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Abstract

Let G(k, r) denote the smallest positive integer g such that if I =ay,ay,...,ag is a strictly increas-
ing sequence of integers with bounded gaps a1 —a; <r,1<j<g—1, then {ay,ay,.. ag} contains
a k-term arithmetic progression. It is shown that G(k,2) > \/> G(k,3) > = - “r(1+o(1)),
G(k,2r—1) > 7(1 +o(1)),r>2.

For positive integers k, r, the van der Waerden number W (k, r) is the least integer such that if w >
W (k,r), then any partition of [1,w] into r parts has a part that contains a k-term arithmetic progression.
The celebrated theorem of van der Waerden [4] proves the existence of W (k,r). The best known upper
bound for W (k,2) is enormous whereas the best known lower bound for W (k,2) (see [1]) is

k

W(k,2) > ——
(k2)> >~

(I+o(1)) (1)
where e is the base of the natural logarithm.

Let G(k,r) denote the smallest positive integer g such that if 1 = ay,as,...,a, is a strictly increasing
sequence of integers with bounded gaps aj1 —a;j <r, 1 < j<g—1,then {a,a,...,a,} contains a k-
term arithmetic progression. In [3], Rabung notes that van der Waerden’s theorem implies the existence
of G(k, r) for all k, r and conversely.

Nathanson makes the following quantitative connection between W (k, r) and G(k, r) [2, Theorem 4]:
G(k,r) <W(k,r) < G((k—1)r+1,2r—1). 2

In particular, W (k,2) < G(2k — 1,3), which suggests that it is no easier to find a reasonable upper
bound for G(k,3) than it is for W (k,2).
However, G(k,2) “escapes” Nathanson’s inequalities in the sense that an upper bound for G(k,2)

does not immediately give an upper bound for W (k,2).
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Setting r = 2 and combining (1) and (2) gives

k+1

27
e(k+1)

G(k,3) > (I+o0(1)),
but again G(k,2) “escapes” in that no lower bound for G(k,2) can be deduced from Nathanson’s inequal-
ities.

In this note we obtain an exponential lower bound for G(k,2) and improved lower bounds for G(k, r),
r > 2. The Lovasz Local Lemma is used when r > 2. However when r = 2 this method fails, and
elementary counting arguments are used.

k—1
k=1 /4\ 7
a5 (4)"

Theorem 1. Forallk > 1,

Proof. We use the following notation. For each positive integer n, let
Q, ={a=ay,a,...,ap:a1=1,1<ajy1—a;<2,1<j<n—-1},

and let ., be the set of all k-term arithmetic progressions contained in [1,2n — 1].

Leti€[1,2n—1] and o € Q,. We say that i occurs in & = ay,az,...,a, if i € {aj,az,...,a,}.
Similarly, for any subset I of [1,2n — 1], we say that I occurs in « if I C {ay,az,...,a,} and will write
I1Ca.

Let k > 3 be fixed and give Q, the uniform probability distribution. The idea of the proof is to show
that for any k-term arithmetic progression S € .7, Pr(S C a) < (%)kil.

Foreachi, 1 <i<2n—1,letA; = {a@ € @, :ioccursin o}. Then Pr(A;) =1, Pr(A2) = 1/2 and
Pr(A;) = 3.

To show that Pr(A;) < 3/4 fori > 3, partition A; so that it is the disjoint union A; = A’ UA} UA? where
A={a €A :a,=i}andform=1,2,A"={a €A;:a;=i=>ajs1 =i+m}. Now |A}| = |A?| and
s0 Pr(A") < 1Pr(A;), 1 <m < 2. Moreover, A, is the disjoint union of A], | and A?, and thus

Pr(4is2) = Pr(Al))+Pr(a})

D (Pr(Arr) + Pr(A)).

< —
- 2

It follows by induction that for i =2,3,...,2n—1,

Pr(A;) < =. (3)

E R

Note that inequality (3) is independent of n. That is, for every n > 1 and every i =2,3,...,2n—1,

3

3
|{a€Q,,:ioccursina}|§Z|Qn|zz-2"’]. )

Let n be fixed and let I be a non-empty subset of {2,3,...,2n— 1}. Let m be the largest element of /
and define A; = (;¢;A;. We proceed to show that Pr(4;) < (3) .



Define A; = {& = aj,az,...,a5 : a = 1,a; = m,s < n,I occurs in a} and for each & € A;, & =

ai,ay,...,das, define By to be the set of all 2"~* “continuations” of ay,as,...,as. Thatis, let By = {at €

Q,:a=ay,az,...,a;,br11,-..,by}. Then A is the disjoint union
Ar=J Ba )
&EA[

Let j be such that m < j < 2n— 1. We now want to estimate the number of sequences in Bg in which
j occurs. For each & € A;, & =ay,ay,...,a,, we can map Bg onto Q,_;,1 by dropping ay,as,...,a;s—1
and then shifting m — 1 units to the left. That is, we map & € By, @ = ay,az,...,ax,byt1,- .- ,by, Into
B =1,bp1—(m—1),....,b,— (m—1). Clearly j occurs in ¢ if and only if j — (m — 1) occurs in 3.
Using (4) we therefore have

{o€Bg:joccursina}| = |{B € Qy_st1:j— (m—1) occurs in B}

3
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Combining (5) and (6) we obtain

[ArnA;l = ) |BanA]
QEA]
3
< Zde
QEA[
3
= Z|A1| )

Hence by induction (using (3) and (7)), Pr(4;NA;) < 2 Pr(4;) < (3) ! Note also that Pr(A;uq1y) <
(%)| | In particular, for all S € .%,, Pr(S C a) < (3 )k :
For each S in .}, let Eg denote the event “S C «”. The probability that some S in .¥}, occurs in @

satisfies

(U Es) < ) Pr(Eg)

SeSn SeSn
3 k—1
71 (3)
(2n—1)% /3!
< —Q | - .
= 20(k-1) \4

Ifn<i+/5t T , then 2(" 11)) (%)ki1 < 1 and hence Pr(Nsc., Es) > 0. That is, there exists

k=1
o € Q, that does not contain a k-term arithmetic progression. Therefore G(k,2) > 4/ "5—1 (‘3—‘) .0
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The proof of Theorem 1 can easily be modified to show that G(k,r) > \/% (%) " where p=

p(r)=1(1+1) " for all k >3, r > 2. But this is much weaker than the following result.

Theorem 2. Forallk>1,r> 2,

rk*Z
G(k,2r—1) > ?(1 +0(1)).

Before proving Theorem 2, we state the form of the Lovdsz Local Lemma we use( [1]).

Lovasz Local Lemma. Let Ay,... A, be events with Pr(4;) < p for all i. Suppose that each A; is
mutually independent of all but at most d of the other A;’s. If ep(d + 1) < 1, then Pr(NA4;) > 0.

Proof of Theorem 2. To simplify the notation, we carry out the proof only in the case r = 2. The proof
for the general case is essentially the same.

Fix k > 1 and fix n. Let . be the set of all sequences @ = ay,as,...,a, such that a; € {2i —1,2i},
1 < i< n. Thus o contains exactly one of the two elements in each of the blocks [1,2], [3,4], ...,
[2n— 1,2n].

Let the symbols S, T denote k-term arithmetic progressions contained in [1,2n] with common dif-
ferences at least two. Give .# the uniform probability distribution and again let Eg denote the event
“SCa”. Then |.#|=2"and |{a € # :S C a}| =2"7*, so Pr(Es) =27

The event Eg is mutually independent of all the other events Er for all 7 that have no blocks in
common with S (that is, for no i, 1 <i <, is it true that [2i — 1,2i]NS # 0 and [2i — 1,2{|NT # 0). To
see this, note that a random « € .# can be constructed by randomly and independently choosing each
element a; from [2i — 1,2{] with uniform probability. Thus even if we know the chosen element of o
for each block besides those of S, the probability of Es remains unchanged, and any assumption on the
events E7 for T that have no blocks in common with S is determined by these chosen elements.

For each S, the number of T such that S and T do have a block in common is bounded above by 4nk.
(To see this note that the number of k-term arithmetic progressions in [1,2n] which contain any given
element of [1,2n] is bounded above by 27 (in fact, by about (log2)(2n)). Since S meets k blocks, T will
have a block in common with S only if 7' contains one of the 2k elements of these k blocks.)

Now we can apply the Lovasz Local Lemma with p = 27, d = 4nk. If n < %(1 —€), then
ep(d+1) < 1,s0 Pr(NEs) > 0. Therefore if n < zi—;z(l —¢),thereis a € #, & = ay,ay,...,a,, which
contains no k-term arithmetic progression. Since a1 —a; < 3 for all j, this shows that G(k,3) >

k=2

7 (1+o(1)). O
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