Publications
Journal publications:
- Clinton Innes,
Razvan C. Fetecau & RWW, Modelling
the effect of open-mindedness on opinion dynamics, submitted
(January 2015).
- Jared P. Whitehead & RWW, Persistently
logarithmic: a bound on the vertical transport of heat in
Rayleigh-Bénard convection at infinite Prandtl number with mixed
thermal boundary conditions. Journal
of Mathematical Physics 55,
093104 (2014).
[ DOI:10.1063/1.4896223
/ PDF
]
- RWW, Optimal
parameter-dependent bounds for Kuramoto-Sivashinsky-type
equations. Discrete and Continuous
Dynamical Systems - Series A 34(12),
5325-5357 (2014).
[ DOI:10.3934/dcds.2014.34.5325
/ PDF
]
- Bojan Ramadanovic, Krisztina Vasarhelyi, Ali
Nadaf, RWW, Julio S.G. Montaner, Evan Wood &
Alexander R. Rutherford, Changing
risk behaviours and the HIV epidemic: A mathematical analysis in
the context of Treatment as Prevention, PLoS
ONE 8(5), e62321 (2013).
[ DOI:10.1371/journal.pone.0062321
/ PDF
]
- Ka-Fai Poon
& RWW, Coarsening to
chaos-stabilized fronts. Physical
Review E 83, 016211 (2011).
[ DOI:10.1103/PhysRevE.83.016211
/ PDF
]
- RWW, Bounds on
Rayleigh-Bénard convection with imperfectly conducting plates.
Journal of Fluid Mechanics 665,
158-198 (2010).
[ DOI:10.1017/S0022112010003897
/ PDF
]
- RWW & Jian Gao,
Conservative bounds on Rayleigh-Bénard
convection with mixed thermal boundary conditions. European
Physical Journal B 76,
565-580 (2010).
[ DOI:10.1140/epjb/e2010-00227-x
/ PDF
]
- RWW & Ka-Fai
Poon, Anomalous scaling on
a spatiotemporally chaotic attractor. Physical
Review E 79, 056225 (2009).
[ DOI:10.1103/PhysRevE.79.056225
/ PDF
]
- Jens D.M. Rademacher & RWW, Viscous
shocks in the destabilized Kuramoto-Sivashinsky equation.
Journal of Computational and Nonlinear
Dynamics 1, 336-347 (2006).
[ DOI:10.1115/1.2338656
/ PDF
]
- Jesse Otero, RWW, Rodney A. Worthing &
Charles R. Doering, Bounds on
Rayleigh-Bénard convection with an imposed heat flux. Journal
of Fluid Mechanics, 473,
191-199 (2002).
[ DOI:10.1017/S0022112002002410
/ PDF
]
- RWW, Dissipativity,
analyticity and viscous shocks in the (de)stabilized
Kuramoto-Sivashinsky equation. Physics
Letters A, 300, 407-416
(2002).
[ DOI:10.1016/S0375-9601(02)00861-7
/ PDF
]
- RWW & Philip Holmes, Spatially
localized models of extended systems. Nonlinear
Dynamics, 25, 111-132
(2001).
[ DOI:10.1023/A:1012902732610
/ PDF
]
- RWW and Philip Holmes, Scale
and space localization in the Kuramoto-Sivashinsky equation.
Chaos, 9,
452-465 (1999).
[ DOI:10.1063/1.166419
/ PDF
]
- Philip J. Holmes, John L. Lumley, Gal
Berkooz, Jonathan C. Mattingly & RWW, Low-dimensional
models of coherent structures in turbulence. Physics
Reports, 287, 337-384
(1997).
[ DOI:10.1016/S0370-1573(97)00017-3
/ PDF
]
- RWW & Philip Holmes, The
limited effectiveness of normal forms: A critical review and
extension of local bifurcation studies of the Brusselator PDE.
Physica D, 100,
1-40 (1997).
[ DOI:10.1016/S0167-2789(96)00187-X
/ PDF
]
Refereed conference proceedings:
- Philip J. Holmes, Jonathan C. Mattingly
and Ralf W. Wittenberg, Low-Dimensional
Models of Turbulence or, the Dynamics of Coherent Structures.
In From Finite to Infinite Dimensional
Dynamical Systems (J.C. Robinson and P.A. Glendinning,
eds.), NATO Science Series II, vol.19 (Proceedings of the NATO
Advanced Study Institute, Cambridge, UK, 21 August-1 September
1995), Kluwer Academic Publishers, Dordrecht, 2001, pp.177-215.
Other contributions:
- Kuramoto-Sivashinsky equation.
Invited article, Encyclopaedia of
Mathematics, Supplement III (managing editor: M.
Hazewinkel), Kluwer Academic Publishers, 2002, pp.230-234.
[ link
]
- Local Dynamics
and Spatiotemporal Chaos. The Kuramoto-Sivashinsky Equation: A
Case Study. Ph.D. thesis, Princeton University, 1998.
- Models of Self-Organization in Biological
Development. M.Sc. thesis, University of Cape Town, 1993.
(Student co-authors are underlined.)