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Abstract— Collaborative autonomous multi-agent systems
covering a specified area have many potential applications.
Traditional approaches for such problems involve designing
model-based control policies; however, state-of-the-art classical
control policy still exhibits a large degree of sub-optimality. We
present a combined reinforcement learning (RL) and control
approach for the multi-agent coverage problem involving agents
with second-order dynamics, with the RL component being
based on the Multi-Agent Proximal Policy Optimization Algo-
rithm (MAPPO). Our proposed network architecture includes
the incorporation of LSTM and self-attention, which allows
the trained policy to adapt to a variable number of agents.
Our trained policy significantly outperforms the state-of-the-art
classical control policy. We demonstrate our proposed method
in a variety of simulated experiments.

I. INTRODUCTION

Multi-agent cooperative area coverage is a promising
research field, with the objective being to deploy a set
of agents over a domain of interest to achieve optimal
sensing. Applications include monitoring [1], [2], target
detection [3], [4], and search and rescue [5], [6]. In the
past decades, researchers have proposed various approaches,
including classical mathematical model-based and learning-
based methods, to solve coverage problems.

Classical control presents many sophisticated control laws
for coverage problems under certain assumptions. Common
approaches include solving an optimization problem that
involves Voronoi tesselations [7], [8], potential field methods
[9], [10], and scalar field mapping [11], [12]. Although those
classical approaches have proven effective in many applica-
tions, designing a suitable model under complex scenarios
is always challenging. Thus, the learning-based method has
drawn increasing attention in recent years.

For the learning-based approach, the recent deep reinforce-
ment learning (RL) algorithm could leverage the advantages
of neural networks (NNs) and adaptive learning capabilities
to obtain a policy that optimizes the performance metric
over the trajectory. NNs have the ability to approximate a
broad class of functions, and through RL, a control policy
parameterized by a NN can be directly learned through
real-time interactive feedback from the environment, hence
avoiding the challenge of choosing an accurate model.

Many recent works have investigated the RL method for
coverage in discrete space [13]–[15], but works on applying
RL to coverage problems with continuous space are still
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Fig. 1: The coverage behavior of our policy for 8 and 9 agents
in non-convex polygon domains. The simulation duration is 30s,
and the tails in all plots represent the agents’ trajectories over the
past simulation duration. The policy drives agents to the coverage
configuration about 10s, and only small perturbations over the last
20s indicate reliable persistent coverage performance.

limited. One related work [16] applies an actor-critic method
involving a specific value function formulation to multi-
agent continuous coverage control. In [17], the authors used
MADDPG [18] to learn a coverage policy for the ocean
monitoring task. Another limitation in previous work is that
the NN policy can only handle a fixed number of agents
due to the typical multiple-layer perceptron (MLP) networks
used in this domain, which require a fixed-dimension input.
In addition, besides achieving coverage, another performance
metric, such as the time efficiency of achieving coverage, has
not been considered.

We propose a novel RL method to address some of the
limitations of the previous work. Our target is to learn a
policy for continuous state-action space, which 1) allows the
agents to achieve the final coverage configuration in a time-
efficient manner and 2) generalizes to scenarios with a variety
of domains and a varying number of agents. For illustration,
Fig. 1 shows the coverage configurations achieved with our
policy, with 8 and 9 agents, for non-convex domains. To our
best knowledge, this is the first work on adaptive, efficient
coverage control using RL for variable numbers of agents.
Our contributions are as follows:



• We propose an RL approach for continuous control
of area coverage with second-order dynamics through
potential-based reward shaping.

• We propose a new training scheme involving an LSTM-
based policy and self-attention-based value network to
allow the agent to generalize to scenarios involving
varying numbers of agents.

• Our approach results in successful and more time-
efficient coverage compared to prior work.

II. PROBLEM FORMULATION

We consider a set of n homogeneous agents indexed by
I = {1, . . . , n}, with dynamics given by{

ṗi = vi, ∥vi∥ ≤ vmax,

v̇i = ai, ∥ai∥ ≤ amax,
(1)

where pi = (pix, p
i
y), v

i = (vix, v
i
y) and ai = (aix, a

i
y) are

the position, velocity and the control input of the ith agent,
respectively. Also, vmax and amax are bounds on velocities
and control inputs, and ∥ · ∥ denotes the Euclidean distance.

The problem definition of multi-agent area coverage can
vary under different scenarios and assumptions. In this paper,
we are interested in deploying the set of agents into a target
domain to achieve uniform area coverage. Specifically, we
adopt the concept of coverage presented in [10], [19].

Definition II.1. We say that the group of agents I is an
l-subcover configuration for a compact domain Ω ⊂ R2 if

1. B l
2
(i) ⊂ Ω for all i ∈ I ,

2. ∥pi − pj∥ ≥ l for all pairs i, j ∈ I , i ̸= j.
where B l

2
(i) denotes the ball of radius l

2 centered at pi.

The main interest in [10] is in ld-subcover configurations,

where ld =
√

Area(Ω)
n , based on the assumption that each

agent covers the same amount of square area. Aside from
reaching an ld-subcover configuration, we are also interested
in the time efficiency of achieving domain coverage. Based
on Def. II.1 and the time efficiency concerns, the primary
interest of this work is defined as follows.

Multi-Agent Efficient Domain Coverage Control: We aim
to find a control policy that drives a set of n agents from any
initial positions to an ld-subcover of some compact domain
Ω as quickly as possible.

III. BACKGROUND

We consider multi-agent domain coverage control as a
fully cooperative task with homogeneous agents, formulated
as a decentralized partially observable Markov decision pro-
cess (Dec-POMDP) [20] of n agents consisting of a tuple of
⟨S,A,O, P,R, n, γ⟩. Here, S is the joint state space of all
agents, A is the joint action space, O is the joint observation
space, P = P(st+1|st, a) is the transition probability func-
tion from current joint state st to the next state st+1 given the
joint action a = (a1, . . . , an), R(st, a, st+1) : S×A×S −→
R is the global reward function, n is the number of agents,
and γ ∈ [0, 1) is a constant discount factor.

The joint state s is only partially observable to each agent,
who draws the local observation oi according to its own ob-
servation function ηi : S → O. At time t, each agent samples
an action ait from a stochastic policy πi(ait|oit) given oit. By
executing the joint action at = (a1t , . . . , a

n
t ), the joint state

evolves from st to st+1 according to the transition probability
function P , and an immediate reward Rt = R(st, at, st+1)
is given by the environment. The return Gt is defined as the
discounted cumulative future reward starting from state st,
given by Gt =

∑T
k=0 γ

kRt+k. The objective for all agents
is to find a joint policy π = (π1, . . . , πn) that maximizes the
corresponding state value function V π(s) = Eπ

[
Gt|st = s

]
for any given state s.

A. Multi-Agent Proximal Policy Optimization

Our approach is built upon multi-agent proximal policy
optimization (MAPPO) [21], an actor-critic algorithm for the
MARL problem. The main feature of MAPPO is to extend
the PPO algorithm [22] under the centralized training and de-
centralized execution (CTDE) framework [18]. In particular,
the CTDE extension for any actor-critic architecture allows
the critic network to access the environment’s global state,
while the policy network for every agent still chooses the
action based on the agent’s local observation only.

Consider an n-agent environment described by Dec-
POMDP, with a set of policies πθ = (πθ1 , . . . , πθn)
parametrized by θ = (θ1, . . . , θn), and a centralized value
function Vϕ parametrized by ϕ. The MAPPO algorithm
samples trajectories from an old joint policy πθold , and
updates the policy parameter for each agent by maximizing
the following surrogate objective

J(θi) = Es∼ρπθold
,ai∼π

θi
old

[
min

(
rt(θ

i)Aπθold
(st, at),

clip(rt(θi), 1 + ϵ, 1− ϵ)Aπθold
(st, at)

)]
,

where ρπθold
is the state visitation frequency induced by old

policy πθold , rt(θi) is the probability ratio calculated as

rt(θ
i) =

πθi

(
ait|ηi(st)

)
πθi

old

(
ait|ηi(st)

) ,
Aπθold

(st, at) is the advantage value at time t, and ϵ ∈ [0, 1)
is a hyperparameter controlling the clip rate.

The advantage function Aπold
(st, at) can be estimated

in several ways as in [23] based on the centralized value
function Vϕ. Also, Vϕ is found by minimizing the standard
mean squared error loss (MSE) between Vϕ(st) and a value
target V̂t such as a Monte-Carlo estimation or temporal-
difference target. To keep the notation simple, the advantage
Aπold

(st, at) is simplified as Ât in the rest of paper. For
more details about the PPO and MAPPO objective, we refer
the reader to [21], [22].

B. Behaviour Cloning

The behavior cloning (BC) technique is also used to help
the training in this work. The main idea of BC is to copy an
expert’s policy using supervised learning. For a stochastic
policy πθ, BC minimizes the error between the expert’s



Fig. 2: An overview of the architecture of our approach.

action and the maximum likelihood action over the current
policy. This can be done via several different objective
functions. Our approach uses a simple version of BC, where
the objective is given by

LBC(πθ) =
1

T

T∑
t=0

∥∥âit − µπθ
(oit)

∥∥2,
where âit is the expert’s action under the observation oit, and
µπθ

(oit) is the mean of stochastic policy πθ.

IV. APPROACH

Our approach addresses two major challenges: The learned
policies need to 1) produce a time-efficient trajectory while
completing the coverage task, and 2) be able to control
different numbers of agents in the environment.

To address the two challenges above, we build our method
based on the MAPPO algorithm with newly designed policy
and value network architectures. In order to guide the agent
to learn a suitable control policy that solves the multi-agent
coverage problem efficiently, a proper reward function needs
to be designed. We accomplish this by choosing a suitable
potential function from the classical coverage control. With
an adequately shaped reward, agents learning to maximize
the return also improve time efficiency.

To enable adaptive control of our policy over variable
numbers of agents, we take the idea from natural language
processing to reshape the structure of both actor and critic
network by leveraging the long short-term memory (LSTM)
[24] and the self-attention [25] mechanism to encode the state
information into an ideal format as input for MLP networks.
Meanwhile, the value decomposition (VD) [26] is applied

as a natural complement to the self-attention structures to
facilitate the training further. The new architecture enables
the training process to happen concurrently across multiple
environments with a variable number of agents. An overview
of our approach is illustrated in Fig. 2.

A. Action Space, Agent Observation and Environment State

In this work, we aim to directly output the continuous
control force following the system (1). Namely, the action
space in this work is defined as the agent’s acceleration. The
assumptions on the environment state and agent observation
in this work are as follows. We assume that every agent
knows its position pi and velocity vi. We further assume that
every agent can measure its position relative to the domain
boundary ∂Ω, given by the vector

di := pi − P∂Ω(p
i),

where P∂Ω denotes the projection operator to ∂Ω. With these
assumptions, we define the agent’s internal state si to be

si =
(
pi, vi, d̂i, ∥di∥, I(pi)

)
,

where d̂i = di/∥di∥ and I(pi) is given by

I(pi) =

{
1, if pi ̸∈ Ω,

−1, if pi ∈ Ω.

We further construct the environment full state s by stacking
all si as

s =

s
1

...
sn

 =

p
1 v1 d̂1 ∥d1∥ I(p1)
...

...
...

...
...

pn vn d̂n ∥dn∥ I(pn)

 .



Expressing the state as a matrix will be useful in Sec. IV-D.
Partial observability in this paper means that agents do not

know all the information about the other agents. However, we
assume that each agent knows its position relative to the other
agents, represented by pi,j = pi−pj for i ̸= j. Therefore, we
consider the agent local observation oi = (si, õi) to consist
of two parts, where the first part is the agent’s internal state
si and the second part is the observation of other agents
relative to itself, given by

õi =
(
pi,1, pi,2, . . . , pi,i−1, pi,i+1, . . . , pi,n

)
.

In practice, such an observation can be obtained by ranging
sensors such as LIDAR.

B. Reward Shaping

We now discuss reward shaping for the domain coverage
problem stated in Sec. II. We design the reward function to
address the coverage goal, as well as time efficiency. We
base our reward function on the artificial potentials used in
[10], [19] for the dynamics of (1). Specifically, the potential
functions in [10], [19] for agent-domain and inter-agent
interactions, are given respectively by (2) and (3):

Uh(p
i) =

{
0, for JdiK ≤ − ld

2 ,
1
2 (Jd

iK + ld
2 )

2, for JdiK > − ld
2 ,

(2)

UI(p
i,j) =

{
1
2 (∥p

i,j∥ − ld)
2, for ∥pi,j∥ < ld,

0, for ∥pi,j∥ ≥ ld.
(3)

Here, JdiK denotes the signed distance of pi from ∂Ω, i.e.,

JdiK = I(pi) · ∥pi − P∂Ω(p
i)∥.

Note that the expressions of Uh and UI correspond directly
to the two conditions in Def. II.1 (for l = ld).

The total potential energy of the system is given by

Φ =

n∑
i

Φi, (4)

where Φi is the individual potential obtained by summing
up Uh and UI as

Φi = 2Uh

(
pi
)
+

n∑
j ̸=i

UI

(
pi,j

)
.

The global minimum of Φ is zero and attained at ld-
subcover configurations, and is a measure for coverage
performance. In our method, we shape the reward by trans-
forming the potential energy slightly. We define the agent’s
individual reward Ri(st, at, st+1) as

Ri(st, at, st+1) =

{
−M, if agent i is outside Ω,

−Φi
t+1, if agent i is inside Ω.

where M is a positive constant, and Φi
t+1 denotes the

individual potential for agent indexed by i at time step t+1.
Here, a constant reward −M is assigned to an agent that is
outside the domain, as the potential could be arbitrarily large

in such case. We set the constant M to be

M = sup{Φ : all agents are inside Ω}.

We further define R as the global reward for the Dec-
POMDP setup, which is calculated by taking the sum of all
agents’ individual rewards, i.e.,

R(st, at, st+1) =

n∑
i=1

Ri(st, at, st+1). (5)

Let Ri
t = Ri(st, at, st+1), and Rt = R(st, at, st+1). The

formulation in (5) allows each agent to receive a different
reward, while simultaneously knowing its contribution to the
team. We remark that the additive reward formulation allows
us to use direct VD, which facilitates the training process
in our approach. Details on using the reward (5) will be
presented in Sec. IV-D.

The reward in (5) also naturally encourages time effi-
ciency. Indeed, the maximum of R is zero and can be attained
at any ld-subcover configuration; hence, a trajectory that
attains the coverage goal faster will gain higher returns.

C. Actor Architecture for Variable Length Input

A typical policy network architecture in MARL uses the
MLP networks for each agent. However, such architecture
has difficulties to adapt into the scenario of a variable number
of agents. In this work, we utilize the parameter sharing (PS)
technique [27], [28], where all homogeneous agents share a
single policy network πθ1 = · · · = πθn , resulting in the
policy objective being reduced to follows:

J(θ) = Eπθ

[
min(rt(θ)Ât), clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

]
.

Note that the PS technique naturally fits into the purpose of
training a single policy to handle a variable number of agents,
as the shared policy offers different actions for different
agents based on observation from each agent.

Although a shared policy is for a variable number of
agents, having a variable number of agents leads to a variable
length input to the NN. Thus, we use an LSTM policy
network, a popular recurrent NN [24], which accepts a
variable length input and produces a fixed-length output.

Besides being able to take as input vectors of varying
length, another advantage of the LSTM for multi-agent
coverage control is that it takes an ordered sequence as
input. In our problem definition, the variable length part of
the input is õi, an agent’s relative observation, which can
be naturally treated as a sequence ordered according to the
relative importance of other agents. In our application of the
LSTM architecture, for every time step t, the first entry of õit
will be fed first and produce a hidden state inside the LSTM.
When the next entry is fed in, the LSTM will combine both
the current entry and the hidden vector from the last entry to
produce the next hidden vector. Eventually, the entire input õi

is mapped to the final hidden vector, denoted as hi
t, which

represents an encoded vector that stores all the important
information in õi. Later entries have a more direct influence
on the LSTM output.



Therefore, we arrange the entries in õi in descending order
of the norm. Such an ordering puts the relative position of the
farthest agent first, and of the nearest agent last, and captures
the intuition that nearby agents should have a stronger effect
on the current agent’s action. This ordering is also consistent
with the agent interaction potential UI , where two agents
interact more strongly if they are closer to each other.

The LSTM output hi
t is concatenated with the agents’

internal state si and fed into the standard MLP to output
the policy distribution. The LSTM-based policy network,
showing as the "Actor" part of Fig. 2.

D. Self-Attention Based Value Decomposition Network
With the CTDE framework, the shared critic network takes

the global state s as input to estimate the true state value,
where s is of variable length according to the number of
agents. While one can attempt a similar procedure as in Sec.
IV-C for the environment state and treat s as a sequence
of the agents’ internal states si, the LSTM structure is not
the most appropriate for the centralized critic network since
there is no natural ordering for agents. We propose instead
a self-attention based value decomposition (VD) structure,
illustrated in the “Critic" part of Fig. 2, which is able to
estimate the state value by equally assessing all agents’
internal states si.

The self-attention was originally introduced in the Trans-
former architecture [25], which is used to compute a se-
quence representation that associates the element at different
positions in a sequence. For input a length-n sequence X ∈
Rn×dm of vectors xi ∈ Rdm , the self-attention of X outputs

attention(X) = softmax

(
(XWq)(XWk)

⊤
√
dk

)
(XWv),

(6)
where Wq ∈ Rdm×dk ,Wk ∈ Rdm×dk , and Wv ∈ Rdm×dv

are learnable matrices that project every xi ∈ X from Rdm

onto Rdk , Rdk and Rdv respectively, and
√
dk is a scaling

factor depending on the subspace dimension. Each row in
the output of attention(X) ∈ Rn×dv can be viewed as a
new vector representation for the i-th element xi in the
sequence X , which contains the correlated information to
another element in a different position.

In our work, we use self-attention to encode the global
state into a new representation for each agent and connect
with a VD structure constructed by shared MLP. This idea
is visualized in the "Critic" part of Fig. 2, where we treat
the environment full state s as a sequence of length n.
For the critic input, the state st at every time step is first
sent into a linear layer that maps the internal state repre-
sentation for each agent onto a higher dimensional space.
Then, the output from the linear layer, of dimension Rn×dm ,
is used to compute the attention output using the matrix
equation (6). The final output from attention, denoted as
zt = attention(st), is considered a new representation of the
environment. In particular, each row of zt, denoted as zit, is
a new representation of sit that contains not only information
of the intrinsic state for the ith agent but also the information
about other agents relevant to coordination in the coverage

task. In practice, the attention is often followed by residual
connections and layer normalization to facilitate the training,
and our implementation preserves this structure as well.
Since the attention output fuses all agents’ information while
giving each agent different internal state representations, the
shared MLP network can output different values according to
the new representation zi for different agents. Such structure
fits well with the VD approach [26], where we explicitly
formulate the state value function estimation at time step t
as the summation of local state values estimated from every
zit, i.e.,

V πθ (st) ≈
n∑
i=i

Vϕ(z
i
t) =

n∑
i=i

Vϕ

(
attention(st)[ i ]

)
.

We remark that the additive VD is legitimate in our
setup due to the explicit additive reward formulation
and the true value function, defined as V πθ (st) =∑n

i=1 Eπθ
[
∑T

k=0 γ
kRi

t+k|st]. The above setup yields the
critic loss to be:

L(ϕ) =
1

T

T∑
t=0

(
V̂ i
t − Vϕ(z

i
t)
)2

,∀ i ∈ {1, . . . , n}, (7)

where the value target V̂ i
t is chosen to be the Monte-Carlo

estimation of agents’ individual returns. Note that the loss (7)
is different from the normal VD method, where the shared
critic network directly estimates the true agent’s individual
state value instead of the global state value since the agent’s
individual rewards can be directly accessed in our work.

Moreover, VD helps to alleviate the credit assignment
problem compared to using the global value function. VD
allows us to decompose the advantage values Ât into the
summation form

∑n
i=1 Â

i
t, where Âi

t is the agents’ individual
advantages over current policy. The use of Âi

t gives each
agent a better sense of their own contribution, which ac-
celerates policy learning further. The structure of the shared
value network is still an MLP, where the zt is fed to compute
the final local state value for each agent. Note that the new
structure of the critic network still agrees with the main
feature of the CTDE framework, where a centralized critic
network estimates the state value via global information.

E. Training the Policy

To smooth the policy training, we apply the strategy of
two-phase training. The first phase is the pre-training step,
and both the policy and critic networks could be fitted
into the pre-training phase. For the policy network, the
pre-training is applied using the BC method with a set of
trajectories sampled from an expert policy f . Meanwhile, the
critic network could be pre-trained with sampled trajectories
using MSE loss with Monte-Carlo estimation of agents’
individual returns as well.

After the pre-training step, the training shall be continued
with the purely MAPPO algorithm based on the pre-trained
initial model. In order to train a policy that can adapt
to variable numbers of agents, the second phase requires
sampling multiple environments across different numbers



of agents, and this is done by paralleled sampling across
multiple environments with different numbers of agents in
each training iteration. Furthermore, for the possibility of
transferring the policy into various domains, each paralleled
environment is encouraged to use a different domain to
ensure the training covers a variety of shapes.

Algorithm 1: BC + Self-Attention Based MAPPO
input : A parameterized policy πθ and self-attention

based critic Vϕ.
A trajectory set DE = {(âit, oit)}, sampled
from an expert policy f .

1 Pre-training parameter θ0 by minimizing BC loss on
trajectory set DE :

LBC(θ) = 1
|DE |

∑
(âi

t,o
i
t)∈DE

∥∥âit − µπθ
(oit)

∥∥2.
2 for k = 0, 1, 2, . . . do
3 Sample a set of trajectories DT = {(st, at)} from

current policy πθk .
4 Compute current individual state value estimation

Vϕk
(zit) = Vϕk

(
attention(st)[ i ]

)
, ∀st ∈ DT .

5 Estimate individual advantages Âi
t for current

policy based on Vϕk
(zit).

6 Compute the policy clip loss:
J(θk) = Eπθk

[
min(rt(θk)Â

i
t),

clip(rt(θk), 1− ϵ, 1 + ϵ)Âi
t

]
.

7 Compute the critic loss:
L(ϕk) =

1
n|DT |

∑n
i=1

∑
t∈DT

(
V̂ i
t − Vϕk

(zit)
)2

.

8 Update policy parameter by gradient ascent:
θk+1 ← θk + α∇θkJ(θk).

9 Update critic parameter by gradient decent:
ϕk+1 ← ϕk − β∇ϕk

L(ϕk).
10 end

Since our reward function is partially sparse, most of the
exploration in the early stage of training would only provide
unimportant samples, as sparse rewards do not provide a
meaningful signal to agents for most states. Using BC for
model pre-training allows our policy to be trained toward
expert policy at first, avoiding instability in the early training
stage, while using the MAPPO algorithm to continue training
upon the pre-trained initial model could leverage the main
strengths of RL to obtain a potential better policy through
proper exploration.

Moreover, the expert policy chosen in this work is the
control law proposed in [10], [19], which can be directly
derived from the two potentials Uh and UI (see (2) and (3))
by taking the negative gradient with respect to each agent:

ai = −∇iUh(p
i)−

n∑
i=1

∇iUI(p
i,j)− cvi, (8)

where c is a positive constant. We remark that this controller
drives system (1) into an equilibrium configuration which is a
critical point of the total system potential energy Φ from (4);
note that critical points of Φ are ld-subcover configurations.

For more discussion on the asymptotic behavior of system
(1) with this control law, we refer to [10], [19].

V. SIMULATED EXPERIMENTS

In this section, we present simulation results of the policy
obtained by our approach in various domains and across dif-
ferent numbers of agents. We will compare the performance
of our policy and the state-of-the-art classical controller (8)
and show the remarkable adaptability of our policy over a
different number of agents.

Per our discussion in Sec. IV-E, the training process is
split into two stages. In the pre-training stage, an initial
policy is obtained using 10 thousand trajectories sampled
from the classical controller (8) over three particular agent
counts, 6, 8, and 9 agents, with the square domain. The
RL stage continues the training on the initial policy in
multiple environments, using the same number of agent
configurations but more types of domains as in the first
phase. The domain in each environment is either a pre-
generated random polygon or an equilateral polygon. We run
12 parallel environments across 6, 8, and 9 agents, each using
a different domain shape. In every RL training iteration, we
sample 4 trajectories from each environment, and the policy
takes about 500 iterations to converge.

All simulations presented in this section are 30 seconds
long. For all environments, the agent group’s initial position
is randomized but follows an approximately horizontal line
configuration outside the domain (with only a slight offset
from a perfect horizontal line) and with zero initial velocity.

A. Time Efficiency over State-of-the-Art Classical Controller

We compare our policy with the state-of-the-art controller
in the 9-agent environment. Take the simple square domain
and note that the ld-subcover configuration for the square
domain with 9 agents is simple and unique, in which case all
agents are arranged in a square formation. Fig. 3 shows the
agents’ positions and trajectories generated by the classical
controller (8) (left column) and by our policy (right column).
The colored dots represent the agents’ positions at the current
time, and the dashed tails represent the trajectories for the
past 10 seconds.

In the first 10 seconds, our policy behaves very differently
from the controller (8). For the trajectories generated by
the classical controller, an overshooting behavior can be
observed. All agents initially enter the domain, but some
pass through the domain after entering it. Such overshooting
behavior reduces the time efficiency for achieving the final
coverage configuration. In contrast, the trajectories from
our policy show that all agents directly approach the final
ld-subcover configuration. For the next 20 seconds, the
classical controller brings the overshooting agents back into
the domain, and then drives them slowly to the final con-
figuration. Meanwhile, our policy maintains the ld-subcover
configuration with only small perturbations over time.

We also measure the coverage performance using the
system potential Φ. Fig. 4 shows the evolution of Φ over
time, for the square domain simulation, where the red dashed



Fig. 3: Square domain coverage of 9 agents for system (1) with
classical controller (8) (left) and for our policy (right). Note the
superior time efficiency of our policy, by which the agents converge
to the correct ld-subcover configuration in only about 10 seconds.

curve corresponds to the classical controller (8) and the solid
blue curve is for our policy. The left plot is for the whole
simulation duration, while the right plot gives a zoomed-in
view of the last 20 seconds. During approximately the first
5 seconds, the system potential Φ decreases rapidly in both
the classical controller (8) and our policy.

The two bumps of the potential energy for the classical
controller (at around t ≈ 6 and t ≈ 10) can be explained
as follows. The first bump occurs when some agents get
too close to each other inside the domain, resulting in strong
repulsion forces. Such repulsive forces push the agents to get
far away from each other so strongly that some agents are
pushed out of the domain. This overshoot causes the second
bump in Φ – see also Fig. 3 (top left).

In contrast, the solid blue curve shows that for our policy
the potential decreases quickly and stays at a low level
without any increase. Note that the potential level of our
policy is always below that of the classical controller (8),
which does not converge to the ld-subcover configuration
within 30s duration.

For non-convex domains, our policy preserves the same
time-efficient advantages over controller (8). Fig. 1 shows
the positions and trajectories of 8 and 9 agents that cover

(a) t ∈ [0, 30] (b) t ∈ [5, 30]

Fig. 4: Time evolution of the total potential energy Φ from (4) for
the classical controller (dashed red) and our policy (solid blue).
The left plot shows the entire duration and the right plot zooms
in on the last 25 seconds. The two bumps of the red curve in the
left plot are due, respectively, to strong repulsive forces and the
overshooting behavior present in the classical controller. The right
plot shows that our policy maintains a low potential in the last 20
seconds. Note that the corresponding potential level of our policy
is always below that of the classical controller.

a non-convex non-symmetric polygon. In both simulations,
our policy achieve the final coverage configuration in about
10 seconds and retains reliable coverage performance.

Fig. 5: Zero-shot result of 5 and 7 agents on a square domain. The
policy is directly deployed with unseen agent configurations and
retains a satisfactory coverage result.

B. Generalization to Different Agent Counts

The following experiment tests the policy adaptability
from 5 to 9 agents. We remark that the cases of 5 and 7
agents do not appear during the training. These test cases
aim to show the zero-shot generalizability of our approach.

We run 1000 simulations for each agent count (5 to 9) with
both the classical controller (8) and our policy in different
domains (the domains are the same as for the RL training
stage), and measure the system potential Φ at every time
step for all sampled trajectories. A trajectory is considered
to deliver a successful coverage result if the system potential



level is below 0.15 (low enough to be an approximate ld-
subcover configuration) before 30 seconds and lasts for the
rest of the simulation time.

Fig. 5 shows the policy behavior of 5 and 7 agents in the
square domain. In both cases, our policy could attain the
coverage configuration of about 15s and retain coverage for
the rest of the simulation, which indicates the adaptability of
the policy for unseen data. Table I shows the success rate of
different agent counts over all simulations and the average
convergence time over all samples that provided a successful
coverage result. Our policy offers a compatible success rate
with controller across different agent counts, with significant
savings in the convergence times. Animated simulations are
available on YouTube at https://youtu.be/OgF62-NSbc0.

Agents Success Rate Convergence Time

Controller Policy Controller Policy

5 93.2% 85.3% 25.14s 16.57s
6 83.4% 88.6% 25.87s 13.35s
7 88.1% 82.7% 26.14s 18.36s
8 90.8% 94.1% 28.62s 16.76s
9 80.6% 83.6% 29.72s 23.99s

TABLE I: Success rate and average convergence time for controller
(8) and our policy. The success rate only considers the simulations
that achieve a successful coverage result within 30 seconds. A
"failed" simulation can possibly achieve the desired coverage result
with a longer simulation time. Among all successful samples, our
policy offers at least 20% improvements in the convergence speed,
for all agent counts.

VI. CONCLUSION

In this work, we present a Self-Attention based rein-
forcement learning approach for the multi-agent efficient
coverage control involving agents in continuous state and
action with second-order dynamics. By using the LSTM
and self-attention structure, our policy can perform adaptive
control tasks with a variable number of agents. Our novel
approach is also shown to outperform the existing classical
controller in terms of time efficiency while maintaining
the same level of coverage performance compared to the
classical controller. Future work will investigate the potential
of using reinforcement learning to solve coverage control
incorporated with collision avoidance.
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