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Abstract

Let G(k;r) denote the smallest positive integer g such that if 1 = a1;a2; : : : ;ag is a strictly increas-

ing sequence of integers with bounded gaps a j+1�a j � r, 1� j� g�1, then fa1;a2; : : : ;agg contains

a k-term arithmetic progression. It is shown that G(k;2) >
q

k�1
2
� 4

3
� k�1

2 , G(k;3) > 2k�2

ek (1+ o(1)),

G(k;2r�1)> rk�2

ek (1+o(1)), r � 2.

For positive integers k, r, the van der Waerden number W (k;r) is the least integer such that if w �

W (k;r), then any partition of [1;w] into r parts has a part that contains a k-term arithmetic progression.
The celebrated theorem of van der Waerden [4] proves the existence of W (k;r). The best known upper
bound for W (k;2) is enormous whereas the best known lower bound for W (k;2) (see [1]) is

W (k;2)>
2k

2ek
(1+o(1)) (1)

where e is the base of the natural logarithm.
Let G(k;r) denote the smallest positive integer g such that if 1 = a1;a2; : : : ;ag is a strictly increasing

sequence of integers with bounded gaps a j+1�a j � r, 1 � j � g�1, then fa1;a2; : : : ;agg contains a k-
term arithmetic progression. In [3], Rabung notes that van der Waerden’s theorem implies the existence
of G(k;r) for all k, r and conversely.

Nathanson makes the following quantitative connection between W (k;r) and G(k;r) [2, Theorem 4]:

G(k;r)�W (k;r)� G((k�1)r+1;2r�1): (2)

In particular, W (k;2) � G(2k� 1;3), which suggests that it is no easier to find a reasonable upper
bound for G(k;3) than it is for W (k;2).

However, G(k;2) “escapes” Nathanson’s inequalities in the sense that an upper bound for G(k;2)
does not immediately give an upper bound for W (k;2).
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Setting r = 2 and combining (1) and (2) gives

G(k;3)>
2

k+1
2

e(k+1)
(1+o(1));

but again G(k;2) “escapes” in that no lower bound for G(k;2) can be deduced from Nathanson’s inequal-
ities.

In this note we obtain an exponential lower bound for G(k;2) and improved lower bounds for G(k;r),
r > 2. The Lovász Local Lemma is used when r > 2. However when r = 2 this method fails, and
elementary counting arguments are used.

Theorem 1. For all k � 1,

G(k;2)>

r
k�1

2

�
4
3

� k�1
2
:

Proof. We use the following notation. For each positive integer n, let

Ωn = fα = a1;a2; : : : ;an : a1 = 1; 1� a j+1�a j � 2; 1� j � n�1g;

and letSn be the set of all k-term arithmetic progressions contained in [1;2n�1].
Let i 2 [1;2n� 1] and α 2 Ωn. We say that i occurs in α = a1;a2; : : : ;an if i 2 fa1;a2; : : : ;ang.

Similarly, for any subset I of [1;2n� 1], we say that I occurs in α if I � fa1;a2; : : : ;ang and will write
I � α .

Let k � 3 be fixed and give Ωn the uniform probability distribution. The idea of the proof is to show
that for any k-term arithmetic progression S 2Sn, Pr(S � α)�

� 3
4

�k�1
.

For each i, 1 � i � 2n� 1, let Ai = fα 2 Ωn : i occurs in αg. Then Pr(A1) = 1, Pr(A2) = 1=2 and
Pr(A3) =

3
4 .

To show that Pr(Ai)� 3=4 for i> 3, partition Ai so that it is the disjoint union Ai =A0
i [A1

i [A2
i where

A0
i = fα 2 Ai : an = ig and for m = 1;2, Am

i = fα 2 Ai : a j = i =) a j+1 = i+mg. Now jA1
i j= jA2

i j and
so Pr(Am

i )�
1
2 Pr(Ai), 1 � m� 2. Moreover, Ai+2 is the disjoint union of A1

i+1 and A2
i , and thus

Pr(Ai+2) = Pr(A1
i+1)+Pr(A2

i )

�
1
2
(Pr(Ai+1)+Pr(Ai)) :

It follows by induction that for i = 2;3; : : : ;2n�1,

Pr(Ai)�
3
4
: (3)

Note that inequality (3) is independent of n. That is, for every n� 1 and every i = 2;3; : : : ;2n�1,

jfα 2Ωn : i occurs in αgj �
3
4
jΩnj=

3
4
�2n�1: (4)

Let n be fixed and let I be a non-empty subset of f2;3; : : : ;2n�1g. Let m be the largest element of I

and define AI =
T

i2I Ai. We proceed to show that Pr(AI)�
� 3

4

�jIj
.
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Define ÃI = fα̃ = a1;a2; : : : ;as : a1 = 1;as = m;s � n; I occurs in αg and for each α̃ 2 ÃI , α̃ =

a1;a2; : : : ;as, define Bα̃ to be the set of all 2n�s “continuations” of a1;a2; : : : ;as. That is, let Bα̃ = fα 2

Ωn : α = a1;a2; : : : ;ak;bk+1; : : : ;bng. Then AI is the disjoint union

AI =
[

α̃2ÃI

Bα̃ (5)

Let j be such that m < j � 2n�1. We now want to estimate the number of sequences in Bα̃ in which
j occurs. For each α̃ 2 ÃI , α̃ = a1;a2; : : : ;as, we can map Bα̃ onto Ωn�s+1 by dropping a1;a2; : : : ;as�1

and then shifting m� 1 units to the left. That is, we map α 2 Bα̃ , α = a1;a2; : : : ;ak;bk+1; : : : ;bn, into
β = 1;bk+1� (m�1); : : : ;bn� (m�1). Clearly j occurs in α if and only if j� (m�1) occurs in β .

Using (4) we therefore have

jfα 2 Bα̃ : j occurs in αgj = jfβ 2Ωn�s+1 : j� (m�1) occurs in βgj

�
3
4
jΩn�s+1j

=
3
4
�2n�s

=
3
4
jBα̃ j: (6)

Combining (5) and (6) we obtain

jAI \A jj = ∑
α̃2ÃI

jBα̃ \A jj

� ∑
α̃2ÃI

3
4
jBα̃ j

=
3
4
jAI j (7)

Hence by induction (using (3) and (7)), Pr(AI\A j)�
3
4 Pr(AI)�

� 3
4

�jIj+1
. Note also that Pr(AI[f1g)�� 3

4

�jIj
. In particular, for all S 2Sn, Pr(S � α)�

� 3
4

�k�1
.

For each S in Sn, let ES denote the event “S � α”. The probability that some S in Sn occurs in α

satisfies

Pr(
[

S2Sn

ES) � ∑
S2Sn

Pr(ES)

� jSnj

�
3
4

�k�1

�
(2n�1)2

2(k�1)

�
3
4

�k�1

:

If n < 1
2 +

q
k�1

2

� 4
3

� k�1
2 , then (2n�1)2

2(k�1)

� 3
4

�k�1
< 1 and hence Pr(

T
S2Sn ES)> 0. That is, there exists

α 2Ωn that does not contain a k-term arithmetic progression. Therefore G(k;2)>
q

k�1
2

� 4
3

� k�1
2 .
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The proof of Theorem 1 can easily be modified to show that G(k;r) >
q

k�1
2

�
1
p

� k�1
2

where p =

p(r) = 1
r

�
1+ 1

r

�r�1
, for all k � 3, r � 2. But this is much weaker than the following result.

Theorem 2. For all k � 1, r � 2,

G(k;2r�1)>
rk�2

ek
(1+o(1)):

Before proving Theorem 2, we state the form of the Lovász Local Lemma we use( [1]).

Lovász Local Lemma. Let A1; : : : ;Am be events with Pr(Ai) � p for all i. Suppose that each Ai is
mutually independent of all but at most d of the other A j’s. If ep(d +1)< 1, then Pr(\Ai)> 0.

Proof of Theorem 2. To simplify the notation, we carry out the proof only in the case r = 2. The proof
for the general case is essentially the same.

Fix k � 1 and fix n. LetM be the set of all sequences α = a1;a2; : : : ;an such that ai 2 f2i�1;2ig,
1 � i � n. Thus α contains exactly one of the two elements in each of the blocks [1;2], [3;4], . . . ,
[2n�1;2n].

Let the symbols S, T denote k-term arithmetic progressions contained in [1;2n] with common dif-
ferences at least two. Give M the uniform probability distribution and again let ES denote the event
“S � α”. Then jM j= 2n and jfα 2M : S � αgj= 2n�k, so Pr(ES) = 2�k.

The event ES is mutually independent of all the other events ET for all T that have no blocks in
common with S (that is, for no i, 1 � i � n, is it true that [2i�1;2i]\S 6= /0 and [2i�1;2i]\T 6= /0). To
see this, note that a random α 2M can be constructed by randomly and independently choosing each
element ai from [2i� 1;2i] with uniform probability. Thus even if we know the chosen element of α

for each block besides those of S, the probability of ES remains unchanged, and any assumption on the
events ET for T that have no blocks in common with S is determined by these chosen elements.

For each S, the number of T such that S and T do have a block in common is bounded above by 4nk.
(To see this note that the number of k-term arithmetic progressions in [1;2n] which contain any given
element of [1;2n] is bounded above by 2n (in fact, by about (log2)(2n)). Since S meets k blocks, T will
have a block in common with S only if T contains one of the 2k elements of these k blocks.)

Now we can apply the Lovász Local Lemma with p = 2�k, d = 4nk. If n < 2k�2

ek (1� ε), then
ep(d +1)< 1, so Pr(\ES)> 0. Therefore if n < 2k�2

ek (1� ε), there is α 2M , α = a1;a2; : : : ;an, which
contains no k-term arithmetic progression. Since a j+1 � a j � 3 for all j, this shows that G(k;3) >
2k�2

ek (1+o(1)).
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