · · − y2
n = 1,

which is the desired result.

Proof of Lemma 2.3. Let a, b be tangent vectors at x ∈ Hn. Since Hn is embedded in Rn+1,
tangent vectors a and b can also be considered as vectors in Rn+1 which satisfy

a0x0 − a1x1 − · · · − anxn = b0x0 − b1x1 − · · · − bnxn = 0.

The induced metric defines the inner product between two tangent vectors as

a · b = a0b0 − a1b1 − · · · − anbn = −a>ηb.
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From the definition of the push forward of a tangent vector, we have

dFw(a) = B(w)a, dFw(b) = B(w)b.

This yields

dFw(a) · dFw(b) = −(dFw(a))>η dFw(b) = −a>B(w)>ηB(w)b = −a>ηb = a · b,

where we used (11) for the third equal sign. Finally, this implies that Fw is an isometry on Hn

for all w such that |w| < 1.

Proof of Lemma 2.4. By a simple calculation, for any w ∈ Rn with |w| < 1, we know the
vertex of Hn maps to

Fw(1, 0, · · · , 0) = (γ,−γw1, · · · ,−γwn).

The equation above shows that 1 ⇐⇒ 3.
Now, we investigate the relationship between x ∈ Hn and w ∈ Rn so that:

Fw(x) = (1, 0, · · · , 0).

From the definition of Fw, we have

1 = γx0 − γ(w1x1 + · · ·+ wnxn), (86)

and

0 = −γwix0 + xi + (γ − 1)
wi
|w|2

n∑
j=1

wjxj , ∀ i = 1, 2, · · · , n. (87)

Equation (87) yields

wi = αxi, ∀ i = 1, 2, · · · , n, (88)

for some α ∈ R. We substitute (88) into (86) to get

1 = γx0 − γα(x2
1 + · · ·+ x2

n) = γx0 − γα(x2
0 − 1),

which gives

γ =
1

x0 − α(x2
0 − 1)

. (89)

By (88), we also have:

|w|2 = w2
1 + w2

2 + · · ·+ w2
n = α2(x2

1 + · · ·+ x2
n) = α2(x2

0 − 1),

where for the last equality we used that x ∈ Hn. From the definition of γ and the above
relation, we get

γ2 =
1

1− |w|2
=

1

1− α2(x2
0 − 1)

. (90)
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Finally, we compare (89) and (90) to get

(x0 − α(x2
0 − 1))2 = 1− α2(x2

0 − 1),

which is equivalent to
(x2

0 − 1)(1− αx0)2 = 0. (91)

If w = 0, then Fw is the identity map. So, in this case, we have x = (1, 0, · · · , 0). Now
assume that |w| > 0. Then, (88) implies xi 6= 0 for some 1 ≤ i ≤ n, which yields

x2
0 = 1 + x2

1 + · · ·+ x2
n ≥ 1 + x2

i > 1.

Hence, from (91), we get the unique solution

α =
1

x0
,

and this gives the relation

w =

(
x1

x0
, · · · , xn

x0

)
.

Note that this relation also holds for w = 0. We have thus shown that 2 ⇐⇒ 3, which
concludes the proof.

Proof of Lemma 2.5. First, we have

γ(−ŷ) = (1− ‖ŷ‖2)−1/2 =

(
1− y2

1

y2
0

− · · · − y2
n

y2
0

)−1/2

=
y0

y2
0 − y2

1 − · · · − y2
n

= y0.

From direct calculations, we have

(x+′ y)0 = (B(−ŷ)x)0 =
n∑

α=0

[B(−ŷ)]0αxα = y0x0 +
n∑
j=1

(−γ(−ŷ))(−ŷj)xj

= x0y0 + x1y1 + · · ·+ xnyn.

This is the first desired result. By a similar calculation, we get for j = 1, . . . , n,

(x+′ y)j =
n∑

α=0

[B(−ŷ)]jαxα = [B(−ŷ)]j0x0 +
n∑
k=1

[B(−ŷ)]jkxk

= γ(−ŷ)ŷjx0 +

n∑
k=1

(
δjk + (γ(−ŷ)− 1)

ŷj ŷk
‖ŷ‖2

)
xk = x0yj + xj + (y0 − 1)

n∑
k=1

yjykxk
y2

0‖ŷ‖2

= x0yj + xj + (y0 − 1)

n∑
k=1

yjykxk
y2

0 − 1

= x0yj + xj +
yj

y0 + 1
(x1y1 + · · ·+ xnyn).

This is the second part of the desired result.
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Proof of Lemma 2.7. From direct calculations, we have

(−(x+′ y))0 = (x+′ y)0 = x0y0 + x1y1 + · · ·+ xnyn,

and

(−(x+′ y))j = −(x+′ y)j = −x0yj − xj −
yj

y0 + 1
(x1y1 + · · ·+ xnyn).

Also, we have
((−x) +′ (−y)′)0 = x0y0 + x1y1 + · · ·+ xnyn,

and
((−x) +′ (−y)′)j = −x0yj − xj −

yj
y0 + 1

(x1y1 + · · ·+ xnyn).

Since we have (−(x +′ y))0 = ((−x) +′ (−y))0 and (−(x +′ y)j) = ((−x) +′ (−y))j for all
1 ≤ j ≤ n, we obtain the desired result.

Proof of Lemma 2.8. First, we have the following calculation:

((x+′ y) +′ z)0 = (x+′ y)0z0 +

n∑
j=1

(x+′ y)jzj

= x0y0z0 + z0

n∑
j=1

xjyj +
n∑
j=1

zj

(
x0yj + xj +

yj
y0 + 1

n∑
k=1

xkyk

)

= x0y0z0 + z0

n∑
j=1

xjyj + x0

n∑
j=1

yjzj +
n∑
j=1

xjzj +
1

y0 + 1

n∑
j=1

yjzj

n∑
k=1

xkyk.

(92)

We substitute z = −y into (92) to get

((x+′ y)−′ y)0 = x0y
2
0 + y0

n∑
j=1

xjyj − x0

n∑
j=1

y2
j −

n∑
j=1

xjyj +
1

y0 + 1

n∑
j=1

(−y2
j )

n∑
k=1

xkyk.

If we use y2
0 − y2

1 − · · · − y2
n = 1, then we can simplify the above relation to get

((x+′ y)−′ y)0 = x0.

From the above result and (14), we find for j = 1, . . . , n,

((x+′ y)−′ y)j = (x+′ y)j −
yj

y0 + 1
(((x+′ y)−′ y)0 + (x+′ y)0)

= xj +
yj

y0 + 1
((x+′ y)0 + x0)− yj

y0 + 1
(x0 + (x+′ y)0)

= xj .

We infer that (x+′ y)−′ y = x.
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Proof of Lemma 2.10. Set

x = (x0, x1, · · · , xn) ∈ Hn, xk = 0.

By a simple calculation, we have

(x+′ uk(a))0 = x0 cosh a+ xk sinh a,

(x+′ uk(a))j = x0 sinh a δjk + xj +
sinh a δjk
cosh a+ 1

(sinh a xk)

= xj(1 + δjk(cosh a− 1)) + x0δjk sinh a, ∀1 ≤ j ≤ n,

(93)

where δ is the Kronecker delta symbol. We substitute a+ b instead of a in (93) to get

(x+′ uk(a+ b))0 = x0 cosh(a+ b) + xk sinh(a+ b),

(x+′ uk(a+ b))j = xj(1 + δjk(cosh(a+ b)− 1)) + x0δjk sinh(a+ b).
(94)

We substitute x+′ uk(a) instead of x and b instead of a into (93) to get

((x+′ uk(a)) +′ uk(b))0 = (x+′ uk(a))0 cosh b+ (x+′ uk(a))k sinh b,

((x+′ uk(a)) +′ uk(b))j = (x+′ uk(a))j(1 + δjk(cosh b− 1)) + (x+′ uk(a))0δjk sinh b.
(95)

From the first equality of (95) and (93), we have

((x+′ uk(a)) +′ uk(b))0 = (x0 cosh a+ xk sinh a) cosh b+ (xk cosh a+ x0 sinh a) sinh b

= x0 cosh(a+ b) + xk sinh(a+ b). (96)

Also, from the second equality of (95) and (93), we have

((x+′ uk(a)) +′ uk(b))j =
(
xj(1 + δjk(cosh a− 1)) + x0δjk sinh a

)
(1 + δjk(cosh b− 1))

+ (x0 cosh a+ xk sinh a)δjk sinh b

= xj
(
(1 + δjk(cosh a− 1))(1 + δjk(cosh b− 1)) + sinh aδjk sinh b

)
+ x0

(
δjk sinh a(1 + δjk(cosh b− 1)) + cosh aδjk sinh b

)
= xj(1 + δjk(cosh(a+ b)− 1) + x0δjk sinh(a+ b). (97)

Finally, we combine (94), (96), and (97) to conclude that

(x+′ uk(a)) +′ uk(b) = x+′ uk(a+ b).
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Proof of Lemma 2.12. � (Existence of the decomposition) First, we will show the existence of
the decomposition (21). Set x = (x0, x1, · · · , xn), and define

a = tanh−1

(
xk
x0

)
.

Then we can check that

(x−′ uk(a))k = ((x0, x1, · · · , xn)−′ (cosh a, 0, · · · , 0, sinh a, 0, · · · , 0))k

= ((x0, x1, · · · , xn) +′ (cosh a, 0, · · · , 0,− sinh a, 0, · · · , 0))k

= −x0 sinh a+ xk +
− sinh a

cosh a+ 1
(−xk sinh a)

= xk cosh a− x0 sinh a = 0.

Therefore,
x−′ uk(a) ∈ Pk(0).

If we set y = x−′ uk(a), then we have

y +′ uk(a) = (x−′ uk(a)) +′ uk(a) = x,

by using Lemma 2.8.

� (Uniqueness of the decomposition) Now, we show the uniqueness of a pair (a, y) introduced
in the existence part. If there exists another pair (b, z) ∈ R× Pk(0) which satisfies

x = z +′ uk(b),

then we have
y +′ uk(a) = z +′ uk(b).

From Lemma 2.10, we get

(y +′ uk(a))−′ uk(a) = (z +′ uk(b))−′ uk(a) ⇒ y = z +′ uk(b− a).

This implies that

yk = z0 sinh(b− a) + zk cosh(b− a).

Since yk = zk = 0 and z0 ≥ 1, we have a = b. This yields y = z, showing the uniqueness of the
decomposition (21).

Proof of Lemma 2.14. Without loss of generality, we assume that πk(x) ≤ πk(y). Then, there
exists R such that

πk(x) = ak −R, and πk(y) = ak +R.

If we define
x̃ = x−′ uk(ak), ỹ = y −′ uk(ak),
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we have {
πk(x̃) = πk(x−′ uk(ak)) = πk(x)− ak = −R,
πk(ỹ) = πk(y −′ uk(ak)) = πk(y)− ak = R,

by Corollary 2.13. On the other hand,

πk(x̃) = tanh−1

(
x̃k
x̃0

)
and πk(ỹ) = tanh−1

(
ỹk
ỹ0

)
which implies

x̃k
x̃0

= − tanhR and
ỹk
ỹ0

= tanhR.

We use the above relation and the following facts:

x̃0 ≥
√

1 + x̃2
k and ỹ0 ≥

√
1 + ỹ2

k,

to get

tanh(sinh−1 x̃k) =
x̃k√

1 + x̃2
k

≤ − tanhR and tanh(sinh−1 ỹk) =
ỹk√

1 + ỹ2
k

≥ tanhR.

Since tanh and sinh are increasing function, we get

x̃k ≤ − sinhR and ỹk ≥ sinhR.

We substitute the above result into the following calculation:

(x̃−′ ỹ)0 = = x̃0ỹ0 − x̃1ỹ1 − · · · − x̃nỹn

=
√

(1 + x̃2
1 + · · ·+ x̃2

n)(1 + ỹ2
1 + · · ·+ ỹ2

n)− x̃1ỹ1 − · · · − x̃nỹn

≥ 1 +

n∑
l=1

|x̃lỹl| −
n∑
l=1

x̃lỹl ≥ 1− 2x̃kỹk,

to get
(x̃−′ ỹ)0 ≥ 1 + 2 sinh2R = cosh(2R).

Since z 7→ z −′ uk(ak) is an isometry on Hn, we finally get

cosh(d(x, y)) = (x−′ y)0 = (x̃−′ ỹ)0 ≥ cosh(2R),

which yields
d(x, y) ≥ 2R = |πk(x)− πk(y)|.
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B Proof of Proposition 5.1

We look for a solution of (see (30)):

ρ̃(θx) =

∫
Bv(R)

∆xA(θxy)ρ̃(θy)dy, for 0 ≤ θx ≤ R, (98)

where θx = dist(x, v) and θxy = dist(x, y). Note that the radius R is also unknown.
We first show that if ∆A(θ) is in the form of a sum of powers of cosh θ, then necessarily,

ρ̃(θ) is in the same form. Therefore, assume

∆A(θ) :=
N∑
m=0

bm coshm θ.

Recall the hyperbolic cosine law:

cosh θxy = cosh θx cosh θy − sinh θx sinh θy cos∠(xvy).

This yields that

coshm θxy = (cosh θx cosh θy − sinh θx sinh θy cos∠(xvy))m

=
m∑
k=0

(−1)k
(
m

k

)
coshm−k θx coshm−k θy sinhk θx sinhk θy cosk ∠(xvy).

(99)

From a simple observation, cos∠(xvy) = cos(π − ∠(xv(−y))) = − cos∠(xv(−y)). Hence,

if k is an odd number, then

∫
Sn−1

cosk ∠(xvy)dσy = 0, and by integrating (99) over Sn−1, we

get ∫
Sn−1

coshm θxydσy =

[m/2]∑
l=0

(
m

2l

)
Al coshm−2l θx sinh2l θx coshm−2l θy sinh2l θy,

where

Al :=

∫
Sn−1

cos2l ∠(xvy)dσy.

Then, we have from (98):

ρ̃(θx) =

∫
Bv(R)

N∑
m=0

bm coshm θxyρ̃(θy)dy

=

N∑
m=0

bm

∫ R

0

(∫
Sn−1

coshm θxydσy

)
sinhn−1 θyρ̃(θy)dθy

=

N∑
m=0

bm

∫ R

0

[m/2]∑
l=0

(
m

2l

)
Al coshm−2l θx sinh2l θx coshm−2l θy sinh2l θy

 sinhn−1 θyρ̃(θy)dθy

=

N∑
m=0

[m/2]∑
l=0

bm

(
m

2l

)
Al coshm−2l θx sinh2l θx

∫ R

0
coshm−2l θy sinh2l+n−1 θyρ̃(θy)dθy
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=
N∑
m=0

[m/2]∑
l=0

bm

(
m

2l

)
Al
(∫ R

0
coshm−2l θy sinh2l+n−1 θyρ̃(θy)dθy

)
coshm−2l θx(cosh2 θx − 1)l.

The calculation above implies that ρ̃ can be expressed as

ρ̃(θ) =
N∑
m=0

am coshm θ, for 0 ≤ θ < R.

Furthermore, this yields that

N∑
m=0

am coshm θx =

N∑
k,m=0

[m/2]∑
l=0

akbm

(
m

2l

)
Al
(∫ R

0
coshm−2l+k θy sinh2l+n−1 θydθy

)
coshm−2l θx(cosh2 θx − 1)l.

(100)

For the purpose of proving Proposition 5.1, we only need the case N = 1; nevertheless, we
presented above the case of general N for its own interest. Hence, from now on assume bm = 0,
m ≥ 2.

Consider three cases:
Case 1: b0 > 0 and b1 = 0. In this case, (100) reduces to

0∑
m=0

am coshm θx =

0∑
k=0

akb0A0

(∫ R

0
coshk θy sinhn−1 θydθy

)
,

which implies 1 = b0A0

∫ R
0 sinhn−1 θydθy. Since A0 = |Sn−1|, we can determine R uniquely.

Also, we can determine a0 = 1. We thus reached the equilibrium ρc from (57).

Case 2: b0 = 0 and b1 > 0. In this case, (100) reduces to

1∑
m=0

am coshm θx =
1∑

k=0

akb1A0

(∫ R

0
coshk+1 θy sinhn−1 θydθy

)
cosh θx,

which implies 1 = A0b1
∫ R

0 cosh2 θy sinhn−1 θydθy. One can then argue as in Case 1 to obtain
the uniqueness of R, a0 and a1. This is the equilibrium solution from (58).

Case 3: b0 > 0 and b1 > 0. In this case, (100) reads

1∑
m=0

am coshm θx =

1∑
k=0

akb0A0

(∫ R

0
coshk θy sinhn−1 θydθy

)

+

1∑
k=0

akb1A0

(∫ R

0
coshk+1 θy sinhn−1 θydθy

)
cosh θx.

This yields

a0 =

1∑
k=0

akb0A0

(∫ R

0
coshk θy sinhn−1 θydθy

)
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= b0A0

(
a0

∫ R

0
sinhn−1 θydθy + a1

∫ R

0
cosh θy sinhn−1 θydθy

)
and

a1 =
1∑

k=0

akb1A0

(∫ R

0
coshk+1 θy sinhn−1 θydθy

)

= b1A0

(
a0

∫ R

0
cosh θy sinhn−1 θydθy + a1

∫ R

0
cosh2 θy sinhn−1 θydθy

)
.

From the two equations above we find

a0 : a1 =

(
b0A0

∫ R

0
cosh θy sinhn−1 θydθy

)
:

(
1− b0A0

∫ R

0
sinhn−1 θydθy

)

=

(
1− b1A0

∫ R

0
cosh2 θy sinhn−1 θydθy

)
:

(
b1A0

∫ R

0
cosh θy sinhn−1 θydθy

)
.

(101)

Therefore, R satisfies(
b0A0

∫ R

0
cosh θy sinhn−1 θydθy

)(
b1A0

∫ R

0
cosh θy sinhn−1 θydθy

)

=

(
1− b0A0

∫ R

0
sinhn−1 θydθy

)(
1− b1A0

∫ R

0
cosh2 θy sinhn−1 θydθy

)
,

which yields

b0b1A2
0

(∫ R

0
cosh θ sinhn−1 θdθ

)2

= 1− b0A0

∫ R

0
sinhn−1 θdθ − b1A0

∫ R

0
cosh2 θ sinhn−1 θdθ

+ b0b1A2
0

(∫ R

0
sinhn−1 θdθ

)(∫ R

0
cosh2 θy sinhn−1 θdθ

)
.

From now on, we only consider the case n = 2. From the definition of Al, we get A0 = 2π.
Then, from the equation above we get

4π2b0b1

(∫ R

0
cosh θ sinh θdθ

)2

= 1− 2πb0

∫ R

0
sinh θdθ − 2πb1

∫ R

0
cosh2 θ sinh θdθ

+ 4π2b0b1

(∫ R

0
sinh θdθ

)(∫ R

0
cosh2 θ sinh θdθ

)
,

which can be calculated as

π2b0b1(cosh2R−1)2 = 1−2πb0(coshR−1)−2πb1
3

(cosh3R−1)+
4π2b0b1

3
(coshR−1)(cosh3R−1).

By some simplifications, we finally reach

0 = 1− 2πb0(coshR− 1)− 2πb1
3

(cosh3R− 1) +
π2b0b1

3
(coshR− 1)4. (102)
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We will prove that there exist unique R, a0, and a1, provided b0 and b1 are positive real
numbers. Substitute x = coshR− 1 into (102) to get

0 = 1− 2π(b0 + b1)x− 2πb1x
2 − 2πb1

3
x3 +

π2b0b1
3

x4 =: f(x).

We want to find non-negative solutions of the above equation. We know that f(0) = 1,
f ′(0) = −2π(b0 + b1) < 0, and

f ′(x) = −2π(b0 + b1)− 4πb1x− 2πb1x
2 +

4π2b0b1
3

x3.

As f ′(0) < 0, and limx→∞ f
′(x) = ∞, by the intermediate value theorem, there exists at

least one positive solution x+ such that f ′(x+) = 0. Now, we will show that the positive solution
of f ′(x) = 0 is unique. Since the product of the three roots of f ′(x) = 0 is positive, if there exist
more than two positive solutions then the other solution must also be positive. If x1, x2, x3 are
three positive solutions of f ′(x) = 0, then x1x2 + x2x3 + x3x1 = − 4πb1

4π2b0b1/3
= − 3

πb0
< 0, which

leads to a contradiction. We conclude that f ′(x) = 0 has a unique positive solution, which we
denote by x+.

From the above, we infer that f(x) is decreasing on x ∈ [0, x+] and increasing on x ∈
[x+,∞). Finally, we use the intermediate value theorem to conclude that if f(x+) < 0 then
there exist two distinct positive solutions of f(x) = 0. We will now show that indeed, f(x+) <
0. From a simple calculation, we have

f

(
1

2π(b0 + b1)

)
= 1− 1− 2πb1

(2π(b0 + b1))2
− 2πb1

3(2π(b0 + b1))3
+

π2b0b1
3(2π(b0 + b1))4

= − b1
2π(b0 + b1)2

− b1
12π2(b0 + b1)3

+
b0b1

48π2(b0 + b1)4

< 0− b1
12π2(b0 + b1)3

+
b1

48π2(b0 + b1)3
< 0.

So we can conclude that f(x+) ≤ f
(

1

2π(b0 + b1)

)
< 0.

Denote the two distinct roots of f(x) = 0 by αb0b1 < βb0b1 . There are two choices for the
radius R: coshR = αb0b1 + 1 and coshR = βb0b1 + 1. We will show that the latter cannot be
possible.

As needed below, we calculate f
(

1+
√

1+4πb0
2πb0

)
. Set λ := 1+

√
1+4πb0

2πb0
; then πb0λ

2 = λ + 1.

From this fact, we have

f (λ) = 1− 2π(b0 + b1)λ− 2πb1λ
2 − 2πb1

3
λ3 +

π2b0b1
3

λ4

= 1− 2π(b0 + b1)λ− 2πb1λ
2 − 2πb1

3
λ3 +

πb1λ
2

3
(πb0λ

2)

= 1− 2π(b0 + b1)λ− 2πb1λ
2 − 2πb1

3
λ3 +

πb1λ
2

3
(λ+ 1)
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= 1− 2π(b0 + b1)λ− 5π

3
b1λ

2 − πb1
3
λ3

< 1− 2πb0λ < 0.

Note that

αb0b1 <
1

2π(b0 + b1)
< λ =

1 +
√

1 + 4πb0
2πb0

< βb0b1 .

By (101), we have

a0 : a1 =
(
πb0(cosh2R− 1)

)
: (1− 2πb0(coshR− 1)) , (103)

which implies

ρ̃(θ) = C
(
πb0(cosh2R− 1) + (1− 2πb0(coshR− 1)) cosh θ

)
, for 0 ≤ θ < R. (104)

for some constant C > 0.
Now, assume that coshR = βb0b1 + 1. Then, we have

ρ̃(0) = C (πb0βb0b1(βb0b1 + 2) + (1− 2πb0βb0b1)) = C(πb0β
2
b0b1 + 1),

and

ρ̃(R) = C
(
πb0(cosh2R− 1) + (1− 2πb0(coshR− 1)) coshR

)
= C (πb0βb0b1(βb0b1 + 2) + (1− 2πb0βb0b1)(βb0b1 + 1))

= C(−πb0β2
b0b1 + βb0b1 + 1).

Since 1±
√

1+4πb0
2πb0

are the two solutions of −πb0x2 + x+ 1 = 0 and βb0b1 >
1+
√

1+4πb0
2πb0

, then

−πb0β2
b0b1

+ βb0b1 + 1 < 0. However, this implies ρ̃(R) < 0, which is not possible. We conclude
that coshR cannot be βb0b1 + 1, but instead, coshR = αb0b1 + 1 (R is unique).

In this case, by (103), we know that a0 and a1 have the same sign since 1−2πb0(coshR−1) =
1− 2πb0αb0b1 > 1− b0

b0+b1
> 0. From (104) we can express the equilibrium as

ρ̃(θ) =

{
C (πb0αb0b1(αb0b1 + 2) + (1− 2πb0αb0b1) cosh θ) , if 0 ≤ θ ≤ R,
0, if θ > R.

Here, C should satisfy 1 = 2π
∫ cosh−1(αb0b1+1)

0 ρ̃(θ) sinh θdθ (unit mass condition). So we have

1

2π
=

∫ cosh−1(αb0b1+1)

0
ρ̃(θ) sinh θdθ

= C

∫ cosh−1(αb0b1+1)

0
(πb0αb0b1(αb0b1 + 2) sinh θ + (1− 2πb0αb0b1) cosh θ sinh θ) dθ

= C

(
πb0α

2
b0b1(αb0b1 + 2) + (1− 2πb0αb0b1)

1

2
αb0b1(αb0b1 + 2)

)
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=
1

2
Cαb0b1(αb0b1 + 2).

This implies that C = 1
παb0b1 (αb0b1+2) .

Finally, derive

ρ̃(θ) =

b0 +

(
1− 2πb0αb0b1

παb0b1(αb0b1 + 2)

)
cosh θ, if 0 ≤ θ ≤ cosh−1(αb0b1 + 1),

0, if θ > cosh−1(αb0b1 + 1).
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