Common Transversals for Three Partitions

T. C. Brown

Citation data: T.C. Brown, Common transversals for three partitions, Bogazici University J. 10 (1983), 47–49.

Abstract

This note contains some questions and a result concerning common transversals for partitions (and in particular for three partitions) of a finite set.

In a famous paper of 1935 [2], Philip Hall gave the first (and still the best!) necessary and sufficient condition for the existence of a system of distinct representatives, or transversal, of a family of sets.

(A set \(T \) is a transversal of the family \(A = (A(1), \ldots, A(s)) \) if there is a bijection \(f \) from \(\{1, \ldots, s\} \) onto \(T \) such that \(f(i) \) is an element of \(A(i) \), \(1 \leq i \leq s \). Hall’s Theorem, beautiful in its simplicity, states that if \(A = (A(1), \ldots, A(s)) \) is any family of \(s \) sets (not necessarily distinct), then a transversal for the family \(A \) exists if and only if the following condition holds: For each \(k \), \(1 \leq k \leq s \), the union of any \(k \) of the sets \(A(i) \) contains at least \(k \) elements.)

One of the most singular open questions in transversal theory [4] is the question of whether or not there exists a simple necessary and sufficient condition for the existence of a common transversal for three families.

(If several families of sets are given, say \(A_1, \ldots, A_t \), where \(A = (A(i, 1), \ldots, A(i, s)) \), \(1 \leq i \leq t \), a set \(T \) is a common transversal of \(A_1, \ldots, A_t \) if \(T \) is a transversal of each \(A_i \), \(1 \leq i \leq t \). Hall’s theorem immediately gives a simple necessary and sufficient condition for the existence of a common transversal of two families.)

Recently, Judith Q. Longyear [3] discovered an extremely simple sufficient condition for the existence of a common transversal for any number of families. (See [3] for details.)

Among other results, Longyear showed that if \(A_1, A_2 \) are \(s \)-cell partitions of a set \(X \) with the property that distinct elements of \(X \) belong to distinct cells of \(A_1 \), or to distinct cells of \(A_2 \), then \(A_1, A_2 \) have a common transversal if \(|X| > s^2 - 2s + 2 \), and that \(s^2 - 2s + 2 \) is best possible.

This result can be visualized in the following way. Let \(L(s) \) be the \(s \times s \) square of lattice points in the plane defined by \(L(s) = (a_1, a_2) : 0 \leq a_1, a_2 \leq s - 1 \), and let \(X \) be a subset of \(L(s) \). Call the sets \(X \cap \{(a_1, a_2) : a_1 = j\}, 0 \leq j \leq s - 1 \), the columns of \(X \), and the sets \(X \cap \{(a_1, a_2) : a_2 = j\}, 0 \leq j \leq s - 1 \), the rows of \(X \). Then regarding the columns of \(X \) as the cells of a partition \(A_1 \) of \(X \), and regarding the rows of \(X \) as the cells of a partition \(A_2 \) of \(X \), Longyear’s result says that the maximum size of a subset \(X \) of \(L(s) \) such that each row and each column of \(X \) is non-empty and \(X \) does not contain any subset \(T \) meeting each row and each column of \(X \) in exactly one element, is \(|X| = s^2 - 2s + 2 \).

In this note we want to call attention to a number of questions related to this result, and especially to the 3-dimensional case, referred to in the title.
Thus let $M(s)$ be the $s \times s \times s$ cube of lattice points defined by $M(s) = \{(a_1, a_2, a_3) : 0 \leq a_1, a_2, a_3 \leq s-1\}$, and let X be a subset of $M(s)$. The planes of X are the 3s sets $X \cap \{(a_1, a_2, a_3) : a_i = j\}$, $1 \leq i \leq 3$, $0 \leq j \leq s-1$.

What is the maximum size $f(s)$ of a subset X of $M(s)$ such that each plane of X is non-empty and X does not contain any subset T meeting each plane of X in exactly one point?

Taking $X = M(s) \cap \{(x,0,0),(0,y,0),(x,y,z) : x \neq 0, y \neq 0\}$ shows that $2(s-1) + s(s-1)^2 \leq f(s)$.

It is also known ([3]) that $f(s) \leq s^3 - s^2$. Probably one can show that $f(s) = s^3 - (2 + o(1))s^2$ as $s \to \infty$.

Best of all would be to find the exact value of $f(s)$! (the author is inclined to believe that the construction above is “best possible”, so that $f(s) = 2(s-1) + (s-1)^2s$.)

It is natural to generalize this problem to the t-dimensional “cube” $M(s,t) = \{(a_1, \ldots , a_t) : 0 \leq a_i \leq s-1, 1 \leq i \leq t\}$. When X is a subset of $M(s,t)$, the hyperplanes of X are the sets $X \cap \{(a_1, \ldots , a_t) : a_i = j\}$, $1 \leq i \leq t$, $0 \leq j \leq s-1$. What is the maximum size $f(s,t)$ of a subset X of $M(s,t)$ such that each hyperplane of X is non-empty and X does not contain any subset T meeting each hyperplane of X in exactly one point? Is it possible that the computation of $f(s,t)$ for all s,t is an NP-complete problem?

Setting $s = t$, and generalizing the construction above which gives $2(s-1) + (s-1)^2s \leq f(s)$ (see [1] for details) leads to the following conjecture. For every $\varepsilon > 0$ there exists $n(\varepsilon)$ such that if $s \geq n(\varepsilon)$ and X is any subset of $M(s,s)$ with each hyperplane of X containing at least $(1/\varepsilon + \varepsilon)s^{-1}$ points, then X contains a subset T meeting each hyperplane of X in exactly one point (where $e = 2.718 \ldots$).

Other related questions can be found in [1] and [3].

References

