Razvan C. Fetecau

Publications

  1. R. C. Fetecau, H. Huang, D. Messenger and W. Sun [2018], Zero-diffusion limit for aggregation equations over bounded domains , preprint, https://arxiv.org/abs/1809.01763 (pdf)

  2. R. C. Fetecau and B. Zhang [2018], Self-organization on Riemannian manifolds , preprint, https://arxiv.org/abs/1802.06089 (pdf)

  3. R. C. Fetecau, H. Huang and W. Sun [2018], Propagation of chaos for the Keller-Segel equation over bounded domains , J. Differential Equations, (accepted), arxiv.org/abs/1802.09668 (pdf)

  4. R. C. Fetecau, M. Kovacic and I. Topaloglu [2018], Swarming in domains with boundaries: approximation and regularization by nonlinear diffusion , Discrete Contin. Dyn. Syst. Ser. B, (accepted), arxiv.org/abs/1711.03622 (pdf)

  5. J. Evers, R. C. Fetecau and T. Kolokolnikov [2017], Equilibria for a two-dimensional aggregation model with two species , SIAM J. Appl. Dyn. Syst., Vol. 16, No. 4, pp. 2287-2338 (pdf)

  6. J. Evers, R. C. Fetecau and W. Sun [2017], Small inertia regularization of an anisotropic aggregation model , Math. Models Methods Appl. Sci. (M3AS), Vol. 27, No. 10, pp. 1795-1842 (pdf)

  7. R. C. Fetecau and M. Kovacic [2017], Swarm equilibria in domains with boundaries , SIAM J. Appl. Dyn. Syst., Vol. 16, No. 3, pp. 1260-1308 (pdf)

  8. C. Innes, R. C. Fetecau and R. Wittenberg [2017], Modelling heterogeneity and an open-mindedness social norm in opinion dynamics , Netw. Heterog. Media, Vol. 12, Issue 1, pp. 59-92 (pdf)

  9. R. C. Fetecau, W. Sun and C. Tan [2016], First-order aggregation models with alignment , Physica D, Vol. 325, pp. 146-163 (pdf)

  10. R. C. Fetecau and W. Sun [2015], First-order aggregation models and zero inertia limits , J. Differential Equations, Vol. 259, Issue 11, pp. 6774-6802 (pdf)

  11. J. Evers, R. C. Fetecau and L. Ryzhik [2015], Anisotropic interactions in a first-order aggregation model , Nonlinearity, Vol. 28, No. 8, pp. 2847-2871 (pdf)

  12. R. Choksi, R. C. Fetecau and I. Topaloglu [2015], On minimizers of interaction functionals with competing attractive and repulsive potentials , Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 32, Issue 6, pp. 1283-1305 (pdf)

  13. R. C. Fetecau [2015], Self-collective behaviour in biological aggregations , CMS Notes, Vol. 47, No. 1, pp. 12-13 (pdf)

  14. M. Burger, R. C. Fetecau and Y. Huang [2014], Stationary States and Asymptotic Behaviour of Aggregation Models with Nonlinear Local Repulsion , SIAM J. Appl. Dyn. Syst., Vol. 13, Issue 1, pp. 397–424 (pdf)

  15. R. C. Fetecau and J. Meskas [2013], A nonlocal kinetic model for predator-prey interactions , Swarm Intelligence, Vol. 7, Issue 4, pp. 279-305 (pdf)

  16. R. C. Fetecau and Y. Huang [2013], Equilibria of biological aggregations with nonlocal repulsive-attractive interactions , Physica D, Vol. 260, pp. 49–64 (pdf)

  17. R. C. Fetecau and A. Guo [2012], A mathematical model for flight guidance in honeybee swarms , Bull. Math. Biol., Vol. 74, No. 11, pp. 2600-2621 (pdf)

  18. J. C. Bronski and R. C. Fetecau [2012], An alternative energy bound derivation for a generalized Hasegawa-Mima equation , Nonlinear Analysis Ser. B, Vol. 13, Issue 3, pp. 1362-1368 (pdf)

  19. R. C. Fetecau, Y. Huang and T. Kolokolnikov [2011], Swarm dynamics and equilibria for a nonlocal aggregation model , Nonlinearity, Vol. 24, No. 10, pp. 2681-2716, featured article (pdf)

  20. R. C. Fetecau and D. J. Muraki [2011], A dispersive regularization of the modulational instability of stratified gravity waves , Wave Motion, Vol. 48, No. 7, pp. 667-679. (pdf)

  21. R. C. Fetecau [2011], Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic model , Math. Models Methods Appl. Sci. (M3AS), Vol. 21, No. 7, pp. 1539-1569. (pdf)

  22. R. C. Fetecau and D. J. Muraki [2010], Dispersive Corrections to a Modulation Theory for Stratified Gravity Waves , Wave Motion, Vol. 47, Issue 7, pp. 395-408. (pdf)

  23. R. C. Fetecau and R. Eftimie [2010], An investigation of a nonlocal hyperbolic model for self-organization of biological groups , J. Math. Biol., Vol. 61, No. 4, pp. 545-579. (pdf)

  24. H. S. Bhat and R. C. Fetecau [2009b], On a regularization of the compressible Euler equations for an isothermal gas , J. Math. Anal. Appl., Vol. 358, Issue 1, pp. 168-181. (pdf)

  25. H. S. Bhat and R. C. Fetecau [2009a], The Riemann problem for the Leray-Burgers equation , J. Differential Equations, Vol. 246, Issue 10, pp. 3957-3979. (pdf)

  26. H. S. Bhat and R. C. Fetecau [2008], Stability of fronts for a regularization of the Burgers equation , Quart. Appl. Math, Vol. 66, No. 3, pp. 473-496. (pdf)

  27. H. S. Bhat, R. C. Fetecau and J. B. Goodman [2007], A Leray-type regularization for the isentropic Euler equations , Nonlinearity , Vol. 20, pp. 2035-2046. (pdf)

  28. J. C. Bronski, R. C. Fetecau and T. N. Gambill [2007], A note on a non-local Kuramoto-Sivashinsky equation , Discrete Contin. Dyn. Syst. Ser. A, Vol. 18, No. 4, pp. 701-707. (pdf)

  29. H. S. Bhat and R. C. Fetecau [2006b], A Hamiltonian regularization of the Burgers equation, J. Nonlinear Sci. , Vol. 16, No. 6, pp. 615-638. (pdf)

  30. H. S. Bhat and R. C. Fetecau [2006a], Lagrangian averaging for the 1D compressible Euler equations, Discrete Contin. Dyn. Syst. Ser. B, Vol. 6, No. 5, pp. 979-1000. (pdf)

  31. R. C. Fetecau and D. Levy [2005], Approximate Model Equations for Water Waves , Comm. Math. Sci., Vol. 3, Issue 2, pp. 159 - 170. (pdf)

  32. H. S. Bhat, R. C. Fetecau, J. E. Marsden, K. Mohseni and M. West [2005], Lagrangian Averaging for Compressible Fluids , SIAM J. Multiscale Modeling and Simulation, Vol. 3, No. 4, pp. 818 - 837. (pdf)

  33. R. C. Fetecau and T. Y. Hou [2004], A modified particle method for semilinear hyperbolic systems with oscillatory solutions , Methods and Applications of Analysis , Vol. 11, No. 4, pp. 573-604. (pdf)

  34. R. C. Fetecau, J. E. Marsden, M. Ortiz and M. West [2003], Nonsmooth Lagrangian Mechanics and Variational Collision Integrators, SIAM J. Appl. Dyn. Syst., Vol. 2, No. 3, pp. 381-416. (pdf)

  35. R. C. Fetecau, J. E. Marsden and M. West [2003], Variational Multisymplectic Formulations of Nonsmooth Continuum Mechanics, in Kaplan et al., editors, Perspectives and Problems in Nonlinear Science, pp. 229-261, Springer-Verlag. (pdf)

  36. R. C. Fetecau [1998], Existence of Unidirectional Spherical Gap Flows of Some Non-Newtonian Fluids, Rev. Roumaine Sci. Techn. Ser. Mec. Appl., Vol 43, No. 5, pp. 551-555.

  37. R. C. Fetecau and C. Fetecau [1997], Cone and Plate Flow of a Second Grade Fluid, Acta Mech., Vol. 122, No. 1-4, pp. 225-230.

Movies

Movie supporting the work "Nonsmooth Lagrangian Mechanics and Variational Collision Integrators" with J. E. Marsden, M. Ortiz and M. West

    Sequence of collisions and bounces on a horizontal rigid floor for a rotating star-shaped rigid body: Movie