Lines Imply Spaces in Density Ramsey Theory

T. C. Brown and J. P. Buhler

Abstract

Some results of geometric Ramsey theory assert that if F is a finite field (respectively, set) and n is sufficiently large, then in any coloring of the points of F^n there is a monochromatic k-dimensional affine (respectively, combinatorial) subspace (see [9]). We prove that the density version of this result for lines (i.e., $k = 1$) implies the density version for arbitrary k. By using results in [2, 6] we obtain various consequences: a “group-theoretic” version of Roth’s Theorem, a proof of the density assertion for arbitrary k in the finite field case when $|F| = 3$, and a proof of the density assertion for arbitrary k in the combinatorial case when $|F| = 2$.

1 Results

In this section we will state and discuss the main results and prove some corollaries. The proofs of the main results are in the following section. Throughout q denotes a prime power.

Let \mathbb{F}_q be the field with q elements and let V be an n-dimensional vector space over \mathbb{F}_q. For each positive integer k and positive real number ε let $n(\varepsilon, k, q)$ denote the smallest integer (if one exists) such that

$$n = \dim_{\mathbb{F}_q} V \geq n(\varepsilon, k, q), \quad A \subset V, \quad |A| > \varepsilon|V|,$$

imply that A contains an affine k-space. (By an affine k-space we mean any translate of a k-dimensional vector subspace; the purist will note that we only use the structure of V as an affine space.)

The “Affine Line Conjecture” is the assertion that $n(\varepsilon, 1, q)$ exists for all $\varepsilon > 0$ and all q. The existence of $n(\varepsilon, k, q)$ would be a density version of the results in [9] on Ramsey theorems in geometric contexts.

The main assertion of this paper is that if, for a fixed q, $n(\varepsilon, 1, q)$ exists for all $\varepsilon > 0$, then $n(\varepsilon, k, q)$ exists for all k and all $\varepsilon > 0$. We will also reinterpret this result in the context of “combinatorial” k-spaces and “lattices” in abelian groups. We include a number of corollaries and remarks.

(It is not hard to see that if $n(\varepsilon, 1, q)$ exists for all $\varepsilon > 0$ and all q, then $n(\varepsilon, k, q)$ exists for all k, ε, and q. Indeed, if ε, k, and q are given, let F be the extension of \mathbb{F}_q of degree k. An affine line in an F-vector space is a k-space over \mathbb{F}_q if we “restrict scalars” to \mathbb{F}_q; from this it is easy to see that the existence of an affine line in a large enough subset of F^n implies the existence of an affine k-space in a large enough subset of \mathbb{F}_q^{kn}.)
Theorem 1. Suppose that \mathbb{F}_q is a fixed finite field and that $n(\varepsilon, 1, q)$ exists for all $\varepsilon > 0$. Then $n(\varepsilon, k, q)$ exists for all $\varepsilon > 0$ and all k.

Corollary. The integers $n(\varepsilon, k, 2)$ and $n(\varepsilon, k, 3)$ exist for all $\varepsilon > 0$ and all k.

Proof of the corollary. Any two-element subset of an \mathbb{F}_2 vector space is an affine line so it is trivial that $n(\varepsilon, 1, q)$ exists. The theorem then implies that $n(\varepsilon, k, 2)$ exists for all k (see the corollary to Lemma 1 in [2] for a different proof of the existence of $n(\varepsilon, k, 2)$). The existence of $n(\varepsilon, k, 3)$ follows from Theorem 1 and the existence of $n(\varepsilon, 1, 3)$ which is the central result of [2]. This finishes the proof of the corollary.

A set $\{x_1, \ldots, x_k\}$ of the elements in an abelian group G is said to be independent if $c_1 x_1 + c_2 x_2 + \cdots + c_k x_k = 0$ implies that $c_i x_i = 0$ for each i. An (m, k)-lattice in an abelian group G is a set of the form

$$M = \{a + c_1 x_1 + \cdots + c_k x_k : c_i = 0, 1, \ldots, m-1\},$$

where a is an element of G and the x_i are independent. If V is a vector space over a finite field, then by an (m, k)-lattice in V we mean an (m, k)-lattice in its underlying additive group.

Let $n'(\varepsilon, k, q)$ denote the smallest integer (if one exists) such that if

$$n = \dim_{\mathbb{F}_q} V \geq n'(\varepsilon, k, q), \quad A \subset V, \quad |A| > \varepsilon|V|,$$

then A contains a $(3, k)$-lattice.

Theorem 2. $n'(\varepsilon, k, q)$ exists for all $\varepsilon > 0$, k, and q.

Corollary. For each $\varepsilon > 0$ and positive integer k there is an integer $m(\varepsilon, k)$ such that if G is any finite abelian group with more than $m(\varepsilon, k)$ elements and A is any subset of G with more that $\varepsilon |G|$ elements, then there is a $(3, k)$-lattice inside A.

Proof of the corollary. Let k and ε be given. Choose by Szemerédi’s theorem [10] a large enough n so that any subset of $\{1, 2, \ldots, n\}$ with more than εn elements contains an arithmetic progression with 3^k terms. Choose $m(\varepsilon, k)$ large enough so that any finite abelian group G with more than $m(\varepsilon, k)$ elements must contain either a cyclic subgroup H of order at least n, or a subgroup H which is the direct product of at least $n'(\varepsilon, k, p)$ cyclic groups of order p for some prime $p < n$.

Now let G be a finite abelian group with more than $m(\varepsilon, k)$ elements and let A be a subset of G with $|A| > \varepsilon |G|$. Let H be the subgroup whose existence is guaranteed by the choice of $m(\varepsilon, k)$. Then $|A \cap a + H| > \varepsilon |H|$ for some coset $a + H$ of H. If H is cyclic, then $A - a$ contains the set

$$\{a_0 + c_1 d + c_2 (3d) + \cdots + c_k (3^{k-1}d) : c_i = 0, 1, 2\},$$

where d is the difference of the arithmetic progression whose existence is guaranteed by the choice of n above. If H is the direct product of at least $n'(\varepsilon, k, q)$ cyclic groups of order p, then $A - a$ contains

$$\{a_0 + c_1 x_1 + \cdots + c_k x_k : c_i = 0, 1, 2\}$$

for an independent set of x_i. Thus in either case A contains a $(3, k)$-lattice and we are finished.
Remarks. (1) Roth’s special case of Szemerédi’s theorem asserts that if \(n \) is sufficiently large and \(A \) is a subset of \(\{1, 2, \ldots, n\} \) with more than \(\epsilon n \) elements then \(A \) contains a set of the form \(\{a, a+\lambda, a+2\lambda\} \).

This is equivalent to the case \(k = 1 \) of the corollary in the case in which \(G \) is cyclic. Indeed, it is not hard to check that one has

\[
m(\epsilon, 1) \leq n \leq \frac{1}{2} m\left(\frac{\epsilon}{2}, 1\right) + 1
\]

(to verify the second inequality consider subsets of the “first half” of a sufficiently large cyclic group).

Thus the corollary could be thought of as a group-theoretic generalization of Roth’s Theorem.

(2) Since sufficiently large groups contain large abelian subgroups [4], we could actually delete the requirement that \(G \) be abelian in the statement of the corollary.

(3) If the Affine Line Conjecture is valid, then the results here imply the obvious “group-theoretic generalization” of Szemerédi’s Theorem: For every \(\epsilon > 0 \), \(k \), and \(\lambda \) there exists an integer \(m(\epsilon, k, \lambda) \) such that if \(G \) is any finite abelian group with more than \(m(\epsilon, k, \lambda) \) elements and \(A \) is any subset of \(G \) with more \(\epsilon|G| \) elements, then there exists an \((l, k)\)-lattice in \(A \).

Finally, we remove the algebraic structure on the underlying set, replacing \(\mathbb{F}_q \) with an arbitrary finite set. Thus we consider combinatorial subspaces; we briefly recall the definition (see [6] for further details).

Let \(F \) be the finite set \(\{0, 1, \ldots, t-1\} \) with \(t \) elements. A subset \(W \) of \(F^n \) is a combinatorial \(k \)-space if it satisfies the following. There is a partition

\[
\{1, \ldots, n\} = B_0 \cup B_1 \cup \cdots \cup B_k
\]

such that \(B_1, \ldots, B_k \) are nonempty. There is a function \(f : B_0 \to F \). A function \(\vec{f} : F^k \to F^n \) is defined by

\[
\vec{f}(y_1, \ldots, y_k) = (x_1, \ldots, x_n)
\]

where

\[
x_i = f(i) \quad \text{for } i \in B_0,
\]

\[
x_i = y_j \quad \text{for } i \in B_j, 1 \leq j \leq k.
\]

\(W \) is the range of \(\vec{f} \).

The definition is complicated, but it captures a notion of subspace when the only structure on \(F \) is that of a finite set. We remark that the Hales-Jewett Theorem [6, 7] asserts that if \(n \) is large enough, then in any coloring of \(F^n \) there is a monochromatic combinatorial 1-space (usually called a combinatorial line).

Let \(n''(\epsilon, k, t) \) be the smallest integer (if one exists) such that if

\[
n \geq n''(\epsilon, k, t), \quad A \subset F^n, \quad |A| > \epsilon|F^n|,
\]

then \(A \) contains a combinatorial \(k \)-space.

Theorem 3. Let \(t \) be fixed. If \(n''(\epsilon, 1, t) \) exists for all \(\epsilon > 0 \), then \(n''(\epsilon, k, t) \) exists for all \(\epsilon > 0 \) and all \(k \).

Corollary. \(n''(\epsilon, k, 2) \) exists for all \(\epsilon > 0 \) and all \(k \).

Proof of the corollary. The existence of \(n''(\epsilon, 1, 2) \) is a simple consequence of Sperner’s Lemma (see [1] or [6]).
Remarks. (1) In [1] it is shown that if there is a fixed $\varepsilon_0 < 1$ such that $n''(\varepsilon_0, 1, t)$ exists for all t, then $n''(\varepsilon, 1, t)$ exists for all $\varepsilon > 0$ and all t. The corresponding result for $n(\varepsilon, 1, q)$ is proved in [3].

(2) The existence of $n''(\varepsilon, 1, t)$ is a “density version” of the Hales-Jewett Theorem. Graham has offered a reward for a proof of the existence (or non-existence!) of the numbers $n''(\varepsilon, 1, 3)$.

2 Proofs

The following lemma contains the crucial idea underlying Theorems 1, 2, and 3.

Lemma. Let \mathbb{F}_q be a fixed finite field and k a fixed positive integer. Assume that $n(\varepsilon, 1, q)$ exists for all $\varepsilon > 0$. Then for each positive integer r, if $n(1/(r+1), k, q)$ exists then $n(1/r, k+1, q)$ exists. Similar statements holds for $n'(\varepsilon, k, q)$ and $n''(\varepsilon, k, t)$.

Proof. We give the proof in the vector space case $n(\varepsilon, k, q)$. The proofs for $n'(\varepsilon, k, q)$ and $n''(\varepsilon, k, t)$ are entirely analogous. In the lattice case $n'(\varepsilon, k, q)$ it is merely necessary to replace “k-space” with “$(3, k)$-lattice” and “line” with “$(3, 1)$-lattice” throughout. In the combinatorial case $n''(\varepsilon, k, t)$ it is necessary to replace “affine k-space” with “combinatorial k-space” and “affine line” with “combinatorial line” throughout.

Let $n_0 = n(1/(r+1), k, q)$. Let e be the number of distinct k-dimensional vector subspaces of any n_0-dimensional vector space over \mathbb{F}_q. Let $\delta = (q^{n_0}e^r)^{-1}$ and let $s = n(\delta, 1, q)$. We claim that

$$n(1/r, k+1, q) \leq n_0 + s.$$

To prove this we must start with a vector space V over \mathbb{F}_q of dimension at least $n_0 + s$. Let A be a subset of V with

$$|A| > (1/r)|V| \geq (1/r)q^{n_0+s}.$$

Let W_0 be a n_0-dimensional subspace of V and let

$$V = \bigcup W_\alpha$$

be the decomposition of V into a union of the pairwise disjoint translates (cosets) of W_0. For the proof to work in the combinatorial case it is necessary at this point to choose W_0 to be the subspace consisting of the vectors whose last s components are 0.

Let t be the number of cosets W_α such that

$$|A \cap W_\alpha| \leq \frac{1}{r+1}|W_\alpha| = \frac{1}{r+1}q^{n_0}.$$

There are q^t cosets altogether, so

$$\frac{1}{r}|V| < |A| = \sum |A \cap W_\alpha| \leq \frac{t}{r+1}|W_\alpha| + (q^t - t)|W_\alpha|.$$

This gives

$$q^t - t > q^t/r.$$
Hence there are \(d = q^t - t > q^t/r^2 \) cosets \(W_\alpha \) such that

\[
|A \cap W_\alpha| > \frac{1}{r+1} |W_\alpha|,
\]

and since the dimension of \(W_0 \) is \(n_0 = n(1/(r+1), k, q) \) each such \(A \cap W_\alpha \) must contain an affine \(k \)-space

\[
a_\alpha + U_\alpha,
\]

where \(U_\alpha \) is a \(k \)-dimensional vector subspace of \(W_\alpha \).

Since there are exactly \(e \) distinct \(k \)-dimensional vector subspaces of \(W_0 \) at least \(d/e \) of the \(k \)-spaces \(a_\alpha + U_\alpha \) must have the form \(a_\alpha + U \) for a fixed \(U \). Let these be

\[
a_1 + U, \ldots, a_h + U,
\]

where \(h \geq d/e \).

Let \(A' = \{ a_1, \ldots, a_h \} \). Then

\[
|A'| = h \geq d/e > \frac{q^s}{er^2} = \frac{1}{q^{rn_0+e}q^{rn_0+e}} = \delta |V|.
\]

Since the dimension of \(V \) is \(n_0 + s > s = n(\delta, 1, q) \), there must be an affine line in \(A' \) by renumbering if necessary we can assume that this line is \(\{ a_1, \ldots, a_q \} \).

It is now easy to check that

\[
U' = (a_1 + U) \cup \cdots \cup (a_q + U)
\]

is an affine \((k+1) \)-space contained in \(A \). Since \(A \) was an arbitrary subset of \(V \) with \(|A| > (1/r)|V| \) this shows that

\[
n(1/r, k+1, q) \leq n_0 + s = \dim_{\mathbb{F}_q}(V)
\]

as claimed. This finishes the proof of the lemma. \(\square \)

Theorem 1 now follows immediately from the lemma by induction. Indeed, we are given in the hypotheses of the theorem that \(n(\varepsilon, 1,q) \) exists for all \(\varepsilon > 0 \). If \(n(\varepsilon, k,q) \) exists for all \(\varepsilon \), then it exists for \(\varepsilon = 1/r \). By the lemma, \(n(\varepsilon, k+1, q) \) exists for all \(\varepsilon > 0 \). Theorem 1 now follows by induction on \(k \).

The proof of Theorem 3 is identical; we merely replace \(n(\varepsilon, k,q) \) with \(n'(\varepsilon, k, t) \).

To prove Theorem 2 for odd \(q \) we first observe that \(n'(\varepsilon, 1,q) \) exists for all \(\varepsilon > 0 \) as a consequence of the main result in [2]. For this case Theorem 2 follows from the lemma and induction as above.

To prove Theorem 2 for even \(q \) we observe that a \((3,k)\)-lattice is just a \((2,k)\)-lattice since \(2 = 0 \) in \(\mathbb{F}_q \). It then follows that \(n'(\varepsilon, 1,q) \) exists since any two elements of an abelian group form a \((2,1)\)-lattice. The rest of the proof is as above. (An upper bound for \(n'(\varepsilon, k,q) \) for even \(q \) can also be deduced from Lemma 1 in [2].)

Note added in proof. The lemma can be easily improve to show that \(n(1/r, k+1, q) \leq n(1/(r+1), k,q) + n(1/(er^2), 1,q) \).
References

